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The nonlinear Klein-Gordon équation on an interval as a perturbed
Sine-Gordon équation

Alexander I. Bobenko and Sergej B. Kuksin

Abstract. We treat the nonlinear Klein-Gordon (NKG) équation as the Sine-Gordon (SG) équation,
perturbed by a higher order term It îs proved that most small-amplitude finite-gap solutions of the SG

équation, which satisfy either Dmchlet or Neumann boundary conditions, persist in the NKG équation
and jointly form partial central mamfolds, which are &quot;Lipschitz mamfolds with holes&quot; Our proof îs
based on an analysis of the finite-gap solutions of the boundary problems for SG équation by means of
the Schottky umformization approach, and an application of an infinite-dimensional KAM-theory

Introduction

The paper is devoted to small-amplitude solutions of the nonlinear Klein-
Gordon équation

&quot;a uxx - mu +/(w), m u{t, x), 0 &lt; x &lt; 7i, 1

where m &gt; 0 and / is an analytic function of the form

xu3 + O(\u\5), k*0, (2)

at zéro.
This assumption is fulfilled, in particular, if / is an odd function such that

/&apos;&quot;(0) # 0 and/&apos;(0) 0 (the latter is a normalization - we absorbed a linear part of
/to —mu).

The cases x &gt; 0 and x &lt; 0 can be treated similarly. Below the case

x&gt;0 (2&apos;)

is considered. We discuss the changes one should make to handle with négative x
at the end of the introduction.

The first author was supported by the Alexander von Humbold Foundation and the Sonder-
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64 ALEXANDER I BOBENKO AND SERGEJ B KUKSIN

The assumptions (2), (2&apos;) hold for many important équations of mathematical
physics. In particular, for the &lt;p4-equation

utt uxx — MU + XU3 ((p4)

and for the Sine-Gordon équation

utt uxx - sin m, (SG)

where now m 1, x 1/6.
We consider équation (1) under Dirichlet or Neumann boundary conditions:

u(t,0) u(t,n)=0 (D)

or

ux(t,0) ux(t9n)=0. (N)

The results and the proof in (D)- and (N)-cases are parallel. So we mostly restrict
ourselves to the Neumann problem and give a brief reformulation of the main
results for the Dirichlet problem.

To simplify the formulas we suppose that m 1; by a trivial rescahng of u in 1)

we can achieve x 1/6. So below

m 1, x 1/6. (2&quot;)

The équation (1) + (N) (as well as (1) -h(D)) defines a dynamical System in the

phase-space Z of pairs 0(t, x) (u(t, x), v ù(t, x))] (Z should be given some
Sobolev norm || • ||, for example, one can take Z //1(0, n) xL2(0,n) in the

Dirichlet case). The équations (SG) + (N) and (SG) +(D) are well-known to be

hamiltonian: one should supply the phase-space Z with the symplectic structure
given by the 2-form co2,

(uxv2-vxu2)dx,

1 In fact, for techmcal reasons in the mam part of the paper we use as the phase-vector of the

équation the pair U ~(u(t&gt; x), (ô2(ôx2+ 1) ~ !/2w(f, x)) In the introduction for the sake of simphcity we

présent trivial reformulation of the results m terms of the phase-vector 0
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and consider the hamiltonian

f(- (v2 + mu2 + u2x) + F(u) dx,

where 7^ =/.
Let us consider the linear Klein-Gordon équation, which describes infinitésimal

oscillations in (1):

utt uxx - u. (KG)

The équation (KG) + (N) is a linear oscillating System with the frequencies
0*, 1*, 2*,..., where we dénote

(if in (1) m 7e 1, then the frequencies j* will change. In the main text below we
discuss how this affects our results). The solutions with frequency y* hâve the form
(iij, Vj), where v; ù} and

Uj(t, x) Ij sin j*{t + %) cosjx, Ij ^ 0.

Fix any n ^ 1 wave-numbers j,

}, (3)

and consider superpositions (=sums) 0n (un, vn) of solutions (Uj,v}) with
7 e V, un w, + • • • H- un, vn Vi + • • • + *V They are time-quasiperiodic solutions2

of (KG) -f (N) with the frequency vector œ (F?*,..., V%). Altogether the
solutions Un fill the 2«-dimensional linear subspace E2n of Z,

E2n:= span{(cos Vfx, 0), (0, cos F» \j 1,..., w}. (4)

Each solution 0n lies in an invariant torus Tn(I), where dim Tn(I) =n if ail /y &gt; 0.

So the space E2n is foliated into invariant tori and

E2n - Rw+ x ln. (5)

2 We recall that a solution ff : R -? Z is called quasiperiodic with n frequencies if there exists a

continuous map I :Tn-+Z and an «-vector a&gt;, called the frequency vector of the solution, such that
0(t) s Z((ot). So the solution 0 lies in the invariant «-torus I(T&quot;).
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We are going to attack the following problem do the small-amphtude solutions
0n and the invariant ton Tn(I) of the lineanzed équation persist m the équation
(1) -h (W)? How do solutions of (1) + (N) behave near the ton7 The question looks
rather naïve - even in the finite-dimensional situation the behavior of the perturbed
hnear hamiltonian system can be very comphcated (see e g [M]) Still, the purpose
of our paper îs to prove that the answer to the first question îs &quot;mostly affirmative&quot;

and that the survivmg quasipenodic solutions are hnearly stable In fact, the

persistence of the quasipenodic solutions Ûn has the natural explanation under the

assumptions (2), (2&quot;) we hâve

-u -sin u + 6&gt;(|w|5),

so small-amphtude solutions of (1) can be approximated by solutions of the

(SG)-équation, which îs known to be integrable&apos;

The final results of our analysis are given in Theorem 6 2 In a somewhat

simphfied form they can be stated as follows

THEOREM For each invariant subspace E2n as in (4) there exists a subset

ËaE2ncïU\x Jn of the form Ë ~ M x Jn, a Lipschitz map ë Ë~M xTn-+Z,
analytic in q e T&quot;, and a Lipschitz map W M -+W1 such that

(î) the subset Ë cz E2n has unit density at zéro3,

(n) the curves 11-» #(/i, D + tW(n)), where (fx, D) e Ë, are quasipenodic solu¬

tions of (1) -h (N) AU Lyapunov exponents of thèse solutions are zéro,
(m) the set $~ln — @(Ë) has a tangent space at zéro, coinciding with the space

E2n

By the last assertion of the Theorem one can treat «f2w as a partial central
mamfold of 1) 4- (N), œrrespondmg to the invariant subspace E2n of the hneanzed

équation (KG) + (N)
In particular, taking n 1 we obtam

COROLLARY The équation (l)-h(TV) has time-penodic solutions, forming
infinitely many famibes Thefamily numberj consists of solutions with the frequencies
close to y*, thèse solutions are parametenzed by the points of some one-dimensional

set ofpositive Lebesgue measure

3 That îs, the intersection of Ë with the (5-ball centered at zéro fills most part of the bail when ô -

See Part 6 for the exact définition
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Altogether the manifolds #2w, n 1, 2, are &quot;mfimtesimally dense&quot; at zéro
the union of their tangent spaces at zéro îs dense in T0Z ^Z So their union
# u#2&quot; îs a linearly stable set which îs &quot;dense near zéro&quot; - ît mtersects each

open nonempty cône with the vertex at zéro (see Part 7) Sufficiently small solutions
of (1) + (N) are close to «#, for a long time they foliow quasipenodic solutions in
# and look &quot;regular&quot; The phenomenon of regular behavior of small-amphtude
solutions of ((p4) + (N) îs well-known from numenc expenments [ZIS] (for some
time there was a hope that this équation îs integrable)

The proof of the Theorem goes as follows We start with an analysis of
time-quasipenodic =finite-gap) solutions of (SG) + (N) of small amplitude p &lt; 1

and prove that they form smooth submanifolds 5&quot;2&quot; of the phase-space Z with the

tangent spaces at zéro equal to the spaces E2n Next we study lineanzations of the

(SG) 4- (N) équation on the solution in $~2pn and show that thèse équations can be

reduced to constant-coefficient lmear équations After this an application of the

KAM-theory for infinite-dimensional Systems (see [Kl, K4])4 proves persistence of
most of the (SG)-ton in the équation (1) and complète the proof

The équation (SG) has well-known finite-gap solutions, given by the theta-
formula

obtained first by Kozel and Kotlyarov [KK] and Its (see m [Mat]) The solution (6)
defines (and îs defined by) its spectral curve X which îs a hyperelhptic Riemann

curve with a real involution In gênerai any hyperelhptic curve X with a real

mvolution détermines a solution of the SG équation Moreover, there are usually

many connected components of the solutions correspondmg to the same X, which
makes a gênerai picture rather comphcated (for détails see [BBEIM, DN, EF]) The

picture simplifies if we consider only small-amphtude solutions In this case the

genus g of the curve equals the number of nontnvial spectral branches of the

correspondmg L-operator (see [McK, EFM, BBEIM]), the branching points of X
are {0, oo} u{Xx, I,, Xg, Xg}9 where XJ9 X; (j 1, g) are the edges of the

nontnvial spectral branches The vectors (Xu Xg) e Cg ^ IR2* and D elg are

parameters of the solution
The analysis of the formula (6) we give in Part 1 (following [Bo] and [BiK])

shows how to single out among the g-gap solutons (6) real-valued 27r-penodic

4 For the classical fimte-dimensional KAM-theory see e g, [A2], [M] and [P]
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solutions, which are even or odd in x. The solutions from the first group satisfy
Neumann boundary conditions, and from the second group - the Dirichlet. More-
over, solutions 0 — (u,ù) of (SG) +(N) thus obtained form 2«-dimensional ana-
lytic varieties 2T2n czZ,n [g/2] -h 1, and similar with the solutions of the Dirichlet
problem. The solutions in ZT2n of an amplitude &lt;p form a smooth analytic
manifold &amp;~2pn, foliated to invariant tori of (SG) + (N):

*-?= U m (7)
X=X(ji)

where an «-dimensional \x parameterizes ail the curves X giving rise to solutions (6)
which satisfy (N).

The tangent spaces to the manifolds &amp;&quot;*? at zéro are exactly the spaces E2n as

in (4). So the spaces E2n (or, equivalently, the vectors V as in (3)) parameterize the

manifolds 9&quot;*.

The manifolds 2T2* are symplectic submanifolds of Z and (SG) + (N) restricted
to 92p is an integrable hamiltonian vectorfield with a singularity at zéro. We prove
(with some efforts) the following statement which substitutes the Liouville-Arnold
theorem for Systems with singularises* in ïf2? there exist analytic Darboux coordi-
nates (/?, q) such that the hamiltonian of the System on y^ dépends only on the
actions p2 + q2, j 1,...,«.

Next we study linearization of the équation (SG) about the solution (6):

vt[~vxx-(œsu(t,x))v. (LSG)

The integrability of the (SG)-équation exhibits itself in the linearized équation in
the following way: the équation (LSG) has infinitely many complex x-periodic
&quot;Bloch-like&quot; solutions i^+ (t, x), vJ_ (t, x) of the form

(t^±,î)4)0,x) ^e±lw^J±{Wnt +D&quot;)(x), j n + 1,« + 2,. (8)

where Wn and Dn are the vectors formed by the first n components of the vectors
JFand D from (6); the frequencies Wj and the functions WJ±(Dn)(x) dépend on the

curve X(fi). The even in x parts of (8) give solutions of (LSG) -f (N) of the same

form but with WJ± replaced by WJ± (x) (WJ± (x) + VJ± -jc))/2 g Z.
Critical for the perturbation techniques we are going to apply to the manifolds

S&quot;2^^ as well as for the subséquent investigation of the manifolds, is the following
nonresonance property:

(9)
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as functions of the curve X, for ail s eln and ail j # k (see [K4, Part 4] for a
discussion of the relations (9)).

Relations (9) as well hold for the (SG)-équation under Dirichlet boundary
conditions, but not under the periodic onesî In the latter case the frequencies w, go
in pairs wJ± in such a way that \wJ+ - h&gt;,_ | £ exp -j/C. So the periodic boundary
conditions are asymptotically résonant and our techniques can not be applied there.

Our calculations also prove the nondegenerate amplitude-frequency modulation
for solutions forming the manifold $~2pn:

detdJF7fy|M 0*0. (10)

Thus, the vectors Wn, corresponding to the solutions (6) of (SG) +(N), form an
n-dimensional domain.

The nonresonance and nondegeneracy relations (9), (10) jointly with asymp-
totics for the solutions (8) asy-&gt;oo, allow us to prove that for fixed /&gt;&quot;,// the
vectors {*PJ±(Dn, fi) \j ^ n -f 1} forms a skew-orthogonal basis of the skew-orthog-
onal complément in Z to the tangent space to 2T2p. Next an application of an
abstract theorem from [K2-K4] supplies us with a symplectic coordinate system
(q, p, y) in a neighborhood of 2T2p in Z, such that y varies in a symplectic subspace

FcZof codimensîon 2n\ the manifold {(q,p, 0)} equals $r2pn with the Darboux
coordinates (q,p) in it, and the hamiltonian of (SG) + (N) in thèse variables equals

(11)

Hère 7, =\{pj +qj)J 1, • • • &gt;
«&gt; are functions of \i only; h3 O( \\y ||3), the opera-

tors A(I) are diagonal in an 7-independent basis of Y and the hamiltonian linear

operator in F with the hamiltonian {(A(I)y, y) has the frequencies (vf//)}, where

Wj are the same as in (8).
Now an infinite-dimensional version of the KAM-theory from [Kl] can be

applied to prove that most of the tori {/ const, y 0} (which are exactly the tori

Tn(X(fi)) written in the new variables) persist under perturbing the équation by

higher-order tenus, thus proving the Theorem.

In fact, the invariant Lipschitz manifolds ^&quot;ln from the Theorem &quot;remember&quot;

that they are perturbations of the manifolds tf&apos;2? (not the spaces E2n only):

AMPLIFICATION. At the set {(/&gt;, q) e E2n \ p) -h q) &lt; 2p2}nË the map ê is

close to the map &lt;PQ parameterizing the manifold F2? : \\$(p, q) - #o(P&gt; fl)|
O\(P&gt;&lt;l)\3~e for each £&gt;0- Thus, at zéro the Lipschitz manifold §&apos;2n has a

second-order tangency with &amp;&quot;2pn.
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The analytic manifold HT1&quot; is a partial central manifold of the integrable
équation (SG) -f (N), corresponding to the invariant subspace E2n of the linearized
équation (KG) + (N). The Theorem states that the équation (1) + (N) has a partial
central manifold which is a &quot;Lipschitz manifold with holes&quot; and the Amplification
states that at zéro this manifold is well-approximated by Ff.

Now we briefly discuss équation (1) with x &lt;0. Suppose for simplicity that
m 1. We can rescale u to achieve x —1/6. Then

-u +/(w) -sinh(w) + O(|m|5),

and (1) is a higher-order perturbation of the Sinh-Gordon équation

This is again an integrable équation similar to (SG) but simpler than the latter
(because the L-operator for this équation - not for the (SG)! - is selfadjoint). So

we can proceed exactly as above to construct the finite-gap manifolds filled with
solutions of the équation under (N) or (D) boundary conditions; to put the

équation into the normal form (11) in the vicinities of the manifolds and to apply
the infinite-dimensional KAM-theory. As a final resuit of the analysis we obtain
that both the Theorem and the Amplification also hold for x &lt; 0.

Now we turn to a comparison of our theorem with the known results. In our
work we study persistence of small-amplitude finite-gap solutions of an integrable
équation under higher-order at zéro perturbations of the équation. Persistence of
finite-gap solutions of order one under small perturbations of the corresponding
integrable équation was proved before. See [K2] for an abstract theorem and its

application to nonresonant families of finite-gap solutions of the KdV équation and

see [BoKl] for a proof that in the KdV case ail the finite-gap families are

nonresonant; see [BiK] for the perturbed (SG) équation

utt uxx - sin u + e(p(u).

The results of the présent paper essentially dépend on the local (near zéro)

theory of finite-gap manifolds &amp;~ln, based on the Schottky uniformization. It turns
out that zéro is a rather complicated point of the finite-gap manifolds (as far as we

know, even smoothness of the manifolds S&quot;2^ at zéro has not been proved before

our work). Still, large-amplitude finite-gap solutions of the (SG)-équation possess

some additional properties with respect to the ones of small-amplitude solutions. To
présent a more complète picture of the (SG)-équation and its perturbations we end
each part of the paper with a brief discussion of the corresponding properties of
large-amplitude solutions, following [BiK].
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Results similar to ours were known for the nonlinear string équation with a
&quot;typical&quot; potential V(x\

utt uxx-V(x)u + ef(u). (12)

It was proved [Kl, K4] that if the potential V(x) dépends on an w-dimensional
external parameter in &quot;a nondegenerate way&quot;, than for most values of the parameter
time-quasiperiodic solutions of the linear équation (12) |e 0 with £n frequencies
persist in (12) (the équation should be supplemented by (D) or (N) boundary
conditions). Similar resuit was obtained by Wayne [W] provided that the potential
V(x) is random and the funciton/(w) satisfies (2). See in [CW] another approach to

prove persistence of titne-periodic solutions which is also applicable to the équation
(12) under periodic boundary conditions.

Time-periodic solutions of (1) -h (N) and (1) -h (D) hâve been studied by many
authors (see survey [Bre]). Still, results of the Corollary also are new: in the previous
works under différent restrictions on the nonlinear term f(u) of the équation it was

proved that the équation has a countable family of time-periodic solutions. We prove
that the time-periodic solutions form infinitely many one-dimensional families.

Notations

We dénote by D2P and Dcp the polydisc of radius p and its complexification:

D? {(p, q) e R2&quot; | pj + q] &lt; 2p}, D&lt;p {p, q) e C2&quot; | \Pj\2 + \q,|2 &lt; 2p};

by [i} we dénote the actions fiy ^(pj -h qj) and by M+ and Mcp the polydisc in the

action-représentation and its complexification

M; {ji e R&quot;+ 10 ^Hj &lt; p}, Mp {p e Cn \ |/i,| &lt; p}.

By C, C, etc., we dénote différent positive constants in estimâtes and dénote by

p, p&apos; positive radii of manifolds fp9 différent in différent parts of the text (so the

manifold &amp;~p in Part 1 is larger than in Part 6).

1. Small-amplitude finite-gap solutions of boundary-valued problems for the

Sine-Gordon équation

We consider the Sine-Gordon équation

utt uxx — sin u (SG)
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under Neumann

«U0)=«U^)=0 (N)

or Dirichlet

«(/,O)si&lt;/,«)sO (D)

boundary conditions.
In a contrast with the tradition we treat (SG) as a System of first order (in time)

équations not for pairs of functions (u(t, x), ut(t, *)), but for the pairs (m, A~l/2ut).
Hère A is the differential operator —d2/dx2+ 1, supplemented by the boundary
conditions (N) or (D). The operator A is positive selfadjoint, so the square root
A m and its inverse A ~1/2 are well defined. We write down (SG) + (N) (or +(D))
as

ù--y/Âv9 v=y/Â(u+A~l(sinu-u)) (1.1)

(the function v can be excluded from the équations; after this réduction we obtain
for u exactly the (SG) équation). The linear part of équations (1.1) is symmetric
with respect to u and v, which is convenient for our analytic tools.

We dénote

U(t9x)=(u(t,x),v(t,x))

and observe that the first component u(t9 x) contains ail the information about the

solution, because v — A~ï/2û.
We start with some basic facts from the finite-gap theory of the (SG) équation

(see [McK, EF, DN, BBEIM] for the proofs and détails). Let X {P (A, /i)} be

the hyperelliptic Riemann surface of the polynomial

(1.2)

where A,,..., kg are pairwise différent complex numbers from the upper half-plane
C+ (we restrict ourself to the solutions with complex branching points because the

small-amplitude finite-gap solutions we are interested in are of this type). We dénote
the hyperelliptic involution and the conjugation involution as follows:

t, (A, p) - (A, -fi% t2(A, ri (A&quot;, -/S).
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Let us make on X the eut y0 [0, oo) and the cuts yn i 1,..., g, where y, is a

path from X, to A,; let us choose the canonical basis of circles (an bf), i 1,...,g,
on F in such a way that the circle a, surrounds the eut yt (see Fig. 1), and fix a&quot; basis

of holomorphic differentials dcou dœg of X normalized by the conditions

The Riemann matrix B

defines the theta-function 9,

9(z | 2?)

This function has the matrix of periods (2nil, B).
The function y/I is not single-valued on X. To correlate the local parameters

yfi at the points A 0 and À oo we should fix a branch of yfk on X. This branch
is fixed if a contour 5£ on X is specified, where X/I has a jump alternating its sign

(y/k is analytic on X — 5£ and boundary values of J~X at two edges of 3? differ by
a sign, y/I |_^+ — ^/Â |^_). We choose if to be a union (see Fig. 1) of the

contours surrounding the cuts yn which are mapped to y/s by the projection
(A, ^u) —&gt; A. Let us consider the Abelian differentials dQ^.dQ^ with zéro a-periods

Figure 1. The spectral curve with the canonical basis.
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and such that dQ^ has the only pôle in oo and dQ0 has the only pôle in zéro:

dQ^iP) d(y/X) (P -+ oo), dQ0(P) /4=) (P &gt; 0). (1.3)

We dénote the è-periods of dQ^, dQ0 as 5°°, B°:

r
n oo ,0 I s-Jf~l

and define the vectors

V I

The antiholomorphic involution t2 acts on the basis of the cycles_and on the

local parameters as follows: x2aK =aK,z2bK= ~bK + aKi x J^/Â — yfk. Thèse
relations imply

and prove the realvaluedness of the g-vectors V, W.

The finite-gap (thêta functional) solutions of (1.1) are given by the formula

where k (A,,..., Ag), K V{k), W ^(A); iJ i(w,..., tc) is the vector of the

half-periods and D elg= Ug/2nlg is the phase of the solution.
The construction just described assigns to each vector5 k {kx,. Àg) e 9M^,

where

SR*= {(A,,. ..,;„,) | A, e C+, A, # A* Vy **}, (1.5)

the toroidal family of the finite-gap solutions 1.4), where the phase D varies in the

g-torus.

5 In fact, to each set {/-!,..., Âg}. With some abuse of notations we do not distinguish a vector

(/.,,..., kg) from the set {/,,,..., Âg}.
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For A g9W* we dénote by A&quot;1 eS0Î* the g-vector with the inverse components,
-% (Àj)-\j 1,..., g, and dénote by 5Dtfym a set of ail A g 9Jlg such that

1 and A&quot;1 las sets,

where

n «(g) 1

Since ail A/s are différent, then

\kn | 1 Vke mg if g is odd.

We dénote by T3 the g x g matrix

1

1

1

LEMMA 1.1. Suppose that AG9Mfym. 77œw the solution (1.4) w e^« in x if
D T3D and is odd if D T3D + (tt, ,n). Besides, T3W W, T3V -V and
the vectors V, W are given by the formulas Vk =^B£ - Bf+X _k), Wk

For a proof see [Bo, BiK, BoK2].
A solution U (m, v) of (1.1) satisfies Neumann boundary conditions (N) if it

satisfies &quot;even periodic&quot; boundary conditions with the doubled period:

U{t, x) U(t, x + 2k), U(t, x) £/(r, -x). (EP)

Similarly C/(/, x) satisfies Dirichlet boundary conditions (D) if it satisfies the &quot;odd

periodic&quot; boundary conditions:

U(t9 x) U(t, x + 2n), U(t, x) - U(t, -x). (OP)

By Lemma 1.1, to extract from the set of even (odd) solutions (1.4) the
solutions of (SG) + (OP) ((SG) + (EP)) we should solve the équation

(1.6)
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for À e 9Wfym. We start an analysis of this équation with simple small-gap limits for
V and W vectors when k e 9Wfym tends to a real vector 1 with positive components:

V(k) &gt; F°(l), W(k) &gt; W°(\) as A &gt; 1 g R*.,

where

(see [McK, EFM] and Theorem 1.2 below). As k eSKfym, then for the limiting
vector 1 we hâve: 0 &lt;/,,...,/„&lt; 1 &lt;/„ +,,..., /g.

We suppose that ail components of the vector 1 are différent. Then, after
unessential reordering of the first and the last n of them, we hâve:

0&lt;/rt&lt;---&lt;/1^K/g-&quot;&lt;/M+1, /,-/g+1_, l Y/.

After this reordering the components of the vector Vo are increasing:

As a suitable parameter for the families of solutions we choose the integer «-vector
V -(V°u V\,..., F°), varying in the set f *, where n n(g) and

r* {v (vx,..., vn) g zn | vn &gt; - • • &gt; vx &gt; o, vx o iff g h odd}.

For V e frg fixed we dénote

K NW(V) =(Nu

We treat V {- V°u - V\} and Hn as the lists of open and closed gaps of the

solution (1.4).
By (1.7) components Wf of the limiting vector W° hâve the form

where for real / we dénote /* y/l2+ 1.

Small-amplitudes solutions we are discussing now correspond to the situation
when ail the cuts in Fig. 1 are small. They are studied in our work [BoK2]. Below
in Theorem 12 we give the final results of this analysis.
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THEOREM 1.2. For every V g irg there exists p &gt; 0 and real-analytie map

k:Mcp={veCn\ 1/1,1 &lt;p V/}-C* ji i

(a) /or /x e M + M£ n U\ the vector A(/i) lies in 9Wfym c C*. am/ f/ie Riemann

surface (1.2) wifA A =&gt;l(ju) satisfies (1.6);
(b) //*

are analytic in Mcp and U(t, x; A(O), Z)) 0, Wj(0)
(c) the vector K(A(/i)) equals to V° for ail fi;
(d) the matrix dW/dfi at the point /â =0 equals to

(e) for \x (0,..., /iJ9. 0), where ju,
&gt; 0,

U(0, x; i.(ji), D) lô^/^cos V] x cos DJ9 cos Vj x sin £,) -h O(^u). (1.9)

COROLLARY 1.3. The map Mcp ^£\ fi *-&gt;(Wl9..., Wn)Qi), is an analytic
diffeomorphism on its image, provided p is sufficiently small.

Proof We should check that det dWj/dfik + 0 at fi 0. This déterminant differs

by a nonzero factor from the déterminant of the matrix m (mJk)9 where m}j 3

and mjk =4 if j ^k. The matrix m clearly defines an invertible linear map, so

det m # 0.

Thus, g-gap solutions t/(f, ^:; ji, /)) f/(/, x; A(a/), Z)) of (SG) + (N) analytically
dépend on /x, D and are parameterized by the discrète parameter V g V8. Below in

parts 2-5 the vector V is fixed.
Due to the symmetry relations, the vectors F, W and D are uniquely defined by

their first n components (belonging to IR&quot; and Tn). With some abuse of notations we
dénote thèse «-vectors by the same symbols V, W and D.

The coordinate System (/i, D) is singular in the points, where some fy vanishes,
because for \i} =0 the zone [XJ9 Ij shrinks to a point and the solution U does

not dépend on the phase Dr This observation hints that the functions

/lfîj, Dj) \j 1,...,«} form a &quot;good&quot; polar coordinate System and the solution
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u analytically dépends on the corresponding Cartesian coordinates (/?, q),

Pj y/ïjîj cos Dn q} y/ïjî, sin Dr (110)

Direct calculations, given in [BoK2], prove this conjecture:

LEMMA 1.4. The map

&lt;P0 : D2pn *= {(/&gt;, q) | p2 + q2 &lt; 2p V/} -&gt; Hs, #0(/&gt;, ?)(x) t/(0, x; /&gt;,

is real-analytic for every s e N, #«d

— #0(0) 8^/2(008 Ffx, 0), — ^0(0) 8^/2(0, cos F;ox). (1.11)

Moreover, the map &lt;P0 is odd: &lt;&amp;0(p, q){x) — ^0(—P, —#)(*)•

In the lemma we dénote by Hs the Sobolev space of vector-valued even periodic
functions U(x) (w(x), v(x)). That is,

Hs ^ C/(x) | U(x) t/( -x) U(x + 2tc), |^if/(x)|2 âfx &lt; oo V/ &lt; j V.

Jo J

The formula (1.11) results from (1.9). The last statement of the lemma follows
directly from the formula 1.4), since the transformation D (—? D -f A interchanges
the numerator and the denominator of the logarithm&apos;s argument in (1.4).

The following statement (with p sufficiently small) is an immédiate conséquence
of the lemma:

COROLLARY 1.5. The set $~p &lt;P0(D2pn) is a In-dimensional analytic subman-

ifold of Hs. This manifold passes through zéro 0 g Hs with the tangent space

T0&lt;Tp £2&quot;:=span{(cos Vjx, 0), (0, cos F» \j 1,.. n}.

The manifold is invariant under theflow of(SG) -f- (N) and isfoliated by the invariant
analytic tori of the form

The dimension of the torus Tn(n) equals n in gênerai case and drops by one if some

u, vanishes.
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Thus, équation (1 6) defines an n -dimensional analytic subvanety of the g-
dimensional domain yjlgym Due to Theorem 1 2, this subvanety has nonempty
components Wl8v, parametenzed by the vectors V from *V8 The g-gap solutions of
(SG)-h(N), corresponding to vectors from 9Wf,, form in Hs a In -dimensional

vanety F2n £~2n(Y), diffeomorphic to $RV x T&quot; The intersection of &amp;&quot;1&quot; with a
small enough neighborhood of zéro in the phase-space forms smooth analytic
manifold, îts closure îs a In -dimensional smooth analytic manifold 3~&apos;p «^(V),
diffeomorphic to the 2n-dimensional polydisk D2P&quot;

Due to Corollary 1 5, manifold 3&quot;p îs stratified as follows

I I g-

where &amp;~°p ^~2nn^~p îs an open part of $~p, fîlled with g-gap solutions, and
nonconnected analytic submanifolds &amp;pg are filled with (g&apos; &lt;g)-gap solutions of
(SG)+(N)

The object of this paper îs to study behavior of solutions of (SG) and perturbed
(SG) équation near manifold ZTp, including îts lower-dimensional submanifolds
0~P8,g&apos;&lt;g

In [BiK] the whole vanety ^~2n without lower-dimensional subvaneties 2Tpg was
considered6 The vanety F îs formed by the components of ^&quot;(V), containmg
small-amphtude solutions It does not exhaust ail finite-gap solutions, in particular,
because the solutions in 3~2n hâve trivial topological charge So the theory,
developed in [BiK] can be called half-global The local situation, which îs being
considered m this paper, can not be covered by the half-global theory from [BiK],
because small-amphtude solutions were excluded there from the considération

2. Solutions of the linearized équation

We consider eqiation (11) linearized about the g-gap solution U (w, v)

v, ôv JA (ou + A -&apos;(cos u(t9 x)èu - eu)) (2 1)

Clearly, we can exclude ôv from this System and obtain for ôu(t, x) the linearized

6 It was stated m Lemma 2 of [BiK] that the vanety 3~2n îs smooth At this moment both the
authors of [BiK] can not prove this more gênerai statement However, the information about ST we

possess (an analytic vanety, smooth near zéro) îs qui te sufficient to carry out the proofs of [BiK]
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(SG) équation:

où ôuxx - (cos u(t, x))ôu, (LSG)

supplemented by (N) (or (D)) boundary conditions (because the functions ou and
ôv belong to the domain of définition of the operator A).

There is a natural way to construct solutions SU (ou, ôv)(t, x) of (2.1):

(1) to write U(t, x; fi,D) U(t, x; A(/z), D) as a dégénéra te (g + 2)-zone solution

where Un+l is a (g + 2)-gap solution of (SG) + (N), corresponding to a

vector V&quot; +1 V, V°n + {) g tT* + 2(V g rg corresponds to the solution U and

(2) to obtain a solution of (LSG) as

1 dUn+l
lim &quot;7=^ (2.2)

(the factor fi&apos;^f appears in the formula because not (Dn+U jÂn+l) but
(Pn+19 Qn+i) forais a smooth coordinate System near nn + i 0).

The solution (2.2) dépends on the choice of the phase Dn+,. Différent solutions

are parameterized by éléments of the set Nn which enumerates the closed gaps of
the solution U.

We recall that by Dcp we dénote the set {(/?, q) e C2n \ \p} |2 + \q} |2 &lt; 2p V/}.

THEOREM 2.1. For each j V°n+ x e N there exists a linear combination 3, of
two solutions (2.2) with différent phases Dn+U having the form

3,(D, /; n)(x) e™jWFJ(W(tit + i&gt;, /^)W, (2.3)

where Wj and WJ are analytic functions. The frequency Wj(ix) equals to the (n + \yth
component of the W-vector of the solution Un+l with fin+ x 0. It can be analy tically
extended to some complex polydisc Mcp {\pLj\ &lt; p}, where

KG«W1 ^ C min(H, (1 +y)&quot;!)- (2.4)
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The function *FJ is even in (p, q). It can be analytically extended to some domain

®P {(/&gt;, 4) e Dp } x {x e C | |Im x\ &lt; p},

where it is close to (cosjx, i cosjx):

V1 (cos/x, i cosyx) + «^(WQi)/ + Z), j

and

•X-*)). (2-5)

The function WjX is analytic in x and (/?, q)-variables and everywhere in Op

I^I^Cl/iKl+y)-1. (2.6)

Proof In [BoK2] we construct a iinear combination of solutions (2.2) with the

t/-component equal to

where w;(fi) satisfies (2.4), the function W^ is analytic in (92p with some p &gt; 0 and
has the form (2.5) with *FJl replacée by V{j. The function y{J does not exceed

Since v A ~ 1/2w(r, x) and

v4 &quot;I/2 sin(cos)(A:x) k*~l sin(cos)(/rjc),

then the y-componênt of the solution equals

v(t, x; A ju) iem&gt;&apos;(cosjx -h tPf)),

where the function ¥$ has the form (2.5) and the analytic function *FJvl is bounded
in 0p by C&apos;|)u|(l H-y)&quot;1. To obtain this estimate one should use the direct and
inverse estimâtes for the norm of an analytic function in a complex strip via its
Fourier coefficients (see [A2] and [Kl], appendix B to Part 3).

The tf-component of the solution is analytic and even in (/?, ^-variables as well
as the M-component. D

It occurs that the frequencies w} satisfy nonresonance relations, important for
subséquent constructions.
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PROPOSITION 2.2. For ail s e Z&quot; and ail l &gt; r in Nn we hâve

(2.7)

# 0. (2.8)

Moreover, for eachfunction as in the l.h.s. oj&apos;(2.7) or (2.8) e#Aer the function itsetf,

or its gradient does not vanish ai \i 0.

Proo/. We proove more complicated relation (2.8) only. Dénote the l.h.s. in
(2.8) by x(v) and suppose that

X(0)=0, ^*(0)=0 y=l,...,n. (2.9)

Abbreviating Xyev t° Sy we can r^write the first relation in (2.9) as

j

Using (1.8) we can rewrite the second one as

in particular, Sjfj* C for ail j in V with some real C. Hence,

and

C(4|V|-l)+£±£ 0. (2.11)

We can eliminate C from thèse équations and find that

2 i 1V/2 i i\ _ /«?I*\2 __ I J(r2+l)(/2+l)=(r*/*) 4 V - 1
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Thus, (r2 -f 1)(/2 + 1) \6N2 with some integer N. We hâve obtained a contradiction

because a number m2 -h 1 with integer m never can be divided by four. D

We hâve proved Proposition 2.2 for 27i-periodic solutions. If the period equals

2n/L with some L &gt;0, then the numbers W^ =y* in the statements (b), (c) of
Theorem 1.2 should be replaced by yJj2L2 + 1 and it becomes more complicated to
prove that the System of (n -h 1) équations (2.9) has no integer solution (s{,..., sn).

We do not prove the statement in this gênerai setting, but observe the following:

AMPLIFICATION 2.3. (1) The set of ail L&gt;0 for which the statement of
Proposition 2.2 fails has no more than finitely many points in each finite segment
[a, b], 0&lt;a &lt;b &lt; oo.

(2) The statement holdsfor allLifV={0,\9...,n — l} (Le., ifail thefirst gaps
of the finite-gap solution (1.4) are open).

Proof of the first statement see in [BiK].
To prove the second one we observe that ail the formulas from the above proof

of Proposition 2.2 till (2.11) remain true for an arbitrary L &gt; 0 if we define r* as

r* x/r2L2+ 1. In particular, the numbers sx,..., sn hâve the same sign (and are

nonzero). We rewrite (2.10) with y n — 1 as follows:

As 1^ | &gt; 1 for ail k, then the modulus of the l.h.s. is larger than

4n-l

and the modulus of the r.h.s. is less than S/y/L2(n - 1)2+ 1. So (2.12) is impossible
if ai ^ 3.

If « 2 the equality is also impossible because \so\ -h ^1 ^ 3 (the choice

M Kl 1 contradicts the equality so/0* ,s1/l*). For n \ the equality is

impossible for similar arguments.

As we explained in Part 1, g-gap solutions (1.4) of the équation (SG) +(N)
form 2«-dimensional analytic varieties embedded into the phase space Z. The
connected components of thèse varieties, containing 0 g Z in their closures, were
denoted as ^r2n ^&quot;2n(V), Ve f*. Their closures are smooth near zéro and
contain the small-amplitude manifolds 9&quot;p we are studying. The Bloch-like
solutions (2.3)
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can be also constructed for the équation (SG) + (N), linearized about a solution
U (m, v) c &amp;~2n. For large n (corresponding to a large-amplitude solution U) the

functions wy(ji) can hâve nontrivial branching points. After crossing thèse points the
functions wy become complex [EFM, BiK] and the solutions (2.3) become exponen-
tially growing as t -? oo. The branching points for the functions w, can occur outside
the singularities of 3T2n (and only outside the manifold 3Tp\

The statements of Theorem 2.1 remain essentially the same when $~
p

is replaced
by 5&quot;2n. Besides, due to uniqueness of the analytic extension the claims of
Proposition 2.2 hold for the Bloch-like solutions corresponding to U c $~2n.

3. Symplectic structure of the phase space and manifold 3~p.
Action-angle variables on &amp;

p

We start with defining some functional spaces we need in what follows.
Let 3* be the Sobolev space H^ + l(Sl) of even 27r-periodic scalar functions (i.e.,

the space of even 2fl-periodic functions with square summable derivatives up to the

order k + 1). We provide 3o with the scalar product

Jo

and provide 3*&gt; ^ ^ 0» with the scalar product

where, as above, As/2 is a power of the positive selfadjoint in 3o operator
A, A(u) —uxx+ w. By the définition of the spaces 3A5 the operator A isomorphi-
cally maps 3* to 3*-2 (i-e-&gt; ^ is an isomorphism of the scale {35} of order two).

Let us define the Hilbert spaces Zs of vector-valued functions,

The scalar product, inherited by Zs from 3S, will be also denoted &lt;-,•&gt;*• We

abbreviate &lt;•,•&gt; &lt;•,• &gt;0.

The operator J(u, v) -(-^/Âv, y/Âu) defines unbounded skew-symmetric op-
erators m the spaces Zs and defines an isomorphism of the scale {Zs} of order one.

The operator J~l is bounded skew-symmetric in Zs, s ^ 0, and defines there the
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2-form

Let us set r(u) — cosu—\u2. The functional

-
Jor r(u(x))dx

o

is analytic in the spaces Zs, s ^ 0. Its gradient with respect to the scalar product

VH(u9v)=(A-lr&apos;(u(x)),0)* (3.1)

Under the symplectic structure given by the two-form œ2, the Hamiltonian
équation corresponding to the hamiltonian

J*r(z)=^(z,z} + H(zl zeZ,

has the form

z JVtf(z\ z (u(x), v(x)) g Z (3.2)

(see [Kl]). By (3.1), the last équation may be written as follows:

ù=-y/Âv9 v=y/Â(u+A-l(r&apos;{u)).

Le., the Hamiltonian équation with the hamiltonian Jf is exactly the (SG)
équation, written in the form (1.1).

Now we turn to the manifold yp &lt;P0(D2pn) and dénote by a2 the form in D2pn,

equal to the pull-back of œ2:

7 By définition, -&lt;/-» &amp;,

8 To prove the formula one should observe that

v% (M,,»,»» dH(u, v){ux, vx
[r&apos;{u{x))ux (x) dx^{{A~ xr\u(x% 0), (i/, (*), i;,
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By (1.11), a2(0) £ B] dp} a dqJ9 where B] \2Snj*. In the dilated variables

the form a2(0) is just dp a dq. We pass to the tilde-variables and (as usual) omit the
tildes in what follows. So

oc2 dp Adq + O(\p, q\),

and the form a2 is nondegenerate on ZT
p provided that p is sufficiently small. Thus,

3~p carries the natural symplectic structure.
The restriction of équation (1.1) to ZTp is a Hamiltonian vector field Vh with the

hamiltonian h equal to the restriction of ^f to ZTp. The open dense subdomain ^~°,

if filled with the invariant «-tori Tn{fx) as in (1.12):

J-°p [j{r(fi)\^&gt;0yj}, (3.3)

and restriction of Vh to the torus T\\x) is the Kronecker vector-field,

Vh\r^=WJ{n)^5. (3.4)

Due to Corollary 1.3,

detdWj/dfi^O, (3.5)

and for almost ail \x trajectories of (3.4) are dense in the torus Tn(fi). It occurs that
the décomposition (3.3) and the nondegeneracy relation (3.5) jointly imply the

Liouville-Arnold integrability of Vh (see appendix 1 below). So locally near each

torus T&quot;(n) we can construct analytic action-angle variables (/, (p), where the

actions / vary in some «-dimensional domain, angles (p eJn and

œ2 dlAd(p9 h=h(I). (3.6)

Fortunately, the variables (/, cp) may be analytically extended to the whole domain
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THEOREM 3.1. If p is sufficiently small, then there exists an odd analytic
transformation

{p,q)^{p,q), (3.7)

such that (/?, q) (/?, q) + O(\p, q\2), a&gt;2 dp a dq and the hamiltonian /*, written in

the (/?, q)~variables, dépends on the actions Ij \{p2 + qj),j 1,..., n and does not
dépend on the angles q&gt;j arctan qj/pj. In the variables (n, D) and (/, ç) the transformation

(3.7) has the form

{H,D) h*(/ Iifi), q&gt;=D+ &lt;p°Qi)),

with some analytic map (p°.

This statement is a version of the Liouville-Arnold theorem for a hamiltonian
vector-field with a singularity. For rather sophisticated results of this type see [Ito]
and références therein. We give a simple proof of the theorem in appendix 1 (our
situation is much simplified by a priori knowledge that the tori (1.12) are invariant
for the équation).

We finish with a brief discussion of the half-global analytic variety $~ln. The

restriction of the symplectic form œ2 to 3~ln is nondegenerate almost everywhere
(because it is analytic in tr2n and nondegenerate in 3~p) and the restriction of
(SG) + (N) to !Tln is an integrable équation outside some subvariety J&apos;cr of a

positive codimension. So ^2n\^cr is a smooth analytic symplectic manifold with
the integrable System on it. Locally (near each invariant n-torus) the action-angle
variables can be introduced.

4. Symplectic structure of the infinitésimal vicinity of manifold 3~p

In Part 2 we constructed &quot;Bloch-like&quot; solutions (2.3) of the linearized Sine-
Gordon équation (2.1) and proved nonresonance relations (2.7), (2.8). In this part
we show that the corresponding vectors WJ, WJJ eNn, form a symplectic basis of
the skew-orthogonal complément to the tangent space to the manifold S&apos;p. It is

remarkable that this important property is a rather simple conséquence of the

nonresonance relations and the asymptotics (2.4) (cf. direct proofs of similar
statements in [EFM], [Kri]).

THEOREM 4.1. If p is sufficiently small, then for each (fi,D) the vectors
{*PJ(H, D), *FJ(n, D) \j e Nn} lie in the complexification of the skew-orthogonal corn-
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plement to the tangent space T^D)3Tp in Zv andform a complex basis of this space
such that

a&gt;2(V&apos;9 fl) s œ2(W, V1) s 0, œ2{Y&apos;, V1) S^2mj*xfQi)9 (4.1)

where x3 is real and

|x» - 1| £ C min(|/i|, (1 +/T1). (4.2)

The basis from this theorem analytically dépends on (fi, D).To state the corre-
sponding resuit we observe that by (2.5), (2.6)

WJ0:= ¥&quot;(0, 0; x) (cos/x, / cos/x), ;eNB;

and by Corollary 1.5 the tangent space T0^~p equals to E2n. (In particular, for
(/*, D) 0 the statement of the last theorem is trivial).

Let us dénote by Y&gt; the skew-orthogonal complément to E2n in Zs,

Ys span{Re Fo, Im !P&apos;O |; g Nw},9

and dénote by ^? the natural embedding of Ys to Zs. The System of the complex
vectors {*FJ0, WJ0 \j&apos; e Hn} forms a symplectic basis of the complexification Y\ of the

space Ys:

?J) co2(VJ09 ¥l0) s 0, 0)2(n, n) ^/2/7r/*. (4.3)

Let us define the map

which is linear in the third variable, for fixed (p, q) sends a vector WJ0 to
!P;(p,f)îi;y&quot;1/2(ju) and is extended to ail of Ys by linearity ((/?, ^-variables are the
Cartesian coordinates in ^~p, corresponding to the action-angle variables (/, q&gt;\ see

Theorem 3.1). By (4.1) and (4.3) for each (p,q) the map &lt;P}(p,q) :Y-+Zis
symplectic.

The following regularity properties of the map #, mostly resuit from the
estimate (2.5):

9 Hère and below bar above a set means its closure.
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THEOREM 4.2. For s ^ 0 the map &lt;PX is Fréchet-analytic jointly in both

arguments, The following estimate for the linear map $\{p, q) holds after an analytic
extension to Dcp:

\\*i(p,q)-*ï\L+i*C3\(p9q)\9 (4.4)

provided that p is small enough. The map &lt;PX is even in (p, q). For fixed (p, q) it
defines a symplectic isomorphism of Ys and the skew-orthogonal complément to

Theorems 4.1, 4.2 are proved in Part 4 of [BiK]. Below for the reader&apos;s

convenience we sketch the proofs:

Proof of Theorem 4.1. To prove that

we shall check that the fonction

&lt;p(D, t; fi) &gt;=el(w&gt;+ »&lt; *&lt;o2[V&apos;(Wt + Z), /x), Vl(Wt + D, fi)]

vanishes identically. As the skew-product of any two solutions of the linear

équation (2.1) is time-independent, then djdt (p =0. Thus,

cp =i(w + w )/r + _ ^

Write F as Fourier séries:

From the last identity we hâve

for ail s and /*. By (2.8) the second factor is nonzero for almost ail /*, so Ê(s, y) s 0

and F(q9 fi) 0.
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In a simiiar way one proves that o)2(fJ, fk) 0 and co2(WJ, Wk) 0 if j # k.

The skew-product a&gt;2(WJ9 *FJ) is Z&gt;-independent because the corresponding func-
tion &lt;p as above is time-independent. The estimate (4.2) results from (2.5) and (4.3).

To prove that each vector WJ and WJ is skew-orthogonal to the tangent space to
$~

p one should consider the skew-product of the solution 3, with any trajectory of
(2.1), starting from a tengent vector to 3Tp, and use the relation (2.7).

By (4.2) we hâve in (4.1) xs(ja) # 0. So the vectors {W\ ¥J \j e N} are linearly
independent. By (2,5), (2.6) and Fredholm theorem

codim span{¥&quot;, WJ \j e Nn } codim Ycs 2n.

As the vectors WJ, WJ lie in the skew-orthogonal complément to the 2w-dimensional

space r(/iïZ))«^~p, and are linearly independent, then they form its basis.

Proof of Theorem 4.2. The estimate

results from (2.4), (2.6) because the norm of an operator in a Hilbert space can be

estimated by supremum of the /^norms of the rows and columns of its matrix. This
estimate implies analyticity of the map &lt;PX — &lt;P°X, because each matrix élément of the

latter is analytic in (/?, q) by Theorems 2.1 and 3.1. Now (4.4) results from the

Cauchy estimate.

The vectors WJ and the map &lt;PX are well-defined on the half-global variety
$~ln &lt;= Z outside its singularises, zéros of the functions x, (see (4.1)) and branching
points of the exponents wr Proposition 2.2 (the nonresonance relations) and the

asymptotics (2.4), (2.6) also hold there. So the statements of Theorems 4.1, 4.2

remain true for &amp;p replaced by !Tln, after we eut of from the latter a &quot;bad&quot;

analytic subvariety ^~bad of a positive codimension.

5. Normal form of the SG équation near manifold 3~p

By &amp;s(p, D2pn) where s &gt; 0, p &gt; 0, we dénote the set

endowed the symplectic structure by means of the 2-form Q2 dp a dq®co2 \Ys-

In what follows we omit the tildes and write (/?, q) instead of (/?, q). We consider
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the map

&lt;P : 0,(p, D2p&quot;) -&gt; Zs9 (/&gt;, q9 y) h+ &lt;P0(p, q) + &lt;f&gt;,(p, &lt;?)j.

Clearly,

0)*(ôp, ôq9 ôy) &lt;2&gt;O(A #)&lt;.(&lt;5p, &lt;fy) + #i(

By Theorems 3.1, 4.2 the map &lt;P(p9 q, 0)* sends the form Q2 to a&gt;2- Thus, if p is

sufficiently small, then 4&gt; is an analytic diffeomorphism (onto its image) and

The map &lt;P is odd because &lt;P0 is odd (Theorem 1.2) and the map (p, q) h

is even (Theorem 4.2).
Now we can apply the Moser-Weinstein theorem [Wei] to get an analytic

diffeomorphism

(pr is some positive number) such that

and A*(&lt;P*a)2) =Q2. Then

The map J, and so also the map g, is odd.
The pull-back of the vector-field of the équation (1.1) is a hamiltonian vector-

field in Os(p\ D2pn) with the hamiltonian K Jf o g and has the form

q VpK, p=-VgK, y=JVvK.

Let us write K as

(5.1)

where h1 is a vector in Y and A2 is a selfadjoint operator.
As the set {y 0} is invariant for the équations, then h1 0 and h°(p, q) /*(/),

see (3.6) and Theorem 3.1.
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In the (/, (p,y) -variables the finite gap solutions U(t, x) take the forai

7(0=const, &lt;tit) q&gt;0 + tW(l), y=0. (5.2)

So the équation, linearized about thèse solutions, (i.e., the équations (2.1) in the

(&lt;iiP&gt;y)-variables) has the form

ôl 0, Sq&gt; W(I)*SI, ôy Jh\U cp(t))ôy. (5.3)

The map g* transforms solution of (5.3) to solutions of (2.1). As

g*(/, cp(t), 0)ôy &lt;P\(I, q&gt;(t))ôy, then by the construction of the map &lt;£, the map S*
sends the curves

to solutions (2.3) of (2.1). Thus, thèse curves are solutions of (5.3) and so

h2(I9 cp)n A/ (7)n, where kf w,(/)//*,

because JWJQ ij*¥J0. So the operator

is a &lt;p-independent Hnear operator with the double spectrum {kf(I)\jeNn}9
diagonal in the basis {Re ^o, Im WJ0 \j eNn} of the space Y.

Now we discuss the last term h3(p, q, y) in (5.1). As the map 5 is odd and the

hamiltonian Jf is even, then K is also even. So A3 contains no cubic terms and

V Oay\\])-O{\\p\\ + \\q\\ + \\y\\s). (5.4)

An additional nontrivial and essential property of A3 is its smoothness. This
function turns out to be as smooth as the hamiltonian H (see (3.1)):

LEMMA 5.1 (see [K2, K3]). For s^O the map Vyh3 may be analytically
extended to a bounded analytic map

Vyh*:Dcp x{ye Ycs \ \\y\\s &lt;p}-+ r;+2, (5.5)

where Ycs is the complexification of the space Ys}°

10 Hère and in similar statements below p &gt; 0 is sufficiently small and dépends on s.
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We have obtained

THEOREM 5.2. The odd map JÇ&quot;1 transforms solutions of équation (1.1) into
solutions of hamiltonian équation on the domain &amp;s(p, D*1) with hamiltonian K of the

form

K(p, q9 y) h{I) +1 (A(I)y9 y} + h\p9 q, y). (5.6)

The function h3 satisfies (5.4), the gradient map (5.5) is analytic and hounded.

In the half-global situation the normal form (5.6) is available in a neighborhood
of «^~2w\^bad (see the end of the previous part). As some frequencies wn corre-
sponding to solutions in ^2&quot;\^&quot;&quot;bad vvith large norms, can be complex, then the

spectrum of the operator JA(I) can contain a fînite number of points with
nontrivial real parts (thèse points are not real and form quandruples ±A, ±X).
Now the operator A(I) has some more complicated form: it is diagonal in the basis

{Re (Im) WJ0} only &quot;up to a finite subsystem&quot; of thèse vectors. See [BiK] and Part
2.7 in [Kl].

6. Perturbed Sine-Gordon équation

Now we start to study perturbations of solutions 1.4), which fill some finite-gap
manifold 9&quot;p c Zs. The number s ^ 0 and the set V c frg of open gaps are fixed
and we abbreviate

We recall that 3~p is an image of the map &lt;P0&gt;

&lt;P0:D2pn-+Zs, &lt;*&gt;0(0)=0.

In Dj&quot; we use the coordinates (/?, q) constructed in Theorem 3.1 (and omit the

tildes), or the corresponding action-angle variables (/, cp). So

{(a *)} K * m; x t-, m; {/}, t&quot;

The solutions U (w, v) of (SG) 4- (N) on the manifold 9Tp have the form
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and fill the invariant ton Tn(I),

r(/) (P0({/}x?), is m;.

The tangent space at zéro TQ$~P equals the image of the tangent map #0*(0)
equals the space E2n (see Corollary 1.5).

We are going to attack the following problem: how do the solutions U(t, x) and
the invariant tori Tn(I) they fill behave under higher-order perturbations, in the

équation

utt uxx - sin w 4- Fu(u, x), (PSG)

ux(t,0)=ux(t,n)=0, (N)

where F is an analytic in w, Cs+ ^smooth in jc, u function such that

\F(u, x)\ £ C\u\6; F(u, x) F(u, x + 2n)= F(u, -x). (6.1)

Observe that sin u u — |w3 H- O(|w|5). So the équation (PSG) may be rewritten as

W/r Uxx ~ U + &quot; W3 + FU(U, X\ (6.2)

where F also satisfies (6.1).
The boundary-valued problem (PSG)H-(N) may be written down as the

Hamiltonian System (3.2) with the hamiltonian Jf Jf^n,

Û JVJf^iU), U (u(xl v(x)) g Z,

where

H(U) + HA(U), HA(U) P F(«(4 x) &lt;fe.

The functional //d is analytic in Z6 and its gradient map VHA is two-smoothing
(it sends Zs to Zs + 2)-

We can perform the change of variables 3 from Theorem 5.2 and rewrite

(PSG) 4- (N) as the System

q=V,Ku p=-VqKu y=JVyKx (6.3)
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in (9s(p, Z&gt;2n) D2; x {\\y \\ &lt; p} where KX K +KA,KA=HA°% and the hamilto-
nian K is as in (5.1). For the perturbation KA the gradient map

ryKA:Dcpx{\\y\\s&lt;p}-&gt;Yf+2

is analytic. This follows from analyticity of the map

Hse+ l(Sl) &gt; i/r \Sl)9 u(x) ^f(u(x); x) FM(w(x), x),

(&apos;V stands for &quot;even&quot;, s ^ 0), which in turn results from analyticity of the map

since (*) préserves the closes subspace Hse+ l(Sl) c Hs+i(Sl).

Remark. Analyticity of the maps VyKA and VHA is less obvious in the odd

periodic case which corresponds to the Neumann problem (\) + (N). Now the

maps clearly are analytic (with the same proof) if /(w, x) =/(w, x H- 2n) s
—f( — u9 —x) (this holds if F is 2n-periodic in x and even in (x, u)). Consider /
which is not odd and for the sake of simplicity suppose that it is x-independent:

/=/(«). We pass from the space Hso+ \Sl) (&apos;V for odd) to the space H%+ !(0, n)
of the traces on the segment [0, n] and accordingly modify the phase space Zk. This

change is inessential since the trace-map defines an isomorphism of Hso+l and

Hstr+1. For s 0 (this choice agrées with the restrictions of our theorems) we hâve

H]r(0, n) Hl(0, n) and the map clearly is analytic. We omit discussion of the

higher-smoothness case (s &gt; 0) but just mention that under the restriction (2) the

map (*) is analytic in H%+1 if s ^ 5.

We study perturbations of solutions (1.4) with a norm of order &lt;^ 1. This is

équivalent to suppose that the corresponding actions /&apos;s vary in the domain J of
the form

We eut away solutions with one of the actions too small and consider the solutions
with / e J„ where

and r &lt; 1 is fixed for a moment. In the new variables the invariant tori T\I) hâve
the form {/ const, y =0}. To study the perturbed équations near some «-torus
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Tn(I) with / e Jr we stretch the variables by means of the substitution

/-/ + C2/, q&gt;&gt;=9, y=&amp; (6.4)

In the tilde-variables the perturbée équation has the form (6.3) with the hamilto-
nian K2,

K2 const -f Vh(I) • / + - &lt;A(I)y9 y&gt; + h,

where

h c -2((h(l + C2/) - *(/) - C2F*(/) • /)
+ C2&lt;(A(I + C2/) - v4(/))j, j?&gt; + /î3(/ + C2/, 9, Cj) + KA(I + C2/, #, fy».

The functions h,h3,KA and the operator ^4 are analytic in {\î\&lt;r/2} xT&quot; x
{\\y\\ &lt; 1}, and A3 satisfies (5.4). So the hamiltonian /Tis analytic, the gradient map
Pp/Tis 2-smoothing as in (5.5) and

Now we treat / as a parameter of the équation, which we shall study for small
/, y. The parameter / varies in the domain Jr of the &quot;effective radius&quot; ba C2:

diam Jr &lt; Côa, mes Jr ^ C-lôna,

with some C-independent C. We dénote e C4 and treat e as a magnitude of the

perturbation. Then e C4 &lt;52.

The function A and the operator A are analytic in / from the complex polydisc
Mp, so their gradients mleJ can be estimated via the Cauchy inequality. The
functions h3 and KA can be analytically extended to a complex neighborhood of Jr
of the radius ôar/C. So their /-gradients for / in Jr are majorized by C{ôar)~l\h3\
and C(ôar)-l\KA\.

We summarize our knowledge about the hamiltonian K2 as follows:

(i) the map

J (6.5)

is an analytic diffeomorphism (so we can pass from the parameter / e Jr to
m € Vh(Jr))\
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(u) \h\ + rèa \V,h\ O(ôa(\î\2 + \l\\\yf + \W) + e) and the gradient map Vyhis
two-smoothing as in (5 5),

(ni) the operator JA(I) îs diagonal in the complex basis {WJ0,WJQ} with analytic
m le / eigenvalues {±^(7)}, obeying (2 4),

(îv) for each finite System of résonance relations

s±wJ(I)±wk(I),

there exists C-independent C* &gt; 0 such that each function as above or îts

/-gradient îs ^C*x everywhere in J, provided that Ç îs small enough n

By the properties (i)-(iv) the abstract theorem on perturbations of fimte-dimen-
sional invariant ton in parameter-depending hnear hamiltonian Systems [Kl, K4]
can be apphed to prove persistence most of the ton Tn(I)91 eJr, m the perturbed

équation
An application of Theorem 3 12 from [Kl, p 53] with coasa parameter,

œ eQ Vh{flr), implies (see Appendix 2 for a correction), that

THEOREM 6 1 For each gwen 0 &lt; r, y &lt; 1 andfor 0 &lt; C &lt; Ç(r, y) there exists a

Borel subset JraJ&gt;r, mes(/r\/r) ^ y mes/r,12 and for Ieïr there exists an

analytic map

S! T&quot;y-&gt;RnxTnxYs {/, &lt;p, y}

and an n-vector ffîr(I) such that the curves

(6 6)

are time-quasipenodic solutions of the System with hamiltonian K2 Ail Lyapunov

exponents of thèse solutions equal zéro The vector Wr is close to W and the map

ï JrxTn-+MnxUnx Ys, (/, cp) h

1 &apos; This statement is a reformulation of Proposition 2 2

12 mes — Lebesgue measure
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is close to the map 1(1, q&gt;) (0, q&gt;, 0):

\W-W,\&lt; CC\ Lip,1W - Wr | &lt; CC2, (6.7)

||f -11 ^ CC2, LipJ|f-Z||^CC2, LiP/||f-r||^C (6.8)

with some C C(r, y).13

Now we use the formulas (6.4) to go back to the variables (/, cp, y) in the

domain Os((p9 D2pn). After this we pass in D2p&quot; from the action-angle variables (/, cp)

to the Cartesian variables which we dénote (/?, q) in the preimage and (pr, qr) in the

image. We use the map JÇ to go to the &quot;usual&quot; variable ia a neighborhood of Tp in
Zs and dénote the resulting map by $r :

(p, q)

As y/r C &lt; |(p,, ^y)| &quot;\/2|/,| ^ x/2 C for y 1,...,«, then as a trivial
conséquence of (6.8) we get the estimate

|£r - #0 « s c,c3.

More cumbersome but as elementary as above arguments show that

In particular, the map Sr is an embedding because it is Lipschitz-close to the

embedding #0-
The constant C, in the last inequalities (as well as C in (6.7), (6.8)) dépends on

r and y. To avoid this dependence we observe that for each y. &gt; 0 the inequalities

13 In (6.8) by Lip^ ||£-r|| is denoted the Lipschitz constant in ç of the map (£ -Z):Jrx
F-»i&quot;xFx Ysi etc.
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imply existence of f(r, y), 0 &lt; f &lt; ((r, y)9 such that

||*r - *o|| * C3-&quot;, Lip||&lt;£r - *o|| * C2&quot;*, (6.9)

and

|#r - ^| &lt; C4-*, Lip|^r - ^| &lt; (2~*, (6.10)

provided that £ &lt; f(r, 7). We can suppose that the positive function fis monotonie:

f(r, y) ^f(r,,y1) if r &gt;rl5y :&gt; y,

(otherwise we replace &lt;f by the function which sends (r, y) to suprj &lt;^yi ^((r,, yj)).
Now we shall iterate the application of Theorem 6.1 to construct perturbations

of arbitrarily small finite-gap solutions (i.e., without the restriction /, ^ C2r). We

remind that a Borel subset M of a Borel set M, M a IRW, has a density x(0 ^ £ £ 1)

at a point m* c M, if

mes(m e M I |m — m * I &lt; v}
—fi n 7 ?* as v &gt;0

mesjm e M \\m —m*\&lt;v}

(we suppose that the denominator does not vanish for positive v). Clearly, a subset

M has density x at m* if and only if M\M has there density 1 — x.

THEOREM 6.2. For each x &gt; 0 f/im? exwto a Bore/ subset D ^ M x T 0/
^ MJ x T&quot;, having density one at zéro and Lipschitz maps $ : D xTB-*ZJ}

W(l)t) (6.11)

are time-quasiperiodic solutions o/(PSG) 4- (N) w/7A zéro Lyapunov exponents. The

map $ is close to &lt;P0 and the vector ffî is close to W for small (p,q):

)|3-^, Lip||* - #0|| ^ Cp2-; (6.12)

- W(p9q)\ ^ C\(p9q)4~\ Lip|^- W\ ^ Cp2~\ (6.13)

COROLLARY 6.3. The set #p ${D) has the tangent space at zéro, equal to
E2n. This set is of positive Hausdorff measure Jf2&quot; and 34f2n(Fp)/je2n(^p) -+ 1 as
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Proof. The first statement results from the first estimate in (6.12). The second

one follows from the basic properties of the Hausdorff measure and the second
estimate in (6.12), because a map, which is Lipschitz-close to the identity, changes
Jf2n only a little [Fe]. D

Proof of Theorem. For j 0,1, 2,... let us set

where Fo 1, F,\0 (j-+oo) and Ç, ^ f(&gt;)&gt; )!/)• The séquence {r,} exists because the
function

is positive and increasing.
For j 0,1, 2,... we can apply Theorem 6.1 to the sets J} J\ (first two

of them are represented on Fig. 2 below) and construct the subjects JJ &lt;= J\ the

maps $J : JJ xTn-&gt;Zs and the rt-vectors WJ{I),IeJJ, satisfying the estimâtes

(6.9), (6.10) with C Cj and defining solutions of (PSG) -h (N) of the form (6.11)
with S &amp;, W W.

For v &gt; 0 we dénote by K(v) the cube

K(v) {/ 10 &lt;; 7; ^ v V/}

(so J3 c= AT(^2)) and construct the subset Jx c M+ as the disjoint union

LEMMA 6.4. The subset Jx a M+ has density one at zéro.

We omit an elementary proof which follows from the convergences jj\O, r,\0.
Choose in (6.9), (6.10) % x/2 and define the maps $:*fl xT&quot;-+Z, and

ffî ; Jx -» Un be equal to &amp; and &amp; in JJ x Tw,y 0, 1,... It results from (6.9),
(6.10) that the map S meets the first estimâtes in (6.12), (6.13) everywhere in
Jx x Tw. The map $ is analytic in q; both maps S and W are Lipschitz in each

compQnent (JJ\K(Çj+l)) x Tw, but they may be discontinuous in / at boundary
points of the cubes K(tf). To improve this imperfection we eut off from the set J\
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small neighborhoods of the boundaries of the cubes and dénote
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m=./, v/c, Je U (*(c2+c2+v)\*(c2 - c2+v)&gt;

with v x/2 (see Fig. 2).

Now we can estimate the incréments of the map S - #0, corresponding to
points in différent components of5 MxT&quot;, by the fîrst estimate in (6.9) and the

incréments, corresponding to points in the same component of C by the second one.
Thus we obtain the estimate (6.12) for Lip||*-^j, and the estimate (6.13) for
Lip\W-W0\.

The set &lt;/c has zéro density at zéro. So Lemma 6.4 implies that M has unit
density at zéro. As dp dq dldcp, then the set D M x T&quot; has unit density at zéro
as well, and the theorem is proved.

Theorem 6.2 deals with small-amplitude solutions of the (PSG) équation
(équivalent to (6.2)) under even 27r-periodic boundary conditions (équivalent to
(A0). The only part of the proof where we hâve used the exact value of the period
is Proposition 2.2. So Theorem 6.2 remains true for even T-periodic solutions if for
this value of the period we can prove Proposition 2.2. In particular, Amplification
2.3 implies the following resuit.

Figure 2. The set AdT.
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AMPLIFICATION 6.5. (1) If V {F?,..., V°n} {0,...,«- l}14, then the

statements ofTheorem 6.2 remain true for ail periods T. (2) The statements are true

for ail V and ail periods T e U+ \X, where X is a discrète set which has no more thon

finitely many points in each finite segment [a,b],0&lt;a&lt;b&lt;oo.

Remark. Due to the complète analogy between Dirichlet and Neumann
boundary conditions (see Part 1) ail the resuits proven above remain true for the

(PSG) équation under the boundary conditions

w(f,0)=w(/,7r)=0, (D)

if we replace ZTp by a 2n-dimensional submanifold of the phase-space, filled with
finite-gap solutions of (SG) +(D) (and accordingly replace cos&apos;s by sin&apos;s in the

définition of the spaces E2n).

In the half-global situation one deals with finite-gap solutions filling the mani-
fold 3T2n ^2n{\) c-m% x Jn (see the end of Part 1). Now the équation (SG)
should be perturbed by a small function (rather than by a higher-order term as in
(PSG)):

utt uxx - sin m + sFu(u, x), (6.14)

where the function F is analytic in m, Cs+ ^smooth in x and

F(u, x) s F(u, x + 2n)= F(u, -x).

The half-global analogy ofTheorem 6.2, proven in [BiK], states existence of a Borel
subset 9He c Wfl$ such that mes(9K^\9Ke) -?() as e -?O and the solutions (1.4) with fi
in 9Jle persist in the perturbed équation (6.14) -f (N).

7. Application to the (p4-equation

The &lt;p4-equation with positive mass has the form

utt uxx - mu + Cu\ (cp4)

where m &gt; 0 and C ^ 0. Suppose C &gt; 0 (as we explained in the introduction, the

14 i.e., if the first n gaps of the solutions (1.4) forming the mainfold 3T are open.
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case C &lt; 0 can be treated similar with the Sine-Gordon équation replaced by the

Sinh-Gordon). We start with the unit-mass case: m — 1. Then by means of a trivial
dilation of the m-variable the équation can be normalized as follows:

1

uft uxx — w+-w (N&lt;p
6

This is exactly équation (6.2) with F 0, and the results of the last part are

applicable to study its small-amplitude solutions under Neumann boundary conditions

(N).
We dénote by / the natural embedding of the space E2n to Zs and formulate

assertions of Theorem 6.2 as follows:

THEOREM 7.1. There is a Borel subset j? c £2&quot; ~ R™ x T&quot; of unit density at

zéro and of the form Ë en M x T&quot; and a Lipschitz embedding $ : Ë -? Zs, analytic in

cp e T&quot;, such that

(i) the tori &lt;P({fi} x Jn) cZ,,/i6 M, are invariant for (Ncp4) + (N) and are

filled with time-quasiperiodic solutions with zéro Lyapunov exponents;

(ii) the Lipschitz constant Lip||&lt;£ — /|| &lt;&gt; \ and for £, in Ë9 $(£) — /(£) -f 0(|£|2).
Moreover, the sets 2t $(Ë) and the manifold 3~p hâve second-order tan-

gency at zéro.

In the gênerai case (m, C&gt;0) we rescale x-, t- and «-variables to rewrite

(cp4) -f-(N) as the normalized équation (N(p4) under the boundary conditions

)eeO. (7.1)

Now the linearized at zéro équation has the form utt uxx — mu, so the wave-num-
bers in the définition of the invariant spaces E2n should be replaced accordingly:

E2n span{(cos(F&gt;/v/^), 0), (0, cos(K&gt;A/^)) \j 1,..., n}. (7.2)

We can apply Amplification 6.5 to get

AMPLIFICATION 7.1. (1) Statements of Theorem 7.1 remain true for the

équation (q&gt;4) + (N) with an arbitrary m,C&gt;0 and the space E2n definedas in (7.2)
provided that

{F?,..., F2&gt; « {0, 1 h - 1}. (7.3)
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(2) If the wave-numbers {V®} are just any n numbers, then the statements hold
provided that m $ {m1? m2,.. •}, where the only possible limiting points for the set

{mu m2, ,..}cR+ are 0 and oo.

So the équation (&lt;p4) + (N) has many small-amplitude time-quasiperiodic
solutions. To make this statement quantitative we rescale u eu, e &lt;| 1, and obtain for
ù the équation

ûtt uxx -mû + Ce2û3. (7.4)

Dénote by QPE a Zs the &quot;quasiperiodic set of the équation&quot;, equal to the union in
the phase-space Zs ail the curves corresponding to time-quasiperiodic solutions of
(7.4) -j- (N) with zéro Lyapunov exponents.

PROPOSITION 7.3. For any 3(x) e Zs

distZ5(3, ÔPe) —* 0 ass-+0. (7.5)

Proof Fix any ô &gt; 0. For n large enough one can find a point 3, in the space
E2n as in (7.2), such that ||3 — 3i || &lt;&lt;5/3. This point lies in some bail
B {§€ Ë1&quot; | !3! &lt; R}. Under the rescaling u eu this bail corresponds to the bail
sB in the linear subspace E2n of the phase-space of (ç4) + (N). Consider the subset

Ë cz È2n, constructed in Theorem 7.115. As Ë has the unit density at zéro, then for
e sufficiently small Ë has nonempty intersection with the e&lt;5/3-neighborhood of the

point 63, e eB. Fix any point efo in this intersection. By the statement (ii) of
Theorem 7.1 we hâve ||e32- #(232)| ^ Ce2. The point e~l&lt;P(efc) lies in QPe. So

dist(32, PQË) &lt;&gt; Ce £ S/3 if s is small enough. Thus,

dist(3, QPe) &lt; ||3 - 3i II + ||3i - h II + dist(32, QPe) &lt; ô,

if e is sufficiently small. The statement is proved.

Remark. Results similar to Proposition 7.3 hold for nonlinear wave équation
with random potential Vœ(x) with &quot;good randomness properties&quot;,

un &quot;xx - Vœ(x)u + £&lt;PM&gt; (7.6)

if we replace in (7.5) the usual convergence by the convergence in probability. This

15 We use amplification 7.2.
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statement is proved in [Kl, Part 2.4] for nonlinear Schrôdinger équation with
random potential; the same proof holds for (7.6).

Appendix 1. Liouville-Arnold theorem near singularity

By Dp= D2pn we dénote the polydisk

{(/&gt;, q) e U2&quot; | h \ (pf +qj)&lt;p Y/};16

by M M+ the open «-cube {/x e R&quot; | 0 &lt; ^ &lt; p) and by Mo the half-closed cube

{ju 10 ^ jjij &lt; p}. The polydisk Dp is given the symplectic structure by an analytic
2-form co2 such that

co2 dp Adq + O(\p, q\). (A.l)

In Dp we consider hamiltonian vector field Vh with analytic hamiltonian h such that
yh(0) 0 and for ail \i e M, Do e Tn the curves

\i const, D Do + W(jx)t A.2)

are trajectories of Vh, where W : M -*Un is an analytic map.

THEOREM. /fdet 5FF/3/X # 0, then after decrease p, in Dp analytic coordinates

(p, q) may be constructed such that

0) (A# (Atf) + 0(|p,*|2),
(ii) &lt;//? a dq =co2,
(iii) /Ae actions l} =j(pf +qj) and the angles (pj arctan #,//?, forms action-

angle variables for the vectorfield Vh:

where the hamiltonian h is analytic in Mo\
(iv) the transformation (p, D) h-+ (/, q&gt;) has the form

D) ^ (/ /(fi), q&gt; P -h

/(/i) and W(jt) are analytic in Mo.

The angles, correspnding to /i/s, are denoted D/s. See (1.10).
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Proof. Dénote

D_ {(p9q)eDp\nJ&gt;0Vj},

and for fie M dénote by Tn(fi) c D the «-torus {(n, D) \ n fixed}.

LEMMA. Near each torus Tn(fi) the vectorfield Vh is Liouville-Arnold inîegrabîe.

Proof. The vectorfield Vh restricted to Tn(n) equals ZWj(jji)dldDJ9 and by the
theorem&apos;s assumption the flow of Vh on Tn(fi) is ergodic for almost ail ju. The tori
with ergodic flow of the form (A.2) are Lagrangian [Her]17. So ail the tori Tn(ji) are
Lagrangian.

Consider the functions

As fj&apos;s are constant on each torus Tn(fi), then for q e Tn(fi) and Ç e II TqTn{\x) we
hâve

o &lt;#,(?), O œ2(^(&lt;7),£&gt;.

Thus, the vectors Vf{q) lie in the skew-orthogonal complément to 77, equal 77 because

the torus Tn(n) is Lagrangian. Hence, the functions f} are in involution:

Similarly [fJ9 H] 0, and the lemma is proved. D

For (p, q) (/i, D)&apos;e D_ and y 1,.. n we define

C,(p, «) {Oi7, /&gt;&apos;) I A*&apos; ^ ^î A ^ / #7, ^ e T1}.

We use (A.l) to construct an analytic Liouvillean form cou dœl —œ2, such that

17 We sketch the proof. Dénote by Q2 the form œ2 restricted to some ergodic torus. As the flow of
Vh préserves the form co2, then the flow of the ergodic vectorfield IW/ô/dD/ on the torus préserves Q2.
Thus Q2 — Y,kj atj dD, a dDf with some constant coefficients au. The coefficient atJ equals averaging Q2

along the two-torus {q | qt 0 if / # i,j). So it vanishes because the form Q2 is exact as well as the form
oj2.
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Fix fi*e M. Due to the lemma and Liouville-Arnold theorem in the vicinity of
Tn(ii*) there exist analytic action-angle variables (/, $) such that

n, D)

The actions dépend only on the «-torus. So 7, 7,0/).

LEMMA. The functions 1} are analytic in Mo and

Proof. By the formulas for Ç,(/&gt;, q) and cou the functions I} are analytic in Dp
and Ij=i*j + O(\p, q\3). Dénote

As the functions 7,(/?, ^) are analytic, then

4 1 &lt;^&quot;^ Z &lt;* II (2|i/)1/2(a/ + * &apos;e1*1 (a/

As Ij is Z)-independent, then a^^ 0 if a ,* /?. So

is an analytic function of /* such that Ij fi; + o(\fi\). As J^ vanishes with nj9 then

LEMMA. iVi^ûr the fixed torus Tn(fi#) we hâve &lt;!&gt; D + !P(//) w/7A 5&lt;?w^ w&lt;z/? !P

ïcA w defined and analytic near ju*.

/. On each torus Tn(fi) with jii near /i^ the vectorfield Vh equals ZWj(p)

j (by (A.2)) and equals ZWj(ii)ô/d&amp;J9 because (7,^) are the action-angle
variables. As the trajectories (A.2) are dense in l™(ji) for most jn, then

0 LD -f- W(fï) with some unimodular matrix L. By the formulas for the actions 7,

the cycles C} on the tori T\\i),

Cj {0\ ^/ is fixed for / ïj, &lt;Pj e T1},

are homologous to Cr So L Id.
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As dl a d&lt;P co2, then the last lemrna implies that

o&gt;2 dl AdD+dlA d&lt;F° y, + y2. (A.3)

Observe that the form yx is analytic in Dlp8. As y2 œ2 — 7i, then the form y2&gt;

originally defined in the vicinity of jTw(/x*) can be analytically extended to Df).

LEMMA. There exists a 2-form y29 defined and analytic in Mo, such that
where

Proof. For j 1,...,« dénote

As the form y2 is analytic in Dp, then

^2= Z Z &lt;(z,2)dzfA&amp;;,
ij =1 n,v — ±

where the functions a*} are analytic in Dp. Near the torus Tn(ti*)

11 I 4,(/) ^ A ^y J IaJ\ \zf) X Zfz; &amp;? A dz).

Thèse two représentations for the analytic form y2 jointly imply that the functions
AtJ are analytic in Af0, and the lemma&apos;s assertion follows.

Observe that y2 Z àlj a dWj d(W dl). So the form y2 is exact and closed and
the form y2 is closed. By the Poincaré lemma there exists an analytic in Mo 1-form

(p°(l)dl, (p°(0) =0, such that d(cp°(I) dl) y2. By (A.3),

0)2 dlA d(D + (f&gt;°(I)l (A.4)

So (J, q&gt; D + (p°(I)) are action-angle variables.

18 Because dlj d\i} -h d{p.jJJ(jx)) with some analytic in Mo funcitons JJ (by the first lemma) and the

fonn dp a dD is analytic in Dp.
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Define the Cartesian variables

cos cpj, q} jlïj sin &lt;pr

By the first lemma,

8 Z&gt;, cos &lt;py°0i) - sin Dj sin ç

where P,, g, are analytic in Af0 and P,(0) 1, g7(0) 0. Similar with qr So the
analytic map (/?, #) i-&gt; (/?, q) has the form given in the statement (i) of the theorem.

Statement (ii) results from (A.4).
In the coordinates (p, q) the vectorfield Vh is hamiltonian with the analytic

hamiltonian h(p, q), depending on the actions / only. By the same arguments as in
the proof of second lemma, h h(I)9 where the function /Tis analytic in Mo. So the
statement (iii) follows.

The last statement results from the définition of (/, cp) -variables.

Appendix 2. Correction

In Part 6 above we essentially use Theorem 3.1.2 from [Kl]. The secon author
(S.K.) admits that the proof of Theorem 3.1.2 (more exactly, its réduction to the
main theorem of [Kl]) contains a gap which was drawn to his attention by J.

Pôschel. The gap affects the theorem exactly in the spécifie case we use above.
Below we give the corrected statement.19 We use notations of [Kl].

CORRECTION (to Theorem 3.1.2 in [Kl]). If &lt;/, 1 (Le., if the frequencies
Xj (6) of the unperturbed System hâve linear growth),20 then the spectral asymptotics
(1.12) ([Kl], p. 50) should be strengthened as

^W-Kb-KWZKJ-1. (1.120

Besides, the radius ôa should be larger than C~ lel ~fi, where // &gt; (2 — A)/(4 — A) with
A =min(l, —dH) and dH is the (négative) order of the nonlinear part of the

perturbation.

19 It is somewhat weaker than the one given in [Kl] but is sufficient for the purposes of the current

paper

20 As the frequencies {h&apos;7} in (2 4)
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For the perturbée (SG)-equation (1.12&apos;) is fulfilled, dH=-l, (2- A)/
(4 — A) 1/3 and fi 1/2. So the theorem can be applied to (6.3).

The mistake is contained in the estimate (4.11), p. 77 (which is needed for the

case dx 1): the correct version of the estimate has no factor ôa in the r.h.s.
Therefore under an appropriate choice of the small &quot;bad set&quot; 02, for &quot;good

parameters&quot; 9 $ 02 one has

(not \D\ ^ ôa. as in the book). So

(1) the proof given in the book works without additional corrections if
ôa =ô &gt;C-lel/2-^ with fi&apos;&gt;0 (see (8.11), p. 88, where Ô~l should be replaced
by&lt;5-2).

This restriction is too hard since it is not fulfilled for the (PSG)-équation. To
obtain a better resuit we make one more observation.

(2) For b e [0, 1) one can construct a small &quot;bad set&quot; &lt;92 in such a way that

for 6 $ 02. With denominators like that the nonlinear part of the transformed
vectorfield will loose b &quot;units of smoothness&quot;. So if we take b e [0, A

min(l, —dH)), then the transformed nonlinear vectorfield will be still of the

négative order dnH dH + b &lt; 0 - i.e. still smoothing. With this choice of the bad

set after the first step of the normalizing procédure we get as a new magnitude of
the perturbation s(ï) e2ô2~b. As \x &gt; (2 - A)/(4 — A), then one can find b e [0, A)
such that

After this we can proceed as in 1).
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