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Jacquet functors and unrefined minimal K-types

ALLEN Moy AND GOPAL PRASAD

The notion of an unrefined minimal K-type is extended to an arbitrary reductive group over a non
archimedean local field. This allows one to define the depth of a representation. The relationship between
unrefined minimal K-types and the functors of Jacquet is determined. Analogues of fundamental results
of Borel are proved for representations of depth zero.

1. Introduction

Suppose G is an absolutely quasi-simple, simply connected algebraic group
defined over a nonarchimedean local field k and ¢ = G(k) is the group of its
k-rational points. Given a point x in the Bruhat-Tits building of ¥, the isotropy
subgroup of the point x, i.e., 4, = {g € 4 |g- x = x}, is a parahoric subgroup of %.
The authors defined in [MP] natural filtration subgroups of %, denoted by Z,,
there, and to be denoted by %,, in this paper, and introduced the notion of
unrefined minimal K-types for irreducible admissible representations of ¥. Let
Gr+ = UD, 9, s. Given any admissible irreducible representation n of 4 on a
complex vector space V,, as the main result in [MP], the authors showed (when the
characteristic of k is zero) that there is a nonnegative rational number r = g(7) such
that

(1) For some x in the building, the space Vi=r* of ¥, .-fixed vectors is
nonzero and r is the minimal nonnegative number for which this occurs.

(2) For any y in the building with V3 * # {0}, the representation 7 of %,, on
V¥»* contains an unrefined minimal K-type.

The rational number ¢(r) is called the depth of the representation n. Furthermore,
any two unrefined minimal K-types occurring in n are closely related via a notion
of associativity. The extension of this result to a general reductive group as well as
when the characteristic of k is positive is rather straightforward — it is done here in
section 3 — but for various applications it is useful to have it written down.

As one such application, it is very natural to consider the relationship between
unrefined minimal K-types and parabolic induction. A prototype for what can be
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expected in this area are the results of Borel’s [B1]. In the case of the unramified
principal series I(v), Borel has shown

(1) Any subquotient of an unramified principal series contains a nonzero
Iwahori fixed vector.

(2) Any irreducible admissible representation which possesses a nonzero Iwa-
hori fixed vector occurs as a subquotient of an unramified principal series.

(3) Let # =.4N be a parabolic subgroup of ¥ (see 2.1 below) and %, an
Iwahori subgroup of ¢ (see 3.1 below) with an Iwahori decomposition with
respect to £ and 4 — e.g. x a point in the building of 4. If (n, V,) is an
irreducible admissible representation with a nonzero Iwahori fixed vector,
then the Jacquet functor J

Jyi Vix > J (Vo) *x
is an isomorphism.

Borel’s result (1) can be reformulated as follows into a statement which allows
for generalization to unrefined minimal K-types. The depth of an unramified
character v or more generally that of any irreducible admissible representation
possessing a nonzero Iwahori fixed vector is zero. Whence, Borel’s result can be
restated in a weaker form as saying that the depth go(n) of any subquotient 7 of I(v)
is equal to the depth o(v) of the inducing representation v. In particular, if
P = M N is a parabolic subgroup of % and o is an irreducible admissible represen-
tation of .#, we can naturally generalize the depth zero property of subquotients of
an unramified principal series to the assertion that any subquotient n of the induced
represenation Ind5s has depth o(n) equal to the depth g(¢) of 6. The proof of this
assertion is one of our main results (Theorem 5.2). We also prove a similar result
for the subquotients of a Jacquet module (Theorem 4.5).

The ‘refinement’ of an unrefined minimal K-type (%, ,, x) to a refined minimal
K-type is still not well understood and presently there is no precise definition of a
refined minimal K-type. However, in the case of depth zero minimal K-types, i.e.
unrefined minimal K-types of the form (%,, 0), where %, is a parahoric and ¢ a
cuspidal representation of M,(f) =%,/%, - inflated to %,, there is no need for
refinement. Therefore, we call an unrefined minimal K-type of depth zero a (refined)
minimal K-type. In section 6, we extend Borel’s results (1), (2) and (3) to arbitrary
depth zero representations.

Many of the results on depth zero representations in section 6, including
Proposition 6.7 and Theorem 6.11, were obtained a little earlier by Lawrence
Morris. Upon completion of this manuscript, we received the preprint ‘Level zero
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G-types’ containing his results. Our results were obtained independently of his
work and our proofs appear to us to be conceptually simpler and more direct
than his.

The authors would like to thank Dan Barbasch, Dragan Milicic, Marko
Tadic, Marie-France Vigneras and David Vogan for discussions during the pe-
riod this paper was writtgn. The second author visited the Institut des Hautes
Etudes Scientifiques and the Tata Institute of Fundamental Research during the
summer of 1994. He would like to thank these institutions for their hospitality
and support. During the final writing of this paper, the first author was a mem-
ber of the Institute for Advanced Study. He would like to thank the Institute for
its hospitality and support. The authors were supported in part by the National
Science Foundation grants DMS 9203933, DMS 9204296 and DMS 9304580.

2. Jacquet functors

2.1. The following notation will be used throughout this paper. £ will denote
a nonarchimedean local (i.e. locally compact) field of arbitrary characteristic and
G will be a connected reductive algebraic group defined over k. The group G(k)
of k-rational points of G, with the natural locally compact topology induced
from that on k, will be denoted by 4. The Lie algebra of G will be denoted by
L(G) and its dual by L(G)*. The vector space of k-rational points of L(G) (resp.
L(G)*) will be denoted by g(resp. g*); g is a k-Lie algebra and g* = Hom,(g, k).
L(G)* (resp. g*) will be considered as a rational G-module (resp. ¥-module)
under the coadjoint action of G (resp. ¥).

We recall some basic results on the Jacquet functor. Let (n, V) be an admis-
sible representation of . Given a parabolic k-subgroup P = MN of G, where M
is a maximal connected reductive k-subgroup of P and N is the unipotent
radical, let 2, # and 4 be the groups of k-rational points of P, M and N
respectively. We shall say that a subgroup of % is a parabolic subgroup if it is
the group of k-rational points of a parabolic k-subgroup of G. Thus £ is a
parabolic subgroup of ¥; # is called a Levi factor (or a Levi subgroup) of 2.
The Jacquet module J, (V) associated to = is the representation of .# on the
space of A -coinvariants of V,. Thus, J,(V,) =V, [V, (A), where V(A" is the
vector space

Vi(AN) =span{n(n)v —v |[ne A and ve V,}.

Let A" be the group of k-rational points of the unipotent radical N’ of the
parabolic k-subgroup P’ containing M and opposite to P. A compact open
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subgroup # of ¢ is said to have the Iwahori decomposition with respect to the
parabolic 2 and the Levi factor # if

F=(FN) (FM) (FnoN).

The following fundamental theorem of Jacquet and Harish-Chandra (see [Cas:
3.3.1 and 3.3.3] or [Si: 2.3.6]) shows the importance of an Iwahori decomposition.

THEOREM 2.2. Let (n, V,) be an admissible representation of 4. If P = M N
is a parabolic subgroup of 4 and ¢ is an open compact subgroup which has the
Iwahori decomposition with respect to P and the Levi factor .#, then the map

Tyt V= Iy (V2)
yields a surjection
Vi, (V) 4.

In particular, as there is a sequence of open compact subgroups of 4 which admit
Iwahori decomposition and which constitute a fundamental system of neighborhoods of
the identity, the Jacquet module J , (V) is an admissible representation of M#.

We note here that J (V) is a .#-module of finite length.

2.3. If Ind%,, is the unnormalized induction functor from # = # A" to ¥, it is
elementary (see [Cas: 3.2.4] or [Car: II]) that J, is the left adjoint of Ind% , i.c.
given an irreducible admissible representation (o, V,) of #, there is a canonical
identification

Homy(V,, Indz/,y V,) =Hom ,(J ,(V,), V).

2.4. Given a parabolic subgroup 2 and a Levi decomposition # = 4N, a
parabolic subgroup 2 for which .# is a Levi factor is called an .#-associate of 2.
A representation g of # can be inflated to any .#-associate 2 of 2 and induced to
9.

THEOREM 2.5. Suppose o is an irreducible absolutely cuspidal representation of
M and © is an irreducible subquotient of the induced representation Ind% , a. Then,
there exists an M-associate MU (resp. M ¥V") such that n is a subrepresentation (resp.
quotient) of the induced representation Ind%,, o (resp. Ind%,,- 6). Furthermore, for any
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two M-associate parabolic subgroups P,=MN"| and P, = M N,, the Jordan-
Holder factors of Ind% ,, o and Ind% ., o coincide.

3. Unrefined minimal K-types for reductive groups

3.1. Let K be a fixed maximal unramified extension of k and I = Gal(K/k). Let
o denote the ring of integers of k; p be the maximal ideal of o and § (resp. &) be
the residue field of £ (resp. K). Let 2G be the derived group of G. The Bruhat-Tits
buildings #(2G, K) and #(2G, k) of 2G|K and 2G|k respectively are canonically
defined. The (enlarged) Bruhat—-Tits building #(G, K) (resp. #(G, k)) of G/K(resp.
of G/k or of %) is the product of #(2G, K) (resp. #(2G, k)) with X, (C) ®;R;
where C is the maximal K-split (resp. maximal k-split) torus contained in the center
of G. There is a natural action of the Galois group I' on %#(G, K) and #(G, k) can
(and will) be identified with the subset of points of #(G, K) fixed under I.

To each point x of the building #(G, k) of G/k, Bruhat and Tits [BT2] have
associated a subgroup of G(K), the parahoric subgroup determined by x, to be
denoted by G, here (we hope this notation will not cause any confusion), which is
a certain subgroup of finite index in the isotropy group at x. (The parahoric
subgroup is defined to be the inverse image in the isotropy at x of the identity
component of reduction mod p of the o-group scheme associated with the isotropy
subgroup. If G is a semi-simple simply connected group, then the parahoric
subgroup coincides with the isotropy subgroup.) The parahoric subgroup is
“defined” over k£, i.e. it is stable under I"; the subgroup ¥ n G, will be denoted by
%, and it is by definition the parahoric subgroup of ¢ determined by (or associated
with) the point x; it is a compact-open subgroup of 4. A minimal parahoric
subgroup is called an Iwahori subgroup. It is known that the Iwahori subgroups are
conjugate to each other under 4.

3.2. Filtrations of parahoric subgroups

Let S be a maximal k-split torus of G and T be a maximal K-split torus defined
over k and containing S. Let Z be the centralizer of T in G. Then as G is quasi-split
over K, Z is a torus and it is defined over k since T is. Let L be the splitting field
of Z/K; it is a totally ramified finite Galois extension of K. Let £ =[L : K] and w
be the additive valuation of L such that w(L*) = Z.

Let &( = X*(T)) be the set of roots of G with respect to 7. For b € &, let U, be
the corresponding root subgroup; it is a connected unipotent subgroup of G defined
over K and normalized by Z; let G, be the subgroup of G generated by U, and U_,.
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Each root b € @ determines a unique (up to K-isomorphism) extension L, of K
contained in L such that if b is nonmultipliable, then U,, and if b is multipliable,
then U, /U,,, is K-isomorphic to R;, ;x(Add). In case G/K is a product of a torus
and certain absolutely quasi-simple connected K-groups, then the degree
[L, : K] £3, for all b € @, but in general these degrees can be arbitrary.

The apartment A of the Bruhat-Tits building of G/K associated with the torus
T is an affine space under X_(T) ®;R. Let F denote the space of R-valued
affine-linear functions on A4 and let the constant function which at every point of A
takes the value 1 be denoted by d. The apartment A(S) associated with the maximal
k-split torus S in the building %(G, k) is 4 N %(G, k).

Let Y( = F) be the set of affine roots of G relative to T, K (and the valuation
on K). For y e ¥, let U, be the subgroup defined exactly as in [MP: 2.4]. Let x be
a point of A(S) and G, be the associated parahoric subgroup of G(K). Then the
subgroup Z,:=Z(K) n G, is a subgroup of the maximal bounded subgroup of Z(K)
of finite index; it contains the maximal bounded subgroup of 7(K), and as the
notation suggests, it does not depend on x( € A(S)). For any positive integer n, let

Z,={z €Zy| w(x(z) — 1) 2 n for all characters y of Z}.

Now for a point x in the apartment A4(S) and r 20, let G,, be the subgroup
generated by the Z, for n =2 r, and the U, for € ¥ such that y/(x) = r. It is obvious
that G, =G, and if s=r, then G,, =G,,. For r 20, let G,,«=),>,G,,. It
follows from [T: 1.4.2] that G, , is a normal subgroup of G, and in fact for r, s 2 0,
the commutator subgroup [G,,, G, ] is contained in G,, . Therefore, for r > 0,
[G,0+> G.,] = G,,+ and so in particular, G,,/G,,+ is abelian. The conjugation
action of G, on G,, induces a natural action of the group G, /G,o+ on G,, /G, ,+.
The group G, /G, o+ can be identified with the group of F-rational points of the
maximal reductive quotient M, of the reduction mod p of the o-group scheme
associated to the parahoric subgroup G,.

Since G, acts transitively on the set of apartments of the Bruhat—-Tits building
of G/K containing x ([BT2: Proposition 4.6.28(iii)]), and for r 20, G, , is a normal
subgroup of G,, we conclude that the filtration of G, introduced above is indepen-
dent of the choice of the apartment containing x.

For each r 20, the subgroup G,, is stable under the Galois group I' and we
denote the subgroup ¥4,nNG,, (resp. 4,nG,,+) by 4, (resp. 4,,.). The sub-
groups 4., and ¢, , . are open normal subgroups of the parahoric group ¢,. For
y=g-'x,8€9=G(k),st G, =¢G,,¢g',G,,.=¢G,,.g "9, =¢%,.,8" and
Y,,+=8%.,+8 " These subgroups are well defined (i.e. they depend only on y and
not on the choice of g). In the sequel we shall often denote the pro-nil radical ¢+
of 4, by 4.
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3.3. The associated filtrations of g and its dual g*

The construction of the filtrations of g and g* given in [MP: §3] can be imitated
to get for r € R, and x in the Bruhat-Tits building of G/k, filtration lattices g, , and
g¥_, in the more general setup of this paper once we establish the following
notation. Let L be as in 3.2 and for b € @, let L, be as in 3.2. We fix a uniformizing
element w, of L,. As before,let / =[L : K]. Forbe ®,let £, =[L : L,] =¢/[L, : K].
For an affine root y whose derivative (or gradient) is b, we set £, =¢,. We note
that ¢ + 16 is again an affine root if and only if ¢ is an integral multiple of 7.

Let ., + = s>, 8xs (resp. g¥ _,+ = Js<, g% _,). Forevery r, g, (resp. g¥ _,) is
stable under the adjoint (resp. coadjoint) action of ¢, and the induced action of the
subgroups 4} on g,,/g,,+ (resp. g¥_,/g¥_,+) is trivial. So there is an induced
action of M (f) =¥, /4} on g,,/g,,+ as well as on g¥ _, /g* _, .. For r > 0, there is
natural M, (f)-equivariant isomorphism of 4, ,/%, .. onto g,,/g,, .

Given a point x of the Bruhat-Tits building of %, there is a monotone
increasing sequence {r; |i € NU{0}} of nonnegative real numbers such that r, =0,
fOI‘ all ia gx,r,—_, # gx,ri’ gz,ri_l # gx,ria and fOI' ri_ <s é Tis gx,s = X,r;s gx,s = Qx,r,-
(cf. [MP: 3.4])). (Equivalently g¥ _,  #g¢¥_,andforr,_<s<r, g% ;=90%_, )

3.4. Definition of nilpotence and unrefined minimal K-type

We shall say that an element X of g* is nilpotent if there is a 1-parameter
subgroup

A:GL, -G,

defined over k, such that Lim,_, A(t)X = 0. Note that in case k is of characteristic
zero, according to a theorem of Kempf and Rousseau ([K], [R]), the last condition
is equivalent to the condition that the Zariski-closure of the G-orbit G - X contains
0. Thus for local fields of characteristic zero the above definition of nilpotence is
equivalent to that given in [MP : 3.5].

For i > 0, the Pontrjagin dual of 4, , /%, , can be identified (after a choice of
an additive character of the prime field of f) with g% _, /g _,, _, (cf. [MP: 3.7, 3.8]).
A character y of 4, /9,,, , is said to be nondegenerate if the coset X + 8% —r,_,
corresponding to it does not contain any nilpotent elements. The nondegeneracy of
a character does not depend on the choice of the additive character.

An unrefined minimal K-type is a pair (%,,,x), where x € (G, k) r is a
nonnegative real number such that ¥,, # %, ., x is a representation of %,, trivial
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on¥%,, . and

(i) If r=0, then y is a cuspidal representation of the reductive group
M.() =¥%,./%; inflated to ¥,.
(i) If r >0, then x is a nondegenerate character of 4, ,/9, ,+.

We define associativity of two unrefined K-types as in [MP: 5.1]: Two minimal
K-types (4,,, x) and (9, ,, &) are said to be associates if they have the same depth
(i.e. r =5), and

(i) In case r =0, there is an element g € ¥ such that ¥, n¥%,, surjects onto
both M, (f) and M,_,(f) and x is isomorphic to &%,

(i1) In case r >0, the %-orbit of the coset which realizes y intersects the coset
which realizes &.

Given the above setup, Theorem 5.2 in [MP] generalizes (with the same proof)
to

THEOREM 3.5. Given an irreducible admissible complex representation (n, V)
of 9, there is a nonnegative rational number o(w) with the following properties.

(1) For some x € B(G, k), the space Vizent of 4. . .-fixed vectors is nonzero
and o(n) is the smallest number with this property.

(2) For any y € B(G, k), if W = Virew* #£{0}, then

(i) if o(m) =0, any irreducible ¥,y -submodule of W contains an unrefined
minimal K-type of depth zero of a parahoric 4, < %,;

(ii) if o(m) > 0, any irreducible 4, ;. -submodule of W is an unrefined minimal
K-type.

Moreover, any two unrefined minimal K-types contained in © are associates of each
other.

The rational number ¢(n) is by definition the depth of the irreducible representation
T,

4. Depth and Jacquet functor

4.1. Let P =MN and N’ be as in §2 and A4, 4", A7, and Z be the group of
k-rational points of M, N, N’ and P respectively. Important examples of open
compact subgroups which have Iwahori decomposition are given by the filtration
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subgroups introduced in §3. Let S be a maximal k-split torus of G contained in M.
Then M contains the centralizer Z;(S) of S. Let A(S) be the apartment in the
building of ¥ corresponding to S and for x € A(S), let ¥, be the parahoric
subgroup of ¥ associated with x. For r 20, let ¢, , (resp. ¢, ,.) be the filtration
subgroup (of the parahoric subgroup %,) described in §3.2. In view of the
description of %, , in terms of affine roots given in §3.2 and the results contained in
§§6.4.9 and 6.4.48 of [BT1], we have the following result.

THEOREM 4.2. For S =« M, any point x € A(S) and any r >0, the filtration
subgroup 4., of the parahoric subgroup %, has the Iwahori decomposition with
respect to P and the Levi factor M.

4.3. Let L(M), L(N) and L(N’) be the Lie algebras of M, N and N’ respectively
and let m, n and n’ be the space of k-rational points of the respective Lie algebras.
We have

g=n"@dmaen

The vector space duals of m, n and n’ will be denoted by m*, n* and n'*
respectively. We shall view the dual L(M)* of L(M) (resp. m*) as an M-module
(resp. .#-module) under the coadjoint action of M (resp. .#).

There is a natural .#-module map from g* to m* given by restriction. For
X € g*, we shall denote its restriction to m by X,,; for a subset = of g*, we shall let
E,, denote the subset {X,, | X € &} of m*.

The dual m* will be identified with the .#-submodule:

{(Xeg*|X|,=0 and X|,=0};

n* and n'* have identifications with similarly defined .#-submodules of g*. With
these identifications, we have

g*=n* @ m* @ n*

For x € A(S) and r e R, let g¥ _, be as in 3.3 and let m¥ _,, n¥_, and n’*_, denote
m*ng_,, n*ng*_, and n'*ng* _, respectively. We have

gy =nr, dmi_, ®ny_,. (4.3.1)

Let #.=MG,, N . =% and N, =AN"NnF,.. Forrz20, let #,, =
MG, N, =G, and N, =N NG, (resp. My, = MG, Ny =
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NG, ,.and N . =" NG, ,.). We shall denote 4, . also by 4. Then since
M contains Z;(S), and so in particular it contains the torus Z, .#, is the parahoric
subgroup of .# associated with the point x (note that the apartment A(S) is also
the apartment corresponding to the maximal k-split torus S in the building of .#).
The subgroup 4, of .#, coincides with the filtration subgroup, and m}, coincides
with the filtration lattice in m*, associated with x and r, obtained by using the
construction given in §3 for the reductive group M in place of G.

Let {r;} be the monotone increasing sequence of nonnegative real numbers
associated to x in 3.3. Then the Pontrjagin dual, for i = 1, of the abelian group
Y r|%x,, ,, has an identification with gf _, /g¥ _,, | (see 3.3). This also provides an
identification of the Pontrjagin dual of #,, [#,,  with m¥_, /m}_. .

4.4. Suppose (n, V) is an irreducible admissible representation of ¢ such that
J (V) #{0}. Let (o, V,) be an irreducible subquotient of the .#-module J . (V,) and
r:=g(0) be its depth. Choose a point x € A(S) so that

(1) Vi #{0}
(2) the action of #,, on V/~* contains an unrefined minimal K-type.

By Theorem 2.2, Vi=+ # {0}.

THEOREM 4.5. The %,.,|%,,+-constituents of Vi=r* contain unrefined minimal
K-types. (In particular ¢(c) = g(n) for any irreducible subquotient o of J,(V,).)
Moreover, if r >0 and (M, y) is an unrefined minimal K-type occurring in Vxr*,
then V#xr* contains an unrefined minimal K-type of the form (9., £) such that the
restriction of & to M., is y and its restriction to N ., and N, , are trivial; consequently
the coset E corresponding to & contains an element of m*.

The assertion is clear when r =0; any ¥, /9 -irreducible constituent of V¥*
contains a cuspidal representation of a parabolic subgroup of the reductive group
M.(f) =¥, /%;. We shall make a more precise statement in this, the depth zero,
setting in §6. We can therefore now focus on the case » > 0 in which case A4, ,[# , +
and 9, ,/%,., + are both abelian. The proof in this case is based on a property of the
characters of the abelian group 4., /9,,, , (i >0) which we shall now formulate
(4.7). We begin with a lemma.

LEMMA 4.6. Let H be a connected reductive group defined over a field F: Q be
a parabolic F-subgroup of H and let p: H — GL(V') be a finite dimensional F-rational
representation of H on a F-vector space V. Let veV and A.GL,—»H be a
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1-parameter subgroup defined over F such that Lim, _ , p(A(t))v = 0. Then there exists
a l-parameter subgroup n : GL, — Q defined over F such that Lim,_,, p(u(?))v = 0.

Proof. The group 2, = {x € H(F) | Lim,_, A(f)xA(r) =" exists} is the group of
F-rational points of a parabolic subgroup Q, of H defined over F. According to
Proposition 20.7(i) of [B2], O, » Q contains a maximal F-split torus 7. Also, 4 is
contained in a maximal F-split torus 7’ of Q;. Since both 7 and T’ are maximal
F-split tori of Q,, there exists a g € 2, such that g7'q~' = T. Let u(t) = qA(t)g .
Then pucT <= Q;nQ = Q and Lim,_,, p(u(?))v = 0. O

PROPOSITON 4.7. Let £ =X +g¥_,. _, be a coset which contains a nilpotent
element, then there exists an element p € M, N, so that the coset (pE),, also contains
a nilpotent element.

Proof. We assume (as we may) that X € Z is nilpotent. Let A be a 1-parameter
subgroup of G defined over k such that Lim,_, 4(£)X =0.

Let M, be the quotient of the reduction mod p of the o-group scheme associated
to the parahoric subgroup %, by its unipotent radical. M, is a connected reductive
f-group and the maximal k-split torus S of G gives rise to a maximal f-split torus
S of M,.. According to Proposition 4.3 of [MP], the M -orbit through the image X
of Xin g} _, /g% _, _, contains zero in its Zariski-closure. By a theorem of Kempf
and Rousseau ([K], [R]), there is a 1-parameter subgroup 4 of M,, defined over {,
such that Lim,_, , A(f)(X) = 0. Now since the image of .#, .4, in M_ is the group of
f-rational points of a parabolic f-subgroup P, and P clearly contains the maximal
f-split torus S, we conclude, using the preceding lemma and conjugacy of maximal
f-split tori of P under P({), that there is an element p € #, A", and a 1-parameter
subgroup ji contained in S such that Lim,_,, p ~'ji(f)pX = 0; where p is the image of
p in M, (). Let u be the lift of the 1-parameter subgroup g of S to S. Then clearly,
the limit, as ¢t =0, of the image of u(Y)pX in g¥_, /g% _, _, is zero. Now for a
positive integer n, let

V.={Zeg}_,|ut)Z=1Z]},
and
Ve={Zegt . It _ | HOZ=1"Z}.
Let V (resp. V) be the submodule spanned by the V,’s (resp. ¥,’s). Then for each

n, V, projects onto V,, under the natural projection LT _/g,",‘,,,i _,andso V
projects onto V. It is clear that for Zegf , (resp. Zeg?_, /a7 , _,)
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Lim, o 4(f)Z =0 (resp. Lim,_o f()Z =0) if and only if Z € V (resp. Z € V). As
Lim,_ o p 'i(t)pX =0, pX € V and hence there is a Y € }" which projects onto pX.
Such a Y lies in p=E and Lim,_, u#(#)Y = 0. Now since

* — 'k * *
gx,—r,- - nx,«r,- @ mx,——r,- @ nx,—r,-9

and each of the n'*, m* and n* is stable under u( =S), we conclude that
Lim,_ o, u()Y,,=0. So Y,.(e(pE),) is nilpotent. This proves the proposition. [J

Proof of Theorem 4.5. We fix a .#-submodule ¥ of J ,(V,) which projects onto
V.. As stated above, we can assume that r = g(¢) > 0. Choose a nonzero v € V:#xr+
which transforms under 4, , /4, ,. by homotheties according to the nondegener-
ate character y. Let ¢ =A", M, N ,,; € is a compact-open subgroup of ¥,
normal in %,,, and %, ,/¥ (=4 ,,|#,,+) is an abelian group. It follows from
Theorem 2.2 that there is a v € V¥ such that J,.(v) lies in ¥/, and its image in V, is
v. We can choose a vector w in the ., ,-submodule generated by v such that

(1) the image of J,(w) in V, is #0
(2) w transforms under %,, according to a character ¢ of 4, ,/¥,,. whose
restriction to A, [ M, .+ 15 ).

Then the restriction of ¢ to A, and A7, are trivial, and hence the coset & of
9% _,,_, in g¥_, corresponding to ¢ contains an element of m*; here i is the positive
integer such that r =r,.

We claim that the coset = does not contain any nilpotent elements. Suppose to
the contrary that = does contain a nilpotent element. According to Proposition 4.7,
there exists then an element p € 4, A", so that (pZ),, contains a nilpotent element.
Consider the vector w, = n(p)w. It lies in V7=r*. Also, since p € 2, and J, is a
#-module homomorphism, the image w, of w, in V, is nonzero and .#,, acts on it
through the character corresponding to the coset (pZ),, which contains a nilpotent
element. But as the depth of the representation ¢ is r, the coset (pZ), can not
contain any nilpotent elements. We conclude from this that = can not contain any
nilpotent elements either and hence ¢ is an unrefined minimal K-type for n. [

4.8. An element of g* is said to be semi-simple if its G-orbit is closed in L(G)*
in the Zariski topology. We shall say that a semi-simple element Y of g* is anisotropic
if the only k-split tori in G which fix Y are the k-split tori contained in the center
of G. Since there is a nontrivial k-split torus contained in the center of M which is
not central in G, and any such torus fixes every element of m*, no element of m*
is anisotropic. Given i >0, a coset £ = X + g¥ _, | is said to be anisotropic if each

-
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Y € E is anisotropic. If E is an anisotropic coset, then it can’t contain any element
of m*. A character ¢ of 4, /9., , will be called anisotropic if the corresponding
coset = is anisotropic.

As an immediate consequence of Theorem 4.5, we have

COROLLARY 4.9. If = is an irreducible admissible representation which con-
tains an anisotropic unrefined minimal K-type, then n is an absolutely cuspidal
representation.

This fact had been observed before in many special cases.

5. Parabolic induction and unrefined minimal K-types

In this section, we state and prove one of our main results which is the assertion
that the depth of a representation behaves well under parabolic induction. As a
preliminary to the main statement, we prove a lemma.

LEMMA 5.1. Suppose P = MN is a parabolic k-subgroup of G and S is a
maximal k-split torus of M. Then given x € A(S), there is a y € A(S) such that

(1) #,=.4, and

(2 #,| M5 =9,[%;.

Proof. Let C be the maximal k-split torus contained in the center of M. Note
that S contains C and M is precisely the centralizer of C in G. Therefore, the
restriction to C of a k-root of G (relative to S) is trivial if and only if it is a k-root
of M. It is obvious from this that there are points y of A(S) lying in the set of
translates of x by elements of X_(C) ® ; R(= X, (S) ®zR) such that if  is any
affine root of G (relative to S and k) whose derivative (or gradient) is not a k-root
of M, then Y(y) #0, whereas if the derivative of { is a k-root of M, then
Y(x) = Y(y). For any such y, clearly #,, = 4, , for all r 2 0, and the natural map
M, [ M —>F, % is an isomorphism. O

We now state the main result on depth and parabolic induction.

THEOREM 5.2. Suppose (o, V,) is an admissible irreducible representation of .#
and (n, V,) is an irreducible subquotient of the induced representation Ind% ,o. Then
(1) e(n) =e(0)
(2) If o is of depth zero, (M., ) is an unrefined minimal K-type of o, and
y € A(S) has the properties (1) and (2) of Lemma 5.1, then the unrefined
. minimal K-type y (lifted to %, via property (2) of y) occurs in n
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(3) If r = 0(0) >0, given an unrefined minimal K-type (M ,,, x) occurring in o
(x € A(S)), there exists an unrefined minimal K-type (%,,, ) occuring in «
such that the restriction of £ to M, is y and its restriction to N, , and N,
are trivial, so the coset E corresponding to ¢ contains an element of m*.

Proof. By Theorem 2.5, after replacing the inducing parabolic # by a suitable
M -associate, we may (and we shall) assume that n is an irreducible subrepresenta-
tion of Ind? V,. Then by Frobenius reciprocity (2.3), ¥, is an irreducible quotient
of the Jacquet module J,(V,) and by Theorem 4.5, o(n) = ¢(0).

Let 1: J,(V,) = V, be a surjective .#-module homomorphism. Let (#,,, ) be
an unrefined minimal K-type of ¢; where r = ¢(6). Now to prove (2) we note that
according to Theorem 2.2, 1 o J, maps V¥ onto V/. Since 4,/9, =~ M | A},
the representation y must in fact appear in V¥. Part (3) is an immediate
consequence of Theorem 4.5. O

The analogue of part (1) of Theorem 5.2 for the Jacquet functor J, is stated in
Theorem 4.5. As analogues of part (2) and (3) of Theorem 5.2, we have the
following result.

PROPOSITION 5.3. Let ? = #N" be a parabolic subgroup of ¥ and © be an
irreducible admissible representation of 4. Then

(D) If p(r) =0 and (M ., y) and (M ., 1) are unrefined minimal K-types of depth
zero in J , (1), then there exist points y and y' so that M, = M, M, = M,
and G,|9 =M, | M}, G, |G = M,|H, and the minimal K-types (%,, 1)
and (%, y') of m are associates.

(2) If o(n) >0, let (M,,,x) and (M ,,, x") be two unrefined minimal K-types in
J (), and let (9., &) and (9, ,, £') be unrefined minimal K-types provided by
Theorem 4.5. Then (9,,,¢) and (%,,, ') are associates.

Proof. In part (1), the existence of the points y and y’ follow from Lemma 5.1.
The associativity statements in parts (1) and (2) is just associativity of unrefined
minimal K-types in 7. O

6. Depth zero representations

In this section we concern ourselves only with depth zero representations. We
call an unrefined minimal K-type of depth zero a minimal K-type. We formulate and
prove for general depth zero representations analogues of Borel’s results for
representations with an Iwahori fixed vector. We begin with a preliminary result.
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PROPOSITION 6.1. Let G be a connected reductive group defined over the finite
field § and let P = MN and P’ = MN' be two associate parabolic {-subgroups of G, i.e.
parabolic f-subgroups which share a Levi subgroup.

(1) If © is a representation of M(f), the two induced representations Ind§{{)ne T

and Ind§Qnr, T are equivalent.

(2) If (0, V,) is a finite-dimensional complex representation of G(f), then integra-

tion along N(), i.e. A(V) = [nq) o(n)v dn defines an isomorphism of VYO with
o,

Proof. We begin with the proof of part (2). Let ey, and ey, be the idempotent
elements in the group algebra C[G(f)] = #(G(f)//{1}) determined by the subgroups
N(f) and N'(f) respectively. Then given any representation (g, V,), VND =
o(enp)V, and V3'® = o(en())V,. The assertion in (2) that A is an isomorphism is
equivalent to the statement that there exists an element ¢ € ey C[G()] eng such
that

cengp eng =eng and  eng engpé = eng).-

Such a ¢ is provided by Theorem 2.5 of [HL].
Part (1) is a consequence of Harish-Chandra’s theory of cusp forms on G(f) (see
[HC]). As noted in [HL], it also follows immediately from Theorem 1.1 in [HL].
L]

The next result is the converse of the last part of Theorem 5.2 in [MP] which
asserts that two unrefined minimal K-types (%,, ¢) and (%,, t) which both occur in
an irreducible admissible representation (7, V) of ¢ are associates of one another.

PROPOSITION 6.2. Suppose (n, V,) is an irreducible admissible representation
of 4 of depth zero. If (%,, o) is a depth zero minimal K-type occurring in V,, and
(%,, ) is an associate of (9, d), then (%,,1) also occurs in V.

Proof. For any z in the Brunat-Tits building of ¥, let M, be the quotient of the
reduction mod p of the o-group scheme associated to the parahoric subgroup %, by
its unipotent radical. Then %,/%) >~ M.,(f). So a representation of ¥, which is
trivial on % gives rise to a representation of M, (f), and conversely a representation
of M. (f) inflates to a representation of 4, which is trivial on ¢ . In the sequel we
shall not distinguish between a representation of ¢, which is trivial on ¢} and the
corresponding representation of M, (f) and shall use the same symbol to denote the
two representations. As (¥%,, o) and (%, 1) are minimal K-types of depth zero, o
and 7 are cuspidal representations of M,(f) and M,(f) respectively.

After replacing the pair (¥4,, 1) by a suitable conjugate, we assume that the
natural maps 1,: 4, n%, -»>M,(f) and 1,: 4. "%, - M,(f) are onto and let S be a
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maximal k-split torus of G such that the apartment 4(S) corresponding to S in the
Bruhat-Tits building of ¥ contains both x and y. Then an affine root ¥ (of G
relative to S and k) which vanishes at the point x must also vanish at the point y
and vice versa (in particular, M, has a natural identification with M, as an
algebraic f-group and with this identification, t = ¢). From this we conclude that
both x and y lie in the affine subspace B (of the apartment 4(S)) which is given as
the zero locus of the affine roots vanishing at x or y. The intersection of the affine
subspace B with the vanishing hyperplane H of an affine root is either (i) empty, or
(i1) equals B, or (iii) is an affine subspace of B of codimension 1. Let U be the open
set (of B) which is the complement in B of the union of those H’s which satisfy
property (iii). The points x and y lie in U and U is a disjoint union of its (countably
many) connected components. Given a point z in U, let U(z) denote the connected
component of U which contains z.

If z and z’ are two arbitrary points in U, then the natural maps 4, "%, - M, ()
and 4, %, - M, (f) are surjective and the group M, has a natural identification
with M, as an algebraic f-group. We shall use the same symbol to denote the
representations of ¢, and ¥, trivial on ¢4} and %} respectively which correspond to
each other in terms of the identification of M, (f)( =%, /%)) with M, ()(=%.,/%4}).

___We say that two points z and z’ are in adjacent components if the intersection
U(z) N U(z") of the closures of U(z) and U(z’) in B is nonempty. Suppose z and z’
are in adjacent components. We claim that the irreducible admissible representation
(m, V,) contains the minimal K-type (¥%,, o) of depth zero if and only if it contains
the minimal K-type (¥%,, o). Clearly, we need only show that if (w, V,) contains
(4., 0), then it must contain (¥,, 6). Let v be a point of B which lies in the inter-
section U(z) n U(z’). The parahoric ¢, contains both ¢, and ¢, and the images of
%, and ¢4, in M, are the group of f-rational points of associate parabolic f-sub-
groups P, and P, respectively of M,. The quotient of P, (resp. P,) by its unipotent
radical is f-isomorphic to M, (resp. M,). If ¥V, contains (¥,, ¢), V¥ must contain
an irreducible representation ¢ of %, which is equivalent to a subrepresentation of
the inflation to %, of the induced representation Indp":{’s. However, by Proposition
6.1(1) and the Frobenius reciprocity, any irreducible constituent of IndM:{o
contains the representation (P,(f), ). Hence, V, contains the minimal K-type
(%,, o). This proves the claim. To complete the proof of Proposition 6.2, we note
that for our original x and y, we can find a sequence of points x =z,
Zy,...,2, =y such that each z; lies in U and U(z;) and U(z;,,) are adjacent. It
follows that if (m, V,) contains (¥,, ), then it also contains (¥%,, 0). O

6.3. We attach a Levi subgroup M to ¥, as follows: Let S be a maximal k-split
torus of G such that the apartment A(S) corresponding to S contains x. Then S
gives rise to a maximal f-split torus S of M,. Let C be the maximal f-split torus



114 ALLEN MOY AND GOPAL PRASAD

contained in the center of M,. Note that C = S. Lift C to S to get a subtorus C (of
S). Let M be the centralizer of C in G and .# = M(k). Then M is a Levi subgroup
([B2:20.4]) and since the centralizer Z;(S) of S in G is contained in M,
M, = MNYG, is a parahoric subgroup of .#. Note that C is contained in the center
of G, or, equivalently, M = G, if and only if 4, is a maximal parahoric subgroup (cf.
[T: 3.5)).

PROPOSITION 6.4.
(1) A, is a maximal parahoric subgroup of #.
(2) M M=%, ]9 (=M ().

Proof. Recall that there is a natural identification of the character groups X*(S)
and X*(S) of S and S respectively. Since M is the centralizer of C in G, it is clear
that, with this identification of X*(S) and X™*(S), its k-root system with respect to
S contains the f-root system of M, with respect to S. Hence, the semi-simple k-rank
of M is greater than or equal to the semi-simple f-rank of M,. The latter equals
f-rank M, —dim C =k-rank G — dim C. On the other hand, as the k-split torus C
is contained in the center of M, the semi-simple k-rank of M is at most equal to
k-rank G —dim C. We conclude from these observations that the semi-simple
k-rank of M coincides with the semi-simple f-rank of M,. As the maximal reductive
quotient of the reduction mod p of the o-group scheme associated with the
parahoric subgroup #, of .# clearly contains M,, both the assertions of the
proposition are now obvious. (Note that the semi-simple f-rank of the maximal
reductive quotient of the reduction mod p of the o-group scheme associated to a
parahoric subgroup of .# is at most the semi-simple k-rank of M and the parahoric
subgroup is maximal if and only if the equality holds; see, for example,
[T:3.5)) O

6.5. Fix a minimal K-type (%,, o) of depth zero. Part (2) of the preceding
proposition allows us to naturally view ¢ as a cuspidal representation of #, [.#.
Let & be the normalizer of 4, in A . Then %, is compact modulo the center of 4.
Let &(o) be the collection of irreducible representations (up to equivalence) of %
which contain ¢ on restriction to .#,. Note that each 7 in (o) is finite dimensional
since &, is compact modulo its center. &(o) consists precisely of the irreducible
representations (of %) contained in Ind’; 6. One can partition &(o) into finitely
many equivalence classes by placing T, and 1, in the same equivalence class if there
exists an unramified quasicharacter y of .# such that 7, =1, ® g.

PROPOSITION 6.6. Given t € £(0), the representation n = c-Ind£ 1 is an irre-
ducible absolutely cuspidal representation of #. Moreover any irreducible admissible
representation of .M which contains ¢ on restriction to M is isomorphic to c-Indgt
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for some te€é&(o). If x is a one-dimensional quasicharacter of M, then c-
IndZ(r ® p) =(c-Ind£7) ® 1.

Proof. The assertion is a folklore theorem. A published proof appears in [Mrl].
The following proof is perhaps simpler. Recall [Sh: §3] that the compactly induced
representation n = c-Indg£7 is an irreducible (and therefore absolutely cuspidal)
representation if and only if the Hecke algebra ¢ := (A [| %, t) of End(V,)-val-
ued t-spherical functions on .# is one-dimensional. Given a double coset #mZ,
(m e M), let #(F.mZ, 1) be the subspace of functions f € # such that the support
supp(f) of fis contained in the double coset #m% . The vector space H# is a direct
sum of the subspaces H#(#£mZ, 1). Because o is a cuspidal representation, a
necessary condition for the subspace # (% m%, 1) to be nonzero is that the natural
maps from A, "m M. m~' =M, " M,, to M (f) and M,,.(f) be surjective. (Note
that for any m in .#, the image of A4, N #,,, in M () (resp. M,,..(7)) is the group
of f-rational points of a parabolic f-subgroup of M, (resp. M,,,) and the image of
MM, (resp. M} N M,,) is the group of f-rational points of the unipotent
radical of this parabolic f-subgroup. This can be seen using the affine root system
of M relative to a maximal K-split torus such that the corresponding apartment in
the Bruhat-Tits building of M /K contains both x and mx.) Since the point x
corresponds to a maximal parahoric subgroup of .#, the latter condition on
surjectivity implies that the element m must fix the point x, i.e., m € &. The only
double coset #m%, for which #(Fm#Z, 1) is nonzero is therefore the trivial
double coset #. Thus s is one-dimensional.

To prove the second assertion, suppose (m, V) is an irreducible admissible
representation of .# which contains 6. An application of [BZ: 2.29] shows that
there exists a t € &(o) such that Hom ,(c-Indg 7, V) is nonzero. Since c-Ind£t and
V, are both irreducible, they must be isomorphic.

Finally, it is obvious that c-Ind£(r ® ) =(c-Ind£7) ® x if x is a one-
dimensional quasicharacter. O

Now to be able to determine all the irreducible absolutely cuspidal representa-
tions of depth zero (see Proposition 6.8 below), we show that Lemma 4.7 of [B1],
which is formulated only for the trivial representation of an Iwahori subgroup, can
be formulated and proved for an arbitrary minimal K-type (%,, ¢). In [B1], the
proof of Lemma 4.7 is based on the invertibility of certain elements in the Iwahori
Hecke algebra. Our proof of the analogue for an arbitrary minimal K-type (%,, o)
relies instead on Proposition 6.1.

Let 4, be a nonmaximal parahoric subgroup of ¥. We fix a maximal k-split
torus S so that the apartment A(S) contains the point x. Let C be the subtorus of
S as in 6.3. Let M be the centralizer of C in G and # = M(k). As %, is not
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maximal, M is a proper Levi subgroup of G. Let Z = # A" and ' = AN~ be two
opposite parabolic subgroups of ¢ with .# as their common Levi factor. With these
notations we have:

PROPOSITION 6.7. Let (n, V,) be an admissible representation of 4. Then
Ty VEE = d (V) *F

is an isomorphism.

Proof. If a is a character of C and y: GL, - C is a 1-parameter subgroup (of C),
let {(a,y) be the integer which satisfies a(y(r)) =t<*". We fix a l-parameter
subgroup y of C so that {a, y) > 0 for every root « of C in the Lie algebra n of A",
and consider the ray x(f) = x + ty (¢ =2 0), contained in the apartment A(S), ema-
nating from the point x in the direction y. It is easy to see that

(1) A%y =M, for all ¢.

(2) Set Ny =N NG, yand Ny =N"NG,,. If t' 2 ¢, then

'/Vx(t') -} ‘/V;c(t) and -/1/';(1') c ./1/-_;(,).

(3) Any compact subgroup of 4" is contained in A/, for ¢ sufficiently large.

(4) Thereisasequence 0 =1,<t, <t, - <t; < - tending to oo so that ¥,
is constant on the open intervals 7,_, <t <t;(i > 1), as well as on the
interval 0 < ¢t < ¢,. On these intervals, ¢, is a parahoric subgroup which is
associate to 4,.

We shall denote the parahoric subgroup %,, by %, and its pro-nil
radical ¢, , by 4/ . The connected reductive {-group associated with ¥, will
be denoted by M,. For i = 1, 4,_ will denote the parahoric subgroup %,,,,
L_,<t<t;and let ;- =N/ NnYG,_, /;_=H4"Nn%,_. Note that for all
i1,

G =N M N
and
G =N M N

(5) The parahoric subgroup ¥, contains both ¥,_ and %,,,- as proper sub-
groups. The image of 4, in M,(f) is the group of f-rational points of a
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parabolic f-subgroup P; of M, and the image of %,.,- is the group of
f-rational points of a parabolic f-subgroup P;; P; and P; are opposed and
the Levi subgroup P, N P; is f-isomorphic to M,. We note for later use that
Ni- M N~ 1s a subgroup of %, containing ¥;, in fact it is the inverse
image in ¥, of the unipotent radical of P;({).

Let v e V¥ be a nonzero vector. We claim J,(v) #0. To prove this claim, we
define vectors v;, i = 1, inductively as follows: Let v, =v and for i > 1, let

Vv, = J (n)v,_, dn.
Hi-

We shall show by induction that for all i, (i) v, # 0, (ii) v, is fixed under 4; (o .#;)
and A7, and (iii) v, is a nonzero multiple of | ;- ™n)v dn. From its definition it
is clear that v; is fixed under A4",-. Moreover since v,_, is fixed under
MIN_ (DM N._)and N,_ M} N|_ is a compact subgroup, v, is fixed under
the latter. Since v,_, is fixed under 4/, and also under A4";_,-, and the latter
projects onto the unipotent radical of P;_,(f), whereas A",- projects onto the
unipotent radical of P;_,(f), Proposition 6.1 (2) implies that if v,_, is nonzero then
so is v;. Assertion (iii) can be proved easily using Fubini’s theorem and the
bi-invariance of the Haar measure on the unipotent group A". It implies that for

every i =1,

J n(n)vdn #0.
Ny =

As any compact subgroup of 4" is contained in A", _ for i large, we conclude now
that J,(v) #0. Since v was assumed to be an arbitrary element of V¥*, it follows
that J, is an injection of V¥ into J,(V,)#**. By Theorem 2.2, J, is also a
surjection; whence it is an isomorphism. O

PROPOSITION 6.8. Every irreducible depth zero absolutely cuspidal representa-
tion of ¥ has the form c-Indgzt for some maximal parahoric subgroup 4. of ¥,
cuspidal representation o of M _(f) inflated to 9, and 1 € &(0).

Let (m, V,) be an irreducible absolutely cuspidal representation of ¥ which
contains the minimal K-type (¥4,, o). Let .# be the Levi subgroup of ¢ associated
to the parahoric ¢,. We assert that %, is a maximal parahoric subgroup of ¢ (or,
equivalently, # =%). If .# # ¥, let A4 be the unipotent radical of a parabolic
subgroup of ¢ with Levi subgroup .#; according to the preceding proposition,
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J+(V,) #0; this contradicts the fact that = is absolutely cuspidal and we conclude
that # =% and ¢, is maximal. Now the proposition follows from Proposition 6.6.

Morris has indicated in the introduction of [Mr2] a different proof of Proposi-
tion 6.8 based on Hecke algebras.

6.9. We are now prepared to show for an arbitrary minimal K-type (¥,, o) of
depth zero, the analogues of the well known results of Borel [B1] that
(1) Any subquotient of an unramified principal series contains a nonzero
Iwahori fixed vector.
(2) Any irreducible admissible representation which has a nonzero Iwahori
fixed vector occurs as a subquotient of an unramified principal series.

6.10. Fix a minimal K-type (¥%,, o) of depth zero. Let M be the Levi subgroup
attached to %, in 6.3. Let # = M(k), and let # = .# A" be a parabolic subgroup of
¢ containing # as a Levi subgroup. For t € £(0), let § =c-Indf7. Form the
generalized principal series I(Z, 6) = Ind30.

THEOREM 6.11.

(1) Any subquotient © of I( 2, 0) is generated by its (%, 6)-isotypic subspace.

(2) Conversely, any irreducible admissible representation (n, V,) whose (%, o)-
isotypic subspace is nonzero appears as a subquotient of I(P,0) where
6 = c-Ind£ 1 for some € £(0).

Proof. To prove (1), it is sufficient to prove that any irreducible subquotient n
of I(2, 0) is generated by its (¥,, ¢)-isotypic subspace. Therefore, we assume that
7 is an irreducible subquotient. We apply Theorem 2.5 to find a parabolic 2 = #%
which is .#-associate of # = .# 4" and for which = is an irreducible subrepresenta-
tion of 1(2, 0). The Jacquet module J,(V,) of = has V, as a quotient (2.3). The
subgroup ¢; has the Iwahori factorization with respect to the parabolic subgroup
2. So the map

Vit 5y

is a surjection (2.2). According to Proposition 6.4, 4, /9 = .# . [.#} . So it follows
that (%,, o) occurs in 7 and thus must generate it.
To prove part (2), we use the following lemma.

LEMMA 6.12. Let 4, be a nonmaximal parahoric subgroup of %. Fix an
apartment A(S) and a Levi subgroup .# as in section 6.3 so that x € A(S) and
MM =G, |G, Let y € A(S) be such that M ,|M#H] =9, |%S and there is a
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minimal K-type (%, £) associate to the minimal K-type (%,, o), then there exists a
g €% so that
(1) g normalizes S and M
(2) the natural maps from 4, "%, to M, () and M, (f) are surjective and ¥ is
equivalent to o
(3) the natural maps from M, M, to M,(T) and M, (]) are surjective.

Proof. We begin by recalling some notation from 6.3. C is the maximal {-split
torus contained in the center of M, and C is its lift to S. The Levi M is the
centralizer of Cin G, and .# is the group of k-rational points of M. We identify the
character group X*(S) of S with the character group X*(S) of S in terms of their
natural identification. The condition .4, /.# =% ,/% implies that the root system
&(S,M,) of M, is contained in the root system &(S, M) of M. Let g € 4 be an
element so that ¥, n%,, projects onto both M,(f) and M,,(f) and ¢£# is equivalent
to 0. As %, acts transitively on the set of apartments (in the building of %)
containing x, after replacing g with a suitable element in ¥, g, we assume that gy lies
in the apartment A(S). Since y also lies in the same apartment, we may (and do)
assume, after replacing g with an element in g%, that g normalizes the maximal
k-split torus S.

It is clear that g carries the root system &(S, M,) onto the root system
?(S, M,,) of M., (both these root systems are considered as subsets of the root
system @(S, G) of G in terms of the identification of X*(S) with X*(S)). Now since
4,.n%,, projects onto both M,(f) and M, (f), it follows that the root system
@(S, M,) of M, equals the root system &(S, M,,). Thus g carries (S, M,) onto
@(S, M,). Now as the root system &(S, M)) is contained in the root system
@(S, M) and C is the identity component of the intersection of kernels of the roots
in @(S, M), whereas C, and so also C, is the identity component of the intersection
of kernels of roots in &(S, M, ), we conclude that C is the identity component of the
intersection of the kernels of roots in (S, M) and so g normalizes C. Hence, it
also normalizes the centralizer M of C. In view of the fact that &(S, M,,) =
&(S, M,) =« &(S, M), assertion (3) follows from the surjectivity statement in
(2). O

We turn to the converse (2). Suppose n contains the minimal K-type (%,, o). If
%_ is a maximal parahoric subgroup of ¢, then .# = % and according to Proposi-
tion 6.6, = is an absolutely cuspidal representation and it is isomorphic to c-Indgt
for some 1 € (o).

Suppose now that %, is not a maximal parahoric subgroup. Let .# and £ be as
in 6.10. Let (0’, V) be an irreducible quotient of J (V). Note that according to
Theorem 4.5 the depth of 6’ is zero. Let (.#,, x) be a minimal K-type for 6, with
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y € A(S). In view of Lemma 5.1, we may (and we shall) assume that #,/.#; =~
9,/%; . It follows at once from 2.2 that there exists a minimal K-type (¥%,, ) for n
such that the restriction of ¢ to ., is y. Now according to Theorem 3.5 the
minimal K-types (%,, 0) and (9, £) are associates of each other and hence there
exists an element g € ¢ satisfying the three conditions listed in Lemma 6.12.

Let # =gPg~! and #*=gANg~! so that # = #N". Consider the Jacquet
functor J,.. The representation 6 =0 of .# given by 0(m) = 6'(g "'mg) is an
irreducible quotient of J,(V,). Furthermore, 6 contains the minimal K-type
(A, x%) and therefore must also contain (.#,, o) by 6.2 applied to .#. It now
follows from Proposition 6.6 that 6 is equivalent to c-IndZt for some 7 € £(0).
Frobenius reciprocity (2.3) tells us that n is a subrepresentation of I(#, 8). By
Theorem 2.5, I(#', 0) and I(2, 0) have the same composition factors. In particular,
n is a subquotient of I(Z, 0). O

6.13. Let (%,, 0) be a minimal K-type of depth zero. Let ¥ = 4(¥%,, o) be the
full subcategory of the category of smooth representations of 4 whose objects are
those smooth representations # of ¢ all of whose subquotients are generated by
their (¥,, 0)-isotypic subspaces. Denote by @, the character of a. Let e, be the
idempotent element in the algebra #(¥%) of compactly supported functions on ¥
which is supported on %, and given there by e,(g) = (deg /vol(%,))0,(g). In
-particular, if (n, V) is a representation of %,, then n(e,) is projection onto the
o-isotypic subspace V7 of V,. In fact, V? = n(e,)(V,) is naturally a module for the
algebra #(%,e,) =e, H#(%)e, (an algebra in which e, is the identity) and the
process # of taking o-isotypic subspace is a functor

F
Ve = V3

from €(%,, o) to the category €(H#(¥, e,)) of representations of (¥, e,).

The algebra J#(9, e,) is very simply related to the algebra #(¥%9//9,, d), where
¢ denotes the contragredient of ¢. Let M(o) = e, #(%,)e,, an ideal of #(%,).
Note that M(o) as an algebra (with identity e,) is simple of dimension deg(c)?, and
that if B is an irreducible representation of %,, then B(M(o)) =0 unless f§ is
equivalent to a. As observed in [BK1], #(9//%,,d) ®  M(o) is canonically
isomorphic to (%, e,).

THEOREM 6.14.
(1) If (n, V,) is a smooth representation which is generated by its c-isotypic
subspace V¢, then (n, V,) belongs to 4(%., o)
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(2) The functor
F: 69, 0) >C(H(Y, ¢,))

is an equivalence of categories.

Proof. Both (1) and (2) follow from Theorem 4.4 in [BK2] as immediate
consequences of Propositions 6.6 and 6.7. O
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