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The nonlinear Klein—Gordon equation on an interval as a perturbed
Sine—Gordon equation

ALEXANDER 1. BOBENKO and SERGEJ B. KUKSIN

Abstract. We treat the nonlinear Klein-Gordon (NKG) equation as the Sine-Gordon (SG) equation,
perturbed by a higher order term. It is proved that most small-amplitude finite-gap solutions of the SG
equation, which satisfy either Dirichlet or Neumann boundary conditions, persist in the NKG equation
and jointly form partial central manifolds, which are “Lipschitz manifolds with holes”. Our proof is
based on an analysis of the finite-gap solutions of the boundary problems for SG equation by means of
the Schottky uniformization approach, and an application of an infinite-dimensional KAM-theory.

Introduction

The paper is devoted to small-amplitude solutions of the nonlinear Klein—
Gordon equation

Uy =u,,, —mu + f(u), u = u(t, x), 0<x<m, (n
where m > 0 and f is an analytic function of the form
f@) =+ O(|uf),  x#0, ©)

at zero.

This assumption is fulfilled, in particular, if f is an odd function such that
f"(0) # 0 and f/(0) = 0 (the latter is a normalization — we absorbed a linear part of
fto —mu).

The cases » >0 and % <0 can be treated similarly. Below the case

x>0 (2)

is considered. We discuss the changes one should make to handle with negative x
at the end of the introduction.

The first author was supported by the Alexander von Humbold Foundation and the Sonder-
forschungsbereich 288.
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64 ALEXANDER 1. BOBENKO AND SERGEJ B. KUKSIN

The assumptions (2), (2") hold for many important equations of mathematical
physics. In particular, for the ¢*-equation

Uy, = Uy, — MU + xu’ (9
and for the Sine—Gordon equation
U, = U, — sin u, (SG)

where now m =1, ¥ = 1/6.
We consider equation (1) under Dirichlet or Neumann boundary conditions:

ut,0)=u(t,n) =0 (D)
or

u(2,0) = u.(t,n) =0. (N)

The results and the proof in (D)- and (N)-cases are parallel. So we mostly restrict
ourselves to the Neumann problem and give a brief reformulation of the main
results for the Dirichlet problem.

To simplify the formulas we suppose that m = 1; by a trivial rescaling of  in (1)
we can achieve x = 1/6. So below

m=1, x=1/6. (27

The equation (1) + (N) (as well as (1) + (D)) defines a dynamical system in the
phase-space Z of pairs U(t, x) = (u(t, x), v = i(t, x))' (Z should be given some
Sobolev norm | - |, for example, one can take Z = H'(0, ) x L,(0, 7) in the
Dirichlet case). The equations (SG) + (N) and (SG) + (D) are well-known to be
hamiltonian: one should supply the phase-space Z with the symplectic structure
given by the 2-form w,,

@, ((uy, vy), (uy, v)) = Lﬂ (U0, — vyu,) dx,

~

! In fact, for technical reasons in the main part of the paper we use as the phase-vector of the
equation the pair U = (u(1, x), (62/6x%+ 1) ~2u(1, x)). In the intrqduction for the sake of simplicity we
present trivial reformulation of the results in terms of the phase-vector U.
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and consider the hamiltonian

jn (% 2% +mu® +u?) + F(u)) dx,

0

where F, =f.
Let us consider the linear Klein—Gordon equation, which describes infinitesimal
oscillations in (1):

U, = U, —U. (KG)

The equation (KG) +(N) is a linear oscillating system with the frequencies
0*, 1* 2* ..., where we denote

J*=ir+1

(if in (1) m # 1, then the frequencies j* will change. In the main text below we
discuss how this affects our results). The solutions with frequency j* have the form

u;(t, x) = I sin j*(¢t + ¢;) cos jx, I, 2 0.

Fix any n = 1 wave-numbers j,

Jjev={r, ...,V «Nu{0}, (3)
and consider superpositions (=sums) "= (4", v") of solutions (u;, v;) with
jeV,u"=u ++ - +u, v'=0v,+ - +v, They are time-quasiperiodic solutions?
of (KG) + (N) with the frequency vector w = (VY, ..., V). Altogether the solu-
tions J” fill the 2n-dimensional linear subspace E?* of Z,

E?:=span{(cos Vj‘.)x, 0), (0, cos V,‘-’x) IJ =1,...,n}. (4)

Each solution U lies in an invariant torus 7"(I), where dim T%(I) =n if all 1, > 0.
So the space E?" is foliated into invariant tori and

Er~Rr x Tn (3)

2 We recall that a solution U :R— Z is called quasiperiodic with n frequencies if there exists a
continuous map X : T”—Z and an n-vector o, called the frequency vector of the solution, such that
00 = Z(w?). So the solution U lies in the invariant n-torus Z(T").
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We are going to attack the following problem: do the small-amplitude solutions
0" and the invariant tori T"(I) of the linearized equation persist in the equation
(1) + (N¥)? How do solutions of (1) + (N) behave near the tori? The question looks
rather naive — even in the finite-dimensional situation the behavior of the perturbed
linear hamiltonian system can be very complicated (see e.g. [M]). Still, the purpose
of our paper is to prove that the answer to the first question is “mostly affirmative”
and that the surviving quasiperiodic solutions are linearly stable. In fact, the
persistence of the quasiperiodic solutions /" has the natural explanation: under the
assumptions (2), (2”) we have

—u +f(u) = —sinu + 0(|u|5)’

so small-amplitude solutions of (1) can be approximated by solutions of the
(SG)-equation, which is known to be integrable!

The final results of our analysis are given in Theorem 6.2. In a somewhat
simplified form they can be stated as follows:

THEOREM. For each invariant subspace E*" as in (4) there exists a subset
EcE™~R" xT" of the form E ~ M x T", a Lipschitzmap & : E~M x T" > Z,
analytic in g € T", and a Lipschitz map W : M — R” such that

(i) the subset E = E* has unit density at zero;

(ii) the curves t +— ®(u, D + tW(u)), where (u, D) € E, are quasiperiodic solu-

tions of (1) + (N). All Lyapunov exponents of these solutions are zero;

(ili) the set T " = B(E) has a tangent space at zero, coinciding with the space

E™

By the last assertion of the Theorem one can treat J 2" as a partial central
manifold of (1) + (N), corresponding to the invariant subspace E?" of the linearized
equation (KG) + (N).

In particular, taking n =1 we obtain

COROLLARY. The equation (1) +(N) has time-periodic solutions, forming
infinitely many families. The family number j consists of solutions with the frequencies
close to j*; these solutions are parameterized by the points of some one-dimensional
set of pesitive Lebesgue measure.

3 That is, the intersection of £ with the 6-ball centered at zero fills most part of the ball when & —0.
See Part 6 for the exact definition.
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Altogether the manifolds Tn p= 1,2,..., are “infinitesimally dense” at zero:
the union of their tangent spaces at zero is dense in T,Z ~Z. So their union
J =ud > is a linearly stable set which is “dense near zero” — it intersects each
open nonempty cone with the vertex at zero (see Part 7). Sufficiently small solutions
of (1) + (N) are close to .7 ; for a long time they follow quasiperiodic solutions in
J and look “regular”. The phenomenon of regular behavior of small-amplitude
solutions of (¢*) + (N) is well-known from numeric experiments [ZIS] (for some
time there was a hope that this equation is integrable).

The proof of the Theorem goes as follows. We start with an analysis of
time-quasiperiodic ( =finite-gap) solutions of (SG) + (N) of small amplitude p < 1
and prove that they form smooth submanifolds J 2" of the phase-space Z with the
tangent spaces at zero equal to the spaces E?". Next we study linearizations of the
(SG) + (N) equation on the solution in 7 2" and show that these equations can be
reduced to constant-coefficient linear equations. After this an application of the
KAM-theory for infinite-dimensional systems (see [K1, K4])* proves persistence of
most of the (SG)-tori in the equation (1) and complete the proof.

The equation (SG) has well-known finite-gap solutions, given by the theta-
formula

0Gi(Vx + Wt + D + 4))
0G(Vx + Wt + D))

w(t, x; X, D) = 2i log (6)

obtained first by Kozel and Kotlyarov [KK] and Its (see in [Mat]). The solution (6)
defines (and is defined by) its spectral curve X which is a hyperelliptic Riemann
curve with a real involution. In general any hyperelliptic curve X with a real
involution determines a solution of the SG equation. Moreover, there are usually
many connected components of the solutions corresponding to the same X, which
makes a general picture rather complicated (for details see [BBEIM, DN, EF]). The
picture simplifies if we consider only small-amplitude solutions. In this case the
genus g of the curve equals the number of nontrivial spectral branches of the
corresponding L-operator (see [McK, EFM, BBEIM]); the branching points of X
are {0, 0} U{A;, 41;...54, A}, Where 4,4, (j=1,...,g) are the edges of the
nontrivial spectral branches. The vectors (4,,..., 4,) € C* ~ R*% and D € T¢ are
parameters of the solution.

The analysis of the formula (6) we give in Part 1 (following [Bo] and [BiK])
shows how to single out among the g-gap solutons (6) real-valued 2=z-periodic

4 For the classical finite-dimensional KAM-theory see e.g., [A2], [M] and [P].
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solutions, which are even or odd in x. The solutions from the first group satisfy
Neumann boundary conditions, and from the second group — the Dirichlet. More-
over, solutions U = (4, %) of (SG) + (N) thus obtained form 2n-dimensional ana-
lytic varieties 7 ** = Z, n = [g/2] + 1, and similar with the solutions of the Dirichlet
problem. The solutions in %" of an amplitude <p form a smooth analytic
manifold 7 2", foliated to invariant tori of (SG) + (N):

Tr= ) T(X), (7

X = X(p)

where an n-dimensional u parameterizes all the curves X giving rise to solutions (6)
which satisfy (N).

The tangent spaces to the manifolds 7 2" at zero are exactly the spaces E*” as
in (4). So the spaces E?" (or, equivalently, the vectors V as in (3)) parameterize the
manifolds 7 2".

The manifolds 2" are symplectic submanifolds of Z and (SG) + (N) restricted
to J 2" is an integrable hamiltonian vectorfield with a singularity at zero. We prove
(with some efforts) the following statement which substitutes the Liouville—Arnold
theorem for systems with singularities in 7 2" there exist analytic Darboux coordi-
nates (p, g) such that the hamiltonian of the system on 7 2" depends only on the
actions p; +q7,j=1,...,n.

Next we study linearization of the equation (SG) about the solution (6):

v, =v,, — (cos u(t, x))v. (LSG)

The integrability of the (SG)-equation exhibits itself in the linearized equation in
the following way: the equation (LSG) has infinitely many complex x-periodic
“Bloch-like” solutions v/, (¢, x), v/_ (¢, x) of the form

@, L), x) = e P (W™t + D")(x),  j=n+1,n+2,..., (8)

where W" and D" are the vectors formed by the first n components of the vectors
W and D from (6); the frequencies w; and the functions ¥, (D")(x) depend on the
curve X(u). The even in x parts of (8) give solutions of (LSG) + (N) of the same
form but with ¥/, replaced by ¥/, (x) = (¥, (x) + ¥/, (—x))/2 € Z.

Critical for the perturbation techniques we are going to apply to the manifolds
F %, as well as for the subsequent investigation of the manifolds, is the following
nonresonance property:

Wr-s+w #0, Wt-s+tw tw,#0 9
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as functions of the curve X, for all s € Z" and all j # k (see [K4, Part 4] for a
discussion of the relations (9)).

Relations (9) as well hold for the (SG)-equation under Dirichlet boundary
conditions, but not under the periodic ones! In the latter case the frequencies w, go
in pairs w;, in such a way that |w;, —w,_| < exp —j/C. So the periodic boundary
conditions are asymptotically resonant and our techniques can not be applied there.

Our calculations also prove the nondegenerate amplitude-frequency modulation
for solutions forming the manifold J 2"

det OW"[du |, - o # 0. (10)

Thus, the vectors W”, corresponding to the solutions (6) of (SG) + (N), form an
n-dimensional domain.

The nonresonance and nondegeneracy relations (9), (10) jointly with asymp-
totics for the solutions (8) as j— oo, allow us to prove that for fixed D", u the
vectors {¥/, (D", p) |j 2 n + 1} forms a skew-orthogonal basis of the skew-orthog-
onal complement in Z to the tangent space to J 2. Next an application of an
abstract theorem from [K2-K4] supplies us with a symplectic coordinate system
(¢, p, ) in a neighborhood of 2" in Z, such that y varies in a symplectic subspace
Y « Z of codimension 2n; the manifold {(q, p, 0)} equals 7 2" with the Darboux
coordinates (g, p) in it, and the hamiltonian of (SG) + (N) in these variables equals

W) +5 AU, 7> + 14, b, ). an

Here I, =§(p? + ¢?),j =1, ..., n, are functions of u only; h* = O(||y|*), the opera-
tors A(I) are diagonal in an I-independent basis of Y and the hamiltonian linear
operator in ¥ with the hamiltonian 3{A4(I)y, y) has the frequencies {w;(I)}, where
w; are the same as in (8).

Now an infinite-dimensional version of the KAM-theory from [K1] can be
applied to prove that most of the tori {I = const, y =0} (which are exactly the tori
T"(X(u)) written in the new variables) persist under perturbing the equation by
higher-order terms, thus proving the Theorem.

In fact, the invariant Lipschitz manifolds 2" from the Theorem “remember”
that they are perturbations of the manifolds 7 2" (not the spaces E?" only):

AMPLIFICATION. At the set {(p,q) € E*|p} +q} <2p*} " E the map & is
close to the map ®, parameterizing the manifold T 2" : ||®(p, q) — Po(p, 9) | =
O|(p, q)f ¢ for each e¢>0. Thus, at zero the Lipschitz manifold I has a

second-order tangency with T '.
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The analytic manifold 72" is a partial central manifold of the integrable
equation (SG) + (N), corresponding to the invariant subspace E?" of the linearized
equation (KG) + (N). The Theorem states that the equation (1) + (N) has a partial
central manifold which is a “Lipschitz manifold with holes” and the Amplification
states that at zero this manifold is well-approximated by 7 2.

Now we briefly discuss equation (1) with » < 0. Suppose for simplicity that
m = 1. We can rescale u to achieve x = —1/6. Then

—u + f(u) = —sinh(x) + O(|u}®),
and (1) is a higher-order pertu;bation of the Sinh—Gordon equation
u, =u,, —sinh u.

This is again an integrable equation similar to (SG) but simpler than the latter
(because the L-operator for this equation — not for the (SG)! — is selfadjoint). So
we can proceed exactly as above to construct the finite-gap manifolds filled with
solutions of the equation under (N) or (D) boundary conditions; to put the
equation into the normal form (11) in the vicinities of the manifolds and to apply
the infinite-dimensional KAM-theory. As a final result of the analysis we obtain
that both the Theorem and the Amplification also hold for » <0.

Now we turn to a comparison of our theorem with the known results. In our
work we study persistence of small-amplitude finite-gap solutions of an integrable
equation under higher-order at zero perturbations of the equation. Persistence of
finite-gap solutions of order one under small perturbations of the corresponding
integrable equation was proved before. See [K2] for an abstract theorem and its
application to nonresonant families of finite-gap solutions of the KdV equation and
see [BoK1] for a proof that in the KdV case all the finite-gap families are
nonresonant; see [BiK] for the perturbed (SG) equation

U, = u,, — sin u + ep(u).

The results of the present paper essentially depend on the local (near zero)
theory of finite-gap manifolds 7 2", based on the Schottky uniformization. It turns
out that zero is a rather complicated point of the finite-gap manifolds (as far as we
know, even smoothness of the manifolds 7 2" at zero has not been proved before
our work). Still, large-amplitude finite-gap solutions of the (SG)-equation possess
some additional properties with respect to the ones of small-amplitude solutions. To
present a more complete picture of the (SG)-equation and its perturbations we end
each part of the paper with a brief discussion of the corresponding properties of
large-amplitude solutions, following [BiK].
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Results similar to ours were known for the nonlinear string equation with a
“typical” potential V(x),

Uy = Uy — V(X)u + &f(u). (12)

It was proved [K1, K4] that if the potential V(x) depends on an n-dimensional
external parameter in ‘‘a nondegenerate way”’, than for most values of the parameter
time-quasiperiodic solutions of the linear equation (12) ]E=0 with <n frequencies
persist in (12) (the equation should be supplemented by (D) or (N) boundary
conditions). Similar result was obtained by Wayne [W] provided that the potential
V(x) is random and the funciton f(u) satisfies (2). See in [CW] another approach to
prove persistence of time-periodic solutions which is also applicable to the equation
(12) under periodic boundary conditions.

Time-periodic solutions of (1) + (N) and (1) + (D) have been studied by many
authors (see survey [Bre]). Still, results of the Corollary also are new: in the previous
works under different restrictions on the nonlinear term f(«) of the equation it was
proved that the equation has a countable family of time-periodic solutions. We prove
that the time-periodic solutions form infinitely many one-dimensional families.

Notations
We denote by D2" and D¢ the polydisc of radius p and its complexification:

Dy ={(p,9) eR"|p} +q; <20}, D;={p,q) eC”||p+q, <20};

by u; we denote the actions y; = 3(p? + g7) and by M and M the polydisc in the
action-representation and its complexification

My ={peR,|0<y <p}, M,={uelC"||y|<p}
By C, C, etc., we denote different positive constants in estimates and denote by

p, p’ positive radii of manifolds 7 ,, different in different parts of the text (so the
manifold 7, in Part 1 is larger than in Part 6).

1. Small-amplitude finite-gap solutions of boundary-valued problems for the
Sine—Gordon equation

We consider the Sine—~Gordon equation

u,=u, —sinu (SG)
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under Neumann

uw(t,0)=u'(t,n)=0 (N)
or Dirichlet

u(t,0) =u(t,m) =0 (D)

boundary conditions.

In a contrast with the tradition we treat (SG) as a system of first order (in time)
equations not for pairs of functions (u(t, x), ©,(t, x)), but for the pairs (u, A~"?u,).
Here A is the differential operator —d?/0x? + 1, supplemented by the boundary
conditions (N) or (D). The operator A4 is positive selfadjoint, so the square root
A2 and its inverse 4 "2 are well defined. We write down (SG) + (N) (or +(D))
as

i=—/Av, ©=/A@u+ A" \(sinu—u)) (1.1)

(the function v can be excluded from the equations; after this reduction we obtain
for u exactly the (SG) equation). The linear part of equations (1.1) is symmetric
with respect to # and v, which is convenient for our analytic tools.

We denote

U(t, x) = (u(2, x), v(t, x))

and observe that the first component u(z, x) contains all the information about the
solution, because v = — A4 ~ /%,

We start with some basic facts from the finite-gap theory of the (SG) equation
(see [McK, EF, DN, BBEIM] for the proofs and details). Let X = {P = (4, )} be
the hyperelliptic Riemann surface of the polynomial

w=1 11 G =200 - 1), (12)

i=1

where A,, ..., 4, are pairwise different complex numbers from the upper half-plane
C. (we restrict ourself to the solutions with complex branching points because the
small-amplitude finite-gap solutions we are interested in are of this type). We denote
the hyperelliptic involution and the conjugation involution as follows:

nw=>0G -, M w=>1 —i.
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Let us make on X the cut y,=[0, c0) and the cuts y;,,i =1, ..., g, where y,is a
path from 1, to 4;; let us choose the canonical basis of circles (a;, b;),i=1,...,g,
on I in such a way that the circle a; surrounds the cut y; (see Fig. 1), and fix a’ basis
of holomorphic differentials dw,, . .., dw, of X normalized by the conditions

fﬁ w; = 21id,,,;, sm=1,...,g.

The Riemann matrix B =(B,,)),

BM]=§ (!),, j,m—_—l,...,g,
bm

defines the theta-function 6,

0z |B) =) exp(% {Bm, m) +{z, m)).

This function has the matrix of periods (2nil, B).

The function \/1 is not single-valued on X. To correlate the local parameters
ﬁ at the points A =0 and 4 = oo we should fix a branch of ﬁ on X. This branch
is fixed if a contour ¥ on X is specified, where \/1 has a jump alternating its sign
(ﬁ is analytic on X — % and boundary values of \/Z at two edges of & differ by
a sign, ﬂ v, = —ﬂ » ). We choose ¥ to be a union (see Fig. 1) of the
contours surrounding the cuts y,, which are mapped to y,’s by the projection
(A, p) > A. Let us consider the Abelian differentials dQ,, , dQ, with zero a-periods

Figure 1. The spectral curve with the canonical basis.
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and such that dQ2_, has the only pole in o0 and dQ, has the only pole in zero:
1
dQ_ (P) = d(\//_l) (P - o), dQ,(P) = d(ﬁ) (P — 0). (1.3)
We denote the b-periods of dQ_ , dQ, as B*, B®:
B0 =f dQ 0,
b,
and define the vectors

1
V=2(B-B, W=,(B"+B).

o

The antiholomorphic involution 7, acts on the basis of the cycles and on the

local parameters as follows: 1,4, = a,, 1,b, = —b, + a,, rg\/— = ~\/I. These re-
lations imply

XdQ° = —dQ°, 1%dQ°= —dQ°

and prove the realvaluedness of the g-vectors V, W.
The finite-gap (theta functional) solutions of (1.1) are given by the formula

0(i(Vx + Wt + D + A))
0Gi(Vx + Wt.+ D))

u(t, x; A, D) = 2i log (1.4)

where A =(4y,...,4,), V=V(A), W=W(4);id =i(z,...,n) is the vector of the
half-periods and D e T& = R¢/2nZ# is the phase of the solution.

The construction just described assigns to each vector® 4 =(4,,..., ;) € Me,
where

ME = {(Ay,...,4) |4 €C,, 4 #4 Vji#k}, (1.5)

the toroidal family of the finite-gap solutions (1.4), where the phase D varies in the
g-torus.

5 In fact, to each set {25, /'.g}. With some abuse of notations we do not distinguish a vector
(Ays. .., 4g) from the set {4;,..., 4}
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For A € M we denote by 4 ' e M the g-vector with the inverse components,
A7 ;=)' j=1,...,g and denote by M, a set of all 4 € M such that

4| <1,...,]4,]<1 and A~'=1 as sets,

where

n=n(g)=1 +[¥:’

Since all 4;’s are different, then
A.|=1  VaeMe if gis odd.

We denote by T the g x g matrix

- 3

1

1

" ~

LEMMA 1.1. Suppose that i € M. Then the solution (1.4) is even in x if
D=T;D and is odd if D =T;D + (n,...,n). Besides, ;W =W, T,V =—V and
the vectors V,W are given by the formulas V,=3yBY —BZ \_;), W) =
1 e'd} @©
(B + B2y k).

For a proof see [Bo, BiK, BoK2].
A solution U = (u, v) of (1.1) satisfies Neumann boundary conditions (N) if it
satisfies “even periodic” boundary conditions with the doubled period:

U(t, x) = U(t, x + 2n), U@, x) = U(t, —x). (EP)

Similarly U(¢, x) satisfies Dirichlet boundary conditions (D) if it satisfies the “odd
periodic” boundary conditions:

U@, x) = U@, x + 2n), U@, x) = - U(t, —x). (OP)

By Lemma 1.1, to extract from the set of even (odd) solutions (1.4) the
solutions of (SG) + (OP) ((SG) + (EP)) we should solve the equation

Vs, V)A) e Z8 (1.6)
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for A e M,,,,. We start an analysis of this equation with simple small-gap limits for
V and W vectors when 4 € ¢ ,, tends to a real vector 1 with positive components:

V(i) — Vo), W) — W) as A—1eRe,
where

1 1 1

V}(:):Vy(z,)%(ﬁ,.——ﬁ), W;’a)=W?(l,-)=-2—(ﬁ,~+—ﬁ) (1.7)

(see [McK, EFM] and Theorem 1.2 below). As 4 € M., then for the limiting
vector I we have: 0</,...,L, <1</, y,... 1.

We suppose that all components of the vector 1 are different. Then, after
unessential reordering of the first and the last » of them, we have:

O<l, < <1<l <y, Ll ;=1 vj.
After this reordering the components of the vector V|, are increasing:

Vi< o <WVISO0<Vy< <V, 1, V) =—=V2,i_,

As a suitable parameter for the families of solutions we choose the integer n-vector
V=—W% V93, ..., V9, varying in the set ¥°¢, where n = n(g) and

VeE={V=(V,,...,V,)€Z"|V,> >V, 20,V,=0iff gis odd}.
For V € ¥ ¢ fixed we denote
N, =N, (V) =(NU{OD\{=V3,..., = V?}.
We treat V={—V9, ..., —F?2} and N, as the lists of open and closed gaps of the
solution (1.4).
By (1.7) components W? of the limiting vector W° have the form
W =(0)*, 1<j<g
where for real / we denote [* = ./I> + 1.
Small-amplitudes solutions we are discussing now correspond to the situation

when all the cuts in Fig. 1 are small. They are studied in our work [BoK?2]. Below
in Theorem 1.2 we give the final results of this analysis.
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THEOREM 1.2. For every V € ¥°¢ there exists p > 0 and real-analytic map
LMy ={peC||yl<pV}->Cs  um i),

such that
(a) for pe M = M5 NR", the vector Au) lies in ME,, = C&. and the Riemann
surface (1.2) with A = A(u) satisfies (1.6);
(b) the maps

p— U@ x; M), D),  p— W(A(p)

are analytic in Mg and U(t, x; A(0), D) =0, W,;(0) = W?;
(c) the vector V(A(w)) equals to V° for all u;
(d) the matrix OW/0u at the point u =0 equals to

—16/W?°, j+#k,

—12W, =k; (9

OW; [Opy. |u=o={

(e) for u=(0,...,p,...,0), where p; 20,
U(0, x; AMu), D) = 16\//7j(cos V? x cos D;, cos V? x sin D;) + O(u). (1.9)

COROLLARY 1.3. The map M§—>C", p— (Wy,..., W,)(W), is an analytic
diffeomorphism on its image, provided p is sufficiently small.

Proof. We should check that det 0W, /0y, # 0 at yu = 0. This determinant differs
by a nonzero factor from the determinant of the matrix m = (my), where m,; =3
and my =4 if j# k. The matrix m clearly defines an invertible linear map, so
det m # 0. ' O

Thus, g-gap solutions U(z, x; u, D) = U(t, x; A(n), D) of (SG) + (N) analytically
depend on pu, D and are parameterized by the discrete parameter V € ¥"¢. Below in
parts 2—5 the vector V is fixed.

Due to the symmetry relations, the vectors ¥V, W and D are uniquely defined by
their first » components (belonging to R” and T”). With some abuse of notations we
denote these n-vectors by the same symbols V, W and D.

The coordinate system (u, D) is singular in the points, where some u; vanishes,
because for y, =0 the zone [4;, 4;] shrinks to a point and the solution U does
not depend on the phase D;. This observation hints that the functions
(V2w D) |j=1,...,n} form a “good” polar coordinate system and the solution



78 ALEXANDER 1. BOBENKO AND SERGEJ B. KUKSIN

u analytically depends on the corresponding Cartesian coordinates ( p, q),

P =+/2u; cos D, q;, =+/2u; sin D;. (1.10)

Direct calculations, given in [BoK2], prove this conjecture:

LEMMA 1.4. The map

®o: D3 ={(p.9) | P} +4] <2p Vj} > H,,  ®(p, ) = U(0, x;p, q),
is real-analytic for every s € N, and

0
5% @,(0) = 8,/2(cos V°x, 0), 5 ®,(0) = 8,/2(0, cos V°x). (1.11)

i i
Moreover, the map @, is odd: ®y(p, q)(x) = —Dy(—p, —g)(x).

In the lemma we denote by H, the Sobolev space of vector-valued even periodic
functions U(x) = (u(x), v(x)). That is,

H, = {U(x) | U(x) = U(—x) = U(x + 2n), J?" |0LU(x) > dx < o0 VI < s}.

The formula (1.11) results from (1.9). The last statement of the lemma follows
directly from the formula (1.4), since the transformation D — D + 4 interchanges
the numerator and the denominator of the logarithm’s argument in (1.4).

The following statement (with p sufficiently small) is an immediate consequence
of the lemma:

COROLLARY 1.5. The set T , = ®4(D?") is a 2n-dimensional analytic subman-
ifold of H,. This manifold passes through zero 0 € H, with the tangent space

ToJ , = E*":=span{(cos V?x, 0), (0,cos V9x) |j=1,...,n}.

The manifold is invariant under the Sflow of (SG) + (N) and is foliated by the invariant
analytic tori of the form

O(T" (W),  T'(w) ={p}+q?=21,20j=1,...,n}. (1.12)

The dimension of the torus T"(u) equals n in general case and drops by one if some
W; vanishes.
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Thus, equation (1.6) defines an n-dimensional analytic subvariety of the g-
dimensional domain IME,,. Due to Theorem 1.2, this subvariety has nonempty
components I, parameterized by the vectors V from ¥¢. The g-gap solutions of
(SG) + (N), corresponding to vectors from g, form in H, a 2n-dimensional
variety 7 2" = 7 2(V), diffeomorphic to M§ x T”. The intersection of I " with a
small enough neighborhood of zero in the phase-space forms smooth analytic
manifold; its closure is a 2n-dimensional smooth analytic manifold J, = 7 ,(V),
diffeomorphic to the 2n-dimensional polydisk D?2".

Due to Corollary 1.5, manifold 7, is stratified as follows:

_ 0
‘a/_p'“g—pu< U g-p,g’)’

where ) =7%nJ, is an open part of 7 ,, filled with g-gap solutions, and
nonconnected analytic submanifolds 9 ., are filled with (g’ < g)-gap solutions of
(SG) + (N).

The object of this paper is to study behavior of solutions of (SG) and perturbed
(SG) equation near manifold J,, including its lower-dimensional submanifolds
g8 <8

In [BiK] the whole variety 7 *" without lower-dimensional subvarieties  , , was
considered®. The variety J is formed by the components of J(V), containing
small-amplitude solutions. It does not exhaust all finite-gap solutions; in particular,
because the solutions in J 2" have trivial topological charge. So the theory,
developed in [BiK] can be called half-global. The local situation, which is being
considered in this paper, can not be covered by the half-global theory from [BiK],
because small-amplitude solutions were excluded there from the consideration.

p.g°

2. Solutions of the linearized equation
We consider equation (1.1) linearized about the g-gap solution U = (u, v):
o= —JAdv, &6 =./A(u+A""(cos u(t, x)du — du)). (2.1)

Clearly, we can exclude dv from this system and obtain for du(z, x) the linearized

¢ It was stated in Lemma 2 of [BiK] that the variety 7 2" is smooth. At this moment both the
authors of [BiK] can not prove this more general statement. However, the information about 7 we
possess (an analytic variety, smooth near zero) is quite sufficient to carry out the proofs of [BiK].
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(SG) equation:

oti = du,, — (cos u(t, x))ou, (LSG)
supplemented by (N) (or (D)) boundary conditions (because the functions éu and
ov belong to the domain of definition of the operator A).

There is a natural way to construct solutions éU = (du, ov)(¢, x) of (2.1):

(1) to write U(t, x; u, D) = U(t, x; A(n), D) as a degenerate (g + 2)-zone solution

U(t, x; p, D) = U+ (t, X; s 13 D, Dy 1 1)

Hp +1=0>°

where U"*! is a (g + 2)-gap solution of (SG) + (N), corresponding to a
vector V** 1 =(V, V2, ) € ¥ #+%(V € ¥ & corresponds to the solution U and
Ve +1€N,);

(2) to obtain a solution of (LSG) as

a n+1
lim L U (2.2)

b
Pn1 =0/, 4y [

(the factor u,!?? appears in the formula because not (D,.,, u,.;) but
(Pn+1>9n+1) forms a smooth coordinate system near y,, , =0).

The solution (2.2) depends on the choice of the phase D, ,. Different solutions
are parameterized by elements of the set N, which enumerates the closed gaps of
the solution U.

We recall that by D¢ we denote the set {(p, q) € C*"||p;[* + |¢;]* < 2p Vj}.

THEOREM 2.1. For each j =V}, €N there exists a linear combination 3; of
two solutions (2.2) with different phases D, , ,, having the form

3(D, t; w)(x) = ™ OPI(W ()t + D, p)(x), (2.3)
where w; and W’ are analytic functions. The frequency w;(u) equals to the (n + 1)’th

component of the W-vector of the solution U™+ with u, . , = 0. It can be analytically
extended to some complex polydisc M5 = {|u;| < p}, where

I, () —j*| < € min(ju), (1 +) ). (2.4)
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The function W/ is even in (p, q). It can be analytically extended to some domain
0,={(p,q) €D} x {x eC|[Imx|<p},

where it is close to (cos jx, i oS jx):
Yi=(cosjx, i cos jx) + PO(W(ut + D, u)(x)

and
1 ... S
YA(D, u) = 3 (e"PN(D, p)(x) + e =MD, p)(—x)). (2.5)

The function ¥’' is analytic in x and (p, q)-variables and everywhere in @,

P71 < Clul(1 +) " (2.6)

Proof. In [BoK?2] we construct a linear combination of solutions (2.2) with the
u-component equal to

Y = e™i'(cos jx + PV),

where w;(u) satisfies (2.4), the function ¥7 is analytic in @,, with some p >0 and
has the form (2.5) with ¥/! replaced by ¥J'. The function ¥’' does not exceed

Clul(14+7) "
Since v = 4 ~'"2u(t, x) and

A ~ 12 sin(cos)(kx) = k*~! sin(cos)(kx),
then the v-componént of the solution equals
u(t, x; D, p) = ie™i'(cos jx + P20),

where the function ¥/ has the form (2.5) and the analytic function ¥/' is bounded
in 0, by C’|u|(1+/)~". To obtain this estimate one should use the direct and
inverse estimates for the norm of an analytic function in a complex strip via its
Fourier coefficients (see [A2] and [K1], appendix B to Part 3).

The v-component of the solution is analytic and even in (p, ¢g)-variables as well
as the u-component. U

It occurs that the frequencies w; satisfy nonresonance relations, important for
subsequent constructions.



82 ALEXANDER 1. BOBENKO AND SERGEJ B. KUKSIN

PROPOSITION 2.2. For all s€eZ" and all | > r in N,, we have

n

,; W;(w)s; + 2w, (u) #0, (2.7)

S W,(0)s, + w, () + wi() #0. (2.8)

j=1

Moreover, for each function as in the L.h.s. of (2.7) or (2.8) either the function itself,
or its gradient does not vanish at u = 0.

Proof. We proove more complicated relation (2.8) only. Denote the lLh.s. in
(2.8) by x(u) and suppose that

x(0) =0, é——x(O) =0 Jj=1,...,n (2.9)

Abbreviating ) .y to Y ; we can rewrite the first relation in (2.9) as
0=yx(0) =) j*s; +r* +I*
7

Using (1.8) we can rewrite the second one as

4 4
-—4(2———sk——s—’- —;+l*) 0, Jj=1,...,m (2.10)

in particular, s;/j* = C for all j in V with some real C. Hence,

CYk*4+r*+1*=0
k

and

C(4|v] - 1) +~4; 14 =0. (2.11)

We can eliminate C from these equations and find that

4}:(1+j2) 2

2+ D@+ 1) = (1) = --{il-‘-;l——_—-r
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Thus, (r*>+ 1)(/>+ 1) = 16N? with some integer N. We have obtained a contradic-
tion because a number m? + 1 with integer m never can be divided by four. O

We have proved Proposition 2.2 for 2n-periodic solutions. If the period equals
2n/L with some L >0, then the numbers W? =;* in the statements (b), (c) of
Theorem 1.2 should be replaced by /j2L?+ 1 and it becomes more complicated to
prove that the system of (n + 1) equations (2.9) has no integer solution (s,, ..., s,).
We do not prove the statement in this general setting, but observe the following:

AMPLIFICATION 2.3. (1) The set of all L >0 for which the statement of
Proposition 2.2 fails has no more than finitely many points in each finite segment
[a,b], 0<a<b< 0.

(2) The statement holds for all L if V=1{0,1,...,n — 1} (i.e, if all the first gaps
of the finite-gap solution (1.4) are open).

Proof of the first statement see in [BiK].

To prove the second one we observe that all the formulas from the above proof
of Proposition 2.2 till (2.11) remain true for an arbitrary L > 0 if we define r* as
r*¥=./r*L?+ 1. In particular, the numbers s, . .., s, have the same sign (and are
nonzero). We rewrite (2.10) with j =n — 1 as follows:

-1
" S, Sp_1 4 4

=4+———. 2.12
k=ok* (m—D* ~T[* r* (2.12)

As |s,| 2 1 for all k, then the modulus of the Lh.s. is larger than

"“‘ 1 4n — 1
./ 2k2 \/Lz(n —1)2+1 \/Lz(n —1D2+1

and the modulus of the r.h.s. is less than 8/,/L3(n — 1)>+ 1. So (2.12) is impossible
if n23.

If n=2 the equality is also impossible because |so|+|s;| 23 (the choice
Is;| =|s2] =1 contradicts the equality s,/0* =s,/1*). For n =1 the equality is
impossible for similar arguments. a

As we explained in Part 1, g-gap solutions (1.4) of the equation (SG) + (N)
form 2n-dimensional analytic varieties embedded into the phase space Z. The
connected components of these varieties, containing 0 € Z in their closures, were
denoted as J "= V),V e ¥ 5. Their closures are smooth near zero and
contain the small-amplitude manifolds 7, we are studying. The Bloch-like solu-
tions (2.3)
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can be also constructed for the equation (SG) + (N), linearized about a solution
U = (u,v) =« J 2. For large u (corresponding to a large-amplitude solution U) the
functions w; (1) can have nontrivial branching points. After crossing these points the
functions w; become complex [EFM, BiK] and the solutions (2.3) become exponen-
tially growing as ¢ — co. The branching points for the functions w; can occur outside
the singularities of J %" (and only outside the manifold 7).

The statements of Theorem 2.1 remain essentially the same when 7, is replaced
by 7 ?". Besides, due to uniqueness of the analytic extension the claims of
Proposition 2.2 hold for the Bloch-like solutions corresponding to U = J 2",

3. Symplectic structure of the phase space and manifold 7 ,.
Action-angle variables on 7,

We start with defining some functional spaces we need in what follows.

Let 3, be the Sobolev space Hx*!(S!) of even 2rn-periodic scalar functions (i.e.,
the space of even 2n-periodic functions with square summable derivatives up to the
order k + 1). We provide 3, with the scalar product

2n
{u,v) = J (u,w, + uw) dx
0

and provide 3,, s = 0, with the scalar product
(u, v), = {APu, A°Pw),

where, as above, 4¥? is a power of the positive selfadjoint in 3, operator

A, A(u) = —u,, +u. By the definition of the spaces 3, the operator 4 isomorphi-

cally maps 3, to 3,_, (i.e., 4 is an isomorphism of the scale {3,} of order two).
Let us define the Hilbert spaces Z, of vector-valued functions,

Z;=3,x3,, 520

The scalar product, inherited by Z, from J3,, will be also denoted (-, ),. We
abbreviate (-, - >={"," ),.

The operator J(u, v) = (—\/Zv, ﬁu) defines unbounded skew-symmetric op-
erators in the spaces Z, and defines an isomorphism of the scale {Z,} of order one.
The operator J—! is bounded skew-symmetric in Z, s 20, and defines there the
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2-form
w,=—{J Vdz, dz).

Let us set r(u) = —cos u — 1u>. The functional

2n

H(u(x), v(x)) = f r(u(x)) dx

0

is analytic in the spaces Z,, s = 0. Its gradient with respect to the scalar product

() is
VH(u, v) = (4~ 'r'(u(x)), 0).2 3.1

Under the symplectic structure given by the two-form w,, the Hamiltonian
equation corresponding to the hamiltonian

H(z) ==%<z,z)+H(z), zeZ,

has the form

z =JVH#(2), z = (u(x), v(x)) e Z (3.2)
(see [K1]). By (3.1), the last equation may be written as follows:

h=—JAv, v=JAW+A"(" W)
I.e., the Hamiltonian equation with the hamiltonian 5 is exactly the (SG)
equation, written in the form (1.1).

Now we turn to the manifold 7, = @,(D?2") and denote by a, the form in D2",

equal to the pull-back of w,:

o, =P¥w,.

7 By definition, —{J ' dz, dz>(31,32) = —<J ~'3;, 32D

8 To prove the formula one should observe that

KVH(u, v), (1, v,)) = dH(u, v)(u,, v,) = 'f r'(u(x)u, (x) dx = (4~ 'r'(u(x)), 0), (, (x), v,(x)) .
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By (1.11), a,(0) =Y B? dp; A dq;, where B} = 128nj*. In the dilated variables

~

Pi=Bp, §=Bg, =By

the form a,(0) is just dp A d§. We pass to the tilde-variables and (as usual) omit the
tildes in what follows. So

o, =dp Adg + O(|p, q|),

and the form a, is nondegenerate on J, provided that p is sufficiently small. Thus,
J , carries the natural symplectic structure.

The restriction of equation (1.1) to 4, is a Hamiltonian vector field V), with the
hamiltonian 4 equal to the restriction of # to J ,. The open dense subdomain J~ 2,

To={(.D)eT,|u #0V/},
if filled with the invariant n-tori 7"(u) as in (1.12):

70 =T | >0}, (3.3)

and restriction of V), to the torus 7"(u) is the Kronecker vector-field,

0
Va lrn(p) = W;(w D (3.4)
]

Due to Corollary 1.3,
det OW; /oy, # 0, (3.9)

and for almost all u trajectories of (3.4) are dense in the torus 7"(u). It occurs that
the decomposition (3.3) and the nondegeneracy relation (3.5) jointly imply the
Liouville—Arnold integrability of ¥, (see appendix 1 below). So locally near each
torus 7"(u) we can construct analytic action-angle variables (/, ¢), where the
actions 7 vary in some n-dimensional domain, angles ¢ € T" and

w,=dI A do, h = h(I). (3.6)

Fortunately, the variables (/, ¢) may be analytically extended to the whole domain
T, ‘

p*
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THEOREM 3.1. If p is sufficiently small, then there exists an odd analytic
transformation

(P, q) — (5, 9, (3.7

such that (P, §) = (p, q) + O(p, q|*), w,=dp A dg and the hamiltonian h, written in
the (B, §)-variables, depends on the actions I, = 5(p? + §?), j =1, ..., n and does not
depend on the angles ¢; = arctan §;/p;. In the variables (u, D) and (I, ) the transfor-
mation (3.7) has the form

(1, D) = (I = I(1), ¢ = D + ¢°(p)),
with some analytic map ¢°.

This statement is a version of the Liouville—Arnold theorem for a hamiltonian
vector-field with a singularity. For rather sophisticated results of this type see [Ito]
and references therein. We give a simple proof of the theorem in appendix 1 (our
situation is much simplified by a priori knowledge that the tori (1.12) are invariant
for the equation).

We finish with a brief discussion of the half-global analytic variety J >". The
restriction of the symplectic form w, to J 2" is nondegenerate almost everywhere
(because it is analytic in J ?” and nondegenerate in J,) and the restriction of
(SG) +(N) to 2" is an integrable equation outside some subvariety 7, of a
positive codimension. So J 2"\, is a smooth analytic symplectic manifold with
the integrable system on it. Locally (near each invariant n-torus) the action-angle
variables can be introduced.

4. Symplectic structure of the infinitesimal vicinity of manifold 7,

In Part 2 we constructed “Bloch-like” solutions (2.3) of the linearized Sine-
Gordon equation (2.1) and proved nonresonance relations (2.7), (2.8). In this part
we show that the corresponding vectors ¥/, ¥/, j e N, form a symplectic basis of
the skew-orthogonal complement to the tangent space to the manifold 7 ,. It is
remarkable that this important property is a rather simple consequence of the
nonresonance relations and the asymptotics (2.4) (cf. direct proofs of similar
statements in [EFM], [Kri]).

_THEOREM 4.1. If p is sufficiently small, then for each (u, D) the vectors
{¥/(u, D), Y/(u, D) | j €N, } lie in the complexification of the skew-orthogonal com-
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plement to the tangent space T, 7, in Z, and form a complex basis of this space
such that

(P, P ) =w,(PLP') =0, (P, ¥') =5,2inj*x;(w), (4.1)
where w; is real and

e (1) — 1 < € min(|e, (1+)~"). (4.2)

The basis from this theorem analytically depends on (u, D).To state the corre-
sponding result we observe that by (2.5), (2.6)

P):=¥/(0, 0; x) = (cos jx,i cos jx), jeN,;

and by Corollary 1.5 the tangent space 7,7, equals to E*". (In particular, for
(4, D) =0 the statement of the last theorem is trivial).
Let us denote by Y, the skew-orthogonal complement to £** in Z_,

Y, =span{Re ¥},Im ¥} |jeN,}’

and denote by @{ the natural embedding of Y, to Z,. The system of the complex
vectors {¥4, ¥} |jeN,} forms a symplectic basis of the complexification ¥* of the
space Y,:

0¥ (Ph, o) = 0*(Ph, ¥9) =0, 0¥}, ¥§) = §,2in*. (4.3)
Let us define the map
®,: D" x Y, »Z,, (P4, y)— (P, 9y,

which is linear in the third variable, for fixed (p, §) sends a vector ¥} to
YI(p, Px; '*(u) and is extended to all of ¥, by linearity ((J, §)-variables are the
Cartesian coordinates in .7 ,, corresponding to the action-angle variables (Z, @), see
Theorem 3.1). By (4.1) and (4.3) for each (p,§) the map @,(p,§):Y—>Z is
symplectic.

The following regularity properties of the map @, mostly result from the
estimate (2.5):

-

9 Here and below bar above a set means its closure.
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THEOREM 4.2. For s 20 the map @, is Fréchet-analytic jointly in both
arguments. The following estimate for the linear map ®,(p, §) holds after an analytic
extension to D :

|21(5, D — 28,1 < G5, D, (4.4)

provided that p is small enough. The map ®, is even in (p, §). For fixed (p, q) it
defines a symplectic isomorphism of Y, and the skew-orthogonal complement to
T(p"‘q)g-p in ZS'

Theorems 4.1, 4.2 are proved in Part 4 of [BiK]. Below for the reader’s
convenience we sketch the proofs:

Proof of Theorem 4.1. To prove that
F(Da ﬂ) = (‘OZ(Y,]) TI)(Ds ,Ll.) =0
we shall check that the function

@(D, t; p) =" ™ +¥'o, [P (Wt + D, p), Y (Wt + D, p)]

= wz[aj(D, ks [l), 3I(D’ I lu')]

vanishes identically. As the skew-product of any two solutions of the linear
equation (2.1) is time-independent, then d/dt ¢ = 0. Thus,

O=d

oF
— @ =iw,+w)F+—W.
dt |, -0

oq

Write F as Fourier series:

F(D, 1) =Y e* PE(s, ).

From the last identity we have
F(s, ))((w; +w) +5 - W)p) =0

for all s and p. By (2.8) the second factor is nonzero for almost all u, so F(s, u) =0
and F(q, u) =0. '
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In a similar way one proves that w,(¥’, %) =0 and w,(¥/, ¥¥) =0 if j #k.

The skew-product w,(¥’, ¥/) is D-independent because the corresponding func-
tion ¢ as above is time-independent. The estimate (4.2) results from (2.5) and (4.3).

To prove that each vector ¥/ and ¥/ is skew-orthogonal to the tangent space to
T , one should consider the skew-product of the solution 3; with any trajectory of
(2.1), starting from a tengent vector to J ,, and use the relation (2.7).

By (4.2) we have in (4.1) x;(u) # 0. So the vectors {¥/, ¥/|j e N} are linearly
independent. By (2.5), (2.6) and Fredholm theorem

codim span{¥/, ¥/ |j e N, } = codim Y¢ = 2n.

As the vectors ¥/, ¥/ lie in the skew-orthogonal complement to the 2n-dimensional
space T, )7 ,, and are linearly independent, then they form its basis. O

Proof of Theorem 4.2. The estimate

||¢l(ﬁ’ q) - ¢?”s,s+1 < CS

results from (2.4), (2.6) because the norm of an operator in a Hilbert space can be
estimated by supremum of the /'-norms of the rows and columns of its matrix. This
estimate implies analyticity of the map @, — ®9, because each matrix element of the
latter is analytic in (5, §) by Theorems 2.1 and 3.1. Now (4.4) results from the
Cauchy estimate. O

The vectors ¥/ and the map &, are well-defined on the half-global variety
F *" = Z outside its singularities, zeros of the functions x; (see (4.1)) and branching
points of the exponents w;. Proposition 2.2 (the nonresonance relations) and the
asymptotics (2.4), (2.6) also hold there. So the statements of Theorems 4.1, 4.2
remain true for 7, replaced by J **, after we cut of from the latter a “bad”
analytic subvariety .4 of a positive codimension.

5. Normal form of the SG equation near manifold .7,

By O,(p, D¥") where s 2 0, p >0, we denote the set

0.(p, D)) =D} x{ye Y. ||y|s <p},

endowed the symplectic structure by means of the 2-form Q,=dp A df D w, |y,.
In what follows we omit the tildes and write (p, q) instead of (p, §). We consider
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the map

®:0,(p, D) > Z;, (P, q,)) = Po(p, q) + Py(ps 9)y.
Clearly,

&(p, g, 0)+(0p, 0q, 6y) = Po(p, 9),(0p, 59) + P,(p, g)oy.

By Theorems 3.1, 4.2 the map &(p, g, 0), sends the form @2, to w,. Thus, if p is
sufficiently small, then @ is an analytic diffeomorphism (onto its image) and

P*w, = Q, + O(|y|,).

The map @ is odd because @, is odd (Theorem 1.2) and the map (p, g) — P, ( p,\q)
is even (Theorem 4.2).

Now we can apply the Moser—Weinstein theorem [Wei] to get an analytic
diffeomorphism

4:0,(p’, D) > 0,(p, DY)

(p’ is some positive number) such that
Ay |D&" x (o) = id

and 4*(®*w,) = Q,. Then
F*w, = Q, for =@ o 4.

The map 4, and so also the map &, is odd.
The pull-back of the vector-field of the equation (1.1) is a hamiltonian vector-
field in O,(p’, D?") with the hamiltonian K = s o § and has the form

¢=V,K, p=-V,K  y=JV K

Let us write K as

1
K =h'(p, @) +<h'(p, ), y) +5 <h(p. @y, y) + b g, 3), - B =0(|y]2),
(5.1)
where h' is a vector in Y and A? is a selfadjoint operator.

As the set {y = 0} is invariant for the equations, then 4' = 0 and A% p, q) = h(I),
see (3.6) and Theorem 3.1.
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In the (7, @, y)-variables the finite gap solutions U(¢, x) take the form
I(¥) = const, o(t) = @y + tW(I), y=0. (5.2)

So the equation, linearized about these solutions, (i.e., the equations (2.1) in the
(¢, p, y)-variables) has the form

of=0, ¢ =W &5 =Jh o(t)dy. (5.3)

The map &, transforms solution of (5.3) to solutions of (2.1). As
B, 0(2), 0)oy = @D,(I, ¢(1))dy, then by the construction of the map @, the map F,
sends the curves

e O, jeN,

to solutions (2.3) of (2.1). Thus, these curves are solutions of (5.3) and so
h*(I, @)¥h=Af(I)¥P%,  where A =w;(I)/j*,

because J¥4 = ij*¥}. So the operator
h*(I, ¢) = A(I)

is a @-independent linear operator with the double spectrum {i/(/)|jeN,},
diagonal in the basis {Re ¥4, Im ¥4 |je N, } of the space Y.

Now we discuss the last term 43(p, ¢, y) in (5.1). As the map § is odd and the
hamiltonian 4 is even, then K is also even. So A3 contains no cubic terms and

w=o(ly|» - oCle] + lall + Iy ) (5.4)

An additional nontrivial and essential property of A3 is its smoothness. This
function turns out to be as smooth as the hamiltonian H (see (3.1)):

LEMMA 5.1 (see [K2, K3]). For s 20 the map V h> may be analytically
extended to a bounded analytic map

Vyh*:Dg x {ye Yi| |yl <p}> Yi,o, (5.5)

where Y is the complexification of the space Y,.'°

19 Here and in similar statements below p > 0 is sufficiently small and depends on s.
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We have obtained

THEOREM 5.2. The odd map &' transforms solutions of equation (1.1) into
solutions of hamiltonian equation on the domain O,(p, D2") with hamiltonian K of the
form

1
K(p,q,y) =h(I) + 2 CAMy, y> +h(p, q, ). (5.6)

The function h* satisfies (5.4), the gradient map (5.5) is analytic and bounded.

In the half-global situation the normal form (5.6) is available in a neighborhood
of T ?\T vaa (see the end of the previous part). As some frequencies w;, corre-
sponding to solutions in J >"\J ,,, with large norms, can be complex, then the
spectrum of the operator JA(I) can contain a finite number of points with
nontrivial real parts (these points are not real and form quandruples +4, +4).
Now the operator A(I) has some more complicated form: it is diagonal in the basis
{Re (Im) ¥} only “up to a finite subsystem” of these vectors. See [BiK] and Part
2.7 in [K1].

6. Perturbed Sine—Gordon equation
Now we start to study perturbations of solutions ( 1.4), which fill some finite-gap

manifold J, « Z,. The number s > 0 and the set V< ¥7¢ of open gaps are fixed
and we abbreviate

I-0=1-1.
We recall that 7, is an image of the map &,,
¢0 . Dgn =¥ Zs, ¢0(0) = O.

In D2" we use the coordinates (5, §) constructed in Theorem 3.1 (and omit the
tildes), or the corresponding action-angle variables (I, ¢). So

{(p,@)} =D ~M} xT", M; ={I}, T ={¢}
The solutions U = (u, v) of (SG) + (N) on the manifold 4, have the form

U, x) = @1, ¢ + W(I)1)(x)
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and fill the invariant tori T"(J),
") = ®({I} x T, ITeM}.

The tangent space at zero 7,7 , equals the image of the tangent map @,,(0) and
equals the space E?" (see Corollary 1.5).

We are going to attack the following problem: how do the solutions U(t, x) and
the invariant tori T"(/) they fill behave under higher-order perturbations, in the
equation

U, =u, —sinu+ F,(u, x), (PSG)

u(t,0) =u(t,m) =0, (N)
where F is an analytic in », C** '-smooth in x, # function such that

|F(u, x)| < Clul®,  F(u, x) = F(u, x + 27) = F(u, —x). (6.1)

Observe that sin u = u — gu® + O(|u}®). So the equation (PSG) may be rewritten as

1 -
U, =, —u+ g ud+ F,(u, x), (6.2)

where F also satisfies (6.1).
The boundary-valued problem (PSG) +(N) may be written down as the
Hamiltonian system (3.2) with the hamiltonian # = .,

U =JVH ort (U), U = (u(x), v(x)) € Z,

where

2n

H pert (U) = % KU, U)+ H(U) + H,(U), H,U) =J F(u(x), x) dx.

0

The functional H, is analytic in Z; and its gradient map VH, is two-smoothing
(it sends Z, to Z, , ).

We can perform the change of variables & from Theorem 5.2 and rewrite
(PSG) + (N) as the system

qg=V,K,, p=-V\K, y=JV, K (6.3)
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in O,(p, D¥) = D% x {||y| < p} where K, =K + K,, K, = H, o § and the hamilto-
nian K is as in (5.1). For the perturbation K, the gradient map

V,Ks: D§ x{|lyl, <p} > Y{ss
is analytic. This follows from analyticity of the map
H;Y (ST — HFU(SY),  u(x) B f(u(x); x) = F(u(x), x),
(“e” stands for “even”, s = 0), which in turn results from analyticity of the map
H** /(8" — H° (S, ‘u = f(u, x), (*)
since (*) preserves the closes subspace H:+!(S!) < H*+!(S).

Remark. Analyticity of the maps V K, and VH, is less obvious in the odd
periodic case which corresponds to the Neumann problem (1) 4+ (N). Now the
maps clearly are analytic (with the same proof) if f(u, x) =f(u, x +2n) =
—f(—u, —x) (this holds if F is 2n-periodic in x and even in (x, «)). Consider f
which is not odd and for the sake of simplicity suppose that it is x-independent:
f =f(u). We pass from the space H:*'(S!) (“0” for odd) to the space H:*'(0, n)
of the traces on the segment [0, n] and accordingly modify the phase space Z,. This
change is inessential since the trace-map defines an isomorphism of H$*' and
H:*!. For s = 0 (this choice agrees with the restrictions of our theorems) we have
H!(0,7) = H'(0, 7) and the map clearly is analytic. We omit discussion of the
higher-smoothness case (s > 0) but just mention that under the restriction (2) the
map (*) is analytic in HS*! if s < 5.

We study perturbations of solutions (1.4) with a norm of order { < 1. This is
equivalent to suppose that the corresponding actions I’s vary in the domain # of
the form

F=SQ)={IeR"|0<I <2V}

We cut away solutions with one of the actions too small and consider the solutions
with I € #,, where

S, =20 ={IeR"|r> <1 <{?Vj}

and r <1 is fixed for a moment. In the new variables the invariant tori 7"(/) have
the form {I =const, y =0}. To study the perturbed equations near some n-torus
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T"(I) with I € #, we stretch the variables by means of the substitution
=1+  @=¢  y=( (6.4)

In the tilde-variables the perturbed equation has the form (6.3) with the hamilto-
nian K,

1 -
K, =const + Vh(I) - T + 5 CADF, 7> + h,

where

= {2 + 02T) — b)) = C2VRAD) - 1)
+ AU + 2D — AWD)7, 5> + U + 1 6, ) + K4+ 1 6, (9)).

The functions A, h*, K, and the operator A are analytic in {lf] <r/2} x T" x
{|I7]l <1}, and A3 satisfies (5.4). So the hamiltonian 4 is analytic, the gradient map
V;h is 2-smoothing as in (5.5) and

= 0@*(IF + D51 + 1717 + 9.

Now we treat I as a parameter of the equation, which we shall study for small
I, 7. The parameter I varies in the domain .#, of the “effective radius” 6, = (%

diam 4, < Cé,, mesS,=C~ 14",

with some (-independent C. We denote ¢ = {* and treat ¢ as a magnitude of the
perturbation. Then ¢ = {* = §2.

The function 4 and the operator A are analytic in I from the complex polydisc
Mg, so their gradients in / € .# can be estimated via the Cauchy inequality. The
functions A3 and K, can be analytically extended to a complex neighborhood of .#,
of the radius 8,r/C. So their I-gradients for 7 in #, are majorized by C(5ar)“|h3|
and C(6,r) ~'|K,|-

We summarize our knowledge about the hamiltonian K, as follows:

(i) the map
w: S >R, I— w=Vh{I) (6.5)

is an analytic diffeomorphism (so we can pass from the parameter I € £, to
w € Vh(4,));
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(i) |&] + ré, |V k) = O, (TP + 1|7 + |7]*) + ¢) and the gradient map VA is
two-smoothing as in (5.5);

(iii) the operator JA(I) is diagonal in the complex basis { ¥4, ¥%} with analytic
in I € .# eigenvalues {+iw,(I)}, obeying (2.4);

(iv) for each finite system of resonance relations

wd) - s +2w;I), W) - s £ w, ) £ w(I),
Is|<M,, j<k<j

there exists {-independent C, > 0 such that each function as above or its
I-gradient is = Cy! everywhere in .#, provided that { is small enough.'

By the properties (i) —(iv) the abstract theorem on perturbations of finite-dimen-
sional invariant tori in parameter-depending linear hamiltonian systems [K1, K4]
can be applied to prove persistence most of the tori 7%(1), I € #,, in the perturbed
equation.

An application of Theorem 3.12 from [KI1, p. 53] with w as a parameter,
w € Q =Vh(#,), implies (see Appendix 2 for a correction), that

THEOREM 6.1. For each given 0 <r,y <1 and for 0 < { < {(r, y) there exists a
Borel subset $,c .#,, mes(F,\F,) <ymesF,,'2 and for 1€l there exists an
analytic map

5 TR xT'x Y, ={I, ¢, 7}
and an n-vector W,(I) such that the curves

t— (o + W, (6.6)

are time-quasiperiodic solutions of the system with hamiltonian K,. All Lyapunov
exponents of these solutions equal zero. The vector W, is close to W and the map

5.8 xT'sR' xR xY,, I,¢) L)

' This statement is a reformulation of Proposition 2.2.

12 mes = Lebesgue measure.
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is close to the map X(I, @) = (0, @, 0):

|W—W,|<Ct%  Lip,|W—W,|<C¢? (6.7)
I£-Zz|=<c¢?  Lip,|Ef-Z|<ct? Lip|f-Z|<C (6.8)

with some C = C(r, y)."?

Now we use the formulas (6.4) to go back to the variables (/, ¢, y) in the
domain O,(¢, D2"). After this we pass in D2" from the action-angle variables (Z, ¢)
to the Cartesian variables which we denote (p, g) in the preimage and (p,, ¢,) in the
image. We use the map & to go to the “usual” variable in a neighborhood of T, in
Z, and denote the resulting map by &, :

D3 (p,g) = (Lo)— 2, 9) = (27,29, 27)

]
I +0227, 22,027
¢ l
(Prs 4, ¥,) € Os(p, DY)
!
&8P 4., ¥,) € Z;

As \/;C <|(pj» ¢)| = V2| < \/EC for j=1,...,n, then as a trivial conse-
quence of (6.8) we get the estimate

S

|8, — @, | < C, ¢
More cumbersome but as elementary as above arguments show that

Lip|®, — &, | < C,¢2
In particular, the map &, is an embedding because it is Lipschitz-close to the
embedding @,.

The constant C, in the last inequalities (as well as C in (6.7), (6.8)) depends on
r and y. To avoid this dependence we observe that for each % > 0 the inequalities

13 In (6.8) by Lip, |£ — Z| is denoted the Lipschitz constant in ¢ of the map (£ —2): £, x
T"->R"x T" x Y,, etc.
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imply existence of E(r, v), 0 < < t(r, v), such that

|®, — @] <{*~%  Lip||®, — ®|| <277 (6.9)
and
|W, —w|<(*~*%  Lip|W,—W|<(>~% (6.10)

provided that { < Z(r, y). We can suppose that the positive function { is monotonic:

5(",')’)25(’1,71) ifrzrla'yz'yl

(otherwise we replace { by the function which sends (r, y) to SUP,, <r.y, < yf(r,, 7).

Now we shall iterate the application of Theorem 6.1 to construct perturbations
of arbitrarily small finite-gap solutions (i.e., without the restriction I; = {?r). We
remind that a Borel subset M of a Borel set M, M — R, has a density #(0 < % < 1)
at a point m, < M, if

mes{m e M ||m —my| <v}
mes{m e M | |m —m,|<v}

» % asv—0

(we suppose that the denominator does not vanish for positive v). Clearly, a subset
M has density % at m, if and only if M\M has there density 1 — .

THEOREM 6.2. For each x >0 there exists a Borel subset D ~M x T" of
D2 ~ M" x T", having density one at zero and Lipschitz maps $:DxT'-2Z,
W : M — R such that the curves

t— &1, ¢ + W) (6.11)

are time-quasiperiodic solutions of (PSG) + (N) with zero Lyapunov exponents. The
map ® is close to ®, and the vector W is close to W for small (p, q):

(P, ) — o(p, @) < Cl(p, )%  Lip|® — & < Cp?~ % (6.12)
|W(p,q) — W(p, 9| <Cl(p,9)**  Lip|W —W|< Cp>~*. (6.13)

COROLLARY 6.3. The set § = &(D) has the tangent space at zero, equal to
E*. This set is of positive Hausdorff measure #*" and #*(J ,)|#*(T ,) —1 as
p—0.
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Proof. The first statement results from the first estimate in (6.12). The second
one follows from the basic properties of the Hausdorfl measure and the second
estimate in (6.12), because a map, which is Lipschitz-close to the identity, changes
H'?" only a little [Fe]. O

Proof of Theorem. For j=0,1,2,... let us set
{; =277, r,=1Ir, v =Ty,

where I'y =1, I';,\\0 (j = o) and {; < f(rj, 7;). The sequence {I';} exists because the
function

(0,11— R, I'—{Ir, Iy,

is positive and increasing.

Forj=0,1,2,... we can apply Theorem 6.1 to the sets S’/ = J';(Cf;) (first two
of them are represented on Fig. 2 below) and construct the subjects #/ = #/, the
maps @/ : #/ x T"—>Z, and the n-vectors W/(I), I e #/, satisfying the estimates
(6.9), (6.10) with { ={; and defining solutions of (PSG) + (N) of the form (6.11)
with @ = &/, W = W/,

For v > 0 we denote by K(v) the cube

Kw)y={I|0<sI,<vVi}

(so #7/ < K({?)) and construct the subset .#, < M} as the disjoint union

5= ) GNKLC, ).

j=0
LEMMA 6.4. The subset #, < M [ has density one at zero.

We omit an elementary proof which follows from the convergences y,\,0, r,\,0.

Choose in (6.9), (6.10) % =x/2 and define the maps & :., x T">Z, and
W:5 —-R" be equal to & and W’ in S/ x T j=0,1,... It results from (6.9),
(6.10) that the map & meets the first estimates in (6.12), (6.13) everywhere in
4, x T". The map & is analytic in g; both maps & and W are Lipschitz in each
component (FA\K( ?,1)) x T", but they may be discontinuous in I at boundary
points of the cubes K({?). To improve this imperfection we cut off from the set .#,
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small neighborhoods of the boundaries of the cubes and denote

M=s\5, =) K@ +CNKE -2+

Jj=1

with v = %/2 (see Fig. 2).

Now we can estimate the increments of the map & — &,, corresponding to
points in different components of D = M x T”, by the first estimate in (6.9) and the
increments, corresponding to points in the same component of D by the second one.
Thus we obtain the estimate (6.12) for Lip|® — &, ]|, and the estimate (6.13) for
Lip|W — W,|. :

The set £, has zero density at zero. So Lemma 6.4 implies that M has unit
density at zero. As dp dg = dI do, then the set D = M x T” has unit density at zero
as well, and the theorem is proved. O

Theorem 6.2 deals with small-amplitude solutions of the (PSG) equation
(equivalent to (6.2)) under even 2n-periodic boundary conditions (equivalent to
(N)). The only part of the proof where we have used the exact value of the period
is Proposition 2.2. So Theorem 6.2 remains true for even T-periodic solutions if for
this value of the period we can prove Proposition 2.2. In particular, Amplification
2.3 implies the following result.

l
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Figure 2. The set M.



102 ALEXANDER 1. BOBENKO AND SERGEJ B. KUKSIN

AMPLIFICATION 6.5. (1) If V={V9,..., V%1 ={0,...,n — 1}, then the
statements of Theorem 6.2 remain true for all periods T. (2) The statements are true
for all V and all periods T € R, \T, where X is a discrete set which has no more than
finitely many points in each finite segment [a, b],0 <a < b < c0.

Remark. Due to the complete analogy between Dirichlet and Neumann
boundary conditions (see Part 1) all the results proven above remain true for the
(PSG) equation under the boundary conditions

u(t,0) =u(t, n) =0, (D)
if we replace 7, by a 2n-dimensional submanifold of the phase-space, filled with
finite-gap solutions of (SG) + (D) (and accordingly replace cos’s by sin’s in the
definition of the spaces E?"). O

In the half-global situation one deals with finite-gap solutions filling the mani-
fold 7%= (V) ~M§ x T" (see the end of Part 1). Now the equation (SG)
should be perturbed by a small function (rather than by a higher-order term as in
(PSG)):

Uy, = U, —Sinu + eF,(u, x), (6.14)
where the function F is analytic in u, C** !-smooth in x and

F(u, x) = F(u, x + 2n) = F(u, — x).

The half-global analogy of Theorem 6.2, proven in [BiK], states existence of a Borel

subset M, = DK, such that mes(WE \M,) — 0 as ¢ - 0 and the solutions (1.4) with u
in 9, persist in the perturbed equation (6.14) + (N).

7. Application to the ¢*-equation
The @*-equation with positive mass has the form
Uy = Uyy — MU + Cu39 | ((P4)

where m >0 and C # 0. Suppose C >0 (as we explained in the introduction, the

14 i.e., if the first n gaps of the solutions (1.4) forming the mainfold 7, are open.



Klein—Gordon and Sine-Gordon equation 103

case C <0 can be treated similar with the Sine—Gordon equation replaced by the
Sinh—Gordon). We start with the unit-mass case: m = 1. Then by means of a trivial
dilation of the u-variable the equation can be normalized as follows:

1
Uy =Uy, — U+ g u’. (N(p4)

This is exactly equation (6.2) with F =0, and the results of the last part are
applicable to study its small-amplitude solutions under Neumann boundary condi-
tions (N).

We denote by i the natural embedding of the space E** to Z, and formulate
assertions of Theorem 6.2 as follows:

THEOREM 7.1. There is a Borel subset E = E* ~R™ x T" of unit density at
zero and of the form E ~ M x T" and a Lipschitz embedding & : E — Z,, analytic in
@ €T", such that

(i) the tori 5({y} x T" < Z,, u € M, are invariant for (No*) + (N) and are

filled with time-quasiperiodic solutions with zero Lyapunov exponents,

(ii) the Lipschitz constant Lip|® —i| <1 and for & in E, &(&) =i(&) + O(J¢P).

Moreover, the sets 9 = ®(E) and the manifold T , have second-order tan-
gency at zero.

In the general case (m, C >0) we rescale x-, t- and u-variables to rewrite
(¢*) + (N) as the normalized equation (N¢*) under the boundary conditions

U (2,0) = u,(t, /mm) =0. (7.1)

Now the linearized at zero equation has the form u,, = u,, — mu, so the wave-num-
bers in the definition of the invariant spaces E£%" should be replaced accordingly:

E* = span{(cos(V'?x//m), 0), (0, cos(V°x//m)) |j=1,...,n}. (1.2)
We can apply Amplification 6.5 to get

AMPLIFICATION 7.1. (1) Statements of Theorem 7.1 remain true for the
equation (¢*) + (N) with an arbitrary m, C > 0 and the space E*" defined as in (7.2)
provided that

Vo, ... v=1{0,1,...,n—1} (1.3)
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(2) If the wave-numbers {V?} are just any n numbers, then the statements hold
provided that m ¢ {m,, m,, ...}, where the only possible limiting points for the set
{m,m,,...} =R, are 0 and oo.

So the equation (¢*) + (N) has many small-amplitude time-quasiperiodic solu-
tions. To make this statement quantitative we rescale u = ¢, ¢ <€ 1, and obtain for
# the equation

i, =i, —mi + Ce?ii’, (7.9)

Denote by QP, < Z, the “quasiperiodic set of the equation”, equal to the union in
the phase-space Z, all the curves corresponding to time-quasiperiodic solutions of
(7.4) + (N) with zero Lyapunov exponents.

PROPOSITION 7.3. For any 3(x) € Z,

dist; (3, QP,) — 0 as ¢ - 0. (7.5)

Proof. Fix any é > 0. For n large enough one can find a point 3, in the space
E* as in (7.2), such that ||3—3,| <6/3. This point lies in some ball
B ={3¢e E*| 3] < R}. Under the rescaling u = & this ball corresponds to the ball
¢B in the linear subspace E?" of the phase-space of (¢*) + (N). Consider the subset
E < E?* constructed in Theorem 7.1'%. As £ has the unit density at zero, then for
¢ sufficiently small £ has nonempty intersection with the £8/3-neighborhood of the
point &3, € ¢éB. Fix any point &3, in this intersection. By the statement (i) of
Theorem 7.1 we have [e3, — $(e3,)|| < Ce2 The point ¢ ~'d(e3,) lies in QP,. So
dist(3,, PQ,) < Ce < 6/3 if ¢ is small enough. Thus,

dist(3, QP.) < [3— 3] + |31 — 3. || + dist(3,, QP,) <,

if ¢ is sufficiently small. The statement is proved. O

Remark. Results similar to Proposition 7.3 hold for nonlinear wave equation
with random potential V,,(x) with “good randomness properties”,

Uy = Uy, — Vo, (X)u + £(u), (7.6)

if we replace in (7.5) the usual convergence by the convergence in probability. This

'S We use amplification 7.2.
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statement is proved in [K1, Part 2.4] for nonlinear Schrédinger equation with
random potential; the same proof holds for (7.6).

Appendix 1. Liouville—Arnold theorem near singularity

By D, = D2" we denote the polydisk

1 .
{(p, q) e R | ; =5(p} +q?) <p Vj}'e

by M =M the open n-cube {u € R"|0 <y, < p} and by M, the half-closed cube
{u|0<p; <p}. The polydisk D, is given the symplectic structure by an analytic
2-form w, such that

w, =dp A dg + O(|p, q)). (A.1)

In D, we consider hamiltonian vector field ¥, with analytic hamiltonian 4 such that
V,(0) =0 and for all u e M, D, e T" the curves

U = const, D =Dy + W(u)t (A.2)
are trajectories of V,, where W : M —» R” is an analytic map.

THEOREM. Ifdet 0W[ou # 0, then after decrease p, in D, analytic coordinates
(P, g) may be constructed such that
() (5,9 =(p,9 +O(p, 9",
(i) dp A df = w,,
(iii) the actions I, =3(p? + q?) and the angles @, = arctan §;/p; forms action-
angle variables for the vectorfield V,:

V= 3 @10 RD) 5

J

where the hamiltonian k is analytic in M,;
(iv) the transformation (u, D) — (I, @) has the form

(u, D) = (I =1(y), ¢ =D + ¥(u)),

where the maps I(u) and ¥Y(u) are analytic in M.

'® The angles, correspnding to s, are denoted D,’s. See (1.10).
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Proof. Denote

D—- = {(paq) EDp Il’tj >0vj}9
and for u € M denote by T"(u) = D the n-torus {(u, D) | p = fixed}.

LEMMA. Near each torus T"(u) the vectorfield V, is Liouville — Arnold integrable.

Proof. The vectorfield V), restricted to T"(u) equals ZW;(u)d/0D;, and by the
theorem’s assumption the flow of V, on T"(u) is ergodic for almost all u. The tori
with ergodic flow of the form (A.2) are Lagrangian [Her]'’. So all the tori T"(u) are
Lagrangian.

Consider the functions

i u(pq, j=1,...,n

As f;’s are constant on each torus T"(u), then for ¢ € T"(u) and ¢ € IT =T, T"(u) we
have

0= <{dfi(q), &> = 0, (Vy(9), O).

Thus, the vectors V,(¢) lie in the skew-orthogonal complement to I1, equal IT because
the torus 7”(u) is Lagrangian. Hence, the functions f; are in involution:

L /i)(@) = 0,(V(a), V(@) = 0.
Similarly [ f;, H] =0, and the lemma is proved. [
For (p,q) =(u,Dye D_ and j=1,...,n we define

C(p.q) = {(', D) | W' =, Dj =D, for I #j, D} e T'}.

We use (A.1) to construct an analytic Liouvillean form w,, dw, = w,, such that

w, = pdq + O(|p, q]).

'7 We sketch the proof. Denote by €, the form w, restricted to some ergodic torus. As the flow of
V), preserves the form w,, then the flow of the ergodic vectorfield ZW,0/0D; on the torus preserves Q,.
Thus 2, =) ;_;a,dD, A dD, with some constant coefficients a;,. The coefficient a,, equals averaging €,
along the two-torus {¢ | ¢, =0if / # i, j}. So it vanishes because the form £, is exact as well as the form
;.
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Fix p, e M. Due to the lemma and Liouville—Arnold theorem in the vicinity of
T"(u4) there exist analytic action-angle variables (/, @) such that

Ij(u,D)=§ W, j=1,...,n

Cj(u, D)

The actions depend only on the n-torus. So I, = I;(u).
LEMMA. The functions I; are analytic in M, and
1,G) = (1 + O(lu).

Proof. By the formulas for C;(p, q) and w,, the functions I; are analytic in D,
and I, = u; + O(|p, q|*). Denote

zj=p; +iq; = /2u;e", j=1...,n

As the functions I;(p, g) are analytic, then
Ij s Z aiﬁz“fﬂ - Z aj‘;ﬂ H (2#[)1/2(051 +B1)eiDi (@ —B1),
avﬂ a,ﬂ /

As I is D-independent, then @ ; =0 if « # f. So

L=} al,lz*=} a,.(2p"

is an analytic function of u such that I, = u, + o(|u|). As I, vanishes with y;, then
o(|u]) = w,0(|u)). O

LEMMA. Near the fixed torus T"(uy) we have ® = D + ¥Y(u) with some map ¥
which is defined and analytic near u,.

Proof. On each torus T"(u) with u near u, the vectorfield V), equals ZW,(u)
d/0D; (by (A.2)) and equals X W,.(u)a/aqu, because (I, #) are the action-angle
variables. As the trajectories (A.2) are dense in 7"(u) for most u, then
@ = LD + ¥Y(u) with some unimodular matrix L. By the formulas for the actions I,
the cycles C; on the tori T"(u),

C,={®|®,is fixed for [ #j, &, e T'},

are homologous to C;. So L = Id. O
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As dI A d® = w,, then the last lemma implies that
wy=dlAdD +dIl Ad¥P°=7y,+7,. (A.3)

Observe that the form y, is analytic in DE. As y, = w, —y,, then the form 7y,,
originally defined in the vicinity of 7"(u,) can be analytically extended to D,.

LEMMA. There exists a 2-form 7,, defined and analytic in M,, such that
v, = II1*y, where

n:D,--M, (p,qr1I
Proof. For j=1,...,n denote

= ; + - _3 s+ — 5 =
=X+, z; =z, Zj =z, z; =z,  Z; =z

As the form y, is analytic in D,, then
Yo=Y, Y a¥(z,Z)dz¢ ndz),
ij=1 uv=+
where the functions a}} are analytic in D,. Near the torus T"(u)
= dl, nd. : Lp ZhZY dz¥ A dz)
ij ij %%
These two representations for the analytic form vy, jointly imply that the functions

A;; are analytic in M, and the lemma’s assertion follows. O

Observe that y, =) dI; A d¥; = d(¥ dI). So the form y, is exact and closed and
the form 7, is closed. By the Poincaré lemma there exists an analytic in M, 1-form
@°) dI, ¢°%0) =0, such that d(¢°()dI) =y,. By (A.3),

wy=dI A d(D + ¢°(I)). (A.49)

So (I, ¢ = D + ¢°1)) are action-angle variables.

13 Because dl; = dy; + d(u;J/(u)) with some analytic in M, funcitons J/ (by the first lemma) and the
form du A dD is analytic in D,.
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Define the Cartesian variables

ﬁj = o 2Ij Cos @, g; = vV 211' sin ®;-

By the first lemma,

Py =1+ O()/2p;(cos D; cos ¢ (1) — sin D; sin ¢} (1)) = p;P;(n) — ¢,Q; (W),

where P;, Q; are analytic in M, and P;(0) =1, Q;(0) = 0. Similar with g,. So the
analytic map (p, g) — (P, §) has the form given in the statement (i) of the theorem.

Statement (ii) results from (A.4).

In the coordinates (p, §) the vectorfield V, is hamiltonian with the analytic
hamiltonian A(p, §), depending on the actions 7 only. By the same arguments as in
the proof of second lemma, 4 = A(I), where the function # is analytic in M,,. So the
statement (iii) follows.

The last statement results from the definition of (I, ¢)-variables.

Appendix 2. Correction

In Part 6 above we essentially use Theorem 3.1.2 from [K1]. The secon author
(S.K.) admits that the proof of Theorem 3.1.2 (more exactly, its reduction to the
main theorem of [K1]) contains a gap which was drawn to his attention by J.
Poschel. The gap affects the theorem exactly in the specific case we use above.
Below we give the corrected statement.'” We use notations of [K1].

CORRECTION (to Theorem 3.1.2 in [K1]). If d, =1 (i.e., if the frequencies
4;(0) of the unperturbed system have linear growth),”® then the spectral asymptotics
(1.12) ([K1], p. 50) should be strengthened as

14,(6) — K% — K3| < Kyj~". (1.12)
Besides, the radius 8, should be larger than C ~'¢' —* where u > (2 — A)/(4 — A) with

A4 =min(l, —d,) and dy is the (negative) order of the nonlinear part of the
perturbation.

19 1t is somewhat weaker than the one given in [K1] but is sufficient for the purposes of the current
paper.

20 As the frequencies {w,} in (2.4).
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For the perturbed (SG)-equation (1.12) is fulfilled, d, = —1, (2—4)/
(4—4)=1/3 and u =1/2. So the theorem can be applied to (6.3).

The mistake is contained in the estimate (4.11), p. 77 (which is needed for the
case d, = 1): the correct version of the estimate has no factor ¢, in the r.h.s.

Therefore under an appropriate choice of the small “bad set” @2, for “good
parameters” 0 ¢ ©2 one has

bl 53 K
C(m){s>

(not |D| 2 4,. .. as in the book). So

(1) the proof given in the book works without additional corrections if
0,=0>C1%V2~# with u’ >0 (see (8.11), p. 88, where é ~! should be replaced
by  ~2).

This restriction is too hard since it is not fulfilled for the (PSG)-equation. To
obtain a better result we make one more observation.

(2) For b €[0, 1) one can construct a small “bad set” @? in such a way that

J—k>
CkYPC(m)<s ye2

|D|262-*

for 0 ¢ ®2. With denominators like that the nonlinear part of the transformed
vectorfield will loose b ‘“‘units of smoothness”. So if we take be[0,4 =
min(1, —d,)), then the transformed nonlinear vectorfield will be still of the
negative order d =d,, + b <0 — i.e. still smoothing. With this choice of the bad
set after the first step of the normalizing procedure we get as a new magnitude of
the perturbation &,, = 2027 %. As u > (2 — 4)/(4 — 4), then one can find b € [0, 4)
such that

602>C ely*, wu'>0.

After this we can proceed as in 1).
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