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Reseaux électriques planaires II
Yves Colin de Verdière, Isidoro Gitler, Dirk Vertigan

Introduction

Cet article est la suite de [REP1]. Nous y résolvons complètement les problèmes
directs et inverses pour la réponse d'un réseau électrique planaire purement résistif.

Des éléments de solution, dus à Ron Foster sont déjà annoncés par L. Weinberg
dans [WE], mais ne semblent pas avoir donné lieu à publication. D'autre part,
Curtis, Ingerman et Morrow [C-I-M] ont obtenu récemment des résultats voisins

par des méthodes différentes faisant un grand usage d'algèbre linéaire et ne

couvrant que les réseaux minimaux. Nos preuves sont plus géométriques et

exploitent à fond les possibilitiés du graphe médial.
Les notations et résultats de [REP1] seront utilisés sans commentaire particulier.
L'idée nouvelle de cet article est celle de transformation électrique élémentaire:

ces transformations engendrent une invariance du problème et tiennent donc lieu de

générateurs d'un "groupe de symétrie" du problème.
Ces transformations, au nombre de 6, peuvent se lire au niveau combinatoire:

elles modifient le réseau sans changer son caractère planaire, ni affecter les couples
F-connectés.

Au niveau électrique, elles donnent lieu à des transformations (F, p) ->(F', pf)
ne modifiant pas la réponse du réseau: elles sont donc associées à une relation
d'équivalence que doit prendre en compte toute solution du problème inverse,
c'est-à-dire la reconstruction de couples (F, p) planaires de réponse donnée.

Ces transformations seront notées (B), (BM), (S), (P), (Y-A) et (A -Y).
(B) (bouclé) consiste à effacer une boucle de sommet a.

(BM) (bras mort) consiste à effacer un sommet a de degré 1 (a $ Vo) et l'arête

qui en est issue.

(S) (série) consiste à effacer un sommet a(a ^ Fo) de degré 2 et les 2 arêtes qui
lui sont adjacentes, et à joindre les 2 voisins b et c de a par une arête unique.

(P) (parallèle) consiste à remplacer une arête double joignant 2 sommets a et b

par une seule arête.

(Y — À) (étoile-triangle) consiste à remplacer une étoile à 3 branches par un
triangle à condition toutefois que le centre de l'étoile ne soit pas un élément de Vo.
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Figure 1. Les transformations électriques élémentaires.

(A - Y) (triangle-étoile) consiste à remplacer un triangle par une étoile à 3

branches.

Remarque. Ces transformations sont définies pour un réseau quelconque. Nous
les utiliserons uniquement pour des réseaux planaires. Comme la dernière transformation

ne préserve pas la toujours la planante, nous l'utiliserons uniquement pour
des réseaux planaires plongés en ajoutant l'hypothèse que l'intérieur du triangle
limité par le A ne rencontre pas F.

On commence par décrire les classes d'équivalences combinatories de réseaux

planaires. On introduit à cette fin un graphe orienté S dont les sommets sont les

réseaux électriques planaires (à isotopie près fixant les terminaux) et ayant une arête

orientée F-*Tf si on peut passer de Y à JH par une transformation
électrique élémentaire. On note [F] la composante connexe de F dans S. Deux réseaux

f et f seront dits combinatoirement équivalents, F ~ F\ s'ils sont dans la
même composante connexe de S. Bien sûr, dans ce cas ils ont même nombre de

terminaux.
Soit maintenant e(F) \E\ le nombre d'arêtes de F et s(F) =infr .re(r'). Un

réseau F sera dit minimal si e(F) e(F).
On a alors le

THÉORÈME 1. Tout réseau F peut ête joint par un chemin orienté (ie la fonction
e y est décroissante) de S à un réseau minimal. Deux réseaux minimaux Fh i 1,2
de [F] sont joints par un chemin de S le long duquel e est constant égal à e(F,).

Une conséquence de ce théorème est que l'équivalence combinatoire de 2

réseaux est décidable algorithmiquement contrairement à ce qui se passe pour
des problèmes voisins comme l'équivalence de noeuds donnés par une projection
plane.
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L'outil utilisé ici est celui de graphe médial, déjà utilisé par exemple dans [GR].
On a en fait une caractérisation simple des réseaux minimaux en terme de leur
graphe médial: celui-ci est tendu.

Un cas particulièrement simple concerne les réseaux bien connectés introduits
dans [REP1].

THÉORÈME 2. Pour chaque valeur de N—\VQ\, les réseaux bien connectés

forment une composante connexe de S. La notion de minimalité précédente coïncide

pour eux avec la notion de N-criticité (c/[REPl] §6.2). Ces réseaux bien connectés

vérifient e(F) N(N - l)/2.
Pour tout réseau F non bien connecté, e(F) < N(N — l)/2.

Discutons maintenant le problème inverse:

THÉORÈME 3. 5/ F est minimal, <Pr est un plongement de 0tr dans IN d'image
une sous-variété Z[n de IN qui ne dépend que de la classe d'équivalence de F. Si F est

planaire quelconque, <Pr est une fibration différentiable de 0tr sur Z[r], de fibre
dtfféomorphe à R«o-cn

Plus généralement, on a le

THÉORÈME 4. Si (F,p) et {F',p') sont 2 réseaux planaires ayant la même

réponse, ils sont électriquement équivalents: F ~ Fr et p' se déduit de p en suivant les

transformations électriques élémentaires le long d'un chemin quelconque de F à F'
dans S {voir au §5 la définition précise).

Enfin, on a une réponse complète au problème direct de trouver l'ensemble des

réponses possibles pour un réseau planaire:

THÉORÈME 5. Si F est bien connecté, Z[n QN. L'ensemble des réponses

possibles des réseaux planaires à N terminaux est l'adhérence QN de QN dans ZN. Les

Zm forment une partition de ÙN.

Remarque. Dans [C-I-M], une caractérisation purement algébrique de QN est

donnée. L sQN si et seulement si tous les déterminants det(LAB) sont >0.

Enfin, mentionnons pour finir qu'il serait intéressant de retrouver les résultats de

Nachman [NA] concernant l'analogue continu à partir du cas discret qui est

finalement assez simple!!
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Figure 2. Le graphe médial

Remerciements: merci infiniment à François Jaeger sans qui la bonne connection

entre les auteurs n'aurait pu se faire en juin 93 alors que iG et dV visitaient

l'IMAG; iG et dV remercient l'IMAG (Grenoble) et le Forschungsinstitut fur
Diskrete Matematik (Bonn).

I. Combinatoire

1. Le graphe médial d'un réseau électrique

Où Von introduit ledit graphe.

A tout réseau électrique planaire on peut associer son graphe médial (cf [GR])-
Le graphe médial M(F) d'un réseau électrique planaire est construit ainsi:

il a 2AT sommets sur S1 (soient (i+,(i + 1)_) entre les sommets consécutifs i et

(Y -h 1) de Vo) et les autres sommets en nombre e(F) sont situés au milieu de chaque
arête de F. Les arêtes de M(F) sont telles qu'elles forment un cycle intérieur à

chaque face de F ne touchant pas le bord et que» complétées avec les arcs

O'+,(* +1)-) de S\ elles forment un cycle intérieur aux faces touchant ôD. Les

sommets intérieurs sont tous de degré 4.
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Figure 3. Action des transformations électriques sur le graphe médial.

Notons que cette construction peut être renversée. Il faut simplement partir d'un

graphe M dont tous les sommets intérieurs sont de degré 4, les 2N sommets du bord

de degré 1.

On colorie en noir une région sur 2 limitée par M en coloriant celles qui
contiennent un élément de Vo. On doit alors supposer qu'aucune région noire ne

connecte 2 sommets de Fo. F est alors construit en prenant un sommet par région

noire et une arête joignant ceux-ci lorsque ces régions se touchent en 1 coin. Le

nombre d'arêtes de F est égal au nombre de sommets intérieurs de M(T).
Un graphe médial peut donc être vu comme un ensemble de courbes (cordes ou

cycles), ie sous-variétés de dimension 1 fermées, de D se coupant transversalement
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et sans intersection triples de façon que tout sommet du bord soit extrémité d'une
unique corde.

2. Equivalence combinatoire de réseaux¦; réseaux minimaux

Où Von prouve le théorème 1.

Lorsque le réseau est planaire, les transformations électriques se lisent simplement

sur le graphe médial, en particulier la transformation (Y — A) est proche du
3ème mouvement de Reidemeister pour les projections de noeuds.

DÉFINITION. Le graphe médial M est dit tendu s'il ne possède pas de

composantes intérieures (cycles), si 2 cordes quelconques ont au plus 1 intersection
et si aucune corde n'a d'autointersection.

Un ingrédient essentiel est la

PROPOSITION [GI]. A l'aide de transformations électriques (orientées), tout
réseau électrique planaire peut être transformé en un réseau électrique dont le graphe
médial est tendu.

Preuve (inspirée de [GR]). On travaille directement sur le graphe médial M. On

note, pour un graphe médial M, par v(M)(=e(r)) le nombre de croisements

intérieurs. On va montrer que les transformations électriques (opérant sur le graphe
médial comme expliqué plus haut) permettent de diminuer v(M) tant que M n'est

pas tendu.

Donnons quelques

DÉFINITIONS: une lentille est une région de D limitée par 2 arcs de 2 courbes

du graphe médial compris entre 2 intersections consécutives de celles-ci. Une boucle

est une région de D limité par un arc d'une courbe dont les extrémités sont un point
double de la courbe.

Une lentille est dite minimale si son intérieur ne contient aucune autre lentille ou
boucle de M.

Une lentille (resp. une boucle) est dite vide si son intérieur ne rencontre pas M.
On voit qu'une boucle non vide contient une lentille ou une boucle vide: seules

les lentilles sont donc à considérer dans la suite, car on peut éliminer les boucles

vides.

On a alors besoin du
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Figure 4 Elimination des lentilles et des boucles

LEMME ([GR] §13.1). Si on se donne une boucle ou une lentille minimale de M,
par des transformations (Y — A) ou (A — Y), on peut transformer M de façon que
celle-ci devienne vide sans changer v(M).

L'idée de la preuve est qu'une lentille minimale que contient un sommet
intérieur contient un triangle dont un côté est sur la frontière de celle-ci (et même

sur chacun des 2 arcs de la frontière). S'il n'y a pas de sommets intérieurs, la preuve
est encore plus simple.

On a en fait le

LEMME. Si y est un des 2 arcs du bord d'une lentille qui contient un croisement,

il y a un triangle d'intérieur vide dont les côtés sont des arcs du graphe médial et dont
l'un des côtés est contenu dans y.

On considère les croisements pt intérieur à la lentile L qui sont adjacents à un
croisement situé sur y. Il suffit de prendre un pt tel que le nombre de faces limité par
les 2 cordes qui se croisent en pt et y soit minimal.

Si maintenant, on a une lentille ou une boucle vide, on peut la supprimer par
une transformation électrique qui diminue v(M) de 1. Cela prouve la proposition.

II reste à montrer la

PROPOSITION. 2 graphes tendus sont équivalents si et seulement si leurs cordes

ont mêmes paires d'extrémités; dans ce cas, ils le sont par des transformations Y - A

et A-Y.

Montrons la 1ère implication: si les cordes ont mêmes paires d'extrémités, on
peut faire une homotopie de graphes tendus. On raisonne par récurrence sur le

nombre de cordes. Pour une corde c'est Schônflies (une courbe fermée simple borde

un disque standard). Ensuite on prend une corde quelconque qui limite avec le bord
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Figure 5. Le graphe CN.

du disque une lentille minimale et on la vide comme plus haut. On peut alors ôter

un croissant et appliquer l'hypothèse de récurrence.

L'autre sens résultera du §7 où l'on montrera comment lire ces paires sur la
réponse: si F ~ F', on peut choisir p, p' telles qu'ils aient la même réponse et donc
le même graphe médial, s'ils sont minimaux.

De ces 2 propositions résulte le théorème 1 que l'on peut reformuler ainsi:

THÉORÈME T. Tout réseau F peut ère joint par un chemin orienté (ie la

fonction e y est décroissante) de S à un réseau minimal. Deux réseaux minimaux Fn
i 1,2 de [F] sont joints par un chemin de ê le long duquel e est constant égal à

s(F{). De plus les réseaux minimaux sont exactement ceux dont le graphe médial est

tendu. Les classes d'équivalence sont donc caractérisées par la liste des paires
d'extrémités de cordes du médial d'un réseau minimal quelconque de la classe.

En particulier, l'équivalence de F et F', tous deux minimaux, équivaut à l'égalité
des paires de terminaux de M(F) et M(F1) liées par une corde.

3. Le cas bien connecté: minimalitè et criticité

Où Von démontre le théorème 2.

En fait on va caractériser les graphes médiaux minimaux bien connectés: en effet

le fait d'être bien connecté est invariant par équivalence.

Le graph CN dessiné ci-dessus joue un certain rôle dans la suite.
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On repère les sommets vtJ de CN par les coordonnées entières (/,/) qui satisfont:

et les arêtes sont les segments horizontaux et verticaux joignant 2 des points
précédents. Il n'est pas difficile de vérifier que le nombre d'arêtes de CN est

N{N-\)j2.
Ou voit aussi que le graphe médial de CN est tendu et que toutes les cordes sont

des diamètres: on dira qu'il est diamétral
En fait, on a le

LEMME. Tout réseau dont le graphe médial est diamétral tendu est équivalent à

CN par une suite de transformations étoile-triangle.

Preuve. Résulte du §2, en effet alors les paires d'extrémités des cordes du médial
sont les mêmes.

On a maintenant la:

PROPOSITION. Si F est un réseau électrique planaire, il y a équivalence entre
les 2 propriétés suivantes:

i) F est bien connecté.

ii) le graphe médial d'un réseau minimal de [F] est diamétral.

COROLLAIRE. Le réseau électrique planaire F bien connecté est N-critique si et
seulement si son graphe médial est diamétral minimal. En particulier, tout graphe
N-critique peut être joint à CN par une suite de transformations étoile-triangle et a

N(N - l)/2 arêtes.

Preuve (de la proposition).
i) -ni): si le graphe médial tendu n'est pas diamétral, F n'est pas bien connecté.

En effet, dans ce cas, il y a 2 cordes du graphe médial qui ne se coupent pas.
Désignons par C et C les arcs sous-tendus par ces 2 cordes de façon que C soit
celui qui contient le moins de sommets de M(F) situés sur S1.

On peut supposer au moyen de transformations étoile-triangle que le crossant
ouvert limité par C et la corde associée ne contient pas de sommets de M(F). Il y
a alors 3 cas à distinguer suivant que les sommets extrémités de C sont (/+,./+)>

(i+J*.) ou (*-,/-). Dans chaque cas si on considère comme partie A de Vo les

sommets situés sur C, il est facile de construire une partie B de Vo disjointe de A,
contenue dans C\ et de même cardinal que A tlele que {A, B) ne soit pas
r-conneetée.
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Figure 6 A et B ne sont pas F -connectés

Par exemple dans le premier cas si k 4M, on prend pour B les k sommets
consécutifs de Vo commençant à partir de i ou j suivant l'orientation.

II suffit de vérifier que CN est bien connecté, ce qui est facile.

Preuve (du corollaire).
Si le graphe médial est diamétral tendu, F est bien connecté. Il faut montrer

qu'il est N-critique. Il suffit de comprendre que les opérations de contraction d'une
arête ou de suppression d'une arête se traduisent par une suppression de croisement

entre 2 cordes: donc pour un tel graphe e < N(N — l)/2. Le graphe minimal
correspondant n'a donc pas assez d'arêtes pour être diamétral minimal. Donc aucun
mineur strict n'est bien connecté.

Réciproquement, si le graphe médial de F n'est pas tendu, on peut après des

transformations étoile-triangle arriver à une configuration où l'on peut faire opérer

une transformation (S), (P) ou (BM) que conserve la propriété de bonne connection
et qui sont associées à des mineurs du graphe transformé de F par des transformations

(Y - A).

Il suffit de vérifier que le fait que F soit iV-critique est invariant par (Y — A), ce

qui est facile.

4. Equivalence combinatoire et connections équivalentes

Dans ce §, nous montions que si Fx et F2 ont les mêmes paires (A,B)
F-connectées, ils sont combinatoirement équivalents (et réciproquement bien sûr).

Pour un réseau F, soit W{F) l'ensemble des paires non entrelacées (^4, B) telles

que {A, B) est F-connecté.

DEFINITION. Les réseaux F, et F2 avec N terminaux sont identiquement
connectés si W(FX) W(F2).
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Dans cette section, nous donnons plusieurs caractérisations équivalentes de

identiquement connectés.

Les éléments de UQ (extrémités du graphe médiat) séparent dD en 2N segments,
dont N contiennent un élément de Fo. On place un élément de

Fo {|, 15,..,, N — \} dans chacun des autres TV segments de façon que les AN
éléments de VovFo€ Uo c dD soient dans l'ordre inverse des aiguilles d'une montre

5, 1_, 1, 1
+ I5,..., N — 5, N_, N, N+. Chaque élément de Fo (respectivement Vo)

est sur la frontière d'une face blanche (respectivement noire) de M. On suppose
dans cette section que que N, Fo, Fo and Uo sont fixés.

Pour A,B czV0 et a, b, e FouFo, (A, B, a, b) est non-entrelacè si A, B, a, b sont
2 à 2 disjoints et A est contenu dans une composante de dD\{a, b} et B dans

l'autre.
Soit X l'ensemble des (A, B, a, b) non entrelacés.

Pour (v4, B) non-entrelacée, soit XA B {(a, b): (A, B, a, b) e X).
Pour a, b e FouFo soit Xa>b {(A, B): (A, B, a, b) e X}.
Pour (A, B) non-entrelacé, un (A, B)-chemin est un chemin avec une extrémité

dans A, l'autre dans B, et tous les sommets intérieurs dans V\V0.
Soit/(v4, B) le nombre maximum de (A, j?)-chemins 2 à 2 disjoints; clairement

f(A9 E) ne dépend que de [F].
Pour a, b e VouFOi un (a, b)-cut est un arc a dans D d'extrémités a, b, tel que

a ne coupe pas d'arête de F. Soit g(a, b) le nombre minimum possible de sommets
de F dans l'intérieur d'un (a, b)-eut (en ne comptant pas a et b s'ils sont des

sommets). On voit aussi que g(a9 b) ne dépend que de [F].
Pour (A, B, a, 6)- non-entrelacés, soit g'(A, B, a, b) le nombre minimum de

sommets dans un (a, b)-cnt9 en ne comptant pas ces sommets dans V0\(A kjB). Soit

h(a, b) le nombre minimum possible d'arêtes ou de sommets terminaux de M(F)
coupant un (a, è)-cut. On remarque, là encore, que h(A,B) ne dépend que
de [F].

Pour un graphe médial tendu M, soit UM Pinvolution de Uo défine par
nM(c) d si et seulement si c et d sons les extrémités d'une même corde de M.

Pour un graphe médial quelconque Af, soit IJM l'involution TlM, où M est

équivalent au graphe tendu M'. En général, nM(c) d n'implique pas que c et

d sont extrémités de la même corde. Notons aussi que FLM est bien définie

car 2 graphes médiaux minimaux sont équivalents si et seulement si on peut passer
de l'un à l'autre par des transformations A — Y Y — A et ceux-ci ne changent

pasUM.
Pour (A, B) non-entrelacé avec 4M #5 k et a, b e (VouFo) - (A uB) soit

<5D, une composante de dD — {a, b} et définissons

scp(A9B9a9b)
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En particulier sep(^4, B9 a9b) =k si et seulement si (A, B9 a, b) est non-entrelacé.
Le lemme suivant relie les différentes quantités définies pour F.

LEMME.
(a) rang(LAJ,)=f(A9B)
(b) f(A, B) max{ # A' \ (A', B') est r-connecté pour un A' a A, B' a B}
(c) f(A9 B)= =M #5 si et seulement si (A, B) est r-connectée.

(d) (A, B) est F-connecté si et seulement si g(a9 b) > sep(A9 B, a, b) pour tous

(e) g(a9 b) =maxiAtB)eXabf(A, B)
(f) h(a, b) 2g(a9 b) + #({*, b}n Vo)

(g) Si dDx est une composante de dD — {a9 b}9 h(a9 b) # {c \ c e U09 c g dDx,

(h) Pour c,deVQ et a9b,a\ b' g VouFo avec a9c,a'9b9d,b' qui apparaissent
dans l'ordre contraire des aiguilles d'une montre et a, a' adjacent à c et b9 b' adjacent
à d: nM(n(c) d ssi

h(a9 b) h(a, b') + \= h(a\ b) -f 1 h(a\ b')

Preuve, (a) est prouvée dans [REP1]. (b), (c), (f), (g), (h) sont faciles à vérifier.

(e) provient facilement de [R-S].
Appliquant ce résultat au graphe obtenu de F en efiaçant les sommets de

V0 — (AuB), il vient que (A,B) est F-connectée si et seulement si

g'(A, B9 a, b) > sep(v4, B, a, b) pour tous ay b e(FouFo) — (A uB). Clairement, si

(A, B) est T-connectée, alors g(a, b) > sep(^4, B, a9 b) pour tous a, b9 e(VouFQ) —

(AuB). Supposons que la réciproque soit fausse. Alors il existe

a, b9 g (FouFo) - (A uB) tels que g'(A, B9 a, b) < sep(^, B9 a9 b) et sans perdre de

généralités, on peut choisir un tel (a9 b) avec g\A9 B9 a, b) aussi petit que possible.
Ainsi il existe un (a9 b)-c\xt C qui contient g\A9 B, a9 b) sommets en ne comptant
pas ceux de V0 — (AuB). Supposons aussi que C contient un c g V0 — (AkjB).
Alors g\A9 B9 a9 b) g\A9 B, a9 c) + g\A9 B9 c, b) et sep(^, B9 a, b) ^
sep(^4, B9 a9 c) + sep(^4, B, c9 b) en sorte que g'(A9 B9 a, c) < sep(^4, B, a,c) ou
g\A9 B9 c, b) < sqp(A9 B, c, b) contredisant le choix de (a, b) minimisant
gf(A9 B, a, b) avec la contrainte gf(A9 B9 a9 b) < sep(^4, B9 a, b). Mais, si le (a, 6)-cut
C ne contient aucun sommet de V0 — (A\jB) alors g(a,b) =g'(A9B9a9b) <
sep(^4, B, a, b) contredisant l'hypothèse que la réciproque est fausse. Donc (d) est

vraie et le lemme est prouvé.

Nous donnons maintenant plusieurs caractérisation des paires de graphes
identiquement connectés.
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THÉORÈME. Pour des réseaux Fx et F2, les propriétés suivantes sont équivalentes:

(i) Fx et F2 sont identiquement connectés.

(ii) fi(A, B) =f2(A, B) pour tous les (A, B) non entrelacés.

(iii) rang(Lx AB) rang(L2AB) pour tous les (A, B) non entrelacés.

(iv) gx(a9 b) =g2(a, b) pour tous a9beVouFo
(v) A,(a, *) h2{a, b) pour tous a,beVouFo
(vi) {det{Lx AB) — 0) => (det(L2AB) 0) pour tous les (A, B) non entrelacés.

(vii) (A, B) est reconnecté <=> (A, B) est reconnecté pour tous les {A, B) non
entrelacés.

(viii) F! et F2 sont combinatoirement équivalents.

(ix) nri nr2

Preuve, (viii) et (ix) sont équivalents par définition de Flr et le fait que cette

application est bien définie. Les autres équivalences proviennent immédiatement du
lemme.

II. Electricité: Le problème inverse

5. Equivalence électrique de réseaux

Où Von décrit l'équivalence (F, p) ~ (F', p') et où Von introduit aussi un

diagramme commutatif associé à tout chemin orienté de S.

A toute transformation électrique élémentaire F ->Fr (arête de ê) est associée

une application Wrr:0tr-+Mr Qui à p associe p' (réseaux équivalents au sens

électrique); par exemple, pour la transformation (S) portant sur une arête (a, p)
suivie d'une arête (P, y) de F,

On voit que Wrr est une fibration de fibre difféomorphe à R pour les 4 premières
transformations et un difféomorphisme pour les 2 autres Y — À et A — Y).

De plus, on a bien sûr:

qui exprime que la réponse est conservée par cette transformation.
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Plus généralement, si y est un chemin orienté de S joignant un réseau F à un
réseau F', on obtient une application x¥\r,\fflr-*0lr en composant les flèches

précédentes. Ces applications sont des fibrations différentiables de fibres

difféomorphes à R*<r>-*r>.

On a bien entendu préservation de la réponse par l'application Wyrr.
Il se peut que cette application dépende du chemin (à extrémités fixées), mais ce

n'est pas le cas si F' est minimal: cela résultera de l'injectivité de $ro lorsque Fo est

minimal ('8), puisque les images de p par les *Pyrtr0 ont ^a même réponse.

DÉFINITION. On appelle équivalence électrique la relation d'équivalence
notée

engendrée par les transformations électriques élémentaires: F' s'obtient de F par
une transformation élémentaire et p' ?7,r(p)-

II résultera de ce qui suit que, si (F, p) ~(F', p'), on peut prendre comme
chemin un chemin réunion de 2 chemins monotones joignant respectivement F et F'
à un réseau minimal Fo.

En particulier (F, p) ~ (F, p') si les images par ¥V,r0 de p et p' sont égales, avec

Fo minimal.
2 réseaux électriques équivalents ont la même réponse. Le fait que la réciproque

soit vraie est l'objet du théorème 4 qui est un des principaux résultats de cet article.

6. Potentiels d'équilibre et graphe médiat

Où Von montre comment lire géométriquement un potentiel d'équilibre sur le graphe
médial.

Le graphe médial M(F) définit une cellulation du disque unité D. On colore les

cellules en noir ou blanc de façon à former un échiquier: les cellules noires sont
celles contenant un sommet de F; les blanches sont en bijection avec les faces ou
cycles élémentaires de F.

On veut représenter les potentiels d'équilibre sur cette cellulation de la façon
suivante: si y e Rv est le potentiel d'équilibre, on attribue à la cellule noire attachée

au sommet a la valeur ya du potentiel en ce sommet.
Pour ce qui est des cellules blanches, elles représentent les courants électriques:

on sait que tout courant / satisfaisant la loi de Kirchoff aux sommets de F est

somme de courants portés par les cycles faciaux, une telle décomposition étant
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Figure 7. La loi d'Ohm lue sur le médial.

unique à une constante additive globale près. Le couple potentiel-courant est donc
représenté par un nombre attaché à chaque cellule de M(F).

Pour avoir une configuration d'équilibre, il reste à satisfaire la loi d'Ohm qui se

lit à chaque croisement de cordes de M(F): elle est de la forme Ja— Jp p(y, — yj):
relation reliant les valeurs attribuées aux 4 cellules adjacentes au croisement associé
à l'arête (/,_/) et de conductance p.

Ces couples (y, J) induisent des couples (x, I) sur les cellules en nombre 2N,
alternativement blanches et noires, qui touchent dD.

Il est clair que la donnée de l'ensemble de ces couples (x, I) équivaut à la donnée
du graphe de l'application Lrp et donc de la réponse Lrp du réseau (F, p).

Les couples (y, J) et (x, I) associées à des potentiels d'équilibre seront appellées
admissibles.

1'. Supports de potentiels d'équilibre.

Où Von construit des potentiels d'équilibre à support limité par une corde du
médial et l'on déduit une caractérisation du médial à partir d'une réponse.

Le support d'un couple (y, J) est l'ensemble des cellules (fermées) qui ne sont
pas marquées de la valeur 0. On peut de la même façon parler du support d'une
donnée (x, I) qui s'identifie à une réunion d'intervalles fermés de dD.

Remarque: les supports possibles pour des couples (x, I) admissibles forment un
ensemble d'informations que l'on peut déduire de la réponse Lrp.

On va prouver sur ces supports les 2 lemmes suivants:

LEMME 1. Supposons M(T) tendu et a, b 2 extrémités d'une corde y de M{F).
Soit y+ l'un des arcs de dD limités par a et b, D+ le domaine limité par y et y+ et D
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Figure 8. Le cas trivial.

le complémentaire de D+ dans D. Alors, il existe un couple admissible (x, /) de

support y + restriction au bord d'un couple admissible (y,J) à support D+.

LEMME 2. Soit a, b sommets terminaux de M(F) limitant y+ et y_ sur dD. S'il
existe (x+, I+) et (x_, /„) admissibles à supports respectifs y + et y_, alors a et b sont
les 2 extrémités d'une même corde de M(F).

Les 2 lemmes précédents impliquent le

COROLLAIRE. La réponse d'un réseau électrique planaire (F, p) détermine la
classe [F].

En effet, on peut évidemment supposer F minimal et les lemmes impliquent que
la réponse détermine les extrémités des cordes de M(F).

Preuve (du lemme 1). La preuve est par récurrence sur le nombre de cordes de

M(F) entièrement contenues dans D+. On montre l'assertion suivante plus générale

que le lemme 1:

(*) tout couple (y_,J_), défini dans D_ D\D+ et admissible dans D__ se

prolonge en un couple admissible global. Si le couple de départ est nul, il y a un

prolongement de support D+.
1) Le cas où il n'y a aucune corde de M(F) contenue dans l'intérieur de D+:
On règle d'abord le cas où M(F) n'a aucun croisement intérieur à D+, qui est

trivial.
Ensuite, on se ramène à ce cas par transformations (Y — A) successives (vider les

croisements dans la lentille D+), en contrôlant les solutions pour une transformation

{Y-A): on passe à un nouveau couple admissible simplement par modification
concernant les petits triangles. Il faut vérifier que les supports ont un bon comportement

par rapport à la transformation Y — A, comme on peut le voir sur la figure
suivante:
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Figure 9. Transformations des couples admissibles par (Y — A).

2) La récurrence:

on fabrique un nouveau graphe M(F') en supprimant une lentille contenue dans

D+ limitée par dD et une corde de M{F) contenue dans D+; on suppose en plus que
la lentille ainsi otée est minimale, ce qui permet de lui appliquer la 1ère étape.

On applique d'abord l'hypothèse de récurrence à F'; puis on prolonge à la

lentille ôtée. On peut choisir un prolongement qui ne soit nul sur aucune cellule de

la lentille car on peut toujours ajouter un multiple grand d'un couple admissible

dont le support est ladite lentille.

Preuve, (du lemme 2) On peut démonter le lemme 2 avec n'importe quel graphe
minimal de [F]: on choisit une représentation géodésique, c'est-à-dire qu'on
demande aux cordes du graphe médial d'être des segments de droites euclidiennes.

Pour voir que cela est possible commencer par joindre par des segments
euclidiens les paires d'extrémités de cordes du médial. Puis bouger un peu les

extrémités de façon à se placer dans une situation générique où les segments ne se

coupent que 2 par 2.

Maintenant, on peut parler de convexité. Soit (y, J) une paire admissible. On

définit un sous-ensemble ouvert N(y, J) de D de la façon suivante: N(y, J) est le

complémentaire du support fermé (réunion des cellules fermées où y ou J est non
nul).

Figure 10. La récurrence.
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Figure 11. L'ensemble N(y,J).

Il est alors clair que les composantes connexes de N(y,J)) sont convexes: en

effet il est impossible que N(y, J) contienne l'intérieur de 3 des 4 cellules attachées

par un seul sommet à cause de la loi d'Ohm. Les composantes sont donc des

polygones connexes et localement convexes, donc convexes.

Supposons maintenant que la corde ô de M(F) issue de a ait son autre extrémité
c sur l'intérieur de y+. Alors la composante connexe de N(y_,J_) contenant y+

contient les 2 intervalles contigus à a.

En effet, elle contient le disque limité par y+ et ô (enveloppe convexe de y+) et,

par application successive de la loi d'Ohm en partant de c aux sommets de M(F)
situés sur 8, un voisinage de ô donc de a contrairement à l'hypothèse.

Le cas où cette corde issue de a a son autre extrémité dans y_ est aussi absurde

et cela conclut la preuve du lemme 2.

8. Injectivité de <Pr pour F minimal

Où Von montre que tout graphe minimal est équivalent à un graphe Z(F') ou à un

graphe Fl(F') et on en déduit le résultat par récurrence.

7

Figure 12. Preuve du lemme 2.
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Figure 13. M(F) a une cellule du bord triangulaire.

On aura besoin du

LEMME. Si Fo est minimal connexe, FQ est équivalent à un réseau minimal F
dont le graphe médial a une cellule triangulaire (3 côtés) dont un côté est un arc de

ÔD.

Suivant que cette cellule est noire ou blanche, F s'obtient donc d'un réseau

minimal F' ayant une arête de moins par adjonction d'une arête après un des

sommets terminaux de F'(F Z(F')) ou en connectant par une arête 2 sommets

terminaux voisins de F' (F n(F')).

Preuve, (du lemme) On considère un arc (a, b) du graphe médial de Fo limitant
avec le bord de D une lentille ne contenant aucune autre corde de M{F0)
complètement. Comme Fo est connexe, l'arc (a, b) de cette lentille contient d'autres

sommets terminaux de M(FO). Soit c celui qui suit immédiatement a: les cordes
issues de a et de c se coupent: par isotopie générique (vider la demi-lentille qu'elles
déterminent), on peut faire qu'elles déterminent la cellule triangulaire cherchée.

La preuve de l'injectivé de <Pr set fait donc de la façon suivante: à partir de la
réponse, on détermine la conductance p0 de l'arête mise en évidence dans le lemme,

puis on conclut par récurrence sur le nombre d'arêtes de F.

Figure 14. r et H.
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Figure 15. Détermination de p0.

1) Détermination de p0.
On applique les résultats du §7 à une corde y bordant le triangle.
On a ainsi un couple admissible (y, J) à support dans la lentille limitée par y et

cette propriété de support se lit sur la valeur au bord (x, I) de ce couple. Les valeurs

marquées dans le triangle et la région contigûe de la lentille détermine la résistance

p0 de l'arête isolée.

2) Récurrence.
La réponse de (F, p) détermine p0 et donc de façon évidente la réponse de F'. En

effet les graphes de ces 2 réponses se déduisent l'un de l'autre par une transformation

simple ne faisant intervenir que p0. Il suffit de constater que F' est minimal, ce

qui résulte de la construction de son graphe médial à partir de celui de F: il suffit
de faire franchir le bord de D par le croisement utilisé de M(F).

9. Injectivité de <$'r pour F minimal

Même type d'argument qu'au §8.

On donne d'abord une expression de la différentielle de $r.

PROPOSITION. On a, si Qr p
est la forme bilinéaire symétrique sur R^ associée

à la réponse Lrp\

où /lj7, I'tJ sont les courants parcourant l'arête (i,j) lorsque le potentiel au bord est

X,X'.
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Cet énoncé est classique. Nous en esquissons la preuve.

Preuve. Il suffit de le prouver pour la forme quadratique.

On a

ÔQr(X9 X) \£ ô (yt -yrf + £ PlJ{yt -yj)è{yi ->>,),l E E

où y est le potentiel d'équilibre. La deuxième somme est nulle: en effet, c'est le fait
que ^)P(Ij) est extrémale par rapport à y pour le potentiel d'équilibre.

On montre ensuite que, si $'r{èp) =0, on a ôpo 0 et on finit par récurrence

comme précédemment.
On se replace dans la configuration du §8: si y et y' sont les 2 cordes du médial

bordant le triangle, on construit des couples admissibles (y, J) et (y\ J') dont
l'intersection des supports est le triangle. De la connaissance de ÔQ(X, X) pour les

valeurs au bord de ces couples, on déduit la valeur de ôpQ.

Maintenant comme plus haut, la réponse L'r est fonction de p0 et de Lr. Donc
si Sp0 et SLr sont nulles, on voit que SLr est nulle. On conclut par récurrence sur
e(r).

10. Problème inverse à F fixé

Où l'on finit la preuve de théorème 3.

On vient de voir que, si F est minimal, <Pr est un plongement de 0lr dans ZN.
Sinon, on utilise la fibration

avec JT0 minimal pour conclure la preuve du théorème 3 et le fait que l'équivalence
(F, p) ~(r, p') provient de l'égalité des images de p et p' par ¥7,/v

11. Problème inverse planaire

Où Von prouve le théorème 4.

Si on se donne jL, le corollaire du §7, montre que cela détermine [F]. Ensuite, il
suffit d'appliquer le théorème 3 et la définition de l'équivalence (F, p) ~{F\ p').
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12. Le problème direct

Où Von prouve le théorème 5 en utilisant [REPl]

Traitons d'abord le cas bien connecté: l'image de <P, est alors QN.

Il suffit de le voir dans le cas minimal. Dans ce cas, 4>r est un plongement de i#,

dans QN. De plus, d'après [REPl] (théorème 9) et le fait que minimal coïncide avec

N-critique dans ce cas, ce plongement est propre et les dimensions sont les mêmes.

Puis le cas général:

II résulte de [REPl] et du fait que tout graphe planaire est mineur d'un graphe

bien connecté que les réponses des réseaux planaires sont toutes dans QN.

Réciproquement, la compactification de [REPl] (proposition 10) montre que

l'ensemble des réponses possibles est fermé dans ZN.

13. Application aux pavages

II y a un dictionnaire entre les réseaux électriques planaires et les pavages rectangulaires

d'un polygone du plan â côtés parallèles aux axes (cf [B-S-S-T], [KE]).
Décrivons brièvement ce dictionnaire: au pavage par des rectangles dont tous les

côtés sont horizontaux et verticaux on associe le réseau obtenus en considérant les

côtés verticaux comme isolants, les côtés horizontaux comme court-circuit et la

résistance de chaque rectangle calculée comme s'il s'agissait d'une plaque métallique

homogène.

Figure 16. Pavages et reseaux.

La réalisation géométrique du pavage met en évidence un couple de potentiel

courant d'équilibre: les équipotentielles sont les horizontales et les lignes de courant

verticales.
En particulier, les transformations électriques élémentaires donnent lieu à des

mouvements élémentaires des pavages.
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Les boucles et bras morts correspondent à des rectangles plats que l'on peut
supprimer

Les parallèles et séries correspondent à des rectangles juxtaposés le long d'un
côté de même longueur

Les transformations étoile-triangle correspondent à des opérations sur 3 rectangles

à la fois

Figure 17 Transformation des pavages par rectangles

De cet article, on déduit que 2 pavages arbitraires d'un rectangle par des

rectangles à côtés rationnels sont équivalents par ces mouvement élémentaires en

effet, dans le dictionnaire avec les réseaux électriques planaires, on a 2 réseaux

électriques avec N 2 sommets au bord qui ont même réponse Ils sont donc

géométriquement équivalents et dans cette équivalence, on peut choisir de préserver
la rationalité des conductances
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