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Trapping quasiminimizing submanifolds in spaces of negative curvature

VICTOR BANGERT AND URS LANG*

Abstract. Let M be a Hadamard manifold with all sectional curvatures bounded above by some negative
constant. A well-known lemma essentially due to M. Morse states that every quasigeodesic segment in
M lies within an a priori bounded distance from the geodesic arc connecting its endpoints. In this paper
we establish an analogue of this fact for quasiminimizing surfaces in all dimensions and codimensions;
the only additional requirement is that the sectional curvatures of M be bounded from below as well. We
apply this estimate to obtain new solutions to the asymptotic Plateau problem in various settings.

0. Introduction

A rectifiable curve ¢ from an interval [u, v] into some metric space is called a
Q-quasigeodesic for some constant Q > 1 if the length of each subsegment o | [1',
v'] is less than or equal to Q times the distance between its endpoints a(u") and o(v').
This concept has proved to be very useful in the theory of negatively curved spaces
during the last decades. One of its most important features is the following
well-known lemma which is essentially due to M. Morse [Ms]:

LEMMA 0.1. Let (M, g,) be a simply connected, complete riemannian manifold
with sectional curvature K < — 1. Then for every Q > 1 there exists a constant dy(Q)
such that the image of every Q-quasigeodesic o: [u, v] = M is contained in a d,-neigh-
borhood of the geodesic arc from a(u) to a(v).

For instance, given a riemannian metric g on M which is Lipschitz equivalent to
g0, i.e. which satisfies a’g, <g < B%g, for constants 0 < a < B, every minimizing
geodesic in (M, g) is (B/a)-quasigeodesic with respect to g,. In this situation, 0.1 is
the a priori estimate needed to prove the existence of a complete minimizing
geodesic in (M, g) asymptotic to a given pair of distinct ideal boundary points of M,
cf. [Ms], [Bu], [Kll]. A similar argument is also used in the proof of the Mostow
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program GADGET II.
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Trapping quasiminimizing submanifolds 123

rigidity theorem, see [Mw, Sect. 13] or [G-P] for a survey. Furthermore, other
interesting applications of (a variant of) the lemma have been found by Gromov
[Grl] in his theory of hyperbolic groups. A recent account of this, as well as a
simple proof of the lemma (in a slightly different form), is given in [Ep].

In this paper we establish an analogue of 0.1 for quasiminimizing surfaces with
arbitrary dimension and codimension in (M, g,); the only additional restriction is
that we also need a lower bound for the sectional curvatures of (M, g,). It turned
out that a well-adapted notion of surface in this context is that of a rectifiable
m-current modulo two S € #2 M these are the compact, nonoriented general-
ized m-dimensional “submanifolds with boundary” studied in geometric measure
theory. Quasiminimality is defined as for curves: every compact ‘piece’ T of S has
mass (i.c. area) less than or equal to Q times the mass of every X € #2, M with
boundary X = 0T, cf. 1.1. We prove the following, cf. 3.3.

THEOREM 0.2. Let (M, g,) be a simply connected, complete riemannian n-man-
ifold with sectional curvature —a’*<K < —1, 1 <a <oo. Then for all Q >1 and
1 <m < n there exists a constant dy(Q, a, m, n) such that every Q-quasiminimizing
surface S € #2,M is contained in a d,-neighborhood of the convex hull of its boundary
o0sS.

A similar result was first obtained for homotopically quasiminimizing disks in
hyperbolic 3-space H* and then for quasiminimizing hypersurfaces in H" by means
of a symmetrization method yielding in addition the least possible value for d,, cf.
[Lal] and [La2]. Likewise we will also derive an optimal version of 0.1, cf. 3.2. The
proof of 0.2 is still inspired by this construction, but is less explicit and uses as a
new ingredient an isoperimetric inequality due to F. Morgan [Mol]. In case
m =n — 1 the proof is easier and works as well for the coefficient group Z instead
of Z,.

We then apply 0.2 to solve the asymptotic Plateau problem in M with respect to
a riemannian metric g which is Lipschitz equivalent to some metric g, satisfying the
assumptions of 0.2. In particular, we show that for 2 <m <n, every compact
(m — 1)-dimensional topological submanifold L of the ideal sphere M, of (M, g,)
is the boundary at infinity of a complete g-area minimizing ‘“submanifold”
S € A2, 15 M, cf. 4.3. According to the regularity results from geometric measure
theory, S is a C* submanifold of M up to a closed set of Hausdorff dimension at
most m — 2. Actually this existence result is obtained as a consequence of the more
general statement 4.2 which, however, is rather technical. Moreover, we prove the
existence of a complete, g-area minimizing hypersurface S € &, _, .. M asymptotic
to a given set L satisfying the following simple topological condition: L =bd A4 for
some subset A of M, with cl(int4) = A, where bd, cl and int denote boundary,
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closure and interior, respectively, relative to M, cf. 4.4. In this case, the obtained
hypersurface S is a C* submanifold of M up to a singular set of Hausdorff
dimension not exceeding » — 8. Finally, using an argument due to M. Anderson
[An2], we show the existence of complete, g-area minimizing hypersurfaces in M
invariant under the action of a group I' of isometries of (M, g), cf. 4.5.

The first general existence results for m-dimensional (m > 2), complete minimiz-
ing surfaces with prescribed boundary data at infinity are due to Anderson [Anl],
[An2] who studied the case of hyperbolic n-space H”. Various extensions of
Anderson’s results were then obtained by Gromov in [Gr2], where he also posed the
problem of ‘trapping’ quasiminimizing submanifolds in manifolds of negative
curvature, cf. Sect. 1.3.C. The existence of complete minimizing hypersurfaces in
manifolds which are Lipschitz equivalent to H” was proved in [La2].

The paper is organized as follows. In Sect. 1 we fix the notation and review
some definitions and basic results from the theory of flat chains modulo two in M.
In Sect. 2 we discuss the isoperimetric inequalities and density bounds which will be
needed in Sect. 3 to establish 3.3. The third section also contains the optimal
version of 0.1. Finally, the existence results described above are presented in
Sect. 4.

1. Flat chains modulo two

Throughout this section, (M, g) denotes a complete riemannian C* manifold
diffeomorphic to R, n > 2. We review some definitions and results from geometric
measure theory, in particular from the theory of flat chains modulo 2 in M. The
general reference is [Fel, 4.2.26).

For each integer m >0 let

R,Mand F,M={R+3S:Re R M, SeR,, M}

denote the additive abelian groups of compactly supported, m-dimensional (integer
multiplicity) rectifiable currents and integral flat chains in M, respectively, where 0
is the boundary operator for currents, cf. [Fel, 4.1.24]. Note that every element T
of #,,M has finite mass M(7T). Then for each integer v >0 one may define a
subbadditive function #* on &, M by

F'(T) =inf{M(R) + M(S)}, (D

where the infimum is taken over all Re 2, M, Se X, ., M and Q € ¥, M with
T =R+8S +vQ. Two currents T, T' € #,,M satisfying #*(T — T') =0 are called
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congruent modulo v. The resulting congruence classes are called m-dimensional flat
chains modulo v in M; the set of all classes is denoted

F'M.

Then &, 0 and the addition on & ,, M induce corresponding operators, denoted by
the same symbols, on #,, M. In fact, #" induces a metric on &,, M for each m >0,
and 0: &F,, M - %, M is an #* continuous homomorphism. The support spt S of
a congruence class S € &#,, M is defined to be the intersection of the supports of all
elements of S.

The subgroup

AB.MccF,M

of m-dimensional rectifiable currents modulo v in M consists of all congruence
classes mod v containing an element of £, M. This is the space of generalized
m-dimensional surfaces in M we will mainly work with. For simplicity we will
always take v = 2; in this case, the space #2 M can alternately be defined in terms
of rectifiable sets, as will be described below (the preceding discussion is neverthe-
less necessary to define & and #2). This latter viewpoint has the advantage to
facilitate localization, moreover it yields intuitive definitions of mass and support.
However, up to the cited regularity theorem 1.3, the results of this paper stated for
v =2 can easily be generalized to v > 2.

For each m > 0 let 5™ denote the m-dimensional Hausdorff measure induced
by the given riemannian metric g. Then we let

Wm,loc M

denote the class of all ™ measurable, countably (™, m) rectifiable sets W < M
with locally finite J#” measure. The second property expresses that s almost all
of W is contained in the union of countably many images of Lipschitz maps from
R” into M. On ¥, ..M we define the equivalence relation

W~W < H(W\W)u(W\W)) =0.

Now, given a congruence class S € #2,M one may choose T e SN#, M and
represent T = (" L W) An, where W e ¥, ..M is relatively compact and 7 is
an m-vectorfield with || € Z, cf. [Fel, 4.1.28]. Denoting by W* the set of points in
W where |n| is odd, it turns out that W* is uniquely determined by S up to sets of
H#™ measure zero, cf. [Fel, p. 430] or [Zi]. In fact, one obtains an injective map
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from #2,M into #,,,.. M|~ , where the image consists exactly of the equivalence
classes [ W] which can be represented by a relatively compact set. One is thus led to
define the space of m-dimensional locally rectifiable currents modulo 2 in M simply
by

‘@tzn,locM = Wm,locM/N .
Mass (€[0, o0]) and support of S =[W] € %2, ..M are then defined by

M(S) = #™(W) and spt S= () cl W,

WeS

respectively, where cl denotes closure. Moreover for every Borel subset B of M one
defines S L B:=[WnB] e R, ..M. Of course if B is relatively compact then
S L Be%2,M. So far we have not defined S for S € #2, .. M\#2M; this would
require a definition of the space %2 ..M which is irrelevant for this paper (see for

instance [Mol, 2.1]). We merely note that

spt 0S= () (Unspt &S L U)),

UccM

where U c < M means that U is an open and relatively compact subset of M. Then
S € #2,,.cM is said to be complete if spt 45 = .
Next we define the notion of quasiminimality for elements of #2 ..M.

DEFINITION 1.1 (quasiminimizing). Let Q>1 and 4 <M. A current
S € R2, ..M is called quasiminimizing with constant Q in A, or simply Q-minimizing
in A, if

M(S L B) < OM(X)

whenever B is a Borel subset of M, S L B and X are elements of %M,
0X =0(S L B), and spt(S L B)uspt X < A. Then S is called quasiminimizing in A
if S is Q-minimizing in 4 for some Q >1. A 1-minimizing current is called
(absolutely) minimizing.

The principal application of this definition is the following. Assume that there
are constants 0 <a <f and a riemannian metric g, on M such that on A4,
a’gy < g < B°go. Then every S € %#2,,,. M which is minimizing in 4 with respect to
g is quasiminimizing with constant Q = (f/a)” in A with respect to g,. For
more comments on quasiminimality see [La2] and the references there; the example
[La2, 1.2] can readily be generalized to higher codimension.



Trapping quasiminimizing submanifolds 127

The proof of the following general existence theorem for minimizing currents
mod 2 is analogous to that of [Fel, 5.1.6(1)], with the compactness theorem for
integer multiplicity currents replaced by its counterpart mod 2, [Fel, (4.2.17)" on p.
432]. A current R € #2,_, M is called a boundary in A = M or is said to bound in A
if there exists T € #2,M with sptT = A and 0T = R. (Note that in M ~R", R
bounds if and only if either m >2 and R =0 or m =1 and R =[W] for some finite
set W of even cardinality.)

PROPOSITION 1.2 (existence). Assume that R € #2,_ | M bounds in some com-
pact Lipschitz neighborhood retract A in M. Then there exists S € R2,M with
sptS < A and 0S = R such that S is minimizing in A with respect to g.

Regularity of minimizing currents mod 2 is discussed in [Fe2]. In particular, the
following holds.

PROPOSITION 1.3 (regularity). Let S € &2, 10c M be minimizing in M. In case
m > 2 there exists a set £ = M of Hausdorff dimension at most m — 2 such that
sptS\(spt 0SUX) is an m-dimensional C* submanifold of M. For m =1 the same
conclusion holds with X = (.

We conclude this section with a few more technical results about the ‘slicing’
and mapping of rectifiable currents mod 2 in M. The following lemma is a variant
of the formula on the bottom of p. 429 in [Fel]. A similar result for integer
multiplicity currents is proved in [Si, 28.9].

LEMMA 1.4 (slicing). Let S € #,M and h: M -R a C! map. For t € R set
H,:={x e M: h(x) <t} and f(t):=M(S L H,). Then for almost all t with H,n
spt 0S = &, f(¢) exists, (S L H,) € #2,_ M, and

M@ L H)L U)<|f (@] sup |dh|

for all open subsets U of M. The same conclusion holds with < in the definition of
H, replaced by <.

Given S =[W]e #2M and a Lipschitz map n: M - M, the push-forward
n,SeAM of S via n is defined by n,S =[W*], where W* consists of all
y € n(W) with odd cardinality of Wn=n ~!{y}. Then clearly spt(n,S) = n(spt S)
and .

M(n,S) < J (| W) d#™ < Lip(n)"M(S), (2)
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where J,,(n | W) denotes the #™ approximate m-dimensional Jacobian of n | W
and Lip(n) is the Lipschitz constant of =, cf. [Fel, 3.2.20]. In case S € #%,_ | M,
Oomy=m,00. (This follows from the corresponding property of
ny: R, M- R, M, cf. [Fel, p. 371}, since n, commutes with the canonical projec-
tion #,,M — #2,M, see [Mo2, Ex. 4.23].)

2. Isoperimetric inequalities and density bounds

Now let (M, g,) denote an n-dimensional (n >2), simply connected, complete
riemannian C® manifold with sectional curvature K < —1, and let dist denote the
induced distance function on M x M. We write dist(x, 4) :=inf{dist(x, y): y € 4}
for @ # A <« M and define dist (x, &) :=00. For x e M and r > 0 we set

B(x,r):={y e M: dist (x, y) <r}, Ulx,r):=={y e M:dist (x, y) <r}.

Further, for m > 1 and r > 0 we define

r

B,.(r) :=ma,, J sinh™~ 't dt,

0

where o, denotes the volume of the unit ball in euclidean m-space. Thus for m > 2,
B..(r) equals the volume of a metric ball with radius r in hyperbolic m-space H™
(with constant sectional curvature K = —1). Note that

(m — DB (r) < ma,, sinh™~'r = §,,(r). (3)

We state a mass estimate for the geodesic cone Y € #2,M from x € M over a
current Re #%,_,M. Writing R=[V] for some V<M one defines Y:=
(exp, o h) . X, where X € #%(R x T, M) is the current associated to the set [0, 1] x
exp; '(V) and A is defined by

h:RxT,M->T.M,  ht,v)=tv (4)
One has dY = R whenever R bounds.

LEMMA 2.1 (cone inequality). Let R € %#2,_, M and spt R < B(x, r) for some
xeM, r>0 and 1 <m <n. Then the geodesic cone Y € LM from x over R
satisfies

B (r)
Bom(r)

In particular, by (3), (m — )M(Y) < M(R).

M(Y) <27 MR).
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In case m > 1 and R is a closed hypersurface the latter inequality is proved, for
instance, in [B—-Z, 34.2.6], and the argument can easily be adapted to deduce 2.1.

Proof. Let V:=exp; !(V), where [F'] = R. For s#” "' almost every v € V the
approximate tangent cone Tan”~'(V, v) of V at v is an (m — 1)-dimensional linear
subspace of T, M. Then we choose an orthonormal basis u,,,...,#4,_;, of
Tan™~!(V, v) such that u;, L vfor 1 <i<m —2. Let u},_, , denote the component
of u,,_,, perpendicular to v. Applying (2) with W =[0, 1] x Vand n =exp, o h, cf.
(4), we obtain

M(Y) SJJ lo|j(t, v) dt d#™=\(v), (5)

where we have abbreviated

j(t’ U) e f"‘tvtul,v At A "'rvtum—~2,v A *tutu;ﬁh—l,v l’ f’zexpx,

meaning j(¢, vy = 1 in case m = 1. Now comparison with hyperbolic space yields

sinh” = '(¢|v|)
sinh™~!|o|

Jjitv) < J(1,v)

for 0 <t < 1, cf. [H-K]. Inserting this into (5), using ma,, sinh™ ' = B/, and the fact
that B,,/B,, is nondecreasing, we get

Bn(r) [ . _
M(Y 1, v) d#™ (v).
(N g2 LJ( ) dA™ ' (0)
Since j(1,v) < J,._1(f]| V)(v) and #™~ (V) = M(R) the claimed estimate follows.

O
As a consequence of 2.1 we obtain the following.

PROPOSITION 2.2 (monotonicity formula). Assume that S € #Z, ..M is Q-
minimizing in U(x, r) = M\spt 0S, for some xe M, r >0 and Q > 1. Then the
Sfunction mapping 0 <o <r to

M(S L U(x,0))
B.(0)'/@

is nondecreasing.
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An analogous result for stationary varifolds was proved in [Anl, p. 481]. In
particular, 2.2 shows that every complete Q-minimizing current S € #2,,,.M has
exponential volume growth, cf. [Gr2, 1.3.C’]. The argument proving 2.2 is well-
known.

Proof. For 0 <t <r, define S, :=8 L U(x,?) and f(¢) :==M(S,). By 1.4 (slicing),
for almost all ¢, S, € #2,_, M, f'(¢) exists, and M(8S,) < f'(¢). Then the Q-minimal-
ity of § in U(x,r) together with 2.1 yields

Pm(9)
<0 FA0) M(S,)

for all almost all ¢, hence

1@ Bul®
7 = 08,

for almost all ¢ with f(¢) > 0. Now for 0 < g, <@, <r with f(g;) > 0, integrating
from g, to ¢, (and using [Fel, 2.9.19]) we get the claim. O

For the remaining results of this section we assume that the sectional curvatures
of M be bounded from below as well, such that we have —a? <K < —1 for some
1 < a < oo. This additional requirement will only be used through the fact that for
x € M and r > 0, the restriction of the exponential map exp, to the ball B(0,,r)
(where 0, denotes the origin of T, M) is Lipschitz with constant

Ag +=(ar) ! sinh(ar). (6)

Moreover since K <0, exp, ! is Lipschitz with constant 1. Then 2.2 leads to the
following uniform estimate.

COROLLARY 2.3 (lower density bound). For every 6 >0 there exists a
constant @ =0, Q,a,m,n) >0 such that the following holds: Whenever
S € R2,10cM is Q-minimizing in U(x, g) = M\spt 0S, for some x espt S and Q > 1,
then M(S L U(x, o)) = 0.

Proof. In view of 2.2 and the above remarks on exp, it suffices to prove a
euclidean analogue of 2.3 for @ close to 0. For rectifiable currents with integral
coefficients this is done on p. 523 in [Fel], and it is readily checked that the
argument works for Z, coefficients as well (replace the involved isoperimetric
inequality by [Fel, (4.2.10)" on p. 431)). O
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The following lemma will be important in the proof of the trapping theorem 3.3,
moreover it leads to an absolute upper density bound for quasiminimizing currents
mod 2 as stated in 2.5 below.

LEMMA 24 (sublinear isoperimetric inequality). Let Re %% _,M be a
boundary in B(x,r) for some x e M, r>0 and 1 <m <n. Then there exists
T € #2M with spt T < B(x, r) and 0T = R such that

M(T) < cor™A” M(R)' ~% < c,e®M(R)' ~°,

where é:=(n —m +1) =, 1, is defined as in (6), and c, = co(m, n), ¢, = c,(a, m, n)
are constants.

Proof. The current R:=(exp; '), R € %2,_,(T. M) bounds in B(0,, r), hence by
1.2 (existence) there exists T € #%(T,. M) with spt T < B(0,, r) and 8T = R such
that T is minimizing in B(0,, r). In fact, using the convexity of B(0,, r) it is shown
that T is minimizing in 7.M. Now, by an isoperimetric inequality due to F.
Morgan, cf. [Mol, 2.5], T satisfies

M(T) < cor™M(R)' ¢,

where é:=(n—m+1)~!, and ¢, depends only on the dimensions. Let
T:=(exp,), T € #2,M; then spt T < B(x, r), 8T = R, and the first inequality follows
from (2) together with the properties of exp, stated above. Since r™i7 =
a~"r"-msinh™(ar) and nd —m <0, the second inequality holds with c¢,:=
co(2a) ~"e“™. O

2.5 COROLLARY (upper density bound). There exists a constant 0 =
0(Q, a, m, n) such that the following holds: Whenever S € R2,,.cM is Q-minimizing

in Ulx,r) c M\sptdS, for some xeM and Q >1, then M(S L U(x, r/[2)) <
Hea(n- l)r/2.

A corresponding result for minimizing currents in %2, R” was obtained in [Mol,
2.7] as a consequence of the isoperimetric inequality already used in the proof of
24.

Proof. 1t suffices to prove the following assertion for some fixed & > 0: There
exists 0'(Q, a, m, n) such that M(S L U(x, r/2)) < 6’ whenever S satisfies the as-
sumption of 2.5 with r <e. For r >¢, M(S L U(x, r/2)) is then bounded by 6’
times the maximal number of disjoint open balls with radius ¢/6 fitting into
U(x, r/2). This number is bounded above, up to constant factor, by a(n — 1)r/2.
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The collection of the balls with the same centers but radius &/3 then covers
U(x, r/2), and the balls with radius 2¢/3 are still disjoint from spt 0S.

To prove the assertion, using the same notation as in the proof of 2.2, we note
that the Q-minimality of S in U(x, r) together with 1.4 (slicing) and 2.4 yields

SO < Qeor™Agf()!~°

for almost all 0 < ¢ <r. Rearranging this inequality and integrating from ¢ =r/2 to
r we obtain the desired resuit. O

3. Trapping

Let (M, g,) be given as stated at the beginning of the preceding section. Since
K < —1 the following comparison lemma holds.

LEMMA 3.1. Let y: R — M be a unit speed geodesic. For i =1, 2, let x; € M and
dist(x;, y(R)) = dist(x;, y(¢;)) =r;. Then

dist(x,, x,)

. . tl,—t . r,—r
sinh? > cosh r, cosh r, sinh? I~ 1] + sinh? lra=n| ,

2 2

and equality holds (e.g.) if (M, g,) = H" and x,, x, lie in some closed totally geodesic
halfplane bounded by y(R).

Proof. This is shown using an application of the Rauch comparison theorem, cf.
[K12, 2.7.3], together with some hyperbolic trigonometry. O

Previous to the proof of the main result of this section, 3.3, we establish an
optimal version of the classical lemma on quasigeodesics stated in the introduction.
Additionally this illustrates the proof of 3.3 in the simplest case. Recall that a
continuous curve o: [u, v] » M is called rectifiable if it has finite length

L(o):=sup i dist(a(s; - 1), o(s;)), @)

J

where the supremum is taken over all positive integers k and all subdivisions
U=5,<5<"-<s =0 of [u,v]. Then o is called Q-minimizing or a Q-quasi-
geodesic for some Q=>1 if for every subinterval [u',v] of [u, ],
L(c|[u',v']) < Q dist(o(u"), a(v")). For x, y € M we denote by xy < M the closed
geodesic arc from x to y.



Trapping quasiminimizing submanifolds 133

THEOREM 3.2. Let o: [0, u] - M be a rectifiable curve which is Q-minimizing for
some Q > 1. Then

dist(a(s), o(0)o(w)) < ¢, ‘=§ 0’ —1

Sor all s €[0, u]. The constant c, is optimal.

Proof. Choose x on ¢ such that d:=dist(x, 6(0)a(x)) is maximal; we may assume
d > 0. Then let y: R — M be the unit speed geodesic with y(0) € o(0)a(x)) and y(d) = x.
For t e R, let E, denote the geodesic hyperplane normal to y at y(¢), i.e., the image
under the exponential map of the orthogonal complement of Ry'(¢) in T, M. Define
.M ->R by 1(y):=t for yeE, and consider the closed upper halfspaces
H,:={y e M: 1(y) >t} bounded by E,, for ¢ € R. Note that 1(¢(0)), t(c(u)) <O0.

Now for t €[0,d], define uy(f):=infe ~'(H,) and u,(f):=supo~'(H), ie.,
[uo(), uy(1)] is the minimal subinterval of [0, u] containing ¢ ~'(H,). Then put
r; (1) :==dist(a(u, (1)), y(1)), i =0,1. It is easily checked that both r, and r, are
leftcontinuous functions, and, by the choice of x, ro(d) = r,(d) =0. Moreover, the
Q-minimality of ¢ yields

L(o |[uo(t), u (D)) < Q(ro(1) + 11(2)) (8)

for ¢t € [0, d]. Our aim is to construct a curve & in the hyperbolic plane H? satisfying
a corresponding inequality. Thus let 7: R — H? be any unit speed geodesic, and let
v be a continuous unit normal vector field along y. Then for i =0, 1, define
o,:[0, d] - H? by

a;(f) =exp(r; ((1)).

These curves are merely leftcontinuous. However, the definition of arclength given
in (7) applies as well (but note that L also takes account of the ‘jumps’ of ¢;), and
3.1 yields

L(aollt, d]) + L(a:[It, d]) < L(o|luo(2), ur (1)) (9
for t €[0, d]. Now put Af) :==(ro(t) + r,(£))/2 and define &: [0, d] - H? by

a(2) =exp(F(OV(1))-
It follows from the convexity of the distance function on H? x H? that

2L(G|[t, d) < L(o|lt, d)) + L(a,it, dD).
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Combining this inequality with (9) and (8) we get

L(G|[t, d]) < QF() (10)

for t € [0, d]. The remaining part of the proof is now analogous to the argument
used in [La2, 2.4]. The idea is to compare ¢ with a (smooth) curve é: [0, d] — H?
satisfying

L(8|lt, d)) = QF(2) (11)

for all ¢, where 6(¢) = exp(F(¢)v(¢)) for some nonnegative function 7: [0, c;'] -R. T he
discussion precedlng 2.3 in [La2] shows that such curves exist for all 0 <d < o
w1th r(O) —o0 as d —co. Hence in case d> Co> d can always be chosen such that
d <d and #0) > sup F. Setting s :=sup{¢: f(r) > #(r)} we obtain #(s) > F(s). More-
over, it can be shown that L(G|[s, d]) < L(a[ls, [s, d]), which then leads to a contradic-
tion to (10) and (11).

For all possible choices of d, the curve obtained by concatenating 4 with the
inverse of its reflection with respect to 7 is Q-minimizing in H?, cf. [La2, 2.3]. This
shows that 3.2 is no longer true if ¢, is replaced by a smaller constant. O

Now we assume again that the sectional curvatures of M be pinched between
two negative constants, w.l.o.g. —a’<K < —1.

THEOREM 3.3. For all Q>1 and 1<m <n there exists a (computable)
constant dy = dy(Q, a, m, n) such that the following holds: Whenever S € #2,M is Q-
minimizing in M then

dist(x, C) <d,

for all x € spt S, where C denotes the convex hull of spt 0S.

Proof. For m = 1, the result is a consequence of 3.2. Namely, it is easily shown
that every Q-minimizing current R € #7 M with finite boundary mass can be written
asasum R=R,+ R, + - + R;, where k = M(0R)/2 and each R, is Q-minimizing
and indecomposable as defined in [Fel, 4.2.25]. Then every R; is the current
associated to a Q-minimizing unit speed curve o;:[0, M(R;)] - M. In order to
apply this result consider R:=S L {y e M: dist(y, C) > t} for some appropriate ¢
(such that M(0R) < o).

Now let m > 2. Let x € spt S and set d:=dist(x, C); we may assume d > 0. Then
let y: R — M be the unit speed geodesic with y(0) € dC and y(d) = x, and let r and H,
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be defined as in the proof of 3.2. Finally, define S,:=S L H, and f(¢) :=M(S,) for
t € R. Note that CnH, = & (and hence spt 0SnH, = ) for t > 0.

For r >0 let N, :={y € M: dist(y, y(R)) < r} denote the closed tubular r-neigh-
borhood of y. Then 3.1 shows that on M\N,, |dz| < (cosh r) ~'. Using 1.4 (slicing)
we infer that for almost all £ >0, 85, € #2,_, M, f'(¢) exists, and M(3S,) <|/"(9)|.
Moreover, for every choice of a function r(f) >0 (to be explicitly determined
below), R, :=(3S,) L (M\N,,) satisfies

M(R,) < (cosh r(®) ~'|f'(1)| < 2¢ | f'(1)]. (12)

Now let P, denote the push-forward of 0S5, via the nearest point projection
M - N,,, and let T, be the isoperimetric spanning surface for P, given by 2.4
(sublinear isoperimetric inequality). Since M(P,) < M(3S,) < |f'(¢)| we get

M(T)) < cre™™ ' (O] 2, (13)
where 8 = (n —m + 1) ~! < 1. Further, let X, and Y, denote the geodesic cones from

y(f) over 0S, — P, and R, respectively. Then X, = Y, L (M\N,,), thus by 2.1 (cone
inequality) and (12) it follows

M(X,) <M(Y,) <2(m — 1) ~'e ~"9|f(1)]. (14)

Since O(T, + X,) = 0S,, the Q-minimality of S in M yields f(f) < OM(T, + X,).
Using the subadditivity of mass together with (13) and (14) we get

SO < e f'(0)]' % + 3¢ =0 f' (1)

for almost all ¢#>0, where ¢,=Qc;, and c¢;=2Q(m —1)~'. Substituting
r(f) = A log f(¢) for some constant A >0 we obtain

L <of O ~° +eaf ) =11 ()]

for almost all ¢+ > 0 with f(¢) > 1. In order to make the two terms on the right-hand
side comparable we choose A so that amli —1=(—41—1)(1—-0), thus 1=
0/(am + 1 — &) >0 as required. Since f is nonincreasing it follows

a<f@ 7 UfO|=A7O Y (15)

for ¢t as above and for some constant c, = c,(Q, a, m,n). By 2.3 (lower density
bound) there exists ¢ = o(Q, a, m,n) >0 such that f(f) >1 for t <d —¢. Thus
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integrating (15) from ¢ =0 to d — ¢ (and using [Fel, 2.9.19]) we conclude
dist(x, C) =d <c;'A" '+ g =:d,,
as desired. O

REMARK 3.4. In case m =n — 1, 3.3 also holds for rectifiable currents S (with
integral coefficients) in M. Namely, let x, d, y, H, and S, be given as in the above
proof. Denote by Z the geodesic cone from y(0) over S,; then 0Z € #,_, M and
(0Z) L H, =S, for t > 0. Now the same decomposition argument as in the proof
of [La2, 2.4] shows that Z can be assumed to have multiplicity 1 everywhere. Then
one may proceed as above, but instead of wusing 2.4 one takes
T,=(S, —d(Z L H,)) L N,,, with the mass estimate M(7,) < c;e®"~2"® for some
constant ¢} =cj(a,n). Finally, one may choose r(f) such that f(¢)=
2Qc!1ea(n—2)r(t).

4. Existence results

In this last section, (M, g,) will always denote a simply connected, complete
riemannian n-manifold with sectional curvature —a”< K < —1. Recall that the
ideal boundary of (M, g,) is defined by M :=SM | ~, where SM is the unit sphere
bundle of M, and v ~ w if and only if the geodesic rays y, and y,, with initial vectors
v and w, respectively, are asymptotic in the sense that sup, ., dist(y,(?), ,,(f)) < oo.
There is a natural topology on

M=MuM_,

called cone topology, s. [E-O] or [An3, Sect. 0]. With this topology, M is home-
omorphic to a compact ball in R"”. The boundary at infinity of a subset 4 of M is
then defined by

bd, A:==M_nA,

where A4 denotes the closure of A relative to A_f_[ . In [An3] it is shown that whenever
ve M, and V is any neighborhood of v in M then there exists a convex subset C
of M with M\V < C but v ¢ bd,, C. In particular, this implies the useful fact that
always

bd,conv A4 =bd 4, (16)
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where conv 4 denotes the convex hull of 4 (i.e. the intersection of all convex
subsets of M containing A).

Now assume that g is a riemannian metric on M which is Lipschitz equivalent
to g, i.e. there are constants 0 <a < f such that

a’go(v, v) < g(v, v) < Bgo(v, v)

for all v e TM. For instance, the lift of an arbitrary metric on some compact
quotient of (M, g,) has this property. We apply the results of the preceding section
to construct m-dimensional, complete minimizing surfaces in (M, g) with prescribed
boundary data at infinity, for every 1 <m < n. Throughout the section, all metric
notions will generally refer to g, rather than to g, except that the constructed
surfaces minimize area with respect to g. In terms of g,, these surfaces are
Q-minimizing with constant

Q = (/o™

Given a subset L of M, the strategy to construct a complete minimizing
surface S € #2,,,. M asymptotic to L can roughly be described as follows. First L is
approximated, in an appropriate sense, by a sequence of (m — 1)-dimensional
boundaries R, in M (see the conditions given in 4.2 below). Then for each R;, 1.2
yields the existence of a minimizing current S; € #2,M with 8S; = R,. Now the
desired surface S will be obtained as the limit of some subsequence (S;), and the
trapping inequality 3.3 will be used to infer that indeed bd, spt S = L. In order to
extract the convergent subsequence we need the following result which is a variant
of the compactness theorem [Mol, 2.8]. Convergence Sij — S € &2, .. M means that
for every y e M there exists a neighborhood UccM of y such that
S;, L U—>S L U in the #? topology, cf. Sect. 1.

PROPOSITION 4.1. Let 1 <m <n and x € M. Assume that for every positive
integer i, S; € R2,M, 0S; € R%,_ M, spt 0S;nU(x, i) = &, and S; is minimizing in
U(x, i) with respect to g. Then some subsequence (S:) of (S;) converges to a complete

current S € R, 1. M which is minimizing in M with respect to g. Moreover,

spt S;NK # & for almost all i = spt SNnK # (17

for every compact subset K of M.

Proof. Each S, is Q-minimizing in U(x, i) with respect to g,, for Q = (B/ax)™.
Thus since sptdS,NU(x,i) =, 2.5 (upper density bound) vyields
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sup, M(S; L U(x,j)) < oo for all j > 0. The existence of a subsequence converging
to a complete element of %2 ,,.M now follows by repeated application of 1.4
(slicing) and [Fel, (4.2.17)" on p. 432] in combination with a diagonal sequence
argument. The remaining conclusions are obtained by adapting [Fel, 5.4.2] (see
also [Si, 34.6(2) and 31.2)). O

Now we prove the following general existence result for complete g-area
minimizing currents S € %2, ,,. M.

THEOREM 4.2. Let 1 <m <n, and let L be a closed subset of M with the
property that there exists a sequence of boundaries R; € #2,_ M in M satisfying the
following conditions:

(i) For every neighborhood U of L in M there exists k > 0 such that spt R, c U

for all i >k, and

(ii) for every open V — M meeting L there exists a closed set G = V\L such that

almost all R; do not bound in M\G.
Then there exists a complete m-dimensional surface S € R}, ..M which is minimiz-
ing in M with respect to g and asymptotic to L, i.e. bdspt S = L.

Note that the obtained minimizing current S enjoys the regularity property
described in 1.3. Moreover, S satisfies the uniform density bound given in 2.5
with Q = (f/x)™. Since the condition on the limit set L given in the theorem is
rather awkward we will restate the result in a weaker but more convenient form
in 4.3 below. In case m =n —1 the assumption on L can be shown to be
equivalent to the following: L =bd U=bd U’ for some disjoint open subsets
U, U of M, with UuU'= M_\L. This condition is in turn equivalent to that
given in 4.4.

Proof. Choose x € M and r; >0 such that spt R; = B(x, r;) for all i. Then by
1.2 (existence) there exists S, € #2,M with spt S, < B(x,r;) and 4S; = R, such
that S; is minimizing in B(x, r;) with respect to g. By condition (i) we may
assume that the S; satisfy the assumptions of 4.1. Therefore some subsequence
(S;) converges to a complete current S € #7,,, M which is minimizing in M with
respect to g. It remains to show that bd, spt S = L.

Each S, is quasiminimizing in B(x, r;) with respect to g,. In fact since B(x, r;)
is convex it follows that S, is quasiminimizing in M. Let 4:=U, spt R, and
C:=conv A. Then 3.3 yields

spt S, © N:={y € M: dist(p, C) <dp)} (18)
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for all i. Thus since S; — .S and N is a closed subset of M, spt S = N. Using (16) and
condition (i) of the theorem we get

bd, spt S <bd N =bd_C=bd 4 L.

Conversely, let ¥ and G be given as in (ii); then spt S;nG # & for almost all i. In
view of (18) these spt S; then meet the compact subset K:=GnNN of M. By (17) it
follows spt SNK # ¢ and hence spt SNV # (. Since this is true for all open
V = M meeting L we get L = bd,, spt S, proving the theorem. O

The following result is a consequence of 4.2. For the special case g =g, it is
stated in [Gr2].

4.3 THEOREM. Let 2<m <n, and let L be an (m — 1)-dimensional compact
topological submanifold of M, (i.e. the homeomorphic image of some compact
(m — 1)-dimensional topological manifold). Then there exists a complete m-dimen-

sional surface S € R, 1. M which is minimizing in M with respect to g and asymptotic
to L.

Proof. Identify M with the open unit ball U(0, 1) = R”, where M is homeomor-
phic to the closed ball B(0, 1). For every V as in condition (ii) of 4.2 choose a
bounded open set W < R” with WnB(0, 1) = V. We claim that for every such W
there exists a compact set K < W\L such that 0#i,[L] € H,_,(R"\K), where
H,, _, refers to singular homology with Z, coefficients, i stands for inclusion, and
[L] € H,,_(L) denotes the fundamental class.

Namely, using standard techniques from algebraic topology, one shows that
0#i,[L] e H,_(R*"\W)UL). Next one may use the fact that L is an absolute
neighborhood retract (cf. [Gb, 26.17.4]) to infer that (R*"\W)UL has an open
neighborhood Z such that still 0 #i,[L] € H,,_,(Z). Then K:=R"\Z is the desired
compact set.

Now approximate L by a sequence of closed singular Lipschitz chains (with Z,
coefficients) in U(0, 1) such that the corresponding cycles R; € #2,_,U(0, 1) =
R2,_ | M satisfy condition (i) of 4.2, and such that for all ¥, W and K as above,
almost all members of the sequence are homologous to L in R*\K. It remains to
show that the obtained sequence (R;) also satisfies condition (ii) of 4.2. One takes
G = KnB(0, 1). By means of the deformation theorem [Fel, (4.2.9)" on p. 431} one
shows that for every R; bounding an element of #2,M in M\G, the corresponding
Lipschitz chain is homologous to zero in R"\K. O

As mentioned above, in case m =n — 1 the condition on the limit set L given in
4.2 can be reformulated in a much simpler way. Moreover in this case, the
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fundamental estimate 3.3 has an analogue for integer multiplicity currents as noted
in 3.4. Thus we get the following existence theorem for complete minimizing
hypersurfaces in (M, g). Notation and definitions are the same as in [La2] where the
result was obtained for the special case that (M, g) is Lipschitz equivalent to
hyperbolic n-space. In the statement of the theorem, bd, cl and int refer to the
sphere topology of M.

THEOREM 4.4. Let L be a subset of M, satisfying L =bd A for some subset A
of M, with A = cl(int A). Then there exists a closed set W of locally finite perimeter
in M such thatbd ,W = A, S:=0[W] € R,,_110cM is minimizing in M with respect to
g, and bd spt S = L.

According to the regularity results from geometric measure theory, spt Sisa C®
submanifold of M up to a closed singular set of Hausdorff dimension at most n — 8.
The proof of 4.4 is analogous to that of [La2, 3.2]. In order to facilitate the
discussion of 4.5 below, we sketch it in a slightly more complicated form than
necessary.

Proof. We may assume L # ¢J. Choose x € M and identify M, with the unit
sphere S, M in T, M. Then for all subsets V of S, M let cone, V:={exp,(rv):r €
~[O, ), v € ¥} denote the geodesic cone from x over ¥V in M. Moreover, define
6: S, M — [0, n] as the spherical distance of v € S, M from L < S, M in S, M. Now
for every positive integer i let

T;=0[B(x, i)] L cone, {v € A: é(v) = 6,},

where the 6, are positive numbers chosen such that 07T;e%,_,M and
lim;, ,0; =0. Let @ =(B/x)"~!, and let d, = dy(Q, a, n) >0 be the constant given
by 3.4. As in the proof of [La2, 3.2] it follows that there is an " measurable
set W, of finite perimeter in M such that S;:=0[W;] —7T; is minimizing in
B(x, i + d,) with respect to g. Then 3.4 shows that S; is actually minimizing in
M (with respect to g). Some subsequence of the W, converges weakly to a set W
of locally finite perimeter in M, and S:=d[W] is a complete minimizing hyper-
surface in (M, g), as desired. Since spt S has J#” measure zero we may assume
W to be closed (replace W by spt{W]).

The conclusion of the proof is now analogous to that of 4.2. Namely, by the
assumptions on L and A4, the boundaries R,:=0S; = —0T, clearly satisfy condi-
tion (i) of 4.2. Moreover, given V as in condition (ii), one finds a geodesic
y:R—M with (R) = ¥V _and ideal points y(—o0) eint 4 and y(+o0) € M \A.
Then one may take G = p(R). O
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In [An2, 3.1] Anderson constructed complete minimizing hypersurfaces invari-
ant under a discrete group of isometries acting on hyperbolic n-space. We use his
argument to obtain a similar result for I'-invariant minimizing hypersurfaces in
(M, g), where I' = Iso(M, g) is an arbitrary (not necessarily discrete) group of
isometries of (M, g). Note that since g is Lipschitz equivalent to g,, isometries of
(M, g) extend to homeomorphisms of M.

THEOREM 4.5. Let L and A satisfy the assumptions of 4.4, and assume
additionally that A be invariant under the action (extended to M) of some subgroup
I' < Iso(M, g). Then there exists a closed set Q of locally finite perimeter in M such
that bd Q2 =4, X:=0[Q] € R,_11ocM is minimizing in M with respect to g,
bd, spt £ =L, and Q (and hence X) is I -invariant.

We emphasize that for this result, to ensure the existence of a g-area minimizing
hypersurface X asymptotic to L and invariant under I, it is in general not sufficient
to assume merely L to be I'-invariant (instead of A4). This is shown by simple
examples. Note that in case the action of I on M is free and properly discontinu-
ous, and L is the limit set of I', the produced minimizing hypersurface X projects to
a complete, stable minimal hypersurface in M/I' which is smoothly embedded
provided n <7. On the other hand, 4.5 gives rise, for instance, to catenoid- or
helicoid-like hypersurfaces whenever (M, g) possesses a corresponding (continuous)
group of isometries. In hyperbolic 3-space, minimal surfaces exhibiting such sym-
metries were constructed by Mori [Mr] and Polthier [Po].

Proof. In the following we construct a (possibly constant) sequence
Q, > Q,> - of closed subsets of M such that for every j > 1, €, has locally finite
perimeter, 0[Q;] € #,_, ..M is asymptotic to L and minimizing with respect to g,
bd, @, = A, and for every y € I, Q;, < yQ;. The desired set Q will then be obtained
as the limit of some subsequence of the £2;.

First we apply 4.4 and let Q, be equal to the obtained set W. Now for every
integer j > 1, assuming that €, is already defined (and has the properties stated
above), we construct €, , | as follows. We repeat the proof of 4.4 with the additional
requirement that for each i, spt 7; is contained in the closed set

M;= ) Q.
vel
Since bd,, M; = A (which follows from the I'-invariance of 4 together with 3.4), this
can be achieved by choosing the d, appropriately (possibly 7; = 0 for small 7). Then
for every y e I' and every i, since both 0[y®;] and S, = 6[W,] — T, are minimizing in
(M, g), a simple area comparison argument shows that we may assume W, < yQ;
and hence W, c M;. We get W < M, and put ,,,:=W.
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Now we extract some subsequence (£2,,) of (€2;) converging weakly to a set Q of
locally finite perimeter in M. Since each 9[€2;] is minimizing in (M, g) so is X:=0[€2].
By the same argument as in the proof of 4.4 we may assume Q2 to be closed. In
order to show that bd 2 = A4 and bd_ spt £ = L we use again 3.4. Finally, since

Q <y

Jk +1 J

for all £k and y eI, it follows Q <y for all y e I'. Hence Q is I'-invariant as

desired. O
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