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On the Malcev completion of Kihler groups*

JAUME AMOROS

Introduction

The study of compact Kahler manifolds made by Hodge and others shows that
a Kaihler structure imposes very strong conditions on the homotopy type of a
compact complex manifold X. In particular, unlike in the case of compact differen-
tiable or closed complex manifolds, not every finitely presented group G is the
fundamental group of a compact Kdhler manifold. Such groups are called Kihler
groups.

This note has been inspired by the recent work of F. Johnson and E. Rees ([JR])
and M. Gromov ([G]), showing that free products, and in particular free groups,
are not Kéhler. It has been our purpose to extend this result and find other
restrictions on the presentations of Kéahler groups. This is done by translating
properties of cup products in H*(X) into properties of the group bracket in 7, X,
an idea that came out of [JR], and also by examining the Albanese map X — Ab(X)
after [C]. We describe an algorithm derived from [St] to compute I',/I’,G,
r,/l'yG®R from a given presentation of a group G, and use it to give three
conditions for the groups to be Kiéhler: The Lie algebra 4G, equivalent to the
holonomy algebra, cannot be free (3.3); one- or two-relator Kdhler groups either
have a torsion abelianized or have a Malcev completion isomorphic to that of a
compact Riemann surface group (4.7); nonfibered Kéhler groups must satisfy
certain lower bounds for the number of their defining relations, equivalently upper
bounds for the rank of I',/I';G (5.6, 5.7).

In §1 we recall the real Malcev completion G ® R of a group G, its equivalent
Lie algebra #G, and a 2-step nilpotent Lie algebra 4G =(I',/[,G®R) @
(I',/T'3,G ® R), which is determined by (I') /I'3G) /rorsion and is equivalent to the cup
products A?H'(X) — H*(X). This algebra is actually equivalent to the holonomy
algebra of G (cf. [Ch], [Ko]), and is more convenient for our computations. By
[M2], [DGMS], when G is a Kdhler group the algebra 4G determines the Malcev
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On the Malcev completion of Kéhler groups 193

completion G @ R. In §2 we briefly recall Sullivan’s 1-minimal model of X, its
duality with #=n, X, and how the algebra #4n, X and the product map wu:
/\*H'(X) - H*(X) are equivalent.

In §3 we use these results to show that if 4G =~ %4F,,, where F, is a finite rank
free group then G is not Kéhler. This is a strong quantitative restriction, since the
generic group presented with few relations verifies 4 =~ 4F, for some n (see
Remark 1.15).

The groups with the simplest presentation after free groups are 1- and 2-relator
groups. In Theorem 4.7 we determine the Malcev completions of 1- and 2-relator
Kihler groups, which to a great extent characterize the groups themselves. The
mean to do this is to bound from above dim I',/I';7, X @ R for any Kéhler group
G by a function of the dimension of the image Y of X by its Albanese map o:
X - AIb(X). A desingularization ¥ of «(x) has been shown by F. Campana ([C]) to
verify m; X@ R n, Y®R. It turns out of our work that as dim Y increases
linearly, dim A’H'(X) —dim I',/T;7,(X) ® R grows quadratically (Prop. 4.6).

Finally, in §5, we have established a distinction between fibered and nonfibered
Kihler groups, and used the mentioned techniques to give upper bounds for dim
I',/T';G ® R for nonfibered groups, which imply lower bounds for their number of
defining relations (Prop. 5.6, Cor. 5.7). Specifically, in Cor. 5.7 we give the
following lower bound for the difference between the number of generators » and
of relations s of any presentation of a nonfibered Kéhler group

§s—nz4q -1

where q =1b,(G). This improves a bound given by Green and Lazarsfeld ([GL]).

To proof our results and make them effective, we give in §1 an algorithm for
computing I' [[,G® R, I',/T';G ® R and HG from a given presentation of G. This
algorithm, which is easy to implement by means of the Magnus algebra of free
groups, is derived from a spectral sequence given in [St], and was communicated to
the author by M. Hartl. We use it in Cor. 1.14 and Rmk. 1.15 to show many cases
in which the hypothesis of Thm. 3.3 are fulfilled.

To illustrate our results, we give throughout the paper examples of groups that
cannot be Kihler, most of them previously unknown to the author.
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§1. Nilpotent Lie algebras related to a group

We will recall here the concept of Malcev completion of a group and some
related nilpotent Lie algebras £ G. We also give an algorithm to compute 4G
derived from [St].

Let G be a finitely presented group. We can functorially assign to it a tower of
nilpotent groups

"°--)F1/F3G—>F‘/F2G—>l

where I'y/G =G, I',G=[I'n—-1G,G] and I',/T,G = G/T,,G.

A group G is said to be uniquely divisible when for any pair g € G, n € Z, g has
a unique nth root in G. The category n-Q-%r of uniquely divisible nilpotent groups
is included in the category n-%r of nilpotent groups, and the inclusion functor has
a left adjoint, the Malcev completion functor ® Q: n-%r - n-Q-%r. The functor
® Q is the ordinary tensor product on abelian groups. For two alternative ways of
defining the Malcev completion, see [HMR] Part I, or App. A of [Q].

The Baker-Campbell-Hausdorff formula gives a categorical equivalence between
finitely generated groups in n-Q-%r and finite-dimensional nilpotent Q-Lie algebras.
In the latter category there are ® R, ® C functors, and crossing back and forth in
this manner we may define a ® R functor over n-%r. Thus we naturally associate
to G a tower

oo IGRR-T,/I,GRR-—1
of uniquely divisible nilpotent Lie groups, and its corresponding tower
o LG > HG -0 (1.1)

of nilpotent R-Lie algebras.

Denote the lower central series of a Lie algebra & as V=92, ¥®=
[Z®-D #]. There is another tower of nilpotent R-Lie algebras naturally associated
toagroup G: Gr,GRR = ®7_, I';/I'; .G ® R, with bracket induced by the group
bracket. We sum up the properties of the tower of Lie algebras (1.1) that we will
apply (see [L], [MKS] §5, [S] LA §4):

PROPOSITION 1.2.
(1) The Lie algebras %G have nilpotency class nil 4,G = n.
(i) The tower maps %£,,..G—->%G induce isomorphisms %, .G/
&, .GtV > 2G.
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(iii) There are isomorphisms of R-vector spaces G =T,[T',,,G®R.

(iv) The graduation of %,G by its lower central series produces a natural tower of
isomorphisms of graded Lie algebras Gr 4,G = Gr,G ® R.

We will call the Malcev algebra and denote #G the pronilpotent algebra
lim %G, which is equivalent to the Malcev completion G @ R by the Baker-Camp-
bell-Hausdorff formula.

When the group G is the fundamental group of a topological space X, the abelian
algebra 4G is just H(X; R). We will consider in this note the following simplest
algebra, 4G =TI/, GRR®I,/I';G® R. The algebra AG is the quotient of the
Malcev algebra £G by its third commutator ideal £G*, and is also the quotient
of the holonomy algebra of G g (cf. [Ch], [Ko]) by its third commutator ideal.

The groups G we will study will be given by finite presentations
G=<{xXy,...,%X,;",...,r;». This means that G is defined by

1> N-o>F->G-1 (1.3)

where F is the free group generated by the generator set {x,, ..., x,}, and N is the
normal subgroup of F spanned by the relation set {r,,...,r,;} = F.

We describe the above constructions in a case which is fundamental for our
purposes:

Example 1.4. Free groups.

Let G=F,=F, x,)- 1ts Malcev completion and Lie algebras % F, may be
computed by means of its group algebra (cf. [MKS], [Q], [S]). The conclusion is
that, denoting by £(S) the free R-Lie algebra spanned by a set S, there are
isomorphisms

LuF, = L({Xy,..., X, DIL{X,. .., Xn})(m+1)

In particular, I',/IL,F,@R=2Rx,® - - ®Rx,, IL,/[F,QR=R(x;,x,)® - D
R(x, _ 1, X,) and the brackets in 4F, are the group ones in I', /', F, and zero all others.

The Lie algebra 4G for a finitely presented G may be obtained from its
presentation and 4 F. We will use an algorithm for computing them derived from
[St], where a spectral sequence that computes all J2Z/JZ+! is described, and
communicated to the author by Manfred Hartl.

Consider a group presentation G = {x,, ..., X,; ", ..., r,», which induces the
exact sequence given in (1.3). Let RF,RG be the R-group algebras of F,G, and
denote by J.,J; their respective augmentation ideals. The sequence (1.3) induces an
exact sequence of R-algebras

0K —»RF->RG -0 (1.5)
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where K is the two-sided ideal generated by the R-vector space
D=(r—1,...,r,—~ 1) cJe This sequence restricts to exact sequences

0-K-JE+K->JZ-0 (1.6)

for all m > 1. We will compute J; /J%, J%/J% from those sequences:

PROPOSITION 1.7. Consider the linear map f: @®;_, Rr;— J determined by

(i) Let dy: ® Rr;—J:|J% be the projection of f. Then coker dy = J;|J%.
(ii) The map f induces a linear map

Z'liriHZ Ai(ri—1)

and coker d, = J% [J%.

Proof. (i) The exact sequences of (1.6) induce an isomorphism J;/J% = Jp/
J% + K. As K is the two-sided ideal spanned by D and RF =~ RF =~ R® J,, actually
J% + K =J%+ D, and thus J;/J% = J-/J% + D. By its construction, Im d, = D, and
this proves (1).

(i1) Again by (1.6) we have

Jele = UFIUENK)UEI(TENK) =2J3/UE+ 20 K)

The last denominator is J3>+J2NK=J%+Jr- D+ D Jp+ DnJ% Obviously
f(ker dy) = J% and thus d, is well defined. Moreover, its image is precisely D nJ%,
and (ii) follows from this. O

We now relate the computed modules J;/J%, J%/J% with the sought ones
r,r,, r,/l'yG® R applying a theory by D. Quillen ([Q2]):

THEOREM. Let G be a group, k a field of characterisitc zero, kG the group
algebra and j: ®I',|I,,..GRk — ®J%/|J%*! given by grsg — 1 over the homoge-
neous components.

Then j induces an isomorphism of algebras U(®T,|I",..GR®R) = ®J%/|JE .

We may define the wedge product, or alternating product, of the associative
algebra RG as

XAY: =Xy —yX
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The wedge product of two linear subspaces A, B = RG is the linear subspace
A /\B ={W=Zlia,- /\bIERG la,EA,b,EB,A,GR}

Quillen’s theorem implies that the Lie algebra @I, [, ;G ® R is contained in the
Jg-adic graduate of the group algebra, @J%/J%*!. This inclusion sends the
brackets of the Lie algebra to wedge products in @ J%/J%*!. In the cases n = 1,2
this means:

COROLLARY 1.8.
(i) I /I,GRRx=J;/|JG.
(i) Consider the inclusion Jg AJg o J%. Then

Corollary 1.8 allows us to adapt the algorithm of Prop. 1.7 to compute I',/T,,
r,/r,GQ®R:

LEMMA 1.9. The image of the restriction f:kerdy—J% lies in
Je ANJp+ 3 JE.

Proof. Denote F, the free group generated by {y,,...,y,}, and the map
r: F,— F sending y; to r,. The map dy: ®Rr;, > Jg[J:2=T,/[,F®R is the map
induced by r, I'/[L,(Nn®R: I'/[,F,®R-TI,/,F®R. Furthermore ker(l’,/
I,(r)@R) xker(I',/T,(r)) ®R, as I'}/T',F, is a free abelian group. Thus ker d,
admits a basis w,, ..., w,, with the w; words in F, mapping to I',F by r.

Now, the map [I,F—-J% sends a bracket (a,b) to (a-—
Db—-1)—®—-1)a—1)+terms in J3, and a product II(a,, b,) to X(a, —
1)(b; — 1) — (b; — 1)(a; — 1) + terms in J7. Therefore, all the w; = II(a;,, b,) map to
Jp AJp+ T3 O

Lemma 1.9 allows us to define a map d,: ker dy— A*(I";/T,G ® R) by compos-
ing
2 2
kerdy—>(Jp AT +IR)IE 2 A\ (T ITL,FQR) » A\ (/TG ®R)

PROPOSITION 1.10. coker d, = T',|I';G @ R.

Proof. As we have previously explained, I';/[,GQ®R=Js/J% = Jp/(J% +
K)>~Jg/(J%+ D). Thus /\Z(I'I/FZG RR)x(JrAJr+{Tx+Jr-D+D-Jp))
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Ji+Jg-D+D-Jz). Also f(kerdy)=DnJicJznJp+J+ by Lemma
1.9, so

cokerd, =(Jp AJp+J2+Jp D+D - Jo+DNJ2)(Jr+Jr-D+D-Jp
+DnJ%)
~c(Jp AT +JE+KNJ2) 3+ KnJ2)
U AJg+IX)IE=T,,GRR,

the last isomorphism being given by Cor. 1.8. 0
om T R
COROLLARY 1.11. dim I',/T;G®R = (d”" 116 ®

5 ) —dim ker dy + dim
ker d,.

We are now able to determine the structure of the 2-step nilpotent Lie algebra
ZG of a finitely presented group G = <Xy, ..., X,; 1, ..., -

PROPOSITION 1.12. Let N\S¥(I',/T,G ® R) be the free exterior algebra gene-
rated by I'[I',G @ R modulo the ideal /\¢*(I',|I',G ® R) generated by wedges of
length 3 or more. There is an isomorphism

<2

%6 =~ (/\ (I',/T,G® R))/(ker dy [ker d,)

Proof. There is an obvious map of exterior algebras, which is a linear isomor-
phism in every degree by the above results.

Thus %G is the quotient of a free 2-step nilpotent R-Lie algebra A <2(H,(G; R))
by a subspace of 2-brackets ker d,/ker d;, which corresponds to the relations of the
holonomy algebra. We have stated in Ex. 1.4 the case of free groups. Let us
examine this structure in some other simple cases:

COROLLARY 1.13. Let G =<{x,,...,Xx,;r) be a group admitting a presenta-
tion with a single relation. Then:
(i) If r ¢ I',F, there is an isomorphism 4G =~ %4F, _, with F,,_, a free group of
rank n — 1.
(ii) If r e I,F\I'5F, there is an isomorphism 4G = %F|d,(r).
(iii) If r € I'yF, there is an isomorphism 4G =~ %4F.

Proof. All cases are found by applying Prop. 1.12.
(i) In this case I';/[,GRR =T,/ F,_,®R, and as r ¢ I, F, ker d, = {0}.
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(i1) In this case the map F—G induces an isomorphism I',/[,F®R =
rr,G®R, kerd,=Rr, and as r ¢ I';F, the coincidence of the lower
central series and augmentation ideal power filtrations in free groups
([MKS] 5.12, [S]) shows that r — 1 ¢ J%, hence d,(r) #0.

(ii1) In this case, ker d, = Rr and again by the above coincidence of filtrations,
d,(r) =0.

COROLLARY 1.14. Let G =<{x;,...,X,;1,...,rs» be a finitely presented
group such that its defining relations may be divided in two sets: {r,...,1r, > such
that 1, ...,7, are linearly independent in I'\|[l,F@®R and {r,, ,,...,r,} which
belong to I'sF. Then there is an isomorphism 4G =~ %4F,_,, where F,_, is a free
group of rank n — k.

Proof. In this case I',/,G®R has rank n —k, kerdy=Rr;, @ - - ®Rr,
because those r; are commutators and the other relations form a basis of Im £, and
ker d, = ker d, because r, . ,,...,r, € I'sF. O

Remark 1.15. We will be interested in this note in which groups G have a free
2-step nilpotent Lie algebra %G, which by Prop. 1.12 is equivalent to
ker d, = ker d,.

Generic presentations with less relations than generators produce a free 4G.
The reason is that given a group presentation G =<{x;, ..., X,;7,...,r;) With a
number of relations s <n, ker d, =0 and therefore %G is free, unless the classes
Fi,...,, €[, F, ®R are linearly dependent. But the sets of linearly dependent

Fi,...,F, form a codimension n — s + 1 closed subset of (I",/I',F, ® R)".
The hypotheses of Corollary 1.14 may be weakened by requiring only that
{ri,...,r,} map on a basis of Imd,, and the remaining relations {r,,,..., 7}

belong to I'yF - N,, where N, is the normal closure in F of {r,,...,r:}.

§2. Sullivan’s 1-minimal models, brackets and cup products

We sum up for the reader’s convenience some basic facts on Sullivan’s 1-mini-
mal models, its equivalence with the Malcev completion of the fundamental group
and its relation with cup products.

Let X be now a differentiable manifold, and £*(X) its De Rham complex.

The theory of minimal models developed by Sullivan shows that €*(X) has
a l-minimal model. This is a certain minimal commutative differential gra-
ded algebra (cdga) M(2,0)(X), defined as the limit of an inductive system of
cdga M(1,1)o M(1,2) o M(1,3)e -+, together with an algebra morphism
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p: My — E*(X) such that H%(p), H'(p) are isomorphisms and H?(p) is a monomor-
phism. For a more complete and elementary account of the theory of minimal
models we remit ourselves to [GM], which treats 1-minimal models in Chap. XII.
We will only review the construction up to the second step M(1, 2), which will be
used to relate n,(X, *) and cup products on H'(X).

Define M(1,1) = /\(V}), the free exterior algebra generated by the R-vector
space V1 = H'(X). Every element of V] is defined to have degree one and boundary
zero, and the map p: M(1,1) - E*(X) sends every x € V] to its image in a prefixed
R-vector space section H'(X) — (cocycles).

The (1,2)-minimal model is defined as an extension of M(1,1):
M(1,2)= \(Vi®V}), where Vi=ker(H?*p: H°M(1,1) > H*€*(X)) For any
v € V} we define dv as the element of /\?V] defining its cohomology class, and if
dv =X x;y;, p(v) is a linearly varying primitive of Z p(x;)p(y;) in &*(X).

Remark 2.1. By its definition, H*M(1, 1) is the exterior product /\?H'(X), and
as p is a cdga morphism, there is an isomorphism V)= (ker H°M(1,1) -
H?*E*(X)) = ker(v: /NH(X) - H(X)).

The following steps M(1, n) are constructed in a likewise manner, defining ¥} as
ker H2M(1,n — 1) » H?€*(X), and d, p on it as on V3. The inductive limit is
denoted M(2, 0) and is the 1-minimal model of X.

Remark 2.2. Among the properties of the 1-minimal model let us remark:

— It is well defined up to isomorphism.

— It is functorial up to homotopy, i.e., any cdga morphism £*Y — £*X may be
lifted to a morphism M(2, 0)(Y) — M(2, 0)(X), and all its liftings are homo-
topic in the cdga category.

— As a consequence of its uniqueness, if a map f: X — Y induces isomorphisms
H°, H'f and a monomorphism H?f, then it induces an isomorphism of
1-minimal models M (2, 0)(Y) = M(2, 0)(X).

— The 1-minimal model of X may be computed replacing £€*(X) by any other
cdga quasi-isomorphic to it. Thus if X is a complex manifold, we may
compute it from its holomorphic De Rham complex, logarithmic complexes,
Dolbeault complexes, etc..

We recall now the dualizing process between Lie algebras and free commutative
differential graded algebras generated by elements of degree one.
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Let L be a finite-dimensional R-Lie algebra. Its bracket is a bilinear alternating
map

2
[, AL-L (2.3)

Dualizing on both sides, [-, -] has an adjoint map
2
d:L"—-> AL (2.4)

The map d may be extended as a graded derivation to the free graded algebra AL,
defining the degree of elements in V¥ to be one. The Jacobi identity satisfied by [, ‘]
dualizes then as d*>=0.

Reciprocally, if M = /\W is a free cdga and deg W = 1, the differential restricts
to a map d: W= M"'-M?= /\}W, which dualizes to a map [, ]: °W"¥ > W",
and the fact d> =0 in M translates as the Jacobi identity in W".

DEFINITION 2.5. A Lie algebra L and a free cdga generated by elements of
degree one are dual when each one yields the other by the above processes.

The following result is due to D. Sullivan. The reader will find a complete proof
of it in [BG].

THEOREM 2.6. (Sullivan) Let X be an arc-connected topological space with a
finitely  presented fundamental group m,(X,*). The inductive system
M(1,1) o M(1,2) ¢ - - - formed by the (1, n)-minimal models of X and the projective
system - -« - L, X - £ n, X described in (1.1) are dual.

This theorem has important consequences for our purposes. The most obvious
is about the duality as vector spaces:

COROLLARY 2.7. V! =(I,/T,.1(m;X) ®R) "
The duality Lie algebra-cdga also has consequences:
LEMMA 2.8. The diagram

AVY S HPM(L,2)
2 \H?p
AH\(X) -  HYX)

is commutative, and the first column is an isomorphism.
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Remark 2.9. Lemma 2.8 implies that the cup product between 1-classes is
determined by the brackets in % n, X. This is due to the fact that it factors through
M(1, 2), which is dual to 4, X.

Another particular consequence of Theorem 2.6 we will use is:

COROLLARY 2.10. dim ker(u: A2H'(X) » HX(X)) = dim %n, X® =
dim rz/r3n1(X, *) ® R.

Proof. Both spaces are isomorphic to V3. [

§3. The % algebras of Kihler groups

In this chapter we prove that groups with a free .4 algebra cannot be Kéhler
(Thm. 3.3), which by Remark 1.15 is the generic situation in groups with few
defining relations.

We recall now the definition of the objects of our interest:

DEFINITION 3.1. Let G be a group. It is a Kédhler group when G = (X, *),
where X is a compact Kdhler manifold.

Some restrictions on Kéhler groups are well known: They are finitely presented,
their rank is even. Sullivan’s theory of minimal models, completed by Morgan, . . .,
yields subtle conditions Kéhler groups must satisfy, due to the formality of compact
Kéhler manifolds ((DGMS]), and to the mixed Hodge structure its 1-minimal
model supports, which is an extension of the Hodge structure on the cohomology
ring ((M1], [M2]). The formality condition it imposes is in our case:

PROPOSITION 3.2. ([M1],9.4) Let G be a Kdihler group. The Lie algebra
Gr %G is the quotient of a free Lie algebra by an ideal generated by sums of length
two brackets.

This is equivalent to the Malcev and holonomy algebras of G being isomorphic
(cf. [Ko]). For instance, the group G = {x, y; ((x, y), ¥)> cannot be Kéhler because
ZG is the quotient of a free algebra by the ideal generated by a length three bracket
[I%, 71, 7.

In this note we will look in another direction through the results of the
preceding section. Johnson and Rees rule out in [JR] free groups as Kéhler groups
because they have finite index subgroups of odd rank. In this paragraph we
establish this by studying cup products, and in this way the result holds for groups
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with a free 2-step nilpotent Lie algebra 4. This is a consequence of the Lefschetz
decomposition and the nondegenerate alternating pairing Q that the real cohomo-
logy H*(X) of a compact Kéhler manifold X supports. Our standard reference for
these properties will be [W], Chap. V.

THEOREM 3.3. Let G be a finitely presented group such that 4G =~ %4F, for
some n. Then G is not Kihler.

Proof. Suppose m(X,*)=G. As 4G %F, and using Example 14,
dimrI,/I,G®R=dimI',/T,F,®@R=n, and dimI,/[3G®R=dim 4G? =
dim %F, =n(n — 1)/2. Thus by Cor. 2.10 ker U = A2H'(X), all cup products are
zero. But cohomology classes of rank one are primitive, and the pairing Q is
non-degenerate (see [W], 5.6). This leads to a contradiction, hence G cannot be
Kaihler. O

To use Theorem 3.3, one needs to know when 4G ~ %F,. This can be
established from a presentation of G as we have shown in section §1 (see Remark
1.15). We will now remark the case of one-relator groups. The consequence for
them of [M1], 9.4 is that if G admits a presentation G = {x,, ..., X,;r), then its
single defining relation r does not lie in I'; F{x,, ..., X, }. We complete this with

COROLLARY 34. Let G ={x,,...,x,;ry be a Kihler group presented with a
single relation. Then r e L, F{x,, ..., x, \[3F{xy,...,x,}.

Proof. By Corollary 1.13, r e I', F\I'; F is the only case in which 4G is not free.
O

Examples 3.5.

(1) ([JR]) Free groups cannot be Kahler.

(ii) The group G = <{x, y; ((x, ), ) ) cannot be Kéhler because ((x, y), y) € I3 F
and therefore 4G =~ %F,. This group was known to be non-Kihler by
[M1], [M2].

(iii) The group G =<x, y, z, t; x>y ~*z2%y, y?z?) is not Kihler because the two
defining relations are linearly independent in I', /T, F ® R = R*, and thus by
Cor. 1.14 4G =~ 4F,.

(iv) The group G =<{x,, ..., Xs; X;X3x,, X,x3X,, Xxsx3x5> has also a linearly
independent relation set, and thus 4G =~ 4F,, and G cannot be Kihler
either.

(v) Compact Riemann surfaces provide examples showing that one-relator
groups with a defining relation r e I',F/I'y F are possible.
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§4. One- and two-relator Kihler groups

In this chapter we give a lower bound for the number of defining relations that
a presentation of a Kéhler group 7, X must have, determined by the dimension of
the Albanese image of X (Prop. 4.6). We apply this to fully determine the Malcev
completions of one- and two-relator Kédhler groups in Thm. 4.7. Our starting point
4.3 is due to F. Campana ([C]).

The Albanese variety and Albanese map are another feature of compact
complex manifolds which is very useful to study its fundamental group. Let us
briefly recall it.

PROPOSITION 4.1. Let X be a compact Kihler manifold, and let
q =dim H°(Q)). There is a complex torus AIb(X) of dimension q (the Albanese
torus) and a holomorphic map ay: X — Alb(X) (the Albanese map) such that oy
induces an isomorphism H'(AIb(X); Z) SHY(X; Z). The pair (Alb(X), ay) is deter-
mined up to isomorphism by this property. Moreover ay(X) is a generating set for
Alb(X) as an abelian group.

Let us fix our notation: Let X be compact Kéhler, a,: X — A/b(X) its Albanese
map, and denote Y = a,(X) its image, which may be singular. We consider a
desingularization ¢: ¥ —» Y, and a desingularization X of the pullback of a:

£ %y
exl le
X oY (4.2)

*x

It is clear that the manifold X is also compact Kdhler, and that the map ¢y
induces an isomorphism &, : m, ¥ -7, X.

We will call the map &y: X — ¥ a smoothing of the Albanese map of X. The
properties of the original Albanese map o, relate X, X and ¥ for our purposes:

PROPOSITION 4.3. ([C]) Let X be compact Kihler, and Gy: X - ¥ be a
smoothing of the Albanese map of X. Then &, induces an isomorphism

L, X) > 2L, P).

Proof. (Cf. [C]) As ¢y induces an isomorphism of fundamental groups, hence
et H'(X)—->H'(X) is also an isomorphism. This implies that A/b(X) is the
Albanese torus of X and ayoey, =eo0dy its Albanese map. As a consequence
@%t: H(¥) > H'(X) is onto. As a, itself is also onto, &% is also injective for
H*. Therefore &, induces an isomorphism H'(¥) @ H'(X¥) and an injection
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H*Y)o H¥X). Thus by universality of the 1-minimal model, &, induces an
isomorphism M(2, 0)(Y) = M(2, 0)(X); our statement is its dual. 0O

Thus the study of Malcev completions of Kéhler groups may be reduced to the
study of smoothings of its Albanese images. This is specially convenient in the
following case:

COROLLARY 4.4. ([C]) Let X be compact Kdihler, with q =3b,(X) = 1. Then
the Malcev algebra of X is n,(X) ® R=(R?, +).

Proof. The Albanese torus E = A/b(X) has dimension 1 in this case. Therefore
oy is onto, has smooth image and so equals &,.

The elliptic curve E has abelian fundamental group =,(E) =Z? thus our
statement is a direct consequence of Prop. 4.3. O

But rather than follow this line, we will derive from it consequences on H*(X),
which will determine Malcev completions of Kdhler groups with one or two
defining relations.

LEMMA 4.5. Let X be compact Kihler, Y the Albanese image of X and
m =dime Y. Then the graded algebra H*(X; C) contains a free graded exterior
algebra \(V'), where V is a complex vector space of dimension m and degree 1
spanned by holomorphic forms.

Proof. (cf. [Be] V. 18) Let y € AIb(X) be a regular point of the Albanese image

Y =ay(X). As dim Y =m, there are local coordinates u,,...,u, of AIb(X) in a
neighbourhood U of y such that YN U is defined as u,,.,=0,...,u, =0. The
holomorphic forms du,, .. ., du,, are defined on U and, as A/b(X) is parallelizable,
the forms in /\(du,, . . ., du,,) extend to global holomorphic forms on A/b(X). Its
direct image /\(a%du,, ..., a%du,) defines a subalgebra of holomorphic cohomo-
logy classes in H*(X) which is free over y, hence is free. O

The above Lemma together with the correspondence of 2.10 may be used to
bound from below the number of defining relations for Kéhler groups, and to study
those admitting a one- or two-relation presentation.

PROPOSITION 4.6. Let G be a Kihler group, X a compact Kihler manifold
such that n,X = G and Y its Albanese image. Then:
(i) If dim Y =1, there is an isomorphism £G = ¥n,C, with C, a compact
Riemann surface of genus g, induced by a group map G -, C,.
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(i) If dm Y=m >1, dimker(dy: Rri®-- - ®Rr,»T,/[[LFRR) >2(5) + 1.
In particular, any presentation G =<{x,,...,X,; 1y, ..., I,y must have defin-
ing relations r,, . . ., r, such that they form a basis of Im f and at least another
2(%') + 1 defining relations.

Proof.
(i) is just Prop. 4.3. with ¥ as C,.

(ii) By Lemma 4.5, the algebra H*(X; C) contains a free algebra /\(V) gene-
rated by m linearly independent holomorphic 1-forms. By the Hodge struc-
ture of H*(X) it contains an isomorphic algebra A(V) spanned by m
independent antiholomorphic 1-forms. Both algebras being free, one obtains
the lower bound dimIm u: /NH'(X) -» H¥X) > 2(%') considering either
holomorphic or antiholomorphic products alone. Finally, due to the proper-
ties of the Q pairing in H'(X) ([W] 5.6), the product of a holomorphic
1-form with its conjugate cannot be zero, so dim(Im u) nH"!(X) > 1. By
the correspondence of 2.10 this produces the sought bound. O

Remark. If X is compact Kdhler and satisfies (i) in the above Prop. 4.6, it is not
hard to check that the map n, X = G - =, C, is onto. If the genus g is >2, such
groups G are examples of what we will call fibered Kdhler groups, to be defined in
5.1

We are now able to complete our study of compact Kdhler groups with one or
two defining relations begun in Cor. 3.4.

THEOREM 4.7. Let G be a Kdhler group admitting a presentation with only one
or two defining relations. Then either I' [[,G®R =0 or G = ¥n,C, with C, a

compact Riemann surface.

Proof. If I',IT,G @R #0, then £,G # 0, and by Prop. 4.6 any presentation of
G must have at least 2($™ ) 4 1 defining relations, with Y = 4/b(X). Thus the only
possible case is dim Y = 1, and Prop. 4.6 (i) completes the proof. O

Remark.

— The 1-relator groups G with I',/I’,G ® R =0 are exactly the G >~ Z/nZ.

— The 2-relator groups G with I';/I',G ® R=0 are those with a presentation
{Xy, Xp; 1y, I,y With 7y, 7, linearly independent in I',/I',F{x,, x,}. This is
immediately derived from the exact sequence (1.5).

EXamples 4.8. Denote C, a compact Riemann surface of genus g.
- (i) The group G defined in Ex. 3.5 (iii) can also be seen not to be Kéhler by
Thm. 4.7, as I, /[T,GQR = R? but £,G £ L,n,(C)).
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(i) The group G = {xy, x,, X3, X4; (X, X2, X3), (X, X3X,, x3)) has a Malcev alge-
bra which fulfills the quadratic presentation condition imposed by Morgan
(Prop. 3.2). Yet G cannot be Kihler because I', /[I,G ® R = R?* but dim I',/
I' GR=4+#5=dim I',/T'3n,(C,), contradicting Thm. 4.7.

§5. Nonfibered Kiihler groups

Here we establish a dicothomy between fibered and nonfibered Kéhler groups,
arising from a result by A. Beauville and Y. T. Siu on the existence of irregular
pencils on compact Kdhler manifolds. We skip the fibered case, and we give in
Prop. 5.6 an upper bound for dim I',/I';G @ R in the case of nonfibered groups.
This translates as a lower bound for the number of relations that their presentations
must have.

Let G =mn,(X, *) be a fundamental group. By Corollary 2.10 dim I',/T';G ®
R =dim /\?H'(X) — dim Im(u: /\?H'(X) - H*X)). We have seen in §3 that if X is
compact Kahler, Im U must be nonzero. Now we will establish a lower bound on
its dimension in the case of nonfibered manifolds, by recalling a result of Casteln-
uovo-De Franchis and its extension to arbitrary dimension.

DEFINITION 5.1. Let G be a Kéahler group.

(1) We call G a fibered Kdhler group when G = =,(X, *) with X compact
Kihler admitting a nonconstant holomorphic map f: X - C,, with C, a
compact Riemann surface of genus g > 2.

(i) We call G a nonfibered Kihler group when G = &,(X, %) with X compact
Kéhler not admitting any nonconstant holomorphic map to a compact
Riemann surface of genus g > 2.

A. Beauville and Y. T. Siu independently proved that the above definitions

make sense:

PROPOSITION 5.2. ([Be2], [Siu]) Let X be a compact Kihler manifold, write
G =n,(X, ), and let g > 2 be an integer. Then X admits a nonconstant holomorphic
map to a compact Riemann surface of a genus h > g if and only if there is an
epimorphic group morphism G —n,(C,, *) the fundamental group of a compact
Riemann surface of genus g.

Prop. 5.2 means that a Kéhler group G is either fibered or nonfibered, and that
the former are characterised by admitting a =,(C,) as a quotient.

Remark. If we have an onto map G—-H—1, it induces onto maps
r,ir,.,.GAR-r,/I',.,H®R-0 for all n. This together with the fact that the
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lower central series quotients of the =, C, have all nonzero rank shows that
nilpotent or rationally nilpotent Kéhler groups must be nonfibered.

We now study the cup products of 1-forms in the case of nonfibered compact
Kéhler manifolds. We begin with an extension of a classical result (see [Ca]):

PROPOSITION 5.3. (Castelnuovo-De Franchis) Let X be a compact Kihler
manifold. If there exist w,, w, linearly independent holomorphic 1-forms such that
w; A wy =0 then there is a holomorphic map f. X - C with C a curve of genus
g(C) = 2, such that w,, w, belong to Im f*.

Remark. The form equality w, A w, =0 is equivalent to w, A w, being exact.
This is a result of Hodge theory, showing that a nonzero holomorphic form over a
compact Kdhler manifold cannot be exact.

The Castelnuovo-De Franchis theorem together with the conic structure of the
set of products in H*°(X) yield the following corollary (see [BPV] 1V, Prop. 4.2):

COROLLARY 54. If X is a nonfibered compact Kdihler manifold, then
dim Im(v: N*H"(X)—-H*'(x)) > 2 dim H"(X) —3.

Cor. 5.4 gives a bound for the products of holomorphic 1-forms, and by
conjugation, of antiholomorphic 1-forms. The dimension of products of holomor-
phic-antiholomorphic 1-forms has been bounded for compact complex surfaces in
[BPV], IV, Prop. 4.3. We slightly alter their proof to extend it to compact Kéhler
manifolds of arbitrary dimension:

PROPOSITION 5.5. Let X be a nonfibered compact Kdihler manifold. Then
dim Im(u: HY(X) @ H*\(X) » H'(X)) > 2 dim H'°(X) — 1.

Proof. Denote n =dim X >2, V =Im u: H'°(X) ® H*'(X) - H"'(X) and fix
o a fundamental Kéhler form on X. We begin by showing that the pairing
v: HY(X) ® H*'(X) — V becomes injective when we fix a nonzero ¢ € H'9(X) or
ij € HO\(X).

Suppose there are holomorphic 1-forms &, n such that & A ff =dx. Then
obviously ¢ An A EAfj=da’, and

J-éAnAEAﬁAw”‘2=O
X

By .the properties of the pairing Q of compact Kédhler manifolds (see [W] 5.6), this
implies that & A n =0, thus by the Castelnuovo-De Franchis theorem ¢ and # are
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linearly dependent. Take ¢ =an, with a € C*. Then 0= ¢ A j =an A 7. Again by
the properties of the pairing Q, this means that &, n =0.
Thus a map may be defined

P(H(X)) x P(H*'(X)) > P(V)

with injective restrictions fixing a point in either factor of the source. We apply now
the following result from [RV]: '

PROPOSITION. Let ¢: P™(C) x P¥(C) - PYC) be a holomorphic mapping,
with | <m +k. Then ¢ factors through one of the projections P™ x Pk —P™,
P™ x Pk - P*,

In our case, U cannot factor through any of the projections because it is
fiberwise injective in both cases, so it holds that dim ¥V >2 dim H"%(X) — 1 as was
wanted. O]

We have now all the required pieces to study I',/I'; ® R of nonfibered groups.
We return to the notations defined in §1.

PROPOSITION 5.6. Let X be a nonfibered compact Kdihler manifold with
q = % dim H'(X) = % dim I'; /T, (X, *)) ® R. Then:

(i) If ¢q=0,1,dim I,/ 37, (X, *) R = 0.

(i) If ¢ =2, dim I/, (X, *) @R < 2¢% —T7q + 7.

Proof. We have seen in Cor. 2.10 that dim I',/I3 7, (X, *) ® R=dim \?H'(X) —
dim Im(u: /N*H'(X) > H*(X)) = (29(2q — 1)/2) — dim Im u.

Thus if ¢ =0, dim I, /37, (X, *) @ R =0.

If g=1, dmImux<l, so dim I',/T;m, (X, *) ®R < 1. Let a,b be a basis of
I'Im (X, *) @R. The equality dim I',/I's7 (X, *) ® R=1 would imply that
(a,b) #0 in &L,m (X, %) by Prop. 1.2 (iv). Therefore there would be an isomor-
phism &,F,> %,m,(X, *) sending the generators X, X, of #,F, to a, b respec-
tively. By Thm. 3.3 this would mean that z,(X, *) is not Kahler, leading to a
contradiction. Hence our statement follows.

For ¢>2, we break H'(X) into its Hodge components. By Cor. 5.4
dim(Im( N’ H"%(X) - H*°(X))) >2q —3. The same holds by conjugation for
/NH*'(X) - H**(X). Prop. 5.5 gives the inequality dim Im(H"°(X) ® H*!(X) -
H'"'(X))) > 2q — 1 and our statement follows from the addition of bounds. O

Prop. 5.6 roughly means that nonfibered Kihler groups need many defining
relations. M. Green and R. Lazarsfeld give a bound ([GL], Thm. 5.4), establishing
that given X nonfibered compact Kihler in the sense of Def. 5.1, that is admitting



210 JAUME AMOROS

no pencil of genus g=>2, and a presentation of its fundamental group
(X)) =<{x1,...,%X,57,...,7rs), then

s=>n-—3
Prop. 5.6 above allows us to establish a more accurate bound:

COROLLARY 5.7. Let G =<{xy,...,X,;T"y,...,rs» be a finite group presenta-
tion. If G = n,(X), with X nonfibered compact Kihler, and writing q = 3b,(X), the
total number of relations must satisfy

(1) If q=0,s>n.

(i) Ifg=1,s>n—1.

(iii) If ¢ =2, s>n+49 —1.

Proof. The group presentation G = {x,,...,X,;r,...,r,» induces an exact
sequence 1->N—->F—->G-1 described in (1.3). Let dy: ®Rr,>Jp[J% =
I'/l',FR be the map defined in Prop. 1.7. We may suppose the relations
ry,...,r, ordered so that the images of r,,...,r,, with k <s form a basis of
Imdy=2=N/INNIL,F®RoTI'/[[,FRR.

By Prop. 1.7 and Cor. 1.8 (i), dm I, /[T,G®R=dim ', /[[,F® R—dim N/N
NI, F @R, so there is an equality

n=k+2q

Let us remark also that dim ker dy =5 — k.
Thus if ¢ =0 we have n =k < s as was wanted.
If g =1, by Cor. 1.11 and Prop. 5.6 (i) we have that

2
0=dij2/F3G®R=(

2)——(s—k)—i—dimkerd1

=1—-s+k+dmkerd, >1—s5s+k

As n =k + 2 in this case, this yields the sought bound.
If ¢ > 2, again by Cor. 1.11 and Prop. 5.6,

dm L/l GRR= (zzq)——(s —k) +kerd, <2¢q>—Tq+7

which implies

k+2q+dmkerd, <s—4q +7
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and as n =k + 2g,

s=>n+4q -7
O

Examples 5.8.

(1)
(i)

(iii)

(iv)

A group G =<Xy,...,Xq; Wy,..., W) With w;,...,w el F can be
nonfibered Kéhler only if s > 6 — 7 for ¢ > 2, and s > 1 for g = 1.

Chain link groups (see [Ro], 3.G) The group G,, =<x;,..., Xy;
(X1, X2)5 « o5 (X2g—15 X2g)s (X24, X1) ) is the fundamental group of a link of 2¢
circumferences forming a circular chain, for ¢ > 2. This group verifies
k=dmI /I, F®R~—-dmTI,/I',G,,®R=0, and s=29 <6g —7, and
therefore G,, cannot be nonfibered Kahler. Broadly speaking, if a link is not
very intertwined, its group is not going to be nonfibered Kdhler. The group G,
verifies that dim I', /I, G,® R = 2, and therefore it cannot be fibered Kéhler
either, as it cannot map onto n,(C,, *) for any g > 2. The groups G,, with
q = 3 do admit onto mappings to n,(C,, *), and the author does not know if
they are fibered Kdhler.

The fundamental group of a compact Riemann surface of genus g > 2 admits
a presentation <a,, ..., a,b,,...,b,;(ay, by) - - (a,, b,)). In this presen-
tation k =0, and s = 1 < 6g — 7. Therefore, it can only be the fundamental
group of a fibered Kdhler manifold. This is a particular case of Prop. 5.2.
Let G={x;,...,xs; x3x5%x3, (x1, X,), (X3, X3), (x3, X4), (x4, X5)>. In this
case n=35, k=1, ¢=2 as Imd,= (2%, — 2%, +2%,), and s =5<n+
4q — 7 = 6. Therefore G cannot be nonfibered Kahler. The group G cannot
either map onto n,(C,), with C, a smooth projective curve of genus g >2
because dim I,/IG @R =2, dim I,/I37(C,) ®R=(2g(2g —1)/2) —
1 > 5, so we reach the conclusion that G cannot be Kéhler.
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