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Reseaux électriques planaires II

YVES COLIN DE VERDIERE, ISIDORO GITLER, DIRK VERTIGAN

Introduction

Cet article est la suite de [REP1]. Nous y résolvons complétement les problémes
directs et inverses pour la réponse d’un réseau électrique planaire purement résistif.

Des éléments de solution, dus @ Ron Foster sont déja annoncés par L. Weinberg
dans [WE], mais ne semblent pas avoir donné lieu a4 publication. D’autre part,
Curtis, Ingerman et Morrow [C-I-M] ont obtenu récemment des résultats voisins
par des méthodes différentes faisant un grand usage d’algébre linéaire et ne
couvrant que les réseaux minimaux. Nos preuves sont plus géométriques et ex-
ploitent & fond les possibilitiés du graphe médial.

Les notations et résultats de [REP1] seront utilisés sans commentaire particulier.

L’idée nouvelle de cet article est celle de transformation électrique €lémentaire:
ces transformations engendrent une invariance du probléme et tiennent donc lieu de
générateurs d’un ‘“groupe de symeétrie”’ du probléme.

Ces transformations, au nombre de 6, peuvent se lire au niveau combinatoire:
elles modifient le réseau sans changer son caractére planaire, ni affecter les couples
I"-connectés.

Au niveau électrique, elles donnent lieu a des transformations (I', p) = (I'’, p’)
ne modifiant pas la réponse du réseau: elles sont donc associées & une relation
d’équivalence que doit prendre en compte toute solution du probléme inverse,
c’est-a-dire la reconstruction de couples (I, p) planaires de réponse donnée.

Ces transformations seront notées (B), (BM), (S), (P), (Y — 4) et (4 —Y).

(B) (boucle) consiste a effacer une boucle de sommet a.

(BM) (bras mort) consiste a effacer un sommet a de degré 1 (a ¢ V,) et I'aréte
qui en est issue.

(S) (série) consiste a effacer un sommet a(a ¢ V) de degré 2 et les 2 arétes qui
lui sont adjacentes, et a joindre les 2 voisins b et ¢ de a par une aréte unique.

(P) (paralléle) consiste a remplacer une aréte double joignant 2 sommets a et b
par une seule aréte.

(Y — 4) (étoile-triangle) consiste a remplacer une étoile a 3 branches par un
triangle & condition toutefois que le centre de I’étoile ne soit pas un élément de V.

144
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Figure 1. Les transformations électriques élémentaires.

(4 =Y) (triangle-étoile) consiste & remplacer un triangle par une étoile a 3
branches.

Remarque. Ces transformations sont définies pour un réseau quelconque. Nous
les utiliserons uniquement pour des réseaux planaires. Comme la derniére transfor-
mation ne préserve pas la toujours la planarité, nous I'utiliserons uniquement pour
des réseaux planaires plongés en ajoutant I’hypothése que l'intérieur du triangle
limité par le 4 ne rencontre pas I
"~ On commence par décrire les classes d’équivalences combinatories de réseaux
planaires. On introduit a cette fin un graphe orienté & dont les sommets sont les
réseaux électriques planaires (4 isotopie prés fixant les terminaux) et ayant une aréte
orientte I’ - I’ si on peut passer de I' a I’ par une transformation élec-
trique élémentaire. On note [I'] la composante connexe de I dans &. Deux réseaux
I' et I'" seront dits combinatoirement équivalents, I' ~I'’, s’ils sont dans la
méme composante connexe de &. Bien stir, dans ce cas ils ont méme nombre de
terminaux.

Soit maintenant e(I') = |E| le nombre d’arétes de I et &(I') = inf- . e(I'"). Un
réseau I' sera dit minimal si e(I') = &(I).

On a alors le

THEOREME 1. Tout réseau I' peut éte joint par un chemin orienté (ie la fonction
e y est décroissante) de & a un réseau minimal. Deux réseaux minimaux I';, i =1, 2
de [I'] sont joints par un chemin de & le long duquel e est constant égal a &(I',).

Une conséquence de ce théoréme est que I’équivalence combinatoire de 2
réseaux est décidable algorithmiquement contrairement i ce qui se passe pour
des problémes voisins comme ’équivalence de noeuds donnés par une projection
plane.
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L’outil utilisé ici est celui de graphe médial, déja utilisé par exemple dans [GR].
On a en fait une caractérisation simple des réseaux minimaux en terme de leur
graphe médial: celui-ci est tendu.

Un cas particuliérement simple concerne les réseaux bien connectés introduits
dans [REP1].

THEOREME 2. Pour chaque valeur de N =|V,|, les réseaux bien connectés
forment une composante connexe de &. La notion de minimalité précédente coincide
pour eux avec la notion de N-criticité (cf [REP1] §6.2). Ces réseaux bien connectés
vérifient ¢(I') = N(N — 1)/2.

Pour tout réseau I' non bien connecté, e(I') < N(N — 1)/2.

Discutons maintenant le probléme inverse:

THEOREME 3. Si I est minimal, ®, est un plongement de R, dans X, d’image
une sous-variété Z; de X qui ne dépend que de la classe d’équivalence de I'. Si I est
planaire quelconque, @, est une fibration différentiable de R sur Z,, de fibre
difféomorphe a ReD—4D,

Plus généralement, on a le

THEOREME 4. Si (I, p) et (I'", p') sont 2 réseaux planaires ayant la méme
réponse, ils sont électriquement équivalents: I' ~ I'' et p' se déduit de p en suivant les
transformations électriques élémentaires le long d’un chemin quelconque de I' a T’
dans & (voir au §5 la définition précise).

Enfin, on a une réponse compléte au probléme direct de trouver ’ensemble des
réponses possibles pour un réseau planaire:

THEOREME 5. Si I' est bien connecté, Zin = Q. L’e_nsemble des réponses
possibles des réseaux planaires a N terminaux est I’adhérence Q,, de Qy dans X, Les
Z;;) forment une partition de Q.

Remargue. Dans [C-I-M], une caractérisation purement algébrique de Q est
donnée. L € 2, si et seulement si tous les déterminants det(L, z) sont >0.

Enfin, mentionnons pour finir qu’il serait intéressant de retrouver les résultats de
Nachman [NA] concernant I’analogue continu a partir du cas discret qui est
finalement assez simple!!
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Figure 2. Le graphe médial.

Remerciements: merci infiniment a Frangois Jaeger sans qui la bonne connection
entre les auteurs n’aurait pu se faire en juin 93 alors que iG et dV visitaient
I'IMAG; iG et dV remercient 'IMAG (Grenoble) et le Forschungsinstitut fur
Diskrete Matematik (Bonn).

I. Combinatoire
1. Le graphe médial d’un réseau électrique
Ou I’on introduit ledit graphe.

A tout réseau électrique planaire on peut associer son graphe médial (cf [GR]).
Le graphe médial M(I') d’un réseau électrique planaire est construit ainsi:

il a 2N sommets sur S' (soient (i,, (i + 1)_) entre les sommets consécutifs i et
(i +1) de V,) et les autres sommets en nombre e(I") sont situés au milieu de chaque
aréte de I'. Les arétes de M(I') sont telles qu’elles forment un cycle intérieur a
chaque face de I' ne touchant pas le bord et que, complétées avec les arcs
(i,,E+1)_) de S, elles forment un cycle intérieur aux faces touchant oD. Les
sommets intérieurs sont tous de degré 4.
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Figure 3. Action des transformations électriques sur le graphe médial.

Notons que cette construction peut étre renversée. Il faut simplement partir d’un
graphe M dont tous les sommets intérieurs sont de degré 4, les 2N sommets du bord
de degré 1.

On colorie en noir une région sur 2 limitée par M en coloriant celles qui
contiennent un élément de V,. On doit alors supposer qu’aucune région noire ne
connecte 2 sommets de V,. I' est alors construit en prenant un sommet par région
noire et une aréte joignant ceux-ci lorsque ces régions se touchent en 1 coin. Le
nombre d’arétes de I est égal au nombre de sommets intérieurs de M(I).

Un graphe médial peut donc étre vu comme un ensemble de courbes (cordes ou
cycles), ie sous-variétés de dimension 1 fermées, de D se coupant transversalement
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et sans intersection triples de fagon que tout sommet du bord soit extrémité d’une
unique corde.

2. Equivalence combinatoire de réseaux; réseaux minimaux
Ou I’on prouve le théoréme 1.

Lorsque le réseau est planaire, les transformations électriques se lisent simple-
ment sur le graphe médial, en particulier la transformation (Y — 4) est proche du
3éme mouvement de Reidemeister pour les projections de noeuds.

DEFINITION. Le graphe médial M est dit tendu s’il ne posséde pas de
composantes intérieures (cycles), si 2 cordes quelconques ont au plus 1 intersection
et si aucune corde n’a d’autointersection.

Un ingrédient essentiel est la

PROPOSITION [GI]. A Paide de transformations électriques (orientées), tout
réseau électrique planaire peut étre transformé en un réseau électrique dont le graphe
médial est tendu.

Preuve (inspirée de [GR]). On travaille directement sur le graphe médial M. On
note, pour un graphe médial M, par w(M)(=e(l)) le nombre de croisements
intérieurs. On va montrer que les transformations électriques (opérant sur le graphe
médial comme expliqué plus haut) permettent de diminuer v(M) tant que M n’est
pas tendu.

Donnons quelques

DEFINITIONS: une lentille est une région de D limitée par 2 arcs de 2 courbes
du graphe médial compris entre 2 intersections consécutives de celles-ci. Une boucle
est une région de D limité par un arc d’une courbe dont les extrémités sont un point
double de la courbe.

Une lentille est dite minimale si son intérieur ne contient aucune autre lentille ou
boucle de M.

Une lentille (resp. une boucle) est dite vide si son intérieur ne rencontre pas M.

On voit qu’une boucle non vide contient une lentille ou une boucle vide: seules
les lentilles sont donc a considérer dans la suite, car on peut éliminer les boucles
vides.

On a alors besoin du
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Figure 4. Elimination des lentilles et des boucles.

LEMME ([GR] §13.1). Si on se donne une boucle ou une lentille minimale de M,
par des transformations (Y — A) ou (4 — Y), on peut transformer M de fagon que
celle-ci devienne vide sans changer v(M).

L’idée de la preuve est qu’une lentille minimale que contient un sommet
intérieur contient un triangle dont un c6té est sur la frontiére de celle-ci (et méme
sur chacun des 2 arcs de la frontiére). S’il n’y a pas de sommets intérieurs, la preuve
est encore plus simple.

On a en fait le

" LEMME. Si y est un des 2 arcs du bord d’une lentille qui contient un croisement,
il y a un triangle d’intérieur vide dont les cotés sont des arcs du graphe médial et dont
Pun des cotés est contenu dans y.

On considére les croisements p; intérieur a la lentile L qui sont adjacents 4 un
croisement situé sur y. Il suffit de prendre un p, tel que le nombre de faces limité par
les 2 cordes qui se croisent en p; et y soit minimal.

Si maintenant, on a une lentille ou une boucle vide, on peut la supprimer par
une transformation électrique qui diminue v(M) de 1. Cela prouve la proposition. [J

Il reste & montrer la

PROPOSITION. 2 graphes tendus sont équivalents si et seulement si leurs cordes
ont mémes paires d’extrémités; dans ce cas, ils le sont par des transformations Y — A
et 4—Y.

Montrons la 1ére implication: si les cordes ont mémes paires d’extrémités, on
peut faire une homotopie de graphes tendus. On raisonne par récurrence sur le
nombre de cordes. Pour une corde c’est Schonflies (une courbe fermée simple borde
un disque standard). Ensuite on prend une corde quelconque qui limite avec le bord
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Figure 5. Le graphe C,.

du disque une lentille minimale et on la vide comme plus haut. On peut alors 6ter
un croissant et appliquer ’hypothése de récurrence.

L’autre sens résultera du §7 ou I'on montrera comment lire ces paires sur la
réponse: si I' ~ I'', on peut choisir p, p’ telles qu’ils aient la méme réponse et donc
le méme graphe médial, s’ils sont minimaux.

De ces 2 propositions résulte le théoréme 1 que 'on peut reformuler ainsi:

THEOREME 1. Tout réseau I peut ére joint par un chemin orienté (ie la
fonction e y est décroissante) de & a un réseau minimal. Deux réseaux minimaux T,
i =1,2 de [I'] sont joints par un chemin de & le long duquel e est constant égal a
&(I"\). De plus les réseaux minimaux sont exactement ceux dont le graphe médial est
tendu. Les classes d’équivalence sont donc caractérisées par la liste des paires
d’extrémités de cordes du médial d’un réseau minimal quelconque de la classe.

En particulier, I’équivalence de I" et I'’, tous deux minimaux, équivaut a 1’égalité
des paires de terminaux de M(I') et M(I'’) liées par une corde.
3. Le cas bien connecté: minimalité et criticité

Ou on démontre le théoréme 2.

En fait on va caractériser les graphes médiaux minimaux bien connectés: en effet
le fait d’étre bien connecté est invariant par équivalence.

Le graph C, dessiné ci-dessus joue un certain rdle dans la suite.
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On repére les sommets v;; de Cy par les coordonnées entiéres (7, /) qui satisfont:
i>21, i<j<N+1-i

et les arétes sont les segments horizontaux et verticaux joignant 2 des points
précédents. Il n’est pas difficile de vérifier que le nombre d’arétes de C, est
NN - 1)/2.

Ou voit aussi que le graphe médial de Cj, est tendu et que toutes les cordes sont
des diamétres: on dira qu’il est diamétral.

En fait, on a le

LEMME. Tout réseau dont le graphe médial est diamétral tendu est équivalent a
Cy par une suite de transformations étoile-triangle.

Preuve. Résulte du §2, en effet alors les paires d’extrémités des cordes du médial
sont les mémes. O
On a maintenant la:

PROPOSITION. Si I' est un réseau électrique planaire, il y a équivalence entre
les 2 propriétés suivantes:

1) I est bien connecté.

i) le graphe médial d’un réseau minimal de [I'] est diamétral.

COROLLAIRE. Le réseau électrique planaire I' bien connecté est N-critique si et
seulement si son graphe médial est diamétral minimal. En particulier, tout graphe
N-critique peut étre joint a Cy par une suite de transformations étoile-triangle et a
N(N — 1)/2 arétes.

Preuve (de la proposition).

i) —1i): si le graphe médial tendu n’est pas diamétral, I" n’est pas bien connecté.

En effet, dans ce cas, il y a 2 cordes du graphe médial qui ne se coupent pas.
Désignons par C et C’ les arcs sous-tendus par ces 2 cordes de fagon que C soit
celui qui contient le moins de sommets de M(I') situés sur S'.

On peut supposer au moyen de transformations étoile-triangle que le crossant
ouvert limité par C et la corde associée ne contient pas de sommets de M(I). Il y
a alors 3 cas a distinguer suivant que les sommets extrémités de C sont (i, ,J, ),
(i,,j.) ou (i_,j_). Dans chaque cas si on considére comme partic 4 de V, les
sommets situés sur C, il est facile de construire une partie B de V, disjointe de A4,
contenue dans C’, et de méme cardinal que A tlele que (4, B) ne soit pas
I'-connectée.
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Figure 6. A et B ne sont pas I'-connectés.

Par exemple dans le premier cas si k = # A4, on prend pour B les k sommets
consécutifs de ¥, commengant a partir de i ou j suivant ’orientation.

ii) —1i):

Il suffit de vérifier que Cy est bien connecté, ce qui est facile. O

Preuve (du corollaire).

Si le graphe médial est diamétral tendu, I' est bien connecté. Il faut montrer
qu’il est N-critique. Il suffit de comprendre que les opérations de contraction d’une
aréte ou de suppression d’une aréte se traduisent par une suppression de croisement
entre 2 cordes: donc pour un tel graphe e < N(N —1)/2. Le graphe minimal
correspondant n’a donc pas assez d’arétes pour étre diamétral minimal. Donc aucun
mineur strict n’est bien connecté.

Réciproquement, si le graphe médial de I' n’est pas tendu, on peut apres des
transformations étoile-triangle arriver & une configuration ou ’on peut faire opérer
une transformation (S), (P) ou (BM) que conserve la propriété de bonne connection
et qui sont associées a des mineurs du graphe transformé de I" par des transforma-
tions (Y — A4).

I1 suffit de vérifier que le fait que I" soit N-critique est invariant par (Y — 4), ce
qui est facile. O

4. Equivalence combinatoire et connections équivalentes

Dans ce §, nous monttons que si I, et I', ont les mémes paires (4, B)
I'-connectées, ils sont combinatoirement équivalents (et réciproquement bien siir).

Pour un réseau I', soit W(I') I’ensemble des paires non entrelacees (4, B) telles
que (A4, B) est I'-connecté.

DEFINITION. Les réseaux I', et I'; avec N terminaux sont identiquement
connectés si W(I')) = W(I',).
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Dans cette section, nous donnons plusieurs caractérisations équivalentes de
identiquement connectés.

Les éléments de U, (extrémités du graphe médial) séparent 0D en 2N segments,
dont N contiennent un élément de V,. On place un ¢lément de
Fo={3,11,..,, N —3} dans chacun des autres N segments de fagon que les 4N
élements de V,u Fye U, < 0D soient dans 'ordre inverse des aiguilles d’une montre
5 1_,1,1,,13,...,N—=1 N_ N, N,. Chaque élément de F, (respectivement V)
est sur la frontiére d’'une face blanche (respectivement noire) de M. On suppose
dans cette section que que N, V,, F, and U, sont fixés.

Pour A,BcV, et a b,eVyUF,, (A, B, a, b) est non-entrelacé si A, B, a, b sont
2 a 2 disjoints et 4 est contenu dans une composante de dD\{a, b} et B dans
Pautre.

Soit X I’ensemble des (A4, B, a, b) non entrelacés.

Pour (4, B) non-entrelacée, soit X, 5 = {(a, b): (4, B, a, b) € X}.

Pour a,b e V,UF, soit X,, ={(4, B): (4, B, a, b) € X}.

Pour (A4, B) non-entrelacé, un (A, B)-chemin est un chemin avec une extrémité
dans A, 'autre dans B, et tous les sommets intérieurs dans V\ V.

Soit f(A, B) le nombre maximum de (A4, B)-chemins 2 a 2 disjoints; clairement
f(A, B) ne depend que de [I'].

Pour a, b € VU F,, un (a, b)-cut est un arc a dans D d’extrémités a, b, tel que
o ne coupe pas d’aréte de I'. Soit g(a, b) le nombre minimum possible de sommets
de I' dans lintérieur d’un (a, b)-cut (en ne comptant pas a et b s’ils sont des
sommets). On voit aussi que g(a, b) ne dépend que de [I].

Pour (A4, B, a, b)- non-entrelacés, soit g'(4, B, a, b) le nombre minimum de
sommets dans un (a, b)-cut, en ne comptant pas ces sommets dans V,\(4 u B). Soit
h(a, b) le nombre minimum possible d’arétes ou de sommets terminaux de M(I')
coupant un (a, b)-cut. On remarque, la encore, que h(A4, B) ne dépend que
de [I'].

Pour un graphe médial tendu M, soit II,, I'involution de U, défine par
I1,,(c) =d si et seulement si ¢ et d sons les extrémités d’une méme corde de M.

Pour un graphe médial quelconque M, soit I1,, I'involution IT,,, ou M est
équivalent au graphe tendu M’. En général, I1,,(c) =d n’implique pas que c et
d sont extrémités de la méme corde. Notons aussi que IT,, est bien définie
car 2 graphes médiaux minimaux sont équivalents si et seulement si on peut passer
de 'un & lautre par des transformations 4 — Y Y — 4 et ceux-ci ne changent
pas I1,,.

Pour (A4, B) non-entrelacé avec $#4 = #B =k et a, b € (VU F,) — (4 U B) soit
0D, une composante de 6D — {a, b} et définissons

sep(d4, B, a, b) = |# (0D, nA) — # (0D, B)|.
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En particulier sep(4, B, a, b) =k si et seulement si (4, B, a, b) est non-entrelace.
Le lemme suivant relie les différentes quantités définies pour I'.

LEMME.

(2) rang(L, 5) =f(4, B)

(b) f(4, B) =max{# A'|(A4', B') est F—connecte pour un A’ = A, B’ < B}

(c) f(4, B) = # A = # B si et seulement si (A, B) est I'-connectée.

(d) (A4, B) est I'-connecté si et seulement si g(a, b) > sep(A, B, a, b) pour tous
a,be(VouF,) —(4AUB)

(e) g(a,b) = max(A,B)eXa,bf (4, B)

() h(a, b) =2g(a,b) + #({a, b} " Vp)

(g) Si 0D, est une composante de 0D — {a, b}, h(a,b) = #{c |c e Uy, c €D,
I4ry(c) ¢ 0D, }

(h) Pour c,deV, et a,b,a’,b’' e VyuUF, avec a,c,a’,b,d, b’ qui apparaissent
dans ordre contraire des aiguilles d’une montre et a, a’ adjacent a c et b, b’ adjacent
a d: Iy r(c) =d ssi

h(a, b) = h(a, b') + 1 = h(a’, b) + 1 = h(a’, b’)

Preuve. (a) est prouvée dans [REP1]. (b), (c), (f), (g), (h) sont faciles a vérifier.
(e) provient facilement de [R-S].

Appliquant ce résultat au graphe obtenu de I' en efiagant les sommets de

—(AuB), il vient que (4,B) est I'-connectée si et seulement si
g'(A, B, a, b) > sep(4, B, a, b) pour tous a, b e(VyuF,) — (A uB). Clairement, si
(A4, B) est I'-connectée, alors g(a, b) = sep(4, B, a, b) pour tous a, b,e (VU F;) —
(AuUB). Supposons que la réciproque soit fausse. Alors il existe
a,b,e(VouF,) —(4uUB) tels que g'(4, B, a, b) <sep(4, B, a, b) et sans perdre de
généralités, on peut choisir un tel (a, b) avec g'(4, B, a, b) aussi petit que possible.
Ainsi il existe un (a, b)-cut C qui contient g'(4, B, a, b) sommets en ne comptant
pas ceux de V,— (4 uB). Supposons aussi que C contient un c € ¥V, — (4 UB).
Alors g'(A4,B,a,b) =g'(4,B,a,c) +g'(4, B, c, b) et sep(A4, B, a, b) <
sep(4, B, a, ¢) +sep(4, B,c,b) en sorte que g'(4, B,a,c) <sep(4, B,a,c) ou
g'(A, B, c, b) <sep(4, B, c, b) contredisant le choix de (a,b) minimisant
g'(A, B, a, b) avec la contrainte g'(4, B, a, b) <sep(4, B, a, b). Mais, si le (a, b)-cut
C ne contient aucun sommet de V,— (4 UB) alors g(a,b) =g'(4, B,a,b) <
sep(4, B, a, b) contredisant ’hypothése que la réciproque est fausse. Donc (d) est
vraie et le lemme est prouvé. a

Nous donnons maintenant plusieurs caractérisation des paires de graphes iden-
tiquement connectés.
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THEOREME. Pour des réseaux T, et I',, les propriétés suivantes sont équivalen-
tes:
(1) I'y et I, sont identiquement connectés.
(ii) f,(A4, B) =f,(A, B) pour tous les (A, B) non entrelacés.
(i1) rang(L, , p) = rang(L, 4 g) pour tous les (A, B) non entrelacés.
(iv) g,(a, b) =g,(a, b) pour tous a,be VyUF,
(v) hy(a, b) = hy(a, b) pour tous a, b e VyUF,
(vi) (det(L, 4p) =0) = (det(L, 4 g) = 0) pour tous les (A, B) non entrelacés.
(vii) (A4, B) est I';-connecté <> (A, B) est I',-connecté pour tous les (A, B) non
entrelacés.
(viii) Iy et I', sont combinatoirement équivalents.
(ix) I, =1,

Preuve. (viii) et (ix) sont équivalents par définition de II, et le fait que cette
application est bien définie. Les autres équivalences proviennent immédiatement du
lemme. O

II. Electricite: Le probleme inverse
5. Equivalence électrique de réseaux

Ou Pon décrit I’équivalence (I, p) ~(I'', p’) et ou on introduit aussi un dia-
gramme commutatif associé a tout chemin orienté de &.

A toute transformation électrique €lémentaire I — I’ (aréte de &) est associée
une application ¥ ,: %, —» % qui a p associe p’ (réseaux équivalents au sens
électrique); par exemple, pour la transformation (S) portant sur une aréte («, f5)
suivie d’une aréte (f,y) de I,

pa,ﬂpﬁ.y
W E] b = 9 o
r,r"(Pa,/; Pgy p1) (pa,ﬁ + pg, Pl)

On voit que ¥~ est une fibration de fibre difftomorphe a R pour les 4 premicres
transformations et un diffeomorphisme pour les 2 autres (Y —4 et 4 — Y).
De plus, on a bien siir:

Do 'Pr.r” =&,

qui exprime que la réponse est conservée par cette transformation.
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Plus généralement, si y est un chemin orienté de & joignant un réseau I" a un
réseau I'', on obtient une application ¥}, : £ — % en composant les fléches
précédentes. Ces applications sont des fibrations différentiables de fibres
difffomorphes & R4 -«

On a bien entendu préservation de la réponse par I’application ¥7} ..

Il se peut que cette application dépende du chemin (a extrémités fixées), mais ce
n’est pas le cas si I'’ est minimal: cela résultera de I'injectivite de @, lorsque Iy est
minimal (8), puisque les images de p par les ¥}, ont la méme réponse.

DEFINITION. On appelle équivalence électrique la relation d’équivalence
notée

(L, p) ~(I", p')

engendrée par les transformations électriques élémentaires: I'’ s’obtient de I' par
une transformation élémentaire et p’ = ¥ - (p).

Il résultera de ce qui suit que, si (I, p) ~(I"’, p'), on peut prendre comme
chemin un chemin réunion de 2 chemins monotones joignant respectivement I" et I'’
a un réseau minimal I'.

En particulier (I', p) ~ (I', p') si les images par ¥, de p et p’ sont égales, avec
I’y minimal.

2 réseaux électriques équivalents ont la méme réponse. Le fait que la réciproque
soit vraie est ’'objet du théoréme 4 qui est un des principaux résultats de cet article.

6. Potentiels d’équilibre et graphe médial

Ou ’on montre comment lire géométriquement un potentiel d’équilibre sur le graphe
médial.

Le graphe médial M(I') définit une cellulation du disque unité D. On colore les
cellules en noir ou blanc de fagon a former un échiquier: les cellules noires sont
celles contenant un sommet de I'; les blanches sont en bijection avec les faces ou
cycles €lémentaires de I

On veut représenter les potentiels d’équilibre sur cette cellulation de la fagon
suivante: si y € R” est le potentiel d’équilibre, on attribue a la cellule noire attachée
au sommet « la valeur y, du potentiel en ce sommet.

Pour ce qui est des cellules blanches, elles représentent les courants électriques:
on sait que tout courant J satisfaisant la loi de Kirchoff aux sommets de I' est
somme de courants portés par les cycles faciaux, une telle décomposition étant
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\. o Yi /
\ 7 /
4 £

Figure 7. La loi d’'Ohm lue sur le médial.

unique a une constante additive globale prés. Le couple potentiel-courant est donc
représenté par un nombre attaché a chaque cellule de M(I).

Pour avoir une configuration d’équilibre, il reste & satisfaire la loi d’Ohm qui se
lit a chaque croisement de cordes de M(I'): elle est de la forme J, — J; = p(y, — ¥,):
relation reliant les valeurs attribuées aux 4 cellules adjacentes au croisement associé
a l'aréte (7, ) et de conductance p.

Ces couples (y, J) induisent des couples (x, /) sur les cellules en nombre 2N,
alternativement blanches et noires, qui touchent dD.

Il est clair que la donnée de I’ensemble de ces couples (x, I) équivaut a la donnée
du graphe de l'application L, , et donc de la réponse L, du réseau (I, p).

Les couples (y, J) et (x, I) associées a des potentiels d’équilibre seront appellées
admissibles.

7. Supports de potentiels d’équilibre.

Ou Pon construit des potentiels d’équilibre a support limité par une corde du
médial et I'on déduit une caractérisation du médial a partir d’une réponse.

Le support d’un couple (y, J) est 'ensemble des cellules (fermées) qui ne sont
pas marquées de la valeur 0. On peut de la méme fagon parler du support d’une
donnée (x, I) qui s’identifie 4 une réunion d’intervalles fermés de JD.

Remarque: les supports possibles pour des couples (x, I) admissibles forment un
ensemble d’informations que I'on peut déduire de la réponse L, ,.
On va prouver sur ces supports les 2 lemmes suivants:

LEMME 1. Supposons M(I') tendu et a, b 2 extrémités d’une corde y de M(I).
Soit 7, I'un des arcs de 0D limités par a et b, D, le domaine limité par y et y LetD_
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Figure 8. Le cas trivial.

le complémentaire de D, dans D. Alors, il existe un couple admissible (x,I) de
support vy, restriction au bord d’un couple admissible (y, J) a support D .

LEMME 2. Soit a, b sommets terminaux de M(I') limitant y_ et y_ sur 0D. S’il
existe (x,,1,) et (x_, I_) admissibles a supports respectifs y. et y_, alors a et b sont
les 2 extrémités d’une méme corde de M(I).

Les 2 lemmes précédents impliquent le

COROLLAIRE. La réponse d’un réseau électrique planaire (I, p) détermine la
classe [I'].

En effet, on peut évidemment supposer I' minimal et les lemmes impliquent que
la réponse détermine les extrémités des cordes de M(I).

Preuve (du lemme 1). La preuve est par récurrence sur le nombre de cordes de
M(I') entierement contenues dans D, . On montre I’assertion suivante plus générale
que le lemme 1:

(%) tout couple (y_,J_), défini dans D_= D\D, et admissible dans D_ se
prolonge en un couple admissible global. Si le couple de départ est nul, il y a un
prolongement de support D, .

1) Le cas ou il n’y a aucune corde de M(I') contenue dans 'intérieur de D :

On régle d’abord le cas ou M(I') n’a aucun croisement intérieur & D_, qui est
trivial.

Ensuite, on se raméne a ce cas par transformations (Y — 4) successives (vider les
croisements dans la lentille D . ), en controlant les solutions pour une transforma-
tion (Y-4): on passe a un nouveau couple admissible simplement par modification
concernant les petits triangles. Il faut veérifier que les supports ont un bon comporte-
ment par rapport a la transformation ¥ — 4, comme on peut le voir sur la ﬁgure
suivante:
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Figure 9. Transformations des couples admissibles par (¥ — 4).

2) La réecurrence:

on fabrique un nouveau graphe M(I'") en supprimant une lentille contenue dans
D, limitée par 0D et une corde de M(I") contenue dans D, ; on suppose en plus que
la lentille ainsi otée est minimale, ce qui permet de lui appliquer la lére étape.

On applique d’abord I'hypothése de récurrence a I'’; puis on prolonge a la
lentille 6tée. On peut choisir un prolongement qui ne soit nul sur aucune cellule de
la lentille car on peut toujours ajouter un multiple grand d’un couple admissible
dont le support est ladite lentille.

Preuve. (du lemme 2) On peut démonter le lemme 2 avec n’importe quel graphe
minimal de [I']: on choisit une représentation géodésique, c’est-d-dire qu’on de-
mande aux cordes du graphe médial d’étre des segments de droites euclidiennes.

Pour voir que cela est possible commencer par joindre par des segments
euclidiens les paires d’extrémités de cordes du médial. Puis bouger un peu les
extrémités de fagon a se placer dans une situation générique ou les segments ne se
coupent que 2 par 2.

Maintenant, on peut parler de convexité. Soit (y,J) une paire admissible. On
définit un sous-ensemble ouvert N(y,J) de D de la fagon suivante: N(y, J) est le
complémentaire du support fermé (réunion des cellules fermées ou y ou J est non
nul).

Figure 10. La récurrence.
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Figure 11. L’ensemble N(y, J).

Il est alors clair que les composantes connexes de N(y,J)) sont convexes: en
effet il est impossible que N(y, J) contienne I'intérieur de 3 des 4 cellules attachées
par un seul sommet a cause de la loi d’Ohm. Les composantes sont donc des
polygdnes connexes et localement convexes, donc convexes.

Supposons maintenant que la corde ¢ de M(I') issue de a ait son autre extrémité
¢ sur l'intérieur de y.. Alors la composante connexe de N(y_, J_) contenant y_
contient les 2 intervalles contigus a a.

En effet, elle contient le disque limité par y, et é (enveloppe convexe de vy, ) et,
par application successive de la loi d’Ohm en partant de ¢ aux sommets de M(I')
situés sur 9, un voisinage de d donc de a contrairement a I’hypothese.

Le cas ou cette corde issue de @ a son autre extrémité dans y_ est aussi absurde
et cela conclut la preuve du lemme 2.

8. Injectivite de @ pour I’ minimal

Ou ’on montre que tout graphe minimal est équivalent a un graphe X(I'") ou a un
graphe II(I'") et on en déduit le résultat par récurrence.

Figure 12. Preuve du lemme 2.
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P

Figure 13. M(I') a une cellule du bord triangulaire.

On aura besoin du

LEMME. Si I'y est minimal connexe, I, est équivalent a un réseau minimal I’
dont le graphe médial a une cellule triangulaire (3 cotés) dont un coté est un arc de
éD.

Suivant que cette cellule est noire ou blanche, " s’obtient donc d’un réseau
minimal I'’ ayant une aréte de moins par adjonction d’une aréte aprés un des
sommets terminaux de I''(I" = Z(I'"')) ou en connectant par une aréte 2 sommets
terminaux voisins de I'" (I' = n(I™")).

Preuve. (du lemme) On considére un arc (@, b) du graphe médial de I', limitant
avec le bord de D une lentille ne contenant aucune autre corde de M(I',)
complétement. Comme I', est connexe, 1’arc (a, b) de cette lentille contient d’autres
sommets terminaux de M(I',). Soit ¢ celui qui suit immédiatement a: les cordes
issues de a et de ¢ se coupent: par isotopie générique (vider la demi-lentille qu’elles
déterminent), on peut faire qu’elles déterminent la cellule triangulaire cherchée. [J

La preuve de I'injectivé de @, set fait donc de la fagon suivante: a partir de la
réponse, on détermine la conductance p, de ’aréte mise en évidence dans le lemme,
puis on conclut par récurrence sur le nombre d’arétes de I'.

Figure 14. et I''.
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Figure 15. Détermination de p,.

1) Détermination de p,.

On applique les résultats du §7 a une corde y bordant le triangle.

On a ainsi un couple admissible (y, J) a support dans la lentille limitée par y et
cette propriété de support se lit sur la valeur au bord (x, I) de ce couple. Les valeurs
marquées dans le triangle et la région contiglie de la lentille détermine la résistance
po de I'aréte isol¢e.

2) Reécurrence.

La réponse de (I, p) détermine p, et donc de fagon évidente la réponse de I'". En
effet les graphes de ces 2 réponses se déduisent I'un de I’autre par une transforma-
tion simple ne faisant intervenir que p,. Il suffit de constater que I'’ est minimal, ce
qui résulte de la construction de son graphe médial a partir de celui de I': il suffit
de faire franchir le bord de D par le croisement utilis¢ de M(I').

9. Injectivité de @ pour I' minimal
Méme type d’argument qu’au §8.

On donne d’abord une expression de la différentielle de @,.

PROPOSITION. On a, si Q, est la forme bilinéaire symétrique sur RY associée
a la réponse L, ,;

5Qr’p(X, XI) — 1 Z 5pl,/1 -Il

5 2 fujtigo
{ijte E Vij

oul;,

X, X

I, sont les courants parcourant aréte (i, j) lorsque le potentiel au bord est
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Cet énoncé est classique. Nous en esquissons la preuve.

Preuve. 11 suffit de le prouver pour la forme quadratique.

On a
1
00r(X, X) = “2“ ; 5p,-J(J’i *“J’j)z + EE: pi,j(yi _yj)é(yi “'.Vj)>

ou y est le potentiel d’équilibre. La deuxiéme somme est nulle: en effet, c’est le fait
que gr,(X, y) est extrémale par rapport 4 y pour le potentiel d’équilibre.

On montre ensuite que, si @-(dp) =0, on a dp, =0 et on finit par récurrence
comme précédemment.

On se replace dans la configuration du §8: si y et y’ sont les 2 cordes du médial
bordant le triangle, on construit des couples admissibles (y,J) et (y',J') dont
I'intersection des supports est le triangle. De la connaissance de dQ(X, X”) pour les
valeurs au bord de ces couples, on déduit la valeur de dp,.

Maintenant comme plus haut, la réponse L} est fonction de p, et de L. Donc
si dp, et 0L, sont nulles, on voit que L, est nulle. On conclut par récurrence sur

e(l).
10. Probléme inverse a I fixé
Ou I’on finit la preuve de théoréme 3.

On vient de voir que, si I' est minimal, @, est un plongement de %, dans X .
Sinon, on utilise la fibration

Y’r,roi Rr = -@rg,
avec I’y minimal pour conclure la preuve du théoréme 3 et le fait que I’équivalence
(T, p) ~(I', p") provient de I'égalité des images de p et p’ par ¥, .
11. Probléme inverse planaire

Ou I’on prouve le théoréme 4.

Si on se donne L, le corollaire du §7, montre que cela détermine [I']. Ensuite, il
suffit d’appliquer le théoréme 3 et la définition de I’équivalence (I, p) ~ (I'', p').
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12. Le probléme direct
Ou I'on prouve le théoréme S en utilisant [REP1]

Traitons d’abord le cas bien connecté: I'image de @, est alors Q,.

11 suffit de le voir dans le cas minimal. Dans ce cas, @, est un plongement de %,
dans Q. De plus, d’aprés [REP1] (théoréme 9) et le fait que minimal coincide avec
N-critique dans ce cas, ce plongement est propre et les dimensions sont les mémes.

Puis le cas général:

1l résulte de [REPI1] et du fait que tout graphe planaire est mineur d’un graphe
bien connecté que les réponses des réseaux planaires sont toutes dans 0.

Réciproquement, la compactification de [REPI1] (proposition 10) montre que
I’ensemble des réponses possibles est ferme dans 2.

13. Application aux pavages

I y a un dictionnaire entre les réseaux ¢lectriques planaires et les pavages rectangu-
laires d’un polygone du plan & cotés paralléles aux axes (cf [B-S-S-T], [KE]).
Décrivons briévement ce dictionnaire: au pavage par des rectangles dont tous les
cotés sont horizontaux et verticaux on associe le réseau obtenus en considérant les
cotés verticaux comme isolants, les cOtés horizontaux comme court-circuit et la

résistance de chaque rectangle calculée comme s'il sagissait d’une plaque métallique
homogene.

-

EEEEEEEE L

|ENEEEEERI

Figure 16. Pavages et reseaux.

La réalisation géométrique du pavage met en évidence un couple de potentiel
courant d’équilibre: les équipotentielles sont les horizontales et les lignes de courant
verticales.

En particulier, les transformations électriques ¢lémentaires donnent lieu a des
mouvements ¢lémentaires des pavages.
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Les boucles et bras morts correspondent a des rectangles plats que ’on peut
supprimer.

Les paralleles et séries correspondent a des rectangles juxtaposés le long d’un
coté de méme longueur.

Les transformations étoile-triangle correspondent a des opérations sur 3 rectan-
gles a la fois:

Figure 17. Transformation des pavages par rectangles.

De cet article, on déduit que 2 pavages arbitraires d'un rectangle par des
rectangles a cOtés rationnels sont équivalents par ces mouvement élémentaires: en
effet, dans le dictionnaire avec les réseaux électriques planaires, on a 2 réseaux
électriques avec N =2 sommets au bord qui ont méme réponse. Ils sont donc
géométriquement équivalents et dans cette équivalence, on peut choisir de préserver
la rationalité des conductances.

REFERENCES

[BE]
[B-S-S-T]

[C-M]
[C-I-M]
[C-M-M]
[CV]
[GI]

[GR]
[KE]

[LA]
[NA]

C. BERGE. Théorie des graphes et applications, Dunod (Paris), 1967.

R. BROOKS, C. SMITH, A. STONE, W. TUTTE. The dissection of rectangles into squares, Duke
Math. J., 7 (1940), 312-340.

E. CUrTIs, J. MORROW. Determining the resistors in a newtork, SIAM J. of applied math., 50
(1990), 918-930.

E. CurTIs, D. INGERMAN, J. MORROW. Circular planar graphs and resistor networks, Preprint
(University of Washington), (1994), 1-31.

E. CurTis, E. MOOERS, J. MORROW. Finding the conductors in circular networks from
boundary measurements, Preprint (University of Washington), (1991), 1-31.

Y. COLIN DE VERDIERE. Sur un nouvel invariant des graphes et un critére de planarité, Journal
of Comb. Theory B, 50 (1990), 11-21.

1. GITLER. Delta-Wje transformations. Algorithms and applications, PhD thesis (Univ. of
Waterloo), 1991.

B. GRUNBAUM. Convex polytopes, Wiley (London), 1967.

R. KENYON. Tiling with squares and square-tileable surfaces, Prépublication ENS Lyon, 119
(1993), 1-26.

LAMOTKE. Semisimpliziale algebraic topologie, Ergebnisse 147, Springer.

A. NACHMAN. Global uniqueness for a two-dimensional inverse boundary value problem,
Preprint de 'université de Rochester, (1993), 1-49.



Reseaux electriques planaires 11 167

[REPI] Y. CoOLIN DE VERDIERE. Réseaux électriques planaires 1, Commentarii Math. Helv., 69
(1994), 351-374.

[R-S] N. ROBERTSON, P. SEYMOUR. Graph Minors VI. Disjoint paths across a disc, J. of Comb.
Theory B, 41 (1992), 115-138.

[SC] A. SCHRIVER. On the uniqueness of kernels, Journal of Comb. Theory B, 55 (1992), 146—160.

[WE] L. WEINBERG. A survey of linear graphs: fundamentals and applications to network theory,
Matrix and tensor quarterly, (1964), 103-115. '

Institut Fourier, Laboratoire associé au CNRS
BP 74

38402-Saint Martin d’ Héres Cedex

France

(ycolver @fourier.ujf-grenoble.fr).

Departamento de Matematicas
CINVESTAV

Apartado Postal 14-740

Mexico

Mexique (igitler @math.cinvestav.mx).

Math. department

266 Lockett Hall, Fieldhousedrive
Louisiana state University
Louisiana-70803-4918

USA
(vertigan@marais.math.lsu.edu).

Received December, 20, 1994; September 25, 1995



Buchanzeigen

DAvVID NUALART. The Mallivin Calculus and Related Topics, Probability and its Applications.
Springer-Verlag 1995, 266 pp., Fr. 65.60.-.

Preface ~ Introduction — 1. Analysis on the Wiener space — 1.1. Wiener chaos and stochastic integrals
-~ 1.1.1 The Wiener chaos decomposition — 1.1.2 Multiple Wiener-It6 integrals — 1.1.3. The Itd
stochastic integral — 1.2 The derivative operator — 1.3 The Skorohod integral — 1.3.1 Properties of the
Skorohod integral — 1.3.2 The Itd stochastic integral as a particular case of the Skorohod integral —
1.3.3 Stochastic integral representation of Wiener functionals — 1.3.4 Local:properties — 1.4 The
Ornstein-Uhlenbeck semigroup — 1.4.1 The semigroup of Ornstein-Uhlenbeck — 1.4.2 The generator of
the Ornstein-Uhlenbeck semigroup - 1.4.3 Hypercontractivity property and the multiplier theorem — 1.5
Sobolev spaces and the equivalence of norms — 2. Smoothness of probability laws — 2.1 Existence and
smoothness of densities — 2.1.1 A criterion for absolute continuity based on the integration-by-parts
formula — 2.1.2 Absolute continuity using Bouleau and Hirsch’s approach - 2.1.3 Criterion for the
smoothness of the density — 2.1.4 Regularity of the law of the maximum of continuous processes — 2.2
Stochastic differential equations — 2.2.1 Existence and uniqueness of solutions — 2.2.2 Weak differen-
tiability of the solution — 2.3 Hypoellipticity and Hormander’s theorem — 2.3.1 Absolute continuity in
the case of Lipschitz coefficients — 2.3.2 Absolute continuity under Hormander’s conditions — 2.3.3
Smoothness of the density under Hormander’s condition — 2.4 Stochastic partial differential equations
— 2.4.1 Stochastic integral equations on the plane — 2.4.2 Absolute continuity for solutions to the
stochastic heat equation — 3. Anticipating stochastic calculus - 3.1 Approximation of stochastic
integrals — 3.1.1 Stochastic integrals defined by Riemann sums - 3.1.2 The approach based on the
L2-development of the process — 3.2 Stochastic calculus for anticipating integrals — 3.2.1 Skorohod
integral processes — 3.2.2 Continuity and quadratic variation of the Skorohod integral — 3.2.3 Itd
formula for the Skorohod and Stratonovich integrals — 3.2.4 Substitution formulas — 3.3 Anticipating
stochastic differential equations — 3.3.1 Stochastic differential equations in the Skorohod sense — 3.3.2
Stochastic differential equations in the Stratonovich sense — 4. Transformations in the Wiener measure
- 4.1 Anticipating Girsanov theorems — 4.1.1 The adapted case — 4.1.2 General results on absolute
continuity of transformations — 4.1.3 Continuously differentiable variables in the direction of H' — 4.1.4
Transformations induced by elementary processes — 4.1.5 Anticipating Girsanov theorems — 4.2 Markov
random fields — 4.2.1 Markov field property for stochastic differential equations with boundary
conditions — 4.2.2 Markov field property for solutions to stochastic partial differential equations — 4.2.3
Conditional independence and factorization properties — A Appendix — A.1 Khintchine’ inequality —
A.2 Martingale inequalities — A.3 Continuity criteria — A.4 Carleman-Fredholm determinant -
References.



	Reseaux électriques planaires II.

