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Discontinuity of géométrie expansions

JOACHIM LOHKAMP*

1. Introduction

The spectrum 0 Xo < kx < À2 < • • • / H- oo of the Laplacian on a Riemannian
manifold (Mn,g) provides great deal of insight into the geometry of (Mw,g).
Certainly the most often used method to recover géométrie information from the

spectrum starts with the following observation:
The trace tr(H) of the heat kernel H of the Laplacian fulfills:

tr(/O=f>p(-f-A,.). (1)

Moreover there is an asymptotic expansion for tr(/7):

tr(H) ~ (Ant) ~n'2 • (a0 + a, • t + a2 • t2 + • • •) (2)

where each of the uniquely determined ak is an expression of the form ak(M9 g) \M
Pk(RiQm(g)) dVg, that is an intégral of (universal) polynomials Pk in derivatives of
the curvature tensor Riem(g). At least a0 and ax are easily interpreted:
a0 Vol(M,g), ax=\\M Scal(g)dVg.

Combining (1) and (2) we see: the spectrum détermines the géométrie quantities

ak. Actually the ak are not just interesting in themselves, but allow to deduce a lot
of (apparently) sharper détails: for instance one can (under certain circumstances)
detect symmetric metrics, constant sectional or Ricci curvature metrics, gets non-trivial

bounds on the curvature beside many other things described in [BGM] and [B].
Also one can recover Weyl's formula showing the particular interplay between

spectrum and volume (i.e. a0):

for some constant cn > 0 depending only on n.
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214 JOACHIM LOHKAMP

AU this makes thèse ak becoming significant in spectral geometry. Unfortun-
ately the "calculation" of thèse ak from the spectrum turns out to be quite in-
tricate: the asymptotic expansion is rather implicit and even more "unrealistic" it
needs the whole spectrum. Particularly the latter point leads us to ask whether

"sufficiently large" but finite parts of the spectrum could contain comparably much
information (cf P. Berard's survey [B] Ch. VII where this question had also been

raised.

Let us begin with a basic resuit (due to Y. Colin de Verdière [Cl]): such a finite
prescription does not lead to any restriction of the topology of the underlying
manifold (in dimension n > 3).

In this paper we will "attach geometry" to those rather spécial metrices in [Cl].
This allows us to rule out many conceivable géométrie implications.

Now let us become more spécifie: as the complète spectrum détermines a lot of
géométrie data one might expect, that the relaxed condition of knowing finitely
many eigenvalues implies estimâtes of thèse data becoming sharper the more
eigenvalues are taken into account. The point is that thèse estimâtes should not

dépend on the underlying metric as it is desired to dérive a priori information from
a set of eigenvalues (as is possible from the complète spectrum).

The main results of this paper will show that such a uniform continuity does not
hold in gênerai.

Let 0 Xq < Xx < X2 < • • * be any given séquence, Mn a closed manifold of
dimension n > 3.

THEOREM 1. For any Fe]0, +oo[, S e] - oo, +oo[ there is a séquence of
metrics gm on Mn with:

(i) Xk(M,gm) 4, for k<m
(ii) Vol(M, gm) V, \M Scal(£m) dVgm S

(iii) a2*(M, gm) -> + oo, a2k+, (M, gm) -+ - oo, k > 1

(4(M, gm) and Scal(gm) dénote the &th eigenvalue resp. the scalar curvature of

There are generalized versions where finite values of higher coefficients (i.e. ai9

i > 2) can be prescribed (in a one-sided unbounded interval). However, there are

non-trivial relations between them (depending on dimension and topology of M)
cutting down the degrees of freedom for possible choices of thèse coefficients. But
we can always realize any arbitrary and independent prescription of finitely many
eigenvalues, volume and (certain) curvatures. This might become even clearer from
our second resuit which could not hold for the whole spectrum given (as there are

restrictions for prescribing (bounds for) curvatures already from the knowledge of
volume and total scalar curvature).
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THEOREM 2. For any Fe]0, -foo[ there is a séquence of metrics gm on M
with:

(i) 4(M, gm) 4, for k<m
(ii) Vol(M,gJ F
(iii) Ric(gm) < -m2
(Ric(g) dénotes the Ricci curvature of some metric g).

Note that, on the other hand, Rie cannot be bounded below independently from
volume and eigenvalues: beside bounding volumes from Rie > c > 0, the eigenval-
ues can be estimated (ace. P. Li and S. T. Yau [LY]) leading to non-trivial
restrictions even if volume and Rie are compatible.

Finally, we give a brief outline of our methods. The first and main step in this

paper is to get a certain metric on a Riemann surface (without fixing its genus)
whose spectrum starts with those given eigenvalues and whose area is arbitrarily
large. The new argument for the construction of such Riemannian manifolds
combines those methods already known (cf. [C3]) with the crushed ice effect (cf.
[Ch] Ch. IX). From this we finally get metrics with prescribed eigenvalues and

volume in higher dimensions. In the second step we get additionally the desired

curvature properties. Thèse are derived from the author's existence results for
Rie < 0-metrics in [Ll] and [L2]. Finally, the higher coefficients can also be handled

using those results above and further gênerai structural insights of thèse terms
described in [A], [BGM], [B] and [G].

Remark. Recently B. Colbois and J. Dodziuk [CD] and Y. Xu [X] hâve shown

that there are always metrics with kx (M, gm) > m and Vol(M, gm) 1 for arbitrarily
large m. Their (completely différent) arguments do not extend to prescribing finitely
many eigenvalues with given (or at least large) volume. The latter resuit (which is

contained in our Theorems) was posed as a conjecture by J. Dodziuk in his more
récent survey [D] and the author thanks him for sending this preprint which led us

to think about thèse problems.

2. Stable metrics

The basic technique to obtain some metric with prescribed finite part of the

spectrum was developed by Y. Colin de Verdière in [Cl]. In the centre there is a notion
of "stability" introduced by V. Arnold. For the reader's convenience we recall some
ideas of this theory and those results needed below in an appropriate form.

There are two basic techniques of how to get a metric with given eigenvalues
which are actually combined in order to establish the existence of such metrics.
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The first one starts with a graph. That is just a 1-dimensional simplicial
complex. Hère one can define formally a Laplacian adjoint to the metric measuring
the length of the edges. Actually, it is an easy combinatorial considération that
allows to choose such a complex C whose spectrum starts with the given eigenvalues.

Now one can "approximate" C by a séquence of smooth (hyperbolic) surfaces

(of fixed type) such that each edge of C corresponds to a degenerating closed

géodésie on thèse surfaces. A suitable choice of the lengths of thèse curves allows to
find that the eigenvalues of the surfaces converges (after stepwise scaling of the

whole metric) to those of C in a pretty uniform manner. Actually, the Laplacian on
C has another marvellous "stability" property which allows us to get precisely the
desired eigenvalues already on this surface.

This is what will be described in following important technical disgression.

Let/: B -? J({M) be a continuous map from a closed bail B i?i(0) <z UN into
the space of smooth Riemannian matrics on a compact manifold Mn with smooth

(or without) boundary. Then we can consider for some fixed metric g0 the following
continuous map: #(/): B~+Qn(g0), defined by the Dirichlet intégral

,<?)'
JM

(We will call #(/) a spectral map belonging to/.) Explanation: Qn(g) is the (finite
dimensional) vector space of quadratic forms on the function space En(g) spanned

by the first n eigenfunctions of the Laplace operator Ag belonging to the metric G.

In case dM ^ </> we consider Neumann eigenfunctions. (Also Vg, ||-1|^, dVg mean
that they are with respect to g.)

Finally Ip: En(g0)-+En(f(p)) is an L2-isometry depending continuously on

p eB and of course #(/) dépends on the choice of thèse Ip.
This allows to work on the fixed function space En(g0), and one observes that

the eigenvalues of [M || Vf(p)Ip(') \fap) dVf{p) on En(g0) and \M || VAp)(-) \\}(p) dVfip) on
En(f(p)) are identical (with multiplicities).

It is obvious (and important) to note that there is not need to restrict to a fixed
manifold since the L2-isometry Ip is the only link. That is we can equally well start with
a metric g0 defined on a différent manifold M'. Keeping this in mind we formulate:

DEFINITION 2.1. f\B-*M(M') is called a stable family of metrics (around

g0 =/(0)) resp. gQ is stable, if there is an s— e(f g0) > 0 such that for any map
F:B-> J((M) with || &(F) — #(/) || co(jB) < sfor some spectralmap <P(F), there is apoint
p € int B with $(F){p) #(/)(0). In this case we will say that F is spectraïly near tof

{That is F{p) has the same first n eigenvalues and it is obviously again a stable

metric.)
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Of course, this stability only refers to the behaviour with respect to the first n

eigenvalues and is more a property of <P(F) than of F. But as we will always fix such a
set of eigenvalues and construct stepwise new metrics we prefer to emphasize the

background metrics.

Now we can résume our discussion of the case of surfaces. The point is that the

graph Ccan be chosen such that the metric on Cis stable in the sensé above. Using that
the eigenvalues ofour approximating surface converge one can actually deduce that we

can find a surface having exactly the prescribed eigenvalues.

Now, we can use a second "technique" (valid in dimension >3) allowing us to
extend this resuit to higher dimensions (without topological restrictions). Roughly
speaking it says that (under suitable circumstances) the behaviour of eigenvalues is

governed by those "parts" of the manifold carrying most of the volume. An argument
of this type is described and used in §5 below.

Finally, some more technical remarks. Hère and throughout this paper we consider

some fixed prescribed séquence 0 Àq < Xx < À2 and as we are lobking for metrics

for any given finite part we may assume ÀnQ < F < Ano+x for each prescribed n0. This
will be assumed in each step of construction below without further comment.

Now we will briefly discuss a simple (actually partially redundant) criterion to show

that a séquence maps Fm: B -+ M(M) becomes (eventually) spectrally near to some
stable family/: B-*M(M)\

Let Fmbe a séquence ofmaps Fm: B -> Jt(M)with (pp(m)9..., <p%0(m) L2-orthonor-
mal bases for the first n0 eigenvalues À? (m) ofFm(p) depending continuously onp and
such that (pP(m) -? (pp in L2(M,f(p)) andXp (m) -»Àp uniformly inpeB (where (pp9 Xp

belong correspondingly tof(p)).
Then {for suitably large m) Fm is spectrally near tof
The point is that the L2-convergence allows to define (inductively) L2-isometries

P: En(f(p)) -+En(Fm(p)) depending continuously onp e B: For instance we can take

P(<pp) :=minimizer of \cpp - cp\2 dVin En(Fm(p)) with \\<p \\L2 1

JM

:=minimizer of \cpi — cp\2 dVin the orthogonal complément
JM

of span {/(ç>f),.. .,/((?£_!)} with |H|£2 1.

Using thèse isometries and taking P o Ip we get a spectral map <P(Fm) becoming

arbitrarily near to #(/) in C°-topology for large m.

3. Multiple connectée sums

As described above one can obtain metrics with prescribed eigenvalues forming
manifolds as "hulls" of graphs whose (formally defined) Laplacian is quite easy to
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handle. The problem with those manifolds is precisely that their volume becomes

arbitrarily small for suitable chosen sets of eigenvalues (cf. for instance [Co], as one
has to scale the metric in order to prevent the lowest eigenvalues from becoming
zéro, which is the effect of the shrinking of lengths of geodesics "predicted" (better
to say allowed) by Cheeger's inequality, namely in the borderline case of equality.

Thus we will hâve to add other techniques to take the following main step in
getting large volumes:

PROPOSITION 3.1. For any A>0 there is a compact Riemann surface F {of
some genus depending on A) equipped with some stable metric g fulfilling:

40) 4, & ^ n0 and area (F, g) > A.

Moreover the areas of the surrounding stable family of metrics are also > A.

We will start from any stable metric g0 on a surface Fo with 4(#o) 4> k ^ no

which was obtained in [Cl] and [C3]. Dénote a positive lower bound of the areas
of the corresponding family by a. In order to enlarge the area one might think of
taking connected sums. However, we hâve to circumvent the case where Cheeger's

inequality becomes more or less an equality. Hère we will involve a technique which
had been isolated from this context before.

We start with defining "Besicovitch-coverings" on (F09 g0) and more generally
for any compact manifold (M, g). Their existence is not too hard to establish (cf.
Appendix of [Ll] for a proof).

There is an Rq Ro(M, g) < injectivity radius of the exponential map
(cxpp : TpM -*M) such that for any R e ]0, Rq[ there is a number K independent of
R and a finite set S S(R) < M with

(i) BR(p)9 p e S is a (closed) covering of M.
(ii) each z € M is contained in at most K balls B2R(p)

(iii) BR(p)nS {p}.

Now let r e]0, f [ and define MrR''=M\\JpeS(R) Br(p). Moreover take a second

copy of MrR ='-M+ denoted by M" and form (completely analogously to the usual
connected sum) the

multiple connected sum M+ # M~ >=M+ uM"/~
mult

where "~" indicates the obvious boundary identifications (M+ 3 dBr(p) s
dBr(p) c M~). Of course, the topology of this closed manifold dépends on S(R).

Now we specialize to (Fo, g0). The following resuit obviously implies (3.1) from
itération (up to (§)* > j): For suitably chosen r, R we hâve:
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MAIN LEMMA 3.2. There is a stable family ofmetrics f: B -» M(Ft # Fô)
with: "¦""

4(/(0)) 4> k < n0 and area(F^ # Fô ,/(/>)) > \ • a.
mult

(The analogue holds in higher dimension, but we restrict to surfaces for notational
convenience. The interested reader might anticipate (from the 3-dimensional
analogue) the existence of large volume metrics for arbitrary three manifolds: hère one
could use Dehn surgery (that is surgery in codim 2(!)) to dérive the resuit as soon
as it is proved for some manifold).

In the proof of (3.2) we will make essential use of the canonical reflection
(involution) s: FJ # multFô -*Fà # mult Fô with s(F£)=Fô. This allows us to
write any function on this surface as a sum of its symmetric resp. antisymmetric
part/5:=i(/+/o^),/a;=i(/-/o5), (/=/5+/J. Furthermore dénote by C the
fixed point set of s =symmetry circles \JpeS(R) dBr(p)) and note that fa\c 0

and if there is also chosen a s-invariant metric then dfjdn\c 0 (d/dn dénotes the
normal derivative).

Eventually, we define ^-invariant metrics which will serve for (3.2): Basically we

are interested in the natural metric go on F£ # mult Fô with gs0 s g0 on

Unfortunately, thèse metrics are not smooth along C, since C is not totally
géodésie. But our problem is well-behaved under smoothing opérations as described

now:
For p g ]0, f [ we define a metric gp on Fq # mult F^ with

gp^g*0 on Fï\ [j Br+p(p)uFï\ U Br+P(p):

Use (cf. (6.2)) that we can assume (in our context) g0 being just the Euclidean
metric gu + r2'gS2 on Br+p(p) and define on Br+p(p)\Br{p)
[r, r + p[ x S\ gp gu +fp{r) ¦ gs* for a smooth fp with fp(r) r near r + p, fp
const. > 0 near r,f'p,f"p > 0. This obviously leads (for p ->0) to smooth metrics on
^o # muit Fô arbitrarily near to gs0 (in C°-topology).

Finally we will collect some properties of our coverings useful to analyze thèse

metrics gp and gs0:

LEMMA 3.3. For sufficiently smallR>0 we hâve constants c, cXgo) >0 with:

(i) area ([jpeSiR) Br{p)) < #S(R) • maxpeSiR) (area Br{p)) < c0 • r2/R2

(ii) #S(R)l\lnr\>cl- \/R2 \lnr\.

The proofs rely on the inequalities: area Fo < #S(R) • max^s area BR(p) and

#S(R) - minp€5 area BR(p) < K • area Fo. Détails are left to the reader.
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4. Crushed ice

We will analyze the spectrum of those metrics defined above exploiting effects

related to the "crushed ice" phenomenon. We use the following two important
auxiliary Lemmas (cf. [Ch] Ch. IX, §4 and [RT], §3) showing a remarkably différent
behaviour for the Dirichlet resp. Neumann eigenvalue problem on Fq FrR
depending on r and R.

LEMMA 4.1. The first nontrivial eigenvalue À? for the Dirichlet problem on

(Fr,R, go) fulfiUs: Af > c(gQ) • # S(R)l\lnr\ • K\ for some c> 0.

On the other hand we hâve the following resuit stated in a specialized and

adéquate form:

LEMMA 4.2. Let (pt(mX i 1,..., w0 be an orthonormal set of eigenfunc-
tions for the first n0 eigenvalues for the Neumann problem on FrmRm

(àcptQn) K(™) ' q>i(m))for séquences rm->0,Rm-+0 with area \JpeS(Rm) Brm(p) ->
0 for m -? oo.

Then there is a subsequence mk such that the trivial extensions of (pt (mk) (by 0 on

Brm(p)) converge strongly in L2(F0,g0) to eigenfunctions cpt on (F0,g0), A<pl At<pn

with Àt linifc Àt(mk). Furthermore each eigenfunction q> on (Fo, g0) is limit of such a

séquence of Neumann eigenfunctions.

Both results easily extend (uniformly) to compact families of metrics

f:B-*J((M) (instead of a single metric g0): The constant c(g0) in (4.1) dépends

continuously on the metric. In (4.2) one can assume q>t (m) depending continuously
on (M,f(p)) for p eB and find jointed subsequences converging uniformly in L2,
since there are uniform /f12-estimates and uniform convergence of area

*0> which are the two main points used in the proof of (4.2) in [RT].

COROLLARY 4.3. The mapFm:B-+ Jt{FTmtRJ with Fm{p) (f{p))Pm\Frm^ is

spectrally near to f(p) for large m and suitably small pm > 0.

Proof Using the L2-convergence (4.2) (of the trivial extensions onto Fo) of the

orthonormal base (pt(m) of Neumann eigenfunctions on (FrmRm,g0) to cpt on
(F0,g0) we observe from our criterion in §2 that we can define a spectral map #
making Fm: B^Jt{FrmiRJ, Fm(p) =/(/>)Uw>/?wi spectrally near to/(/>) {ace. (4.2)).

Thus it is enough to show that the Neumann eigenfunctions q>pt (m) for gp (can
be assumed to) converge to those for g0 in L2(FrmRm, g0) and that A,((pf (m)) -?

Xt((pt(m)) for p -*0. But this is immédiate from the définition of gp:
The point is that for p -?O gp becomes arbitrarily near to g0 in C°-topology (and

equal to g0 on any compact subset) which implies the convergence of eigenvalues
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from their Rayleigh's characterization and the fact that the //12-norms for gp are

(uniformly) équivalent to those for g0. Now since <pf (m) are eigenfunctions with
L2-norm 1 and of bounded eigenvalue their H12-norms for gp and hence for g0

are also bounded. That is we may assume q>pt{m) converges weakly in H1'2 (and
(hence) strongly in L2) on (FrmtRm9g0) for p-*0. But the uniform bound of the
L2-norm of (p^(m) and convergence of their eigenvalues implies (via elliptic theory)
the compact ^"-convergence (of subsequences) to an eigenfunction q>t(m) for the
Neumann problem (The latter boundary condition is seen from induction in i and
the Rayleigh characterization).

Now we are ready to give the proof of (3.2):
Choose séquences Rm9 rm-+0 with \IR2m\lnrm\-* +oo, but r^/R^-^O. From

(3.3) (i) and (ii) we find that thèse conditions imply (for m -> oo):

#S(Rm)l\lnrm\-+ +oo and area (J BrJp)^0.

Hence (4.1) gives Af (FrmtRm) -» +oo, while the Neumann eigenfunctions on FTmtRm

converge (after choosing subsequences) to the corresponding eigenfunctions on Fo,
in the sensé specified in (4.2) and (4.3).

Combining thèse results we can analyze the spectrum of F£ # mult Fq for such a

séquence rm, Rm as chosen in the beginning: Take M such that X?(FrmtRm) > F for
m > M, then each eigenfunction q> on F£ # muh Fq with eigenvalue <F has to be

symmetric (i.e. q> cps) as (Po\f^ is an eigenfunction for the Dirichlet problem (and
(therefore) has to be zéro).

But <ps \F+ is eigenfunction for the Neumann problem, hence we can apply our
preliminary observations on F£ and conclude convergence of eigenvalues <fon
the closed manifold F£ # muh Fq to those of Fo. Thus using (4.2) and the criterion
of §2 we obviously get that for m large enough: F: B-+M(F% #muitFQ with
F(p) =f(p)p for small p > 0 is spectrally near to /(/?).

Finally, as area [jp€S(Rm) Brm{p) -> 0 we see area F$ # muît Fq -*2a. D

5. Large volumes

The resuit for surfaces above suffices to dérive the following unrestricted higher
dimensional resuit. As already mentioned in §2 this is based on a "volume effect". More
precisely, one uses the simple observation (already exploited in [(3)] that the Dirichlet
intégral is multiplied by Xn~2 when the metric is scaled by some constant k > 0.

PROPOSITION 5.1. Every manifold M of dimension ^3 admis a stable family
of metrics f:B-+ J({M) with kk{g) kk9 k < n0 and Yol(MJ(p)) V,peB.
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Proof. The idea is to embed the surface F obtained above in M and choose a
metric "concentrated" on a tube near F. To become more précise, note first that the
first Neumann eigenvalue /^(r) of Br(0) clf"2,«>3 becomes arbitrarily large for
sufficiently small r > 0. Take r > 0 such that /*i(p) > F + 1 for each p e ]0, r[ (recall

r>Ano).
Then we can conclude that the first n0 Neumann eigenfunctions ij/k on F x Bp(0)

(F as in (3.1)) are of the form \j/k(a, b) il/k(à), {a, b) eF x Bp(0) (where \\fk dénotes

the fcth eigenfunction on F). Thus take a stable family of metrics f(p), p e B on a
surface F with area (F,f(p)) > 2F/Vol(^r(0)) and with 4(/(0)) kk9 k < n0, then
there is a p e]0, r[ with Vol(F x i?p(0)) V,p= p(p) depending continuously on

peB.
Now recall that F x Br(0) admits an embedding / into a bail B a M" as (trivial)

neighborhood of F c IR3 cz R". Considering 5 as a bail in M we can define metrics

g(f(p), £, ^) on M using a fixed base metric g0 on M, S9e>0 and A£ e C00 (M, [0, 1])

with hE 1 on i(F x £p(0)), Ae 0 on M\e-neighborhood of i{F x £p(0)):

«(/(P), *, S) -=K{i^f(p) + ^MC/ + 1 - K) ô g0.

Now we can use a dimension argument (as described formally in [C3]) to analyze
the spectrum of this metric for S « 1. The eigenfunctions of the Laplacian on M are
the first n orthonormal (relative) minimizers of the Dirichlet intégral (cf. §2). Thus
for small ô > 0 and suitably sharp he (i.e. e « 1), we observe that the eigenfunctions
on M are L2-near to corresponding minimizers on F x Bp(0). But thèse are just the

Neumann eigenfunctions. Also, for ô -+ 0 the eigenvalue converge to the Neumann
eigenvalues. The reason is that the Dirichlet intégral restricted to the complément of
i(F x Bp(0)) decreases of order ôn~2, as the volume élément is proportional to ôn

and the gradient norm increases with ô~l.
That is g(f(p)9 s, ô) becomes spectrally near to f(p). Moreover for e, ô -? 0,

Vol(M, g(f(p), e, ô)) -» V uniformly in p e B.

Thus we can consider (instead of g(f(p), e, S)):

and find that they still induce a spectral map # uniformly approximating
Thus we conclude, f(p)v is a stable family of metrics on M with kk(f(p0)v) Àk,

k < n0, for some p0 e int B and Vol(M,/(/?)F) — V.

6. Attaching curvature

As already mentioned our method might be understood as stepwise attaching
geometry to some stable "base metric". While §3 and 5 were devoted to volumes,
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we will now introduce (additionally) curvature properties In some sensé the

procédures are analogous that îs the metnc îs "changed" substantially only on balls
of precisely the same type of Besicovitch covenngs

Thus let BR(x), xeS(R) be a collection of balls on (M, g) as m §3, and

/ B-+M(M) be a stable family around gQ=f(0) with Vol(M,/(/>)) V and

^k(go) 4> k < n0 Then we define a family G B-^M(M) as follows

G(p)=h r2 (expx\(Hxr)*(g*model) + (l-h) /(/>) on B2r{x\

and

G(p)^f(p) onM\ U B2r{x)
x e S(R)

where h e Ccc(B2r(x), [0^ 1]) with h{y) A(dist(x, y)) for some h hr e C°°(IR, [0,1])
with A l on (R^r, A=0 on IR^2r, and Hxr TXM-+Mn a linear map with
\\HX r(v) || l/r \\v 1 Finally gxmodel dénotes one of the "model metnes" g, gt (cf (6 1)

below) or just gEucl on IRn, n > 3 Their choice dépends on x g S(R)
Thus the geometnc properties are mtroduced only on the small subset formed

by thèse balls The point îs that thèse changes, while substantially as far as the
involved geometnc quantities are concerned, are too well-balanced (and small) to
be reahzed by the lower eigenvalues

LEMMA 6 1 There is a metnc g resp a continuous family gt, t e [ — 1, 1] on Un,

n > 3 with g ==gt= gEucl on Un\Bx(0) and

(i) Ric(g)<0 on *!«))

(n) I Scal(g,) dVgt <K0, M some <p € C°°([ -1,1], R)
J^l(O)
with ç(-l) < — l,ç>(l) > 1

-1)* ak{Bx{Q\ gt) >0,k<K, for any gwen K

Proof (i) is obtained from [L] to get (n) we start with some metnc G on Sn

with (5n, G) is isometric to a bail <= Un on B c Sn and Ric(G) > 0 on Sn\B

Now we cut-off a smaller bail B' a B from Sn and the bail £1/2(0) from W It
is easy to define metnes near the boundary allowing to glue thèse two parts getting
a smooth metnc G on Un (with G=gEucl outside i?i(0)) and with pomtwise
semidefinite Ricci tensor Furthermore a global scaling of Sn (notmg
X2-" \M Scal(g) dVg \M Scal(A2 g) dVx2 g) allows to get G with

I Scal(G) dVG -\ \ Scal(g) dVg S > 1

(where g is from (1) and which can also be chosen to fulfill the latter condition
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Now still using g of part (i) we define metrics gÀ, X e]0,1], by

gk G on 5,(0), gx X2 >ff(g) on Bx{ -3,0, 0) and g =gEucl otherwise

(where /: Un -+ Un dénotes the map x-*x/X + (3,0,0)).
Thus Jj|(0) Scalfe) dKw S - A2"" • 2 • S i.e. < -1 for k 1 and > 1 for

small X >0. Moreover we find for #2 (ace. [BGM]):

f 5 • |Scal(ft)|2 - 2 • |Ric(fo)|2 + 2 • |Riem(^)|2 dVgX

J5 £ Ric(g
BD(0) i

where ^,,... ,en dénotes an orthonormal (not necessarily continuous) frame of
TM. Note that inequality (*) is owing to the fact that the Ricci tensor is

semidefinite in each x e M.
Now we turn to ak for k ^ 3, thèse are quite complicated and involve derivatives

of curvatures and they are still far from being understood. But there is some useful

partial information: The leading terms (i.e. terms involving highest order derivatives)

are known see Avramidi [A] or Gilkey [G]: More precisely

**(M,g)=(~l)* f cM' |F*~2Scal(g)|2 + c2(«). \Vk-2mc(g)\2 + P(g)dVg
JM

where cx{ri), c2(n) >0 are universal constants, while P(g) is a polynomial in terms
of the curvature and its derivatives up to order k — 3. Thus in the case (Un,gEud)
we just make a slight conformai change (letting volume fixed) on J?i(0):

Scal(e2/- g) ~e~2f- (2(w ~ 1) • J/- (n - 2)(» - 1)|P/|2).

Now a brief look at the expression for ak convinces us that some/with ||/||c*-i « 1»

but with suitably bumpy &-th derivatives, can make \M \Vk~2 Scal(e2/- g)\ dVeif g

arbitrarily large, without essential changes neither for P nor for ahl <k. (Namely,
use a radially symmetric/, that is/(x) ~ ^(1^1) for some F 6 C°°(R, R) and notice

|F*-24T| « cn - \&k)\ -f lower orders of F)
Therefore, in our case, — 1)^^(5,(0),^) can be assumed to be >0 for

finitely many k, using the same "adding" argument as in the construction of gk from
G above.

Finally we reparametrisize gx onto [ — 1» 1] getting the claim D

LEMMA 6.2. For large Rjr the family G(p), psB becomes spectrally near to

f(p) indépendant of the choice of the model metric for x e S(R).
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Proof. First of ail we notice that G(p) and f(p) are uniformly équivalent metrics

(in p € B as well as in Rjr and also in the choice of a fixed collection of model
metrics as thèse form a compact family (and scalings do not change the équivalence
constants)):

a2 -f(p)(y, v) £ G(/>)(v, v) < b2 f(p)(v, v), b > a > 0.

This implies considering Rayleigh's quotients:

£ J^ 0.

In particular; if we take séquences rw, i£m-+0, Rmlrm ->+oo then we can
assume that orthonormal sets ç>f (m) of eigenfunctions for the first n0 eigenvalues
2? (m) on G(p)(~G(p)(m)) converge weakly in HX2{f{p)) to some tf in Hu2(f(p))
and strongly in L2(f(p)\ uniformly in p e B.

We are left (from the criterion for spectrally near maps in §2) to check (that we

can assume) \j/^ s cppt and lim kpt (m) kp.

This is done by induction (in "f') we give the proof for / 1 (1 > 2 uses the

orthogonality to previous eigenfunctions): We start with: limsup Xp(m) ^ kp\

and ||^ \\L2iG(p)) -^ 1, \m 9Ï dVGip) -^0, for m -> + 00

Thus for each s > 0 we hâve for large m:

JM

Next the £ ^convergence of (pïQri)-nj/i implies ||iK |U *(/(/>)) ^ * anc*

|MTherefore Af + 1 ^ |M || F<K ||Ap) + l^f|2 rf^/(P) S lim in
Hence we can assume: Af lim kpx(m), ç>f s ^f. D

Now we are ready to prove Theorem 1:

PROPOSITION 63. For each V e ]0, + oo[, S e ] - 00, H- oo[ r/irn? & a séquence

gm of metrics on M wiih:
(0 4(£m)=4, &£"*
(ii) Vol(M, gm) - K, JM Scal(gw) rfF^m - S

(iii) a2k(M9gm) -* 4-00, a^+^M,gm) -? -00, fc ^ 1
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Proof. From (5.1) there is a séquence Gm of stable metrics Àk(Gm) Àk9 k <m
and Vol(Gm) F.

The next step is to deform Gm to get additionally the correct intégral scalar

curvature. Thus let (for fixed n)f: B -» Jt{M) be afamily with/(0) Gm. Then G(/?),

/? e B is a spectrally near family (ace. (6.2)) for large R/r. To ensure both the spectral
approximation as well as the curvature properties we hâve to choose r and R fulfilling

(J Br(x))>c2r3'2 (*)
\xeS(R) /

(for some constants cx, c2 > 0 independent of r and i? and volume measured with
respect to /(/?))•

Now we can consider G(p) with model metric of (ii): JBl(0) Scal(gÀ) dVgx < — 1

"inserted" and find for R -? 0: \M Scal(G(p) dVG(p) -> - oo. (Of course, the analogue
holds for positive intégral scalar curvature >1). This is because the metric
does not change on M\{JxeS(R)B2r(x) and the metric G(p) on B2r(x), scaled by
1/r2, becomes arbitrarily C°°-near to (B2(0), gmodel). Therefore (using (*)) we see that
(for constants c, c > 0 with c(g0, r) > 1):

r-*0

Scal(G(/0) rfK^, So + [ Scal(G(/>)) JFG(/))
J

»-2 • fS0 + c(g0,r)- #5(iî) • r»-2 • f Scal(gmode/)

< So - c(g0) ¦ r'3'2'-" r"-2 - oo

(In the same way:

-1)* • ak(M, G(p)) > const. • r"«4*-1)/2> + oo).
r->0

Thus we insert just as many times model (ii) in Br(x)9 x e S(R) (gEuci. elsewhere) as

necessary (but at least one) to ensure JM Scaï(G(p)) dVG(p) < S.

We observe that # {Br(p) filled with this model (ii)}/ # S(R) 0. Therefore we

now can substitute for the "Euclidean balls Br(p)" ^nodels gk with
\bx(Q) Scal(gA) dVgx > 1 to increase the intégral scalar curvature again, such that
\M Scal(G(/?)) dVGip) > S. For Rjr -* oo we hâve Yol(G(p)) -> F, thus we can renor-
malize the volume as in (5.1) to get Vol(G(/?)) F and using (6.1) (ii) we can carry
this out such that \M Scal(G(/?)) dVGip) S for each peB. This (final) G(p) is

spectrally near to /(/>), fulfills Vol(G(/?)) F, JM Scal(G(/7)) rfFG(/7) S and

(p)) —? -f oo, a2fc+ t(M, G(p)) —^ - oo.

This impliés*our claim from (2.1). r^
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REMARK 6.4. As already mentioned in the introduction we could also pre-
scribe higher coefficients ak, k > 2. The idea is to use this covering argument
combined with the fact ak(U, A2 • g) Xn~2k • ak(U, g). However, the possible values

for ak(M, g) can no more chosen ^rbitrarily. There are necessary relations for (and
between) thèse coefficients forced from dimension and topology. For instance, in
dimension 4, one has a2(M, g) > %{M) (cf. [BGM] for this and other resuits in this
direction). This is reflected in the possible values of ak{Bx{Çi),g) relative to each

other.

Finally we are going to prove Theorem 2. It is notable that we will hâve to use
the Besicovitch coverings not just to get the spectral convergence but this time this
same covering is used substantially to ensure the curvature condition. (Note that in
the proof of Theorem 1 the curvature construction was just'made to fit into the
streamline prescribed from the spectral problem, while it is clear that those

curvature conditions could be obtained in other ways.)

PROPOSITION 6.5. For each V e ]0, + oo[ there is a séquence gm ofmetrics on

M with :

(i)
(ii)
(iii) Ric(gw)<-m2

Proof. Hère we use G(p) with model (i) inserted and we can assumed G(p) is

spectrally near /(/?) with Vol(M, G(p)) -» F, for R/r -» + oo. It is resuit of careful
constructions (and calculations) done in [Ll] and [L2] that for any arbitrarily large
R/r there is a conformai change e2fip) • G{p) such that Ric(e2f(p)G(p)) < -m2 on M
and \e2f(p) - l| < eR with sR -?(), for R ->0.

This is enough to conclude (6.4): Rayleigh quotient characterizations of eigen-
values imply Àk(gn) -+hk{g) for C°-converging metrics gm-*g (cf. the proof of
(6.1)). In the présent case this also implies the L2-convergence (of subsequences) of
eigenfunctions to those of g0- Thus we easily get (from §2) e2f(p) • G(p) is also

spectrally near to f(p) and as the volume also converges to F, we finally set

G(p) -.= (VIVol(e2Ap) • G(p)))2/n • e2f(p) • G(p) getting again a family with
Rie < -m2 spectrally near tof(p) but with Vol(G(/?)) V. (2.1) implies the claim.
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