
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 71 (1996)

Artikel: Trapping quasiminimizing submanifolds in spaces of negative
curvature.

Autor: Bangert, Victor / Lang, Urs

DOI: https://doi.org/10.5169/seals-53838

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-53838
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helvetici 71 (1996) 122-143 0010-2571/96/010122-22$1.50 + 0.20/0
© 1995 Birkhàuser Verlag, Basel

Trapping quasiminimizing submanifolds in spaces of négative curvature

Victor Bangert and Urs Lang*

Abstract. Let M be a Hadamard manifold with ail sectional curvatures bounded above by some négative
constant. A well-known lemma essentially due to M. Morse states that every quasigeodesic segment in
M lies within an a priori bounded distance from the géodésie arc Connecting its endpoints. In this paper
we establish an analogue of this fact for quasiminimizing surfaces in ail dimensions and codimensions;
the only additional requirement is that the sectional curvatures of M be bounded from below as well. We

apply this estimate to obtain new solutions to the asymptotic Plateau problem in various settings.

0. Introduction

A rectifiable curve a from an interval [m, v] into some metric space is called a

g-quasigeodesic for some constant Q > 1 if the length of each subsegment o \ [u\
v'] is less than or equal to Q times the distance between its endpoints a(iï) and a{v').
This concept has proved to be very useful in the theory of negatively curved spaces

during the last décades. One of its most important features is the following
well-known lemma which is essentially due to M. Morse [Ms]:

LEMMA 0.1. Let (M,g0) be a simply connectée, complète riemannian manifold
with sectional curvature K < — 1. Thenfor every Q > 1 there exists a constant do(Q)
such that the image ofevery Q-quasigeodesic o.[u,v\^*M is contained in a do-neigh-
borhood of the géodésie arc from <r(u) to a(v).

For instance, given a riemannian metric g on M which is Lipschitz équivalent to
g0, i.e. which satisfies (x2g0<g <P2g0 for constants 0<a </?, every minimizing
géodésie in (M, g) is (/?/a) -quasigeodesic with respect to g0. In this situation, 0.1 is

the a priori estimate needed to prove the existence of a complète minimizing
géodésie in (M, g) asymptotic to a given pair of distinct idéal boundary points of M,
cf. [Ms], [Bu], [Kll]. A similar argument is also used in the proof of the Mostow
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program GADGET IL
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Trapping quasiminimizing submanifolds 123

rigidity theorem, see [Mw, Sect. 13] or [G-P] for a survey. Furthermore, other

interesting applications of (a variant of) the lemma hâve been found by Gromov

[Grl] in his theory of hyperbolic groups. A récent account of this, as well as a

simple proof of the lemma (in a slightly différent form), is given in [Ep].
In this paper we establish an analogue of 0.1 for quasiminimizing surfaces with

arbitrary dimension and codimension in (M, gQ); the only additional restriction is

that we also need a lower bound for the sectional curvatures of (M, g0). It turned
out that a well-adapted notion of surface in this context is that of a rectifiable

w-current modulo two SeM2mM\ thèse are the compact, nonoriented general-
ized m-dimensional "submanifolds with boundary" studied in géométrie measure

theory. Quasiminimality is defined as for curves: every compact 'pièce' T of S has

mass (i.e. area) less than or equal to Q times the mass of every X e 0t2mM with
boundary dX dT, cf. 1.1. We prove the foliowing, cf. 3.3.

THEOREM 0.2. Let (M, g0) be a simply connectée, complète riemannian n-man-
ifold with sectional curvature —a2<K<—\, 1 <a < oo. Then for ail Q>\ and

\<m <n there exists a constant do(Q9 a, m, n) such that every Q-quasiminimizing
surface S e 0t2mM is contained in a d0-neighborhood of the convex hull ofits boundary
ÔS.

A similar resuit was first obtained for homotopically quasiminimizing disks in

hyperbolic 3-space H3 and then for quasiminimizing hypersurfaces in H" by means

of a symmetrization method yielding in addition the least possible value for d0, cf.

[Lai] and [La2]. Likewise we will also dérive an optimal version of 0.1, cf. 3.2. The

proof of 0.2 is still inspired by this construction, but is less explicit and uses as a

new ingrédient an isoperimetric inequality due to F. Morgan [Mol]. In case

m n — 1 the proof is easier ^nd works as well for the coefficient group Z instead

of Z2.
We then apply 0.2 to solve the asymptotic Plateau problem in M with respect to

a riemannian metric g which is Lipschitz équivalent to some metric g0 satisfying the

assumptions of 0.2. In particular, we show that for 2 < m < n, every compact
(m — l)-dimensional topological submanifold L of the idéal sphère M^ of (M, gQ)

is the boundary at infinity of a complète g-area minimizing "submanifold"
S e ^ locM, cf. 4.3. According to the regularity results from géométrie measure

theory, S is a C00 submanifold of M up to a closed set of Hausdorff dimension at
most m — 2. Actually this existence resuit is obtained as a conséquence of the more
gênerai statement 4.2 which, however, is rather technical. Moreover, we prove the
existence of a complète, g-area minimizing hypersurface SeJfl.UocM asymptotic
to a given set L satisfying the following simple topological condition: L bd A for
some subset A of MM with cl(inL4) A, where bd, cl and int dénote boundary,
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closure and interior, respectively, relative to Mœ, cf. 4.4. In this case, the obtained
hypersurface S is a C00 submanifold of M up to a singular set of Hausdorff
dimension not exceeding n — 8. Finally, using an argument due to M. Anderson

[An2], we show the existence of complète, g-area minimizing hypersurfaces in M
invariant under the action of a group F of isometries of (M, g), cf. 4.5.

The first gênerai existence results for m-dimensional (m > 2), complète minimizing

surfaces with prescribed boundary data at infinity are due to Anderson [Anl],
[An2] who studied the case of hyperbolic w-space Hn. Various extensions of
Anderson's results were then obtained by Gromov in [Gr2], where he also posed the

problem of 'trapping* quasiminimizing submanifolds in manifolds of négative

curvature, cf. Sect. 1.3.C The existence of complète minimizing hypersurfaces in
manifolds which are Lipschitz équivalent to Hn was proved in [La2].

The paper is organized as follows. In Sect. 1 we fix the notation and review

some définitions and basic results from the theory of flat chains modulo two in M.
In Sect. 2 we discuss the isoperimetric inequalities and density bounds which will be

needed in Sect. 3 to establish 3.3. The third section also contains the optimal
version of 0.1. Finally, the existence results described above are presented in
Sect. 4.

1. Fiat chains modulo two

Throughout this section, {M, g) dénotes a complète riemannian C00 manifold
diffeomorphic to Rn, n :> 2. We review some définitions and results from géométrie

measure theory, in particular from the theory of flat chains modulo 2 in M. The

gênerai référence is [Fel, 4.2.26].

For each integer m > 0 let

MmM and #mM * {R + dS: R e MmM, S e 0tm + xM}

dénote the additive abelian groups of compactly supported, m-dimensional (integer
multiplicity) rectifiable currents and intégral flat chains in M, respectively, where d

is the boundary operator for currents, cf. [Fel, 4.1.24]. Note that every élément T
of MmM has finite mass M(T). Then for each integer v > 0 one may define a

subbadditive function #"v on !FmM by

<F%T)œmf{M(R) +M(S)}, (1)

where the infimum is taken over ail R e $mM9 S e 0lm + xM and Q e !FmM with
T « Jî -f dS -f vg. Two currents T, T e &mM satisfying ^\T - T) 0 are called
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congruent modulo v. The resulting congruence classes are called
chains modulo v in M; the set of ail classes is denoted

Then #"v, d and the addition on 3* mM induce corresponding operators, denoted by
the same symbols, on ^vmM. In fact, ^v induces a metric on ^vmM for each m > 0,

and d : 3F*m + 1M-* ^vmM is an Jrv continuous homomorphism. The support spt 5* of
a congruence class S g ^vmM is defined to be the intersection of the supports of ail
éléments of S.

The subgroup

of m-dimensional rectifiable currents modulo v in M consists of ail congruence
classes mod v containing an élément of 0tmM. This is the space of generalized
m-dimensional surfaces in M we will mainly work with. For simplicity we will
always take v 2; in this case, the space 0l2mM can alternately be defined in terms

of rectifiable sets, as will be described below (the preceding discussion is neverthe-
less necessary to define d and ^2). This latter viewpoint has the advantage to
facilitate localization, moreover it yields intuitive définitions of mass and support.
However, up to the cited regularity theorem 1.3, the results of this paper stated for
v 2 can easily be generalized to v > 2.

For each m > 0 let Jfw dénote the m-dimensional Hausdorff measure induced

by the given riemannian metric g. Then we let

dénote the class of ail 3tfm measurable, countably (e?fm, m) rectifiable sets W a M
with locally finite #?m measure. The second property expresses that #?m almost ail
of W is contained in the union of countably many images of Lipschitz maps from
Rw into M. On i^m^ocM we define the équivalence relation

W~W'o Jfm((W\Wf) kj{W'\W)) =0.

Now, given a congruence class Se0t2mM one may choose Te Sn£ëmM and

represent T (Jfm L W) a rç, where W e ^w,iocM is relatively compact and tj is

an m-vectorfield with |q| g Z, cf. [Fel, 4.1.28]. Denoting by W* the set of points in
FF where |rç| is odd, it turns out that W* is uniquely determined by S up to sets of

measure zéro, cf. [Fel, p. 430] or [23]. In fact, one obtains an injective map
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from $2mM into ^m,ioc^/^» where the image consists exactly of the équivalence
classes [FF] which can be représentée by a relatively compact set. One is thus led to
define the space of m-dimensional locally rectifiable currents modulo 2 in M simply
by

Mass (e[0, oo]) and support of S [W] e 0t2mXocM are then defined by

M(5) Jfm(W) and spt S f) cl W\
W'eS

respectively, where cl dénotes closure. Moreover for every Borel subset B of M one
defines S L B>=[WnB] eM2mXocM. Of course if B is relatively compact then
S L B e M2mM. So far we hâve not defined ôS for S e @2mAocM\$2mM; this would
require a définition of the space !F2m locM which is irrelevant for this paper (see for
instance [Mol, 2.1]). We merely note that

spt ÔS U (Un spt d(S L £/)),
UczcM

where U'ci a M means that U is an open and relatively compact subset of M. Then
S € ât% ]ocM is said to be complète if spt dS 0.

Next we define the notion of quasiminimality for éléments of 0t2mXocM.

DEFINITION 1.1 (quasiminimizing). Let Q>\ and A a M. A current
S e 0t2mjocM is called quasiminimizing with constant Q in A, or simply Q-minimizing
in A, if

M(S L5)< ÔM(JT)

whenever 5 is a Borel subset of M, SL5 and X are éléments of ^M,
dX 5(S L 5), and spt(5 L l?)uspt XczA. Then S is called quasiminimizing in A
if S is g-minimizing in A for some Q^l. A 1-minimizing current is called

(absolutely) minimizing.

The principal application of this définition is the following. Assume that there

are constants 0 < a <* fi and a riemannian metric g0 on M such that on A,
<x2g0^g <L fi2go» Then every S e $2mXocM which is minimizing in A with respect to
g is quasiminimizing with constant Q~(PI(x)m in A with respect to g0. For
more comments on quasiminimality see [La2] and the références there; the example
[La2, 1.2] can readily be generalized to higher codimension.
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The proof of the following gênerai existence theorem for minimizing currents
mod 2 is analogous to that of [Fel, 5.1.6(1)], with the compactness theorem for
integer multiplicity currents replaced by its counterpart mod 2, [Fel, (4.2.17)v on p.
432]. A current R e 0t2m_x M is called a boundary in A a M or is said to bound in A
if there exists T e &2mM with sptrc^ and ôT R. (Note that in M ^R", R
bounds if and only if either m > 2 and ôR 0 or m 1 and R [W] for some finite
set W of even cardinality.)

PROPOSITION 1.2 (existence). Assume that Re$1m_xM bounds in some compact

Lipschitz neighborhood retract A in M. Then there exists S e ffi^M with

sptS c A and ÔS R such that S is minimizing in A with respect to g.

Regularity of minimizing currents mod 2 is discussed in [Fe2]. In particular, the

following holds.

PROPOSITION 1.3 (regularity). Let S eM2mAocM be minimizing in M. In case

m > 2 there exists a set I c M of Hausdorff dimension at most m —2 such that

sptS\(spt dSuZ) is an m-dimensional C00 submanifold of M. For m 1 the same
conclusion holds with 1 0.

We conclude this section with a few more technical results about the 'slicing'
and mapping of rectifiable currents mod 2 in M. The following lemma is a variant
of the formula on the bottom of p. 429 in [Fel]. A similar resuit for integer
multiplicity currents is proved in [Si, 28.9].

LEMMA 1.4 (slicing). Let S e $2mM and h: M -*R a C1 map. For t € R set

Ht := {x g M: h(x) <t} and f(i) :=M(5 L Ht). Then for almost ail t with Htr\
spt dS 0, f(t) exists, ô(S L Ht) e@2m_xM9 and

M(Ô(S L Ht) L U) < |/(01 sup \dh\

for ail open subsets U of M. The same conclusion holds with < in the définition of
Ht replaced by <.

Given S [W]e0i2ttM and a Lipschitz map n:M-+M, the push-forward
n#Se@2mM of S via n is defined by n#S ~[W% where W* consists of ail

y e n(W) with odd cardinality of Wnn~l{y}. Then clearly spt(7t#S) c=7r(spt S)
and

iM(tt#S) < Jm(n | W) dJ^m < Lip(7t)mM(S), (2)



128 VICTOR BANGERT AND URS LANG

where Jm(n\ W) dénotes the 3tfm approximate m-dimensional Jacobian of n \ W
and Lip(ft) is the Lipschitz constant of n, cf. [Fel, 3.2.20]. In case dS e@t2m_xM,

d o n# fl# o ô. (This follows from the corresponding property of
7t#: 0tmM ->MmM, cf. [Fel, p. 371], since 7t# commutes with the canonical projection

MmM-*M2mM, see [Mo2, Ex. 4.23].)

2. Isoperimetric inequalities and density bounds

Now let (M,g0) dénote an «-dimensional (n>2), simply connected, complète
riemannian C00 manifold with sectional curvature K< —1, and let dist dénote the

induced distance function on M x M. We write dist(x, ^) := inf{dist(x, y): y e A}
for 0 # A c M and define dist (x, 0) ->= oo. For x € M and r > 0 we set

B(x, r) := {y g M: dist (x, y) < r}, U(x, r) t= {.y g M: dist (jc, .y) < r}.

Further, for w > 1 and r^Owe define

where am dénotes the volume of the unit bail in euclidean m-space. Thus for m > 2,

Pm(r) equals the volume of a metric bail with radius r in hyperbolic m-space Hm

(with constant sectional curvature K s — 1). Note that

(m - 1)/Ur) < mocm sinh"1 " V fi'm{r). (3)

We state a mass estimate for the géodésie cône Y g 0l2mM from x e M over a

current ^€^_,M. Writing R [V] for some FcM one defines Y-=
(expx o h)#X, where X g ^(R x TxM) is the current associated to the set [0, 1] x

and h is defined by

h : R x TXM -+ TXM9 h(t, v) ri?. (4)

One has dY~R whenever R bounds.

LEMMA 2.1 (cône inequality). Let ReM2n_lM and spt R c B(x, r) for some

x e M, r>0 and l<^m<n. Then the géodésie cône Ye^M from x over R
satisfies

In particular, by (3), (m - l)M(y) <, M(R).
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In case m > 1 and R is a closed hypersurface the latter inequality is proved, for
instance, in [B-Z, 34.2.6], and the argument can easily be adapted to deduce 2.1.

Proof. Let V*=exp~l(V), where [F] R. For Jifm~l almost every v e V the

approximate tangent cône Tan"1"1^, t;) of Fat v is an (m — l)-dimensional linear
subspace of TXM. Then we choose an orthonormal basis ulv,..., ww_i,y of
Tanm~ !(K, t?) such that ulv 1 v for 1 < i < m — 2. Let w^-i^ dénote the component
°f wm- i,u perpendicular to v. Applying (2) with W [0,l] x V and n exp^ ° h, cf.

(4), we obtain

¦'(»), (5)

where we hâve abbreviated

meaningy(r, u) 1 in case m 1. Now comparison with hyperbolic space yields

~l(t\v\)

for 0 < ^ < 1, cf. [H-K]. Inserting this into (5), using mam sinhw"l fS'm and the fact
that pm l/îm is nondecreasing, we get

^\ [ j(Uv)djr

Sincey(l, v) < Jm-\(f\ V)(p) and Jfm'l(V) ~M(R) the claimed estimate follows.
a

As a conséquence of 2.1 we obtain the following.

PROPOSITION 2.2 (monotonicity formula). Assume that S € 0t2mtXocM is Q-
minimizing in U(x, r) cz M\spt dS, for some x g M, r > 0 a«d ô ^ 1. Then the

function mapping 0 < q < r to

M(5 L t/(x,g))

« nondecreasing.
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An analogous resuit for stationary varifolds was proved in [Anl, p. 481]. In
particular, 2.2 shows that every complète g-minimizing current S e 0t2m XocM has

exponential volume growth, cf. [Gr2, 1.3.C']. The argument proving 2.2 is well-
known.

Proof For 0 < t <> r, define S/S=5L U(x,t) and/(0 «=M(S,). By 1.4 (slicing),
for almost ail r, BSt e @m-iM,f(t) exists, and M(dSt) <f\i). Then the g-minimal-
ity of S in U(x,r) together with 2.1 yields

for ail almost ail t, hence

M - Qfijf)

for almost ail t with f{i) > 0. Now for 0 < qx < q2 < r with f(Q\) > 0, integrating
from Qx to q2 (and using [Fel, 2.9.19]) we get the claim.

For the remaining results of this section we assume that the sectional curvatures
of M be bounded from below as well, such that we hâve —a2<K< —l for some
1 < a < oo. This additional requirement will only be used through the fact that for
x € M and r > 0, the restriction of the exponential map expx to the bail B(0X9 r)
(where 0x dénotes the origin of TXM) is Lipschitz with constant

kar t= (ar) ~l sinh(ar). 6)

Moreover since K<09 expj1 is Lipschitz with constant 1. Then 2.2 leads to the

following uniform estimate.

COROLLARY 2.3 (lower density bound). For every 9>0 there exists a

constant q =q(0, Q,a9m9n) >0 such that the following holds: Whenever

S 6 ^locM is Q-minimizing in U(x, q) c M\spt dS, for some x e spt S and Q>:\,
then M(S L U(x9 q)) > 9.

Proof In view of 2.2 and the above remarks on expx it suffices to prove a

euclidean analogue of 2.3 for 6 close to 0. For rectifiable currents with intégral
coefficients this is done on p. 523 in [Fel], and it is readily checked that the

argument works for Z2 coefficients as well (replace the involved isoperimetric
iûequality by [Fel» (4.2.10)v on p. 431]).
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The following lemma will be important in the proof of the trapping theorem 3.3,

moreover it leads to an absolute upper density bound for quasiminimizing currents
mod 2 as stated in 2.5 below.

LEMMA 2.4 (sublinear isoperimetric inequality). Let ReM2n_lM be a

boundary in B(x9 r) for some x e M, r > 0 and 1 < m <n. Then there exists

T e$2mM with spt T c B(x, r) and dT R such that

M(T) < cQrnèkZ M(R)l~ô<cleamrM(R)l "',

where à •— (n — m + 1) ~l, Xar is defined as in (6), and c0 co(m9 «), cx cx (a, m, ri)

are constants.

Proof. The current jR «= (expj l)# Re^m-i (TXM) bounds in B(0x, r), hence by
1.2 (existence) there exists fe^t2m(TxM) with spt f c B(0x, r) and dï R such

that f is minimizing in B(0x, r). In fact, using the convexity of i?(0x, r) it is shown

that f is minimizing in TxM. Now, by an isoperimetric inequality due to F.

Morgan, cf. [Mol, 2.5], f satisfies

where ô.= (n— m-fl)"1, and c0 dépends only on the dimensions. Let

r-.^exp^ f e 0t2mM\ then spt T <= B(x, r), ôT R, and the first inequality follows
from (2) together with the properties of expx stated above. Since rnôX%.

a~mrnà~m sinhm(ar) and nô—m<0, the second inequality holds with c, :=
co(2a)~meam. D

2.5 COROLLARY (upper density bound). There exists a constant 9

6(Q, a, m, ri) such that the following holds: Whenever S e St^ XoQM is Q-minimizing
in U(x, r) c M\spt dS9 for some xeM and Q>1, then M(S L £/(*, r/2)) <
Qea(n-\)rl2

A corresponding resuit for minimizing currents in ^Rw was obtained in [Mol,
2.7] as a conséquence of the isoperimetric inequality already used in the proof of
2.4.

Proof It suffices to prove the following assertion for some fixed e > 0: There
exists 0'(Ô> a, m, n) such that M(S L U{x9 r/2)) < 0' whenever S satisfies the as-

sumption of 2.5 with r < e. For r > e, M(5 L £/(*, r/2)) is then bounded by 0'
times the maximal number of disjoint open balls with radius e/6 fitting into

r/2). This number is bounded above, up to constant factor, by a{n — l)r/2.
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The collection of the balls with the same centers but radius e/3 then covers
U(x9 r/2), and the balls with radius 2e/3 are still disjoint from spt ôS.

To prove the assertion, using the same notation as in the proof of 2.2, we note
that the g-minimality of S in U(x, r) together with 1.4 (slicing) and 2.4 yields

for almost ail 0 < / < r. Rearranging this inequality and integrating from t r/2 to
r we obtain the desired resuit.

3. Trapping

Let (M,g0) be given as stated at the beginning of the preceding section. Since

K < — 1 the following comparison lemma holds.

LEMMA 3.1. Let y: R ->M be a unit speed géodésie. For i 1, 2, let xte M and

dist(x,, y(R)) dist(xl? y(tt)) rt. Then

sinh2

and equality holds (e.g.) if {M, g0) Hn and xx, x2 lie in some closed totally géodésie

halfplane bounded by y(R).

Proof. This is shown using an application of the Rauch comparison theorem, cf.

[K12, 2.7.3], together with some hyperbolic trigonometry.

Previous to the proof of the main resuit of this section, 3.3, we establish an

optimal version of the classical lemma on quasigeodesics stated in the introduction.

Additionally this illustrâtes the proof of 3.3 in the simplest case. Recall that a

continuous curve a: [w, v] -*M is called rectifiable if it has finite length

£(<r)>=sup t dist(<jÇ,-i), c{Sj% (7)

where the supremum is taken over ail positive integers k and ail subdivisions

u s^Sq^Si <£ • • • <*$% v of [m, v], Then a is called Q-minimizing or a Q-quasi-
géodésie for some Q ;> 1 if for every subinterval [u',vf] of [u, v]9

H&\[u'9vi) <; Qdist(aiu%<r(v% For x9 yeMwc dénote by xy cM the closed

géodésie arc from x to y.
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THEOREM 3.2. Let a:[Q,u]->Mbe a rectifiable curve which is Q-minimizingfor
some Q > 1. Then

dist(<xCï),

for ail s g [0, u]. The constant cQ is optimal.

Proof. Choose x on a such that rf:=dist(x, <t(Q)g(u)) is maximal; we may assume
d > 0. Then let y : R -? M be the unit speed géodésie with y(0) g (t(0)<t(w)) and y(d) x.
For t g R, let is, dénote the géodésie hyperplane normal to y at y(f), i.e., the image
under the exponential map of the orthogonal complément of Ry'(0 in Ty{t)M. Define

t:M-^R by r(y)'=t for y e En and consider the closed upper halfspaces

Ht := {y g M: 1(7) > ^} bounded by Et9 for r g R. Note that t(ct(0)), t((x(w)) < 0.

Now for te[0, d\ define wo(0:=inf o~l(Ht) and w^O — supcr"^//,), i.e.,

[mo(0, «i(01 is the minimal subinterval of [0, w] containing a~x{Ht). Then put
r,(r)*=dist((r(«l(O), y(0)» «=0,1. It is easily checked that both r0 and rx are
leftcontinuous functions, and, by the choice of x, ro(d) rx (d) 0. Moreover, the

g-minimality of a yields

L(a\[uo(t)9 Wl(0]) < Q(ro(t) + r,(0) (8)

for r g [0, </j. Our aim is to construct a curve à in the hyperbolic plane H2 satisfying
a corresponding inequality. Thus let y: R-»i/2 be any unit speed géodésie, and let

v be a continuous unit normal vector field along y. Then for i=0,1, define

Thèse curves are merely leftcontinuous. However, the définition of arclength given
in (7) applies as well (but note that L also takes account of the 'jumps' of at\ and
3.1 yields

d}) + Lfojfc d\) < L(a\[uo(t), Uï(t)}) (9)

for t g [0, d]. Now put r(t) *=(ro(0 -h r,(0)/2 and define â: [0, ^ -^/f2 by

It follows from the convexity of the distance function on H2 x H2 that

2L(â\[t, dj) < L(c4t, d]) + Uax % d\).
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Combining this inequality with (9) and (8) we get

L(â\[t,d])<Qf(t) (10)

for t e [0, d\. The remaining part of the proof is now analogous to the argument
used in [La2, 2.4]. The idea is to compare â with a (smooth) curve â: [0, d] -+H2
satisfying

L(o%d\) QKt) (11)

for ail t, where â(t) exp(r(f)v(0) for some nonnegative function f : [0, d] -> R. The
discussion preceding 2.3 in [La2] shows that such curves exist for ail 0 < d < cQ9

with r(0) -*oo as d~+cQ. Hence in case d>cQ, d can always be chosen such that
d < d and r(0) > sup f. Setting s*=sup{f: r(0 > r(t)} we obtain r(s) > r(s). More-

over, it can be shown that L(<t|[s, d]) < L(â\[s, d]), which then leads to a contradiction

to (10) and (11).
For ail possible choices of d, the curve obtained by concatenating â with the

inverse of its reflection with respect to y is Q-minimizing in H2, cf. [La2, 2.3]. This
shows that 3.2 is no longer true if cQ is replaced by a smaller constant.

Now we assume again that the sectional curvatures of M be pinched between

two négative constants, w.l.o.g. — a2 < K < — 1.

THEOREM 3.3. For ail Q>\ and \<m <n there exists a (computable)
constant 4> do(Q, a, m, n) such that thefollowing holds: Whenever S g 0t2mM is Q-
minimizing in M then

dist(x, C) < d0

for ail x 6 spt S, where C dénotes the convex hull of spt ÔS.

Proof For m 1, the resuit is a conséquence of 3.2. Namely, it is easily shown
that every g-minimizing current R e M2M with finite boundary mass can be written
as a sum R Rt + R2 -h • • • -h Rk, where k M(dR)l2 and each Rt is g-minimizing
and indécomposable as defined in [Fel, 4.2.25]. Then every Rt is the current
associated to a g-mmimizing unit speed curve <ti:[0,M(Ri)]-*M. In order to
apply this resuit consider JRs=S L {y 6 M: dist(>>, C) > t} for some appropriate t
(such that M(BR) < oo).

Now let m ^ 2. Let x € spt S and set d*=dist(x, C); we may assume d > 0. Then
let y: R -* M te the unit speed géodésie with y(0) e dC and y(d) x, and let t and Ht
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be defined as in the proof of 3.2. Finally, define St *~S L Ht and/(0 î=M(S,) for
t e R. Note that CnHt 0 (and hence spt dSnHt 0) for t > 0.

For r > 0 let Nr --= {y e M: dist()>, y(R)) < r} dénote the closed tubular r-neigh-
borhood of y. Then 3.1 shows that on M\Nr9 \dx\ < (cosh r)~l. Using 1.4 (slicing)
we infer that for almost ail t > 0, dSt e@2m_lM, f'(t) exists, and M(3S,) < |/'(0|-
Moreover, for every choice of a function r{f) > 0 (to be explicitly determined

below), Rt --={dSt) L (M\Nr(t)) satisfies

M(*,) < (cosh KO) " 1/(01 < 2e"«>\f'(t)\. (12)

Now let Pt dénote the push-forward of ôSt via the nearest point projection

M-tN^, and let Tt be the isoperimetric spanning surface for Pt given by 2.4

(sublinear isoperimetric inequality). Since M(P,) <M(ôSt) < |/'(0| we get

M(r,)<c1^^>|/'(0|1"5, (13)

where ô =(n —m + l)~ï <1. Further, let Xt and Yt dénote the géodésie cônes from
y{i) over dSt — Pt and Rt respectively. Then Xt Yt L (M\A^r(0), thus by 2.1 (cône
inequality) and (12) it follows

M(Xt) < M(Yt) <2(m-l)-le~«»\f(t)\. 14)

Since d(Tt + X,) dSn the Ô-minimality of S in M yields /(0 < QM(Tt + Xt).
Using the subadditivity of mass together with (13) and (14) we get

ô + c3e 11
for almost ail t > 0, where c2 ôci an(l cz — 2Q(m ~ 1) ~ ^ Substituting
KO ^ l°g/(0 f°r some constant k > 0 we obtain

1 < ^(O^-'IAOI1 "' + |

for almost alW > 0 with/(0 ^ 1. In order to make the two terms on the right-hand
side comparable we choose X so that amk — 1=(— A — 1)(1— S), thus k

b\(am + 1 — S) > 0 as required. Since / is nonincreasing it follows

c^f{t)-^\f'{f)\~k-Kf{ty*y (15)

for t as above and for some constant c4 c4(Q, a, m, ri), By 2.3 (lower density
bound) there exists q q(Q, a, m, ri) > 0 such that /(/) ^1 for t ^d — g. Thus
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integrating (15) from t 0 to d-~ q (and using [Fel, 2.9.19]) we conclude

dist(x, C) d < c4- lX ~l + Q =--d0,

as desired. D

REMARK 3.4. In case m n - 1, 3.3 also holds for rectifiable currents 5 (with
intégral coefficients) in M. Namely, let x, <i, y, 77, and S, be given as in the above

proof. Dénote by Z the géodésie cône from y(0) over So; then ôZ e0tn_xM and

(dZ) L. Ht St for / > 0. Now the same décomposition argument as in the proof
of [La2, 2.4] shows that Z can be assumed to hâve multiplicity 1 everywhere. Then
one may proceed as above, but instead of using 2.4 one takes

Tt (St - d{Z L Ht)) L Nr(t) with the mass estimate M(Tt) < c\ea{n-2)r{t) for some
constant c\=c\(a9 n). Finally, one may choose r(t) such that f(t)
2Qc\ea(n~2)r(t).

4. Existence results

In this last section, (M, g0) will always dénote a simply connected, complète
riemannian fz-manifold with sectional curvature — a2<K< —1. Recall that the
idéal boundary of (M, g0) is defined by M^ ••= SMj ~ where SM is the unit sphère
bundle of M, and v ~ w if and only if the géodésie rays yv and yw with initial vectors
v and w, respectively, are asymptotic in the sensé that supf >0 dist(yy(0, 7w(0) < °°-
There is a natural topology on

called cône topology, s. [E-O] or [An3, Sect. 0]. With this topology, M is home-

omorphic to a compact bail in Rn. The boundary at infinity of a subset A of M is

then defined by

where Â dénotes the closure of A relative to M. In [An3] it is shown that whenever

v e M^ and V is any neighborhood of t; in M then there exists a convex subset C
of M with M\ V cC but t? # bd^ C. In particular, this implies the useful fact that
always

bd^^ (16)
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where conv A dénotes the convex hull of A (i.e. the intersection of ail convex
subsets of M containing A).

Now assume that g is a riemannian metrie on M whieh is Lipschitz équivalent
to gOi i.e. there are constants 0 < a ^ /? such that

<*2go(v, v) < g(v9 v) < P2go(v, v)

for ail v 6 TM. For instance, the lift of an arbitrary metric on some compact
quotient of (M, gQ) has this property. We apply the results of the preceding section

to construct m-dimensional, complète minimizing surfaces in (M, g) with prescribed
boundary data at infinity, for every 1 < m < n. Throughout the section, ail metric
notions will generally refer to g0 rather than to g, except that the constructed
surfaces minimize area with respect to g. In tenus of g0, thèse surfaces are
Q-minimizing with constant

Given a subset L of Mx, the strategy to construct a complète minimizing
surface S e M2mXocM asymptotic to L can roughly be described as follows. First L is

approximated, in an appropriate sensé, by a séquence of (m — l)-dimensional
boundaries Rt in M (see the conditions given in 4.2 below). Then for each Rn 1.2

yields the existence of a minimizing current St e@l2mM with dSt =Rr Now the
desired surface S will be obtained as the limit of some subsequence (St and the

trapping inequality 3.3 will be used to infer that indeed bdœ spt S L. In order to
extract the convergent subsequence we need the following resuit which is a variant
of the compaetness theorem [Mol, 2.8]. Convergence St ->£ e ^locM means that
for every yeM there exists a neighborhood UaczM of y such that

StjL. U-*S L Uin the ^2 topology, cf. Sect. 1.

PROPOSITION 4.1. Let \<m<n and xeM. Assume that for every positive
integer i9 St e &2mM, dSt e0l2m_xM, spt dStnU(x, i) 0, and St is minimizing in

t/(x, i) with respect to g. Then some subsequence (St of(St) converges to a complète
current S e 0l2mXocM which is minimizing in M with respect to g. Moreover,

spt S, nK ^ 0 for almost ail i => spt SnK #0 (17)

for every compact subset K of M.

Proof Each St is g-minimizing in U(x, i) with respect to gOf for Q (j8/a)m.
Thus since spt dStr\U(x9 i) 0, 2.5 (upper density bound) yields



138 VICTOR BANGERT AND URS LANG

suplM(Sl L U(xJ)) < oo for ail y >0. The existence of a subsequence converging
to a complète élément of 0t2mXocM now follows by repeated application of 1.4

(slicing) and [Fel, (4.2.17)v on p. 432] in combination with a diagonal séquence

argument. The remaining conclusions are obtained by adapting [Fel, 5.4.2] (see

also [Si, 34.6(2) and 31.2]).

Now we prove the foliowing gênerai existence resuit for complète g-area
minimizing currents S e $2mXocM.

THEOREM 4.2. Let \<m <n, and let L be a closed subset of Mx with the

property that there exists a séquence of boundaries Rt g 0t2m_XM in M satisfying the

following conditions:

(i) For every neighborhood U of L in M there exists k > 0 such that spt Rta U

for ail i :> k9 and

(il) for every open V a M meeting L there exists a closed set G c: V\L such that
almost ail Rt do not bound in M\G.

Then there exists a complète m-dimensional surface S e 0l2mXocM which is minimizing

in M with respect to g and asymptotic to L, i.e. bd^ spt S L.

Note that the obtained minimizing current S enjoys the regularity property
described in 1.3. Moreover, S satisfies the uniform density bound given in 2.5

with Q (Pl<x)m. Since the condition on the limit set L given in the theorem is

rather awkward we will restate the resuit in a weaker but more convenient form
in 4.3 below. In case m n — 1 the assumption on L can be shown to be

équivalent to the following: L bd U bd U' for some disjoint open subsets

£/, U' of Mœ with UuU' M^L. This condition is in turn équivalent to that
given in 4.4.

Proof Choose x e M and r( > 0 such that spt Rt a B(x, rt for ail i. Then by
1.2 (existence) there exists S^^M with spt S, aB(x, rt) and ôSl Rl such

that St is minimizing in B(x, rt) with respect to g. By condition (i) we may
assume that the S, satisfy the assumptions of 4.1. Therefore some subsequence
(St converges to a complète current S e 0t2mXocM which is minimizing in M with
respect to g. It remains to show that bd^ spt S L.

Each St is quasiminimizing in B(x, rt) with respect to g0. In fact since B(x, rt)
is convex it follows that S, is quasiminimizing in M. Let A := Ut spt Rt and
C*=conv A. Then 3.3 yields

spt St c JV*= {y e M: dist(y, C) < 4>} (18)
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for ail /. Thus since St -> S and N is a closed subset of M, spt S cN. Using (16) and
condition (i) of the theorem we get

bd^ spt S c bd^N bd^ C bd^ c L.

Conversely, let F and G be given as in (ii); then spt St nG # 0 for almost ail /. In
view of (18) thèse spt St then meet the compact subset K-=GnN of M. By (17) it
follows spt Sr\K^0 and hence sptS'nF#0. Since this is true for ail open
V czM meeting L we get L c bd^ spt S, proving the theorem.

The following resuit is a conséquence of 4.2. For the spécial case g g0 it is

stated in [Gr2].

4.3 THEOREM. Let 2 < m < n, and let L be an (m — \)-dimensional compact
topological submanifold of Mx (Le. the homeomorphic image of some compact
(m — \)-dimensional topological manifold). Then there exists a complète m-dimen-

sionalsurface S € 0t2mXocM which is minimizing in M with respect to g andasymptotic
to L.

Proof Identify M with the open unit bail U(0, 1) c Rw, where M is homeomorphic

to the closed bail 2?(0,1). For every V as in condition (ii) of 4.2 choose a
bounded open set W a Rn with Wr\B(Q, 1) V. We claim that for every such W
there exists a compact set Ka W\L such that 0#/J|e[L] eHm_l(Rn\K)9 where

Hm _ refers to singular homology with Z2 coefficients, i stands for inclusion, and

[L] eHm_l(L) dénotes the fundamental class.

Namely, using standard techniques from algebraic topology, one shows that

0^i+[L] 6Hm_l((Rn\W)vL). Next one may use the fact that L is an absolute

neighborhood retract (cf. [Gb, 26.17.4]) to infer that (Rw\#0uL has an open
neighborhood Z such that still 0 ^ i*[L] g Hm_x(Z). Then K'-=Rn\Z is the desired

compact set.

Now approximate L by a séquence of closed singular Lipschitz chains (with Z2

coefficients) in 17(0,1) such that the corresponding cycles Rt e3fm-\ t/(0,1)
Sf2m_xM satisfy condition (i) of 4.2, and such that for ail F, W and K as above,
almost ail members of the séquence are homologous to L in W\K. It remains to
show that the obtained séquence (Rt) also satisfies condition (ii) of 4.2. One takes
G KnB(0, 1). By means of the déformation theorem [Fel, (4.2.9)V on p. 431] one
shows that for every Rt bounding an élément of M2mM in M\G9 the corresponding
Lipschitz chain is homologous to zéro in Rn\K.

As mentioned above, in case m n — 1 the condition on the limit set L given in
4.2 can be reformulated in a much simpler way. Moreover in this case, the
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fondamental estimate 3.3 has an analogue for integer multiplicity currents as noted
in 3.4. Thus we get the foliowing existence theorem for complète minimizing
hypersurfaces in (M, g). Notation and définitions are the same as in [La2] where the
resuit was obtained for the spécial case that (M, g) is Lipschitz équivalent to
hyperbolic M-spaee. In the statement of the theorem, bd, cl and int refer to the

sphère topology of M^.

THEOREM 4.4. Let L be a subset ofMœ satisfying L bd A for some subset A

of M^ with A =cl(inti4). Then there exists a closed set W of locally finite perimeter
in M such that bd^ W A, S--= d[W] e 0tn_, locM is minimizing in M with respect to

g, and bd^spt S L.

According to the regularity results from géométrie measure theory, spt S is a C°°

submanifold of M up to a closed singular set of Hausdorff dimension at most n — 8.

The proof of 4.4 is analogous to that of [La2, 3.2]. In order to facilitate the
discussion of 4.5 below, we sketch it in a slightly more complicated form than

necessary.

Proof We may assume L^0. Choose x eM and identify M^ with the unit
sphère SXM in TXM. Then for ail subsets V of SXM let conex V:={expx(rv): r e

[0, oo), v e V} dénote the géodésie cône from x over V in M. Moreover, define
ô: SXM ~*[0, n] as the spherical distance of v e SXM from L a SXM in SXM. Now
for every positive integer i let

Tt := d[B(x, i)] L cône*{veA: ô(v) > ôt},

where the St are positive numbers chosen such that d7rle^n_2M and

lim^oo^, 0. Let Q (Ploc)n~\ and let d0 do(Q,ayn) >0 be the constant given

by 3.4. As in the proof of [La2, 3.2] it follows that there is an J^n measurable

set Wt of finite perimeter in M such that St'=d[Wt] — T, is minimizing in
B(x% i -h do) with respect to g. Then 3.4 shows that S, is actually minimizing in
M (with respect to g). Some subsequence of the Wt converges weakly to a set W
of locally finite perimeter in M, and St~d[W] is a complète minimizing hyper-
surface in (M, g% as desired. Since spt S has Jfn measure zéro we may assume

W to be closed (replace W by spt[W]).
The conclusion of the proof is now analogous to that of 4.2. Namely, by the

assumptions on L and A, the boundaries Rt «=35, —dTt clearly satisfy condition

(i) of 4.2. Moreover, given V as in condition (ii), one finds a géodésie

y:tL^M with y(R) c V and idéal points y(~~oo) eintA and y(-f oo) €Mm\A.
Then oue may take G y(R).



Trapping quasiminimizmg submanifolds 141

In [An2, 3.1] Anderson constructed complète minimizing hypersurfaces invariant

under a discrète group of isometries acting on hyperbolic w-space. We use his

argument to obtain a similar resuit for F -invariant minimizing hypersurfaces in
(M, g), where F <= Iso(M, g) is an arbitrary (not necessarily discrète) group of
isometries of (M, g). Note that since g is Lipschitz équivalent to g0, isometries of
(M, g) extend to homeomorphisms of M.

THEOREM 4.5. Let L and A satisfy the assumptions of 4.4, and assume

additionally that A be invariant under the action (extended to M) of some subgroup
F c Iso(M, g). Then there exists a closed set Q of locally ftnite perimeter in M such

that bà^Q — A, I--=d[Q] e ^n_X]ocM is minimizing in M with respect to g,
bd^ spt I L, and Q (and hence I) is F-invariant.

We emphasize that for this resuit, to ensure the existence of a g-area minimizing
hypersurface I asymptotic to L and invariant under F, it is in gênerai not sufficient

to assume merely L to be F-invariant (instead of A). This is shown by simple
examples. Note that in case the action of F on M is free and properly discontinu-

ous, and L is the limit set of F, the produced minimizing hypersurface I projects to
a complète, stable minimal hypersurface in MjF which is smoothly embedded

provided n < 7. On the other hand, 4.5 gives rise, for instance, to catenoid- or
helicoid-like hypersurfaces whenever (M, g) possesses a corresponding (continuous)

group of isometries. In hyperbolic 3-space, minimal surfaces exhibiting such sym-
metries were constructed by Mori [Mr] and Polthier [Po].

Proof In the following we construct a (possibly constant) séquence

fi, 3 Q2 z> • • • of closed subsets of M such that for every j > 1, fi, has locally finite

perimeter, d[Qj] e âën_hlocM is asymptotic to L and minimizing with respect to g,

bd^Qf A, and for every y er,0;+lcyÛr The desired set Q will then be obtained

as the limit of some subsequence of the Qj.
First we apply 4.4 and let Qx be equal to the obtained set W. Now for every

integer j > 1, assuming that Qj is already defined (and has the properties stated

above), we construct QJ+X as follows. We repeat the proof of 4.4 with the additional
requirement that for each i, spt Tt is contained in the closed set

fÇ)r
Since bd^ M; A (which follows from the f-invariance of A together with 3.4), this

can be achieved by choosing the ôt appropriately (possibly Tt 0 for small i). Then

for every y e F and every i, since both d[yQj] and S, d[Wt] — Tt are minimizing in

(M, g), a simple area comparison argument shows that we may assume Wt c yQj
and hence Wt c Mr We get WcMj and put QJ+, «*= W.
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Now we extract some subsequence (QJk) of (O7) converging weakly to a set Q of
locally fimte penmeter m M Smce each d[Qj] îs minimizmg in (M, g) so îs Z 3[O]

By the same argument as in the proof of 4 4 we may assume Q to be closed In
order to show that bd^O A and bd^ spt E L we use again 3 4 Finally, since

for ail k and y e f, ît follows O c yQ for ail y e F Hence Q îs F-invariant as

desired
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