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Homological stability for automorphism groups of free groups

ALLEN HATCHER

Let F, be a free group on n generators, Aut(F,) its group of automorphisms,
and Out(F,) its outer automorphism group, the quotient of Aut(F,) by inner
automorphisms. There has been much progress of late in the study of these groups
via the one-dimensional model which arises from regarding F, as the fundamental
group of a graph; see e.g., [BH] and [CV]. In this paper we return to a three-dimen-
sional model first used by J. H. C. Whitehead in the 1930’s, which involves looking
at embedded 2-spheres in a connected sum of S'x §%s. Refining Whitehead’s
techniques and applying subsequent results of Laudenbach, we use this three-di-
mensional model to prove:

THEOREM. (a) The map H,(Aut(F,)) = H;(Aut(F, ,)) induced by the natural
inclusion Aut(F,) = Aut(F,, ) is an isomorphism for n > i*/4 + 2i — 1.

(b) The map H,(Aut(F,)) - H;(Out(F,)) induced by the projection
Aut(F,) - Out(F,) is an isomorphism for n > i*/4 + 5i/2.

Here the inclusion Aut(F,) < Aut(F, , ) is obtained by extending an automorphism
of F, to an automorphism of F, ,, fixing the (n + 1)* basis element.
Homological stability results like the statement in (a) have a long history, going
back to the classical Lie groups and continuing more recently with various discrete
groups, including symmetric groups, braid groups, many linear groups, and map-
ping class groups of surfaces; see the References at the end of the paper. In all these
earlier cases the function ¢(i) giving the stable dimension range n > ¢(i) is linear,
so it would be rather surprising if our ¢ cannot be improved to be linear as well.
Letting Aut, denote the union of the groups Aut(F,) under the inclusions
Aut(F,) c Aut(F,,,)=---, the theorem implies that the stable groups
H;(Aut, ) =lim H;(Aut(F,)) are finitely generated since H,(Out(F,)) is finitely
generated for all i and n, by [CV]. (This can also be proved using the techniques of
the present paper, as we show in an Appendix.) Other than finite generation, the
main thing known about the homology groups of Aut,, is that they contain quite
a lot of torsion. This comes from the infinite symmetric group £, = ( J, Z,, which
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40 ALLEN HATCHER

can be viewed as the subgroup of Aut,, consisting of automorphisms permuting the
basis elements.

PROPOSITION. The inclusion X ,, = Aut,, induces an isomorphism of H,(X )
onto a direct summand of H;(Aut,), for all i.

This is easily deduced from a theorem of Waldhausen, as follows. Let \/S* be the
wedge sum of an infinite sequence of k-spheres and let Aut(\/S¥) be the H-space
of homotopy equivalences \/S*—\/S* which are the identity on all but finitely
many of the spheres. Suspension provides a diagram

Aut(\/S%) — Aut(\/S") — lim, Aut(\/S*)
| = -

ll
2, —— Aut

where the vertical map in the middle, taking the induced homomorphism on x,, is
a homotopy equivalence since \/S' is a K(F,,, 1). Now if we apply the functor B™,
B denoting classifying space and “+” denoting the Quillen plus construction, then
lim, Aut(\/S*) becomes the space A(x) of Waldhausen, who showed in [W, ,] that
A(x) splits up to homotopy as the product of B*X  with another space (essentially
the stable smooth pseudo-isotopy space for a disk), the inclusion of the factor
B*X  being induced by the map across the top of the diagram above. Hence we
have splittings H,(Aut,,) ~ H;(Z ) D (D).

The complementary summand of H;(Z ) in H;(Aut,) is zero for i =1, 2 (see
[G] for the latter case), but whether it is trivial for all i seems to be unknown. In
particular, it is not known whether H,(Aut_; Q) vanishes.

Our approach to homological stability for Aut(F,,) and Out(F,,) is modeled on
Harer’s proof in [H] for the case of mapping class groups of surfaces, as refined by
Ivanov [I]. In our case, we consider the mapping class groups of the 3-manifolds
M, obtained from the connected sum of n copies of S'x S? by deleting the
interiors of s disjoint 3-balls. Thus M, , is M, , with s punctures. When s =1 the
puncture provides a basepoint for M, , and we have a natural homomorphism from
the mapping class group =, Diff*(M,, ;) to Aut(n, (M, ,)) = Aut(F,). This is surjec-
tive since the classical Nielsen generators of Aut(F,) are easily realized by orienta-
tion-preserving diffeomorphisms of M, ;. And by a theorem of Laudenbach [L,],
the kernel of m, Diff*(M,, ;) = Aut(F,) is a finite direct sum of Z,’s generated by
“Dehn twists” — diffeomorphisms supported in a product S*xIc< M, ,, each
sphere S? x {t} being taken to itself by a rotation through angle 2x¢. In the case of
the unpunctured manifold M, , there are corresponding statements with Aut(F,)
replaced by Out(F,).
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Associated to M, is a simplicial complex S(M,, ;) whose k-simplices are isotopy
classes of systems of k + 1 disjointly embedded 2-spheres in M, ,, none of which
bounds a ball or is isotopic to a boundary sphere of M, ,, and no two of which are
isotopic. The mapping class group of M, ; acts on S(M,, ), and from Laudenbach’s
theorem that homotopic 2-spheres in M, are isotopic (see [L,,]) it follows easily
that twists along 2-spheres act trivially on S(M,, ;). Hence there is an induced action
of the quotient group I', , = m, Diff (M, ,)/T, T being the subgroup generated by
twists, a normal subgroup. Note that I', ; & Aut(F,) and I', , & Out(F,) by Lauden-
bach’s theorem mentioned in the previous paragraph.

There are two parallel spectral sequence arguments for proving stability of
H,(I',,) with respect to n and s. The spectral sequences in question are the natural
ones associated to the actions of I',; on two I, -invariant subcomplexes of
S(M,,), consisting of systems with connected complement in one case and systems
of spheres which separate off a simply-connected submanifold in the other case.
(Technically, in the first case one must consider systems which are ordered and
oriented.) The input needed to deduce stability from the spectral sequences is that
the subcomplexes and their quotients by the action are highly connected. For the
quotients this is easy, and for the subcomplexes it reduces as in [H] to showing high
connectivity of the ambient complex S(M,, ).

The main technical result in the paper is that S(M,,) is contractible if n > 0.
This is proved by imitating the simple proof in [Hat] of contractibility of the
analogous complex of arcs on a punctured surface. However, for this scheme to
work one needs the fact that sphere systems can be isotoped into a fairly canonical
normal form with respect to a decomposition of M, into ‘“pairs of pants,” i.e.,
3-punctured S*’s. This normal form, which in retrospect seems such an obvious
analog of a well-known property of curves on a surface, is the main new idea in the
paper. It relies heavily on Laudenbach’s homotopy-implies-isotopy theorem for
2-spheres in M, ,.

The complex S(M, ;) is closely related to Culler—Vogtmann’s “Outer Space”
[CV]. As we show in the Appendix, Outer Space can be identified with the dense
subspace of S(M,,) which is the complement of the subcomplex consisting of
sphere systems having at least oné nonsimply-connected complementary compo-
nent. The contraction we construct for S(M,,,) restricts to a contraction of Outer
Space, giving an alternative proof of the main technical result in [CV]. We also
describe in the Appendix how Culler—Vogtmann’s calculation of the virtual coho-
mological dimension of Aut(F,) and Out(F,) can be rederived via sphere complexes.

The advantage of sphere complexes over Outer Space for the purposes of the
present paper is that the punctured manifolds M, can be treated just as easily as
M,,. In particular, Aut(F,) =T,, can be handled as well as Out(F,) =T, ,. But
more importantly from a technical standpoint, punctures are needed in order to
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identify the simplex-stabilizers for the actions of I',, on S(M,,,) and I, , on S(M,, ;).
In view of the connection between Outer Space and actions of F, on R-trees, it is
natural to suspect that there should be a theory of “R-trees with punctures’” which
would allow homological stability for Aut(F,) to be proved without using any
3-manifold topology.

We might remark that contractibility of S(M,, ;) contrasts strongly with the fact
that the actual space of all smooth 2-spheres in M, has a rather complicated
homotopy type, with non-finitely generated fundamental group for n > 1 for example
[M]. In [HM] this complication was an obstruction to proving more than simple-con-
nectivity of sphere complexes without the idea of normal form.

Whitehead’s method of studying automorphisms of free groups via 2-spheres in
a connected sum of S' x S¥s has also been used profitably in [GT,,].

It is a pleasure to thank Karen Vogtman for numerous stimulating conversations
about this material, without which the paper would probably not have been written.

1. Normal form for sphere systems

Let M be the manifold M, , the connected sum of n S' x S%’s with s punctures.
By a system of 2-spheres in M we shall mean a finite collection of disjointly embedded
smooth 2-spheres S; « M none of which bounds a ball or is isotopic to a boundary
sphere of M, and no two of which are isotopic, i.e., form the boundary of an
S?xIcM. .

We shall need Laudenbach’s theorem that homotopic systems of 2-spheres in M
are isotopic. This is proved in [L,] for single spheres, and the extension to systems,
which is easy, is described in [L,] (see in particular page 83 and Lemma V.4.2).
Actually, in this section and the next we shall need only a rather easy special case
of Laudenbach’s theorem; this is explained in the Remark at the end of this section.

Let 2 = U,- Z; be a fixed maximal system. Splitting M along X then produces a
collection of 3-punctured spheres P,. A system S = U,- S; is said to be in normal
form with respect to Z if each §; either coincides with a sphere X, or meets X
transversely in a nonempty collection of circles splitting S; into components called
pieces, such that the following two conditions hold in each P,:

(1) Each piece in P, meets each component of P, in at most one circle.
(2) No piece in P, is a disk which is isotopic, fixing its boundary, to a disk in
0P,

From (1) it follows that the pieces are either disks, cylinders, or pairs of pants. A
cylinder piece connects two components of dP, and a pants piece connects all three
components of dP,. A disk piece has boundary on one component of 0P, and
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separates the other two components of dP,, by (2). Hence a P, cannot contain both
disk and pants pieces, and all the disk pieces in a P, must have their boundaries on
the same component of dP,. Each individual cylinder or pants piece in a P, must
be unknotted in P, since its boundary circles lie on different components of dP,,
but a collection of cylinder and pants pieces can be knotted and linked in a
complicated fashion. However, since homotopic systems are isotopic, such knotting
and linking can always be eliminated by an isotopy of the system in M, though the
isotopy will generally have to move outside P,.

PROPOSITION 1.1. Every system S < M can be isotoped into normal form with
respect to 2.

Proof. We may assume S has been isotoped so that the maximum number of
S;’s coincide with X’s and the remaining S,’s intersect 2 transversely. We shall
show that if S is then not in normal form, it can be isotoped to decrease the number
of circle components of S n 2. We may suppose there are no circles bounding trivial
disks as in condition (2). Also there can be no S,’s disjoint from X since these must
be parallel to Z;’s by the maximality of 2.

We may perform a sequence of surgeries on all the spheres S; which meet X
transversely, surgering along the circles of SN X, innermost circles in X first, then
innermost remaining circles, etc., to produce a collection of disjoint spheres S, in
M — X. Inverse to this sequence of surgeries is a sequence of tubing operations,
joining the S,,’s by disjoint but possibly nested cylinders S' x I crossing the Z,’s,
eventually reconstructing S. If S is not in normal form, then there is a P, containing
a sphere S, from which two tubes run across the same component of 0P,. Let T,
be the first of these tubes to be attached to S,,, T, the second. Isotope S by
dragging the end of T, attached to S,,, first along S,,, to where T, attaches, avoiding
other tubes along the way, then dragging this end of T, along T, across X. If there
are tubes passing inside T, these are to be dragged along too.
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If there are r tubes inside T,, the net effect of this isotopy is to increase the
number of circles of S N X by 2r + 1: one from T, and two for each tube inside T,
one of these two being inside 7, and the other near T, the result of dragging the
tube along with T,. After this isotopy, the part of T, in P, is a cylinder which can
be homotoped into X, keeping its ends fixed. Hence by a homotopy of T, and the
r tubes inside it we can produce a new sphere system S’ homotopic and therefore
isotopic to §, meeting X in 2r + 2 fewer circles. Comparing S’ with the original S,
we have decreased by 1 the number of circles of S N2 if S is not in normal form.

O

Two sphere systems S and S’ in normal form with respect to 2 will be called
equivalent if there is a homotopy 4,: S —> M from S to S’ with the following
properties:

(1) On the S;’s which coincide with X’s, h, is the identity.

(2) On the other S;’s, A, remains transverse to X for all ¢, and A,(S) N X varies
only by isotopy in X. In particular, the circle components of A,(S) N X stay
disjoint for all ¢.

Systems which are isotopic through normal form systems are equivalent, but the
relation of equivalence is more general than this, allowing cylinder and pants pieces
to unknot and unlink in each P,.

Equivalent sphere systems are isotopic since they are homotopic. Conversely:

PROPOSITION 1.2. Isotopic sphere systems in normal form are equivalent.

Proof. The idea is to look in the universal cover M, where oriented spheres
determine well-defined elements of 7,(M) =~ H,(M).

Let £ be the preimage of X in M. To the pair (M, £) we may associate a graph
T by first taking a letter “Y” for each lift P,, the three endpoints of the Y
correspnding to the three boundary spheres of P,, then identifying the endpoints of
different Y’s which correspond to the same sphere of £. Since M is simply-con-
nected, each component of £ separates M, hence T is a tree. The endpoints of Y’s
corresponding to components of £ will be regarded as valence-two vertices of 7.

For a sphere S in normal form, choose a lift § to A&7. We observe first that for
each P,, S~ P, has at most one component. This is trivially true if S is a
component-of £, and when § is transverse to £ it can be seen by considering the
dual tree T(S) to S~ in §, having a vertex for each component of §—% and an
edge for each circle of § n 2. The inclusion § = M induces a natural map T(S) » T
which is locally injective, hence globally injective, and this implies that §n P, has
at most one component, for each P,.
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Viewing T(S) as a subtree of T, it will be convenient to enlarge T(S) slightly so
that it is the union of the Y’s corresponding to P,’s meeting S. Thus a disc piece
of S corresponds to an extremal Y of T(S), connected at only one of its three ends
to the rest of T(S); a cylinder piece of § corresponds to a Y in 7(S) connected to
the rest of T(S) at two of its ends; and a pants piece of S corresponds to a ¥
connected to the rest of T(S) at all three of its ends. In particular, T(S) cannot
consist of a single Y. For completeness, when S is a component of £ we define 7(S)
to be the corresponding vertex of T.

Choosing a transverse orientation for S, then if 7(S) is not a point, each end
vertex of T(S) can be labelled + or — according to whether the corresponding
sphere of £ UdM lies on the + or the — side of § with respect to the chosen
transverse orientation. Since m,(M) =0, S separates M and these sides are well-
defined. For an extremal Y of T(S), connected to the rest of T(S) at only one of
its three ends, the other two free ends have opposite sign. The non-extremal Y’s of
T(S) have either one free end, labelled + or —, or no free ends.

Let §, be the union of the spheres of £ U dM corresponding to + ends of T(S)
and let §_ be the union of the spheres corresponding to — ends. The transverse
orientation for § induces transverse orientations for the spheres of §_, in such a
way that § is homologous in M to §, and also to §_. Observe that §, determines
T(S), namely, T(S) is the smallest connected union of Y’s in T containing the
vertices corresponding to S, . This is because each extremal Y of T(S) contains
both a + and a — vertex. Since §, determines 7(S), it also determines S _.

The homology class of S in M determines S, uniquely. To see this, suppose we
have another sphere §" lifting a normal form sphere S’, with §' homologous to S.
For example, $” might be obtained from S by lifting an isotopy from S to a normal
form sphere S’. If T(S") # T(S), there would be a sphere of £ separating M into
two parts, one of which, M,, contained all of S, , say, and all but exactly one
sphere of S, . Then the classes of § and §” in H,(M) would have distinct images
in H,(M, M,), zero in one case and nonzero in the other. So T($") = T(S). If § and
S’ produced different choices of signs for the ends of T(S) = T(S*y then we could
choose M, as the part of A on one side of a sphere of £ in such a way that there
was exactly one different choice of signs outside M,, and again S and §’ would give
different classes in H,(M, M,); there are two subcases here, according to whether
the different choice of sign occurs in an extremal Y of 7(S) or not.

From the preceding we can deduce that § and S” are isotopic staying transverse
to £ at all times. Namely, the tree T(S) = T(S") determines the combinatorial
pattern of pieces of § and §’, so there is an isotopy of the pair (M, £) which
deforms §’ so that §'n % coincides with S5 as a collection of transversely
oriented circles in £. Then § can be isotoped to S, fixing §'n% and without
introducing new intersections with £, since the isotopy class rel boundary of a



46 ALLEN HATCHER

transversely oriented piece in a B, is uniquely determined by its oriented boundary
and, in the case of disk and cylinder pieces, the data of which side the components
of 0P, disjoint from it lie on, data specified by the signs on 7(S). In particular there
is no problem of knotting or linking since § and §” each contain at most one piece
ina B,

Now we consider a normal form system S having any number of components.
Choosing transverse orientations for the spheres of S, it makes sense to say that one
piece of S lies on the positive or negative side of another piece in the same P,. If
S’ is another normal form system isotopic to S, the isotopy transfers the transverse
orientations from S to §’. The considerations of the preceding paragraphs give a
bijective correspondence between the pieces of S and S’. We assert:

(») If s, and s, are pieces of S in P, and s, and s, are the corresponding pieces
of §’, then s, is on the same side of s, as s, is of s,,.

To see this, consider a lift P, of P, in M. This contains lifted pieces 3,, 5,, etc. Let
5, and §, be contained in lifts S and S, of components of S, with §, and §
contained in the corresponding lifts §; and §;. We may isotope S to S staying
transverse to 2 at all times, as noted above. This isotopy extends to an isotopy of
the pair (M, £) so we may assume S; = §;. If the assertion () were false we would
have §; and S/ lying on opposite sides of ;. This evidently implies that S; and S
have the same trees T(S;) and T(S;) with the same labels on end vertices, so S; and
§j would be isotopic. If these two spheres were lifts of different components of S,
these components would be homotopic, hence isotopic, contrary to the definition of
a sphere system. On the other hand, if S; and 5‘] were lifts of the same sphere of S,
there would be a deck transformation carrying one to the other, hence preserving
the subtree T(S,) =T (S;) of T, but this is impossible since a nontrivial deck
transformation cannot leave a finite subtree of T invariant.

For the isotopic normal form systems S and S’ the tree data gives a bijective
correspondence between the transversely-oriented circles of SN2 and S'n2 in 2.
By (*) the “side” relations for these two systems of circles in X also correpsond. It
is elementary to see that the isotopy class of a transversely-oriented circle system in
a sphere is determined by these side relations, so by an isotopy of (M, X) we may
deform S’ so that corresponding transversely-oriented circles of SN2 and $'nZ
are equal. As noted earlier when we were working in M, the individual pieces of S’
can then be isotoped rel boundary within each P, to make S’ =S, and all these
isotopies together give an equivalence of S’ with S. O

Remark. The proof of Proposition 1.1 used only a special case of Laudenbach’s
theorem that homotopic systems are isotopic, namely, the case of a homotopy
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which consists of “passing one nested family of tubes through another,” by which
we mean the following. In knot theory there is the familiar operation of changing
an overcrossing to an undercrossing by a regular homotopy which passes one
strand of the knot through another strand. Imagine this operation as being
performed on a tubular neighborhood of the knot. Then on the boundary of the
tubular neighborhood the operation amounts to “passing one tube through another
tube.” More generally, each of these two tubes could contain a number of smaller
tubes in its interior, possibly nested in some fashion, but just running straight
through the outer tube. Then the crossing change yields the general case of “passing
one nested family of tubes through another.” In the absence of nesting it is obvious
how to realize this homotopy of a sphere system by an isotopy. (This is essentially
the “light bulb trick” — unknotting the cord from which a light bulb is suspended
by slipping the knot over the bulb.) The general case reduces to this special case by
a nice induction argument given on pp. 71-73 of [L,].

An examination of the proof of Proposition 1.2 shows that the relation of
“equivalence” for normal form systems could have been defined more restrictively
as isotopy through normal form systems together with operations of passing one
nested family of tubes through another in individual P,’s. Using this observation it
would not be difficult to use the machinery of the proof of 1.2 to prove Lauden-
bach’s theorem that homotopic systems in M, are isotopic, though this proof
would probably not be appreciably simpler than the one in [L,].

2. Contractibility of the full sphere complex

For the manifold M = M, define the simplicial complex S(M) to have as its
k-simplices the isotopy classes of systems of k + 1 spheres in M. The (k — 1)-dimen-
sional faces of such a simplex are obtained by deleting the various spheres of the
system, one at a time. The fact that S(M) is indeed a simplicial complex, i.e., that
simplices are uniquely determined by their vertices, follows immediately from
Laudenbach’s theorem that homotopic systems are isotopic. The maximal simplices
of S(M) all have the same dimension, namely 3n + s — 4, as one sees by Euler
characteristic considerations using the fact that the complementary regions of a
maximal system are all 3-punctured spheres.

THEOREM 2.1. S(M,,,) is contractible if n > 0.

In the important cases s < 1 the contraction will be obtained via a piecewise
linear flow on S(M) which shrinks S(M) onto a given maximal simplex.

Proof. First we do the cases s < 1. Consider a system S in normal form with
respect to the fixed maximal system X. Let (¢;) be the barycentric coordinates of a
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point in the interior of the simplex of S(M) defined by S. These can always be
normalized to have sum 1. We think of the numbers ¢, > 0 as weights on the spheres
S; in S. It is then convenient to replace each S; by a family S; x [0, ;] of parallel
copies of S; of “thickness” t,. Then when a weight ¢, goes to zero at a face of the
simplex, the family S; x [0, #,] shrinks to thickness zero and is deleted. It is
convenient also to allow the operation of splitting the family S; x [0, ¢,;] into several
parallel families of total thickness z,, as well as the inverse operation of glueing
parallel families together, adding their weights.

From the weighted system S we construct a collection of finite trees T, one for
each sphere X; which S meets transversely. The vertices of T; are the components of
2; — § and the edges are the circles of SN X,. The weights on the §,’s define lengths
for these edges, so T; is a metric tree.

There is a canonical way to shrink each T; to a point by shortening all extremal
edges simultaneously at unit speed. Once an extremal edge has disappeared one
continues shrinking all remaining extremal edges. We will show that this shrinking,
performed on all the T;’s at once, can be lifted to a path in S(M) starting with the
given weighted system S and ending with a system disjoint from X, hence in the
simplex determined by X.

The extremal vertices v of T; correspond to disjoint disks D, c X; with
D,nS =0D,. One can use these disks D, to surger S to a new system in which the
circles 0D, have been eliminated from S n 2. Taking the weights into account, one
gradually surgers through the appropriate families S; x [0, ¢;] at unit speed, decreas-
ing the weights of these families while increasing the weights of the new families
created by the surgery. The old and new families can be taken to be disjoint, so the
surgery can be viewed as simply transferring weights from the old family to the
new. It may happen that a family S; x [0, ¢,] is being surgered by disks on both the
S; x {0} and S; + {1,} sides simultaneously, which just means that the thickness of
this family is decreasing twice as fast. When the thickness of a family S; x [0, #;] has
shrunk to zero, this family is deleted and one continues the surgery process on the
remaining sphere families.

Let us see what this surgery process does in a single P,. Surgery on a disk piece
produces a sphere isotopic to a component of dP,. Surgery on one end of a cylinder
piece produces a disk, and if this disk does not separate two components of 0P,
then the other end of the cylinder would have to be surgered simultaneously,
producing a trivial sphere bounding a ball in P,. Surgery on one end of a pants
piece produces a cylinder joining the other two components of dP,. If an end of this
cylinder is being surgered at the same time, we are effectively in the case of a
cylinder piece, already considered. We conclude: The surgery process produces
spheres which are either in normal form or trivial, bounding a ball or isotopic to a
puncture. Moreover, the trivial spheres are disjoint from X so are not involved in
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further surgeries and can be deleted without affecting the surgery process. The
hypothesis s < 1 guarantees that not everything is deleted. This is because a normal
form sphere transverse to X has at least two disk pieces, and a single surgery can
make only one of these a trivial sphere since a disk piece in P, only becomes trivial
by becoming isotopic to a component of 0P, in M.

Thus the surgery process on a given weighted system S defines a path S(¢) in
S(M) starting at S =S(0) and ending in the simplex 2. This path is obviously
continuous, and in fact piecewise linear since the thicknesses of the families of
spheres in S(#) vary linearly with the time parameter .

It might be regarded as obvious that the path S(#) varies continuously and
piecewise linearly with the weights (¢;) € 4" on the various spheres of S. However,
to spell this out in some detail, consider the function ¢ which assigns to each oriented
edge of a tree T, the length of the longest monotone edgepath in T; which begins with
the given oriented edge. Strictly, there are two functions ¢, and ¢ _ here, depending
on whether the length of the given edge is counted or not. Note that ¢, depends
piecewise linearly on the weights ¢, since it is the maximum of a finite collection of
linear functions measuring the distances to different endpoints of 7; and the lengths
of the edges of T, are given by weights #,. Surgery on a family of circles of
(S; x [0, t,]) N Z begins at the time specified by the smaller of the values of ¢ _ on
the two possible orientations of the edge of a T; corresponding to the given family
of circles. In most cases, the surgery on this family of circles ends at the correspond-
ing value of ¢, the exception being when the given edge of T; contains in its interior
the ““center” of T, from which the longest paths in both directions have equal length.
In this case the corresponding family of circles is being surgered from both sides
simultaneously, so the surgery ends sooner, at the time given by the length of these
two longest paths to the midpoint. More generally, we need to single out the ¢-values
when a single sphere in a family S; x [0, ¢;] is being surgered from both sides at once.
This occurs when ¢ is halfway between the starting time for one surgery and the
stopping time for the other surgery, i.e., the average of two ¢.’s.

Thus we have a finite number of piecewise linear functions on the weight
simplex 4" whose graphs divide 4" x [0, c0) up into a finite number of closed
regions, in each of which the systems S(f) vary linearly within a simplex of S(M).

As we pass from the simplex containing S to a face by letting some weights go
to zero, the paths S(¢) become the paths S(¢) associated to points in that face. This
is clear because all that is happening to the trees T is that some edges are shrinking
to zero length at the face. So the paths S(¢) give a well-defined deformation
retraction of S(M) onto the simplex of Z. The deformation retraction is actually a
piecewise linear flow on S(M) since the restriction of the path S(f) to ¢ 2 ¢, is the
path for S(z,).

The cases s > 1 reduce to s <1 by the next lemma. O
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LEMMA 2.2. If for some s 21 S(M,) is contractible, then so is S(M, , ).

Proof. Let the boundary spheres of M = M, , ., be denoted d,, ..., d,. Call a
vertex of S(M) “special” it it is a sphere in M splitting off a 3-punctured S* having
0, as one puncture. Let S’(M) be the subcomplex of S(M) consisting of simplices
having no special vertices. For a fixed special vertex Z,, its link L(Z,) in S(M) lies
in S’(M) and can be identified with S(M,, ;).

A deformation retraction of S’'(M) onto L(Z,) can be obtained as follows.
Enlarge X, to a maximal system X and put other systems S into normal form with
respect to 2. Then systems S not containing X, will meet the 3-punctured sphere P
cut off by X, in disks separating J, from the other puncture J, in P. Thus SN2,
consists of parallel circles in X,, and we may surger S along these circles using the
disks they bound on the side of 0,, innermost disks first, as usual. If the given
system S lies in S’(M) then the surgery produces parallel copies of d,, which are to
be discarded, together with a new system in L(Z,). Therefore if we modify the proof
of 2.1 so that instead of surgering systems S along all the circles of SN2, we
surgery only the circles of S nZ2,, surgering in the way just described, then we
obtain a deformation retraction of S’(M) onto L(Z,).

S(M) is the union of S’(M) with the stars of the special vertices. These stars
have disjoint interiors since two distinct special vertices cannot be represented by
disjoint spheres. The links of special vertices are contractible, being copies of
S(M, ), so attaching the stars, which are cones on the links, does not affect
homotopy type. Thus S(M) deformation retracts to S’(M), which is contractible by
the preceding paragraph. O

3. Subcomplexes of S(M)

There are two subcomplexes of S(M) which will be needed for proving
homological stability. The first of these, denoted Y, has as its simplices the systems
S for which M — S is connected. The other subcomplex is Z, whose simplices are
systems S such that for one component Mg of M — S the map n,(Ms) - n;(M) is
an isomorphism, the other components being necessarily punctured S*s. We shall
also need the oriented version Y* of Y, whose simplices are systems S defining a
simplex of Y together with the additional data of an orientation for each compo-
nent of S. There will be no need to consider an oriented version of Z since the
spheres in a system S defining a simplex in Z have a natural normal orientation
determined by which side M lies on.

The dimension of Y and Y* is n — 1, while Z has dimension s — 2.

PROPOSITION 3.1. Y and Y* are (n — 2)-connected, and Z is (s — 3)-con-
nected. Hence all three complexes are homotopy equivalent to wedges of spheres.
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Proof. Consider first the case of Z. Here we follow the reasoning for Lemma
2.2, with Z in place of S(M). The subcomplex Z’ < Z consisting of simplices with
no special vertices deformation retracts onto the link of the special vertex X,, by
surgering systems S in Z’ along S N X, as in the proof of 2.2. The union of Z’ with
the star of X, is then a contractible subcomplex Z” = Z, and Z is obtained from Z”
by attaching the stars of all the other special vertices along their links. A space
homotopy equivalent to Z is produced by collapsing the contractible subcomplex
Z" to a point, and this quotient space is the wedge of the suspensions of the links
of all the special vertices other than X,. These links are copies of Z for the manifold
M with one fewer puncture, so induction on s gives the result for Z.

For Y, surgery along X, gives a deformation retraction of Y(M,,) onto
Y(M,,_,)if s > 1, reducing us to the case s < 1. Then we proceed as in the proof
of Theorem 1.1 of [H, pp. 219-220]. A map f:S'—Y may be extended to
f: D"+t S(M) since S(M) is contractible. We may assume f is piecewise linear
with respect to some triangulation of D'+ !, If f(D‘*') is not contained in Y, the
image of some simplex is a system S with disconnected complement. This means the
associated graph Gg, with vertices the components of M —S and edges the
components of S, has at least two vertices. The edges of G5 whose endpoints are
distinct correspond to a subsystem S’ < S with the property that each of its
component spheres S; separates M — (J,.;S;. Such a system is called purely
separating. Let o be a simplex of D‘*! of maximal dimension k such that the
system S = f(o) is purely separating. Since ¢ is not contained in dD’*!, the link of
o is a sphere S~ %, and by the maximality assumption, f maps this S*~* into Y(M’)
where M’ is M split open along f(0). In case M’ is not connected, then Y(M') is,
essentially by definition, the join of the spaces Y for the various components of M’.
Since s < 1, each component of M’ is a connected sum of fewer than n copies of
S! x §? (with punctures). If the total number of these S' x $%’s in M’ is m, then by
induction Y(M") is homotopy equivalent to a wedge of ™~ !’s. We have m 2n — k
since the purely separating system S has at most k + 1 spheres. If i <n — 2 then
i —k <n—k —2<m—2, the connectivity of Y(M’), so f| S'~* extends to a map
DI~ *+1 5 Y(M’). We modify the given f on the interior of the star of ¢ by taking
the join of its values on d¢ with this map D'~**!— Y(M’). The new f has no
simplices in the interior of the star of ¢ which map to purely separating systems, so
by a finite sequence of such modifications we can decrease k.

To prove that Y* is (n — 2)-connected, first choose arbitrarily a positive
orientation for each essential sphere in M. The subcomplex Y* of positively
oriented systems is then a copy of Y, so it will suffice to deform a given piecewise
linear map f: S'» Y* into Y* for i <n —2. Let o be a simplex of S’ of maximum
dimension k such that all the vertices of S =f(c) are negatively oriented. The
linking sphere S‘~%~' then maps to Y* and can be viewed as a map
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Si—k=1,Y+(M’) = Y(M’) where M’ is M split along S. Since S contains at most
k +1 spheres, M’ has at least n —k —1S'x S? factors and so Y(M') is
(n —k — 3)-connected. The assumption i <»n —2 then implies that f| S =%~ ex-
tends to a map D‘~*— Y +(M’). We can modify f on the star of ¢ by joining with
this extension, and the new fis homotopic to the old one by joining. Thus we can
step by step deform f to have image in Y. O

Let I' =T, be the group of isotopy classes of orientation-preserving diffeomor-
phisms of M, taking each puncture to itself, modulo the normal subgroup
generated by twists along 2-spheres, i.e., difftomorphisms supported in a product
S?x I = M and taking each sphere S? x {t} to itself by a rotation through the
angle 2zt about some chosen axis. Such a twist acts trivially on the sphere complex
S(M) since a sphere system may be isotoped to meet S2 x I in tubes transverse to
the levels S* x {¢}, and then the effect of the twist is to produce a new system which
is obviously homotopic to the old one, hence isotopic to it by Laudenbach’s
theorem. Thus we get an action of I on S(M). Similarly, I acts on the complexes
Y, Y% and Z.

LEMMA 3.2. The quotient Z|I" is contractible.

Proof. Up to diffeomorphism of M fixing 0M, a sphere S corresponding to a
vertex of Z is determined by the set P(S) of punctures which are not boundary
components of M. More generally,-a system S = S;,u- - - U S, corresponding to a
k-simplex of Z is determined up to diffeomorphism fixing M by the k + 1 sets
P(S;). There is a distinguished vertex v of Z/I' corresponding to a sphere S for
which P(S) is all the punctures. If a sphere system corresponding to a simplex of Z
does not contain such a sphere S, then the system can always be enlarged so that
it does contain such an S. This implies that Z/I' is the star of the distinguished
vertex v, hence is contractible. O

One can describe Z/I' explicitly in terms of the simplicial complex P, associated
to the poset of partitions of {1, ...,s}, partially ordered by refinement. Namely, to
each sphere S corresponding to a vertex of Z we may associate the partition
consisting of the set of punctures P(S) together with the single-element sets
consisting of the punctures not in P(S). This induces an embedding of Z/I" as a
subcomplex of P, the link of the partition of {1,...,s} into s single-element
subsets. The distinguished vertex v corresponds to the partition consisting of the
entire set {1,...,s}.

For the action of I' on Z, the stabilizer of a simplex ¢ = Z is the subgroup
I', =TI represented by diffeomorphisms f: M — M leaving invariant a sphere
system S corresponding to ¢. Such an f can be isotoped to be the identity on all the
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complementary components of S in M except the nonsimply-connected component
M. Namely, there is at least one simple-connected complementary component of
S having all but one of its boundary spheres in dM, and f fixes dM so it fixes the
one other boundary sphere of this component as well. Hence f is isotopic to the
identity on this component, and one can proceed inductively to the remaining
simply-connected components of M — S. Since Mg = M, , for some ¢t <s we then
have a natural surjection I',, > I',.

LEMMA 3.3. The natural surjection I',, —» I, is an isomorphism.

Proof. Suppose a diffeomorphism g : Mg — M extends to f: M — M via the
identity outside M, and fis isotopic to the identity in M. Let S’ be a sphere system
in M whose complement is connected and simply-connected. Then f(S’) is isotopic
to S’ in M. By looking in the universal cover of M we see that f(S”) is homotopic
to S’ in M. Laudenbach’s theorem then implies that f(S”) is isotopic to S’ in My,
so g may be isotoped to leave S’ invariant. Then g must take each component of
S’ to itself, preserving orientation, otherwise f would act nontrivially on H,(M).
Splitting M along S’ produces a punctured S*, and the corresponding splitting of
g is isotopic to the identity since it preserves all the punctures. So g itself is isotopic
to a product of twists along spheres of S’, hence g is zero in I',,. O

Consider now the question of identifying simplex-stabilizers I, for the action of
I, on the subcomplex Y < S(M,,,). If ¢ corresponds to a system § containing k
spheres, there is a natural map I',, _ ;. o — I, since splitting M, , along S produces
M, _ 2. This homomorphism will not be surjective, however, since diffeomor-
phisms fixing the system S can permute the different spheres in S and reverse their
orientations, giving rise to difffomorphisms of M, _ .., permuting punctures,
which is not allowed in I',, _,,, 2. The situation is slightly improved if we take the
natural action of I',, on the complex Y* of oriented systems in Y. More is needed
however: systems which are ordered as well as oriented. An easy way to achieve this
is to replace Y* by the complex X whose k-simplices are the simplicial maps
A* - Y*. Simplicial maps take vertices to vertices, but distinct vertices can map to
the same vertex. Thus the k-simplices of X are the (k + 1)-tuples (S,, . .., S¢) of
oriented spheres, not necessarily distinct (though repeated spheres have the same
orientation) whose union is a simplex of Y. Since spheres may be repeated
arbitrarily often, X is infinite-dimensional. There is a natural projection X - Y *
sending a simplicial map 4*— Y * to its image simplex, and it is a classical fact in
algebraic topology that this projection induces an isomorphism on simplicial
homology, hence also on singular homology; see e.g. Theorem 4.6.8 in [S]. This uses
no special properties of Y%, just that it is a simplicial complex.
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The action of I',; on Y* induces an action on X, and for a simplex ¢ of X
whose image in Y is a system of k spheres, so k < dim ¢ + 1, there is again a natural
map I', _ ..« —I',. By the definition of X this is surjective, and in the same way
that the preceding lemma was proved one shows:

LEMMA 3.4. The natural surjection I, _ ;. » = I, is an isomorphism.

The analog of Lemma 3.2 is:

LEMMA 3.5. X/I', is (n — 2)-connected.

Proof. From basic 3-manifold topology, I' acts transitively on k-simplices of
Y*, so every k-simplex of Y is equivalent under a diffeomorphism of M to the
first k£ + 1 spheres of a fixed oriented system S, u- - -uU S, with connected comple-
ment. Further, all permutations of these S;’s can be realized by diffeomorphisms of
M. 1t follows that X/I' can be identified with the quotient K, /X, of the simplic-
ial complex K, of sequences (n,, ..., n,) of positive integers n; < n by the action
of the permutation group X,. The inclusion K, , = K, induces an inclusion
K, _./Z,_,<K,/Z,, with the (n — 2)-skeleton of K, /X, contained in K, _,/Z,_,,
so it will suffice to show that K, _,/X,_, is contractible in K, /Z,,.

The inclusion K, _, = K, extends to an embedding of the cone CK,_, in K,
taking the cone point to the vertex (n). Factoring out the action of X, _,, we get
amap C(K,_,/Z,_,)—-K,/Z,_,—K,/Z, extending the inclusion K, _,/Z,_,
K, |z, a

4. Homological stability
We shall be interested in three homomorphisms

a:Hi(rn,s)—’Hi(rn,s«rl)’ 521
B : Hi(rn,s)—)Hi(rn,s——l)a A 2 1
Y H(Iy) > H (T 5-5), §22

induced by maps I', - I',,, which are obtained by enlarging the manifold M, to
M,, , and extending diffeomorphisms via the identity on the added piece. For a one
enlarges M, ; by gluing on a 3-punctured S* to a component of dM,, .. For § one
just fills in a puncture with a ball, and for y one adjoins an S? x I connecting two
punctures of M, ;, or equivalently one glues together two boundary spheres of M, ;.



Homological stability for automorphism groups of free groups 55

Since we are factoring out twists along 2-spheres we don’t need to worry about
whether diffcomorphisms are the identity on each boundary sphere or merely
orientation-preserving.

Our main theorem is about ya®: H/(I',,)>H,(T,,,,) and B:H/(I,,) -
H,(T',,). Note that the composition fo is the identity since this corresponds
to just adding a collar on a boundary component of M, . So « is injective for
s 2 1 and B is surjective for s > 2. However, the latter fact does not directly apply
to the theorem, which involves § for s = 1.

Associated to a group I' acting simplicially on a simplicial complex X there is a
well-known spectral sequence, described for example in Chapter 7 of [B] and
constructed as follows. Let EI' be a contractible complex on which I' acts freely
with quotient a classifying space BI' for I'. Then the diagonal action of I' on
X x ET 1is free, and the quotient space X x  EI' has homology the equivariant
homology HL(X) of X, essentially by definition. The cellular chain complex
C«(X xET) can be identified with C,(X) ® C«(ETl'), and is actually a double
complex, via the boundary maps in the two factors. Filtering this double complex
horizontally and vertically leads to two spectral sequences converging to H4(X).
One filtration has E,, equal to the p™ homology group of the chain complex
C«(X) ® C,(ET) with the boundary map from X. Since C,(ET) is free with free
action of I', we therefore have E,, = H,(X) ® C,(EI'). The second filtration has
E}, the ¢'" homology group of the complex C,(X) ® ¢ Cx(EI) with the boundary
map from ET’, so E,, = H,(I'; C,(X)) in this case, the coefficient group C,(X) being
twisted via the I' action. Shapiro’s lemma implies that H (I'; C,(X)) ~ @, H,(I',)
where I', = I' is the stabilizer of the p-simplex ¢ in X and there is one summand
H,(I',) for each orbit of the action of I' on the p-simplices in X. The actions we will
consider have the property that if an element g e I satisfies g(¢) = o then g | o is the
identity. Then the sum @, H,(I',) is over the p-simplices in X/I", which inherits a
natural cell structure from X with simplicial cells. Further, the term EZ, in this
spectral sequence can be interpreted as H,(X/I'; {H,(I',)}), the simplicial homology
of X/I" with coefficients in the system of groups H,(I',); see [B]. In our application
this system will be constant, so this will be just ordinary homology.

It will be more convenient to use a slight modification of the preceding
construction, obtained by replacing C,(X) by the augmented complex C,(X)
which has an extra Z in dimension —1. Then the spectral sequence from the
first filtration has E}, = ﬁ,,(X ) ®-C,(ET), and for the second filtration we
have E!, = ®, H,/(I',) for p 20, with E', , = H,(I') since ' =T, and E;, =
A, (X|I'; {H,T,)}).

To prove the half of the theorem concerning the stabilization
ya?: H,(I',_,,) = H;(T,,) we shall construct a function ¢ : N— N such that the
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following two statements hold:

4.1) (@) o :HUT,_,5)>H(I,_,,4+:) is an isomorphism for n > ¢(k) and
s21.
b)) vy  Hi(Tp— i 54 2) = Hi(I,) is an isomorphism for » > ¢(k) and s 2 1,
and a surjection for n = @(k) and s 2 1.

The strategy will be to determine an appropriate value for (k) by induction on &,
sO from now on we shall assume:

(») A function ¢ :{0,1,...,k —1} >N has been constructed such that (a;)
and (b;) hold for i <k.

The function ¢ will also be assumed to be strictly monotonic, so ¢(i) < ¢(j) if i <,
and to satisfy (i) > i.
A partial result toward condition (a;) is:

LEMMA 42. a:H,(I',;_,) > H,(I',,) is an isomorphism if s>k +1 and
n+1>ek-—1).

Proof. Consider the action of I', ; on the subcomplex Z < S(M,, ;) defined in §3.
This action has the good property that simplices which are invariant under an
element of I are fixed by it. For this action of I',,; on Z the first spectral sequence
has E}, =0 for p <s —2 by Proposition 3.1, hence EY, =0 for p <s — 2. Since
both spectral sequences converge to the same thing, this implies E°, =0 for
Pp+qg<s—2 in the second spectral sequence. In particular the term
E' |\, =H,(I,,) in this spectral sequence must be killed by differentials if
—14+k <s —2. (The differentials in E” go r units to the left and » — 1 units
upward.)

In the E? array of this spectral sequence we must have all zeros below the k"
row by Lemma 3.2 since the coefficient system {H_(I',)} is constant below the k™
row by the inductive hypothesis (%) and the assumption n + 1 > @(k — 1), all these
groups H (I',) having a canonical isomorphism with H (I',,). Thus the only
possibility is that the differential E}, — E' ,, is surjective. The term E}, is
(—B,ﬂ H.(T',,), the sum over the vertex stabilizers, and the differential is the sum
of the stabilizations H,(I",,) = H, (', ). Each of these factors through H, (', _,),
so a: H(I,,_,)—H(I,,) is surjective. (The image of H, (I',,) = H,([,,) de-
pends only on ¢, not on the vertex sphere realizing this stabilization since any two
such spheres are related by a diffeomorphism of M, ;, inducing an inner automor-
phism of I',; hence the identity on H, (I, ).)
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As noted at the beginning of this section, a : Hy(I',,_,) = H,(T,,) is injective if
s> 1. 0

LEMMA 43. y . H (I'y_\ s42) = H(',.,) is surjective if n 2 p(k — 1) + 2.

Proof. Consider the two spectral sequences associated to the action of I, on
the complex X defined in §3. The first of these has E,, =0 for p<n—1 by
Proposition 3.1 and the fact the Y* and X have isomorphic homology. Hence the
second spectral sequence has E5, =0 for p + g <n — 1. In particular, if k < n the
term E',, = H,(I',,) must be killed by differentials originating on the line
P +q=k. As in the proof of the preceding lemma we shall show that the first
differential y is the only one which can be nonzero, hence 7 is surjective.

The term E,, is a sum of groups H, (I, _;,, ) forj <p +1 by Lemma 3.4. So
the k" row of the E! array, with its differential, is

y d
Hk(rn,s)““—Hk(rn— s+ 2) “"‘Hk(rn—z,s+4) @H(,_ l,s+2) ot 2

The induction hypothesis () implies that E2, =0 for p + q < k and q < k provided
thatn —p —12 ¢k —p)forp=1,2,...,k and that k <n — 1 so that Lemma 3.5
applies. By monotonicity of ¢, the condition n —p — 1 2 @(k — p) reduces to the
case p =1, i.e.,, n = @(k — 1) + 2. This implies the earlier condition k£ <# — 1 since
we assume @k — 1) >k — 1.

Thus if n 2 p(k — 1) + 2, y is the only differential which can kill H,(I',,), so y
must be surjective. O

Injectivity of y will require an extra step. What will be shown is that the
differential d in the sequence above is zero. This implies injectivity of y since the
term H,(I',_,,.,) must disappear by E* and as shown in the previous proof,
there are no terms below the k™ row which could kill the kernel of y. For this
argument we need the E? terms to vanish for one more unit to the right than in the
surjectivity argument, but this is taken care of automatically by the statement (b,)
which has strict inequalities for injectivity and weak inequalities for surjectivity.

The map d is easily described. On the first summand it is the difference between
the stabilizations y obtained by gluing together two different pairs of boundary
spheres of M, _,, 4, while on the second summand d is clearly zero — the differ-
ence between two coinciding stabilizations. If a®: H (I, _ 5,4 1) 2 Hi(Tp_25+4)
were onto, then d would be zero since there is a diffeomorphism of M, _,, .4
supported in M,,_,,.4— M, _,,., permuting the two different pairs of punctures
being identified.

To show a®: H (I _ 2,4 1) = Hy(Fy_ 2. 4) is onto we would like to use Lemma
4.2, but unfortunately this requires s to be large with respect to £. (This is in
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contrast to the situation for mapping class groups of surfaces, where the dimension
range for stabilization with respect to punctures depends on # instead of s.) To get
around this problem, consider the commutative diagram

Hk(rn,s—— l) — Hk(rn,s)

[k [

Hk(rn——j,s+2j~ ) — Hk(rn—j.s+2j)

where we need s > 2 in order for the upper « to be defined. By Lemma 4.3 we know
that the 7/ on the right will be onto if n —j + 1 2 ¢(k — 1) + 2. By Lemma 4.2 the
lower a in the diagram will be onto if k + 1 <s+2jand n —j + 1> @(k — 1). The
smallest j satisfying k + 1 <s+2jis j =[(k —s + 1)/2] + 1, where [x] denotes the
greatest integer in x. Choosing this value of j, we deduce:

(44) The wupper a in the preceding diagram is surjective if
n>@pk—1)+[k—-s+1)/2] +1.

In particular

(4.5) o* :H(I'y_2541) > H(I',_,,.4) is onto, and hence y : H, (', _ ;. 2) =
H,(I',) is injective, provided that n — 2> @k — 1) +[(k —s —1)/2] + 1.

For the application to the statements in (4.1) we may restrict attention to s = 1 in
this inequality, which then holds for s =1 if it holds for s=1, ie., if
n>@lk —1) +[k/2] + 2. Thus if we define ¢ recursively by o(k) =@k —1) +
[k/2] + 2, starting with ¢@(0) = 1, part (b,) of (4.1) holds. Part (a,) also holds since
by (44), the map a«:HT,_,,)>H(T,_1s+) 1s an isomorphism if
n—1>pk-1)+[k—-1)/2]+1.

With the recursive definition ¢@(k) = @k — 1) +[k/2] +2, ¢(0) =1, it is not
hard to check that the inequality n > @(k) is equivalent to n > k?/4 + 2k + 1 for
positive integers n. Hence the first half of the main theorem is proved.

To prove the other half of the main theorem asserting that the stabilization
B:H.(T,,)— H(I,,) is an isomorphism we use the diagram

?
Hk(rn— 1,2)“" Hk(rn,o)

aﬂﬂ Tﬁ

y
H.(T,_ 1,3) — Hk(rn,l)

For the upper 7 to be an isomorphism we now need the inequality
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n—2>@k-—-1)+[(k—s—1)/21 +1 in (4.5) for s =0 as well as for s = 1, so we
get n> @k —1) +[(k —1)/2] + 3. The map « and the lower y are also isomor-
phisms if n > @(k —1) +[(k —1)/2] + 3, hence also the f on the right. For ¢
defined recursively by o(k) = o(k — 1) +[(k — 1)/2] + 3, ¢(0) =1, the inequality
n > @(k) translates into n > k?/4 + 5k/2 + 1.

Appendix: The Connection with Quter Space

Here we relate sphere complexes to the work of Culler—Vogtmann in [CV].

The points of the rank » Outer Space O of Culler—Vogtmann are equivalence
classes of homotopy equivalences f : X, — X where X, is a bouquet of »n circles and
X is a metric graph which doesn’t deformation retract onto any subgraph, the
metric being normalized so that the total length of all the edges is 1. The
equivalence relation on such “marked metric graphs” f: X, —» X is given by homo-
topy of f and composition with isometries X — X’. Fixing the topological type of X
and varying only the lengths of its edges traces out an open simplex in Q. Passing
to faces of this simplex corresponds to letting the lengths of some edges go to zero.
Depending on which edges are collapsing in this way, the face might or might not
belong to O.

Let M =M,,and S = S(M), and let S, be the subcomplex of S consisting of
sphere systems having at least one nonsimply-connected complementary component
in M. A sphere system S has a dual graph G(S) having vertices the components of
M — S and edges the spheres of S. We may view G(S) as embedded in M by
choosing a vertex point in each component of M — S and connecting these vertices
by edges crossing the spheres of S, each sphere having a single edge crossing it
exactly once. Somewhat more canonically, G(S) is also a quotient of M, obtained
by thickening S to a product S x [0, 1] = M, then collapsing the components of
M — S x (0, 1) to points and also the components of S x {¢} for each ¢ € (0, 1). If
Sisin S — S, then both maps G(S) ¢ M and M — G(S) are isomorphisms on =;.
Fixing a system S, with G(S,) = X,,, the composition G(S,) - M — G(S) is then a
homotopy equivalence. The barycentric coordinates of a point in the open simplex
of S determined by S give weights on the components of S and hence lengths on
the corresponding edges of G(S). In this way we obtain a map ¢:S-S_ -0
sending the weighted system S to G(S,) = G(S). On each open simplex of S — S,
@ is a linear homeomorphism onto an open simplex of O, and @ is continuous
when we pass to faces of simplices, hence @ is continuous everywhere. Also, @ is
equivariant with respect to the natural action of Out(F,) on S-S, and O.

PROPOSITION. ¢ :S ~ S, —» O is a homeomorphism.
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Proof. We construct an inverse map. Let f: X, — X represent a point of 0. We
may build a manifold M(X) diffeomorphic to M by taking a k-punctured 3-sphere
for each valence-k vertex of X and identifying the boundary 2-spheres of these
punctured 3-spheres according to the edges of X. These identified boundary
2-spheres, weighted according to the lengths of the corresponding edges of X, then
give a weighted sphere system S(X) < M(X) whose associated metric graph is
isometric to X. If we choose a diffeomorphism 4 : M — M(X), then A~ '(S(X)) is a
weighted system S < M with &(S) equal to g : X, » X for some homotopy equiva-
lence g. Since all automorphisms of 7,{M) are realized by diffeomorphisms of M,
we may rechoose 4 so that &(S) equals the given f: X, » X. With this condition on
h, the isotopy class of S = 42~ !(S(X)) depends only on the given f: X, — X and not
on the choice of 4 since any other choice 4’ induces the same isomorphism on =,
hence by Laudenbach’s theorem is isotopic to A2 modulo twists along 2-spheres,
which have no effect on isotopy classes of sphere systems. Any isometry X — X’ can
be realized by a diffeomorphism M(X) — M(X") taking S(X) to S(X”), so we have
a well-defined map O - S — S_, which is obviously an inverse to . O

The contraction of S constructed in section 2 restricts to a contraction of
S — S,. This is because each flow line of the contraction represents a sequence of
surgeries on a sphere system S, and simple-connectivity of the components of
M — S is preserved by the surgery process. Namely, each surgery cuts one comple-
mentary component of S along a disk and attaches a 2-handle to another comple-
mentary component, and both these operations preserve simple-connectivity of the
complementary components. The flow also involves replacing spheres with parallel
copies of themselves and throwing away trivial spheres or parallel copies of other
spheres, and these operations too preserve simple-connectivity of the complemen-
tary components.

The space O has dimension 3n —4, and Culler—Vogtmann describe a nice
“spine” of O which is a contractible subcomplex of dimension 2n — 3 on which
Out(F,) acts with finite stabilizers and finite quotient. Using this they prove that
Out(F,) has finitely generated homology groups and virtual cohomological dimen-
sion 2n — 3. Their argument can be phrased in terms of S as follows.

For variety let us switch from M, , to M, ,. Let S, be the subcomplex of the
barycentric subdivision of S having vertices the systems S with all the components
of M — § simply-connected, and with k-simplices the chains S, < - - - < S, of such
systems. The minimal number of spheres in such a system is » and the maximum
number is 3n —2, so S, has dimension 2n —2. By a standard PL topology
argument S, is a deformation retract of S — S, hence is also contractible. The
action of I',, = Aut(F,) on S, has finite stabilizers since an orientation-preserving
diffeomorphism of a punctured S° is determined up to isotopy by how it permutes
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the punctures. The quotient S,/Aut(F,) is finite since there are only finitely many
isotopy classes of 2-spheres in a punctured S*, such a 2-sphere being determined up
to isotopy by how it separates the punctures.

At this point we need the fact that Aut(F,) has a torsionfree subgroup of finite
index. Namely, the composition Aut(F,) » GL,(Z) - GL,(Z,) has torsionfree kernel
for p = 3. For the second of these two maps this is explained on p. 40 of [B], and
for the first map it can be deduced as a pleasant exercise from a result of Culler [Cu]
that any periodic automorphism of F, is induced by a periodic homeomorphism of
a finite graph having fundamental group F,. If G denotes the kernel of Aut(F,) -
GL,(Z,) then G acts freely on S, and so the quotient S,/G is a finite CW complex
K(G, 1). Applying the Lyndon—Hochschild—Serre spectral sequence to the fibration
K(G, 1) » K(Aut(F,), 1) —» K(Aut(F,)/G, 1) we can deduce that the homology groups
of Aut(F,) are finitely generated: The E? terms are H,(Aut(F,)/G; H (G)), H,(G) is
finitely generated since we have a finite K(G, 1), and the homology groups of
Aut(F,) /G are finitely generated with any finitely generated twisted coefficient system
since finite groups have CW K(=m, 1)’s with finite skeleta.

Since S,/G has dimension 2n — 2, Aut(F,) had v.c.d. at most 2n — 2. On the
other hand, the v.c.d. is at least 2n — 2 since Aut(F,) contains a free abelian
subgroup of rank 2n —2 generated by the 2n — 2 automorphisms which fix all
generators x; of F, except for one x, with k > 1, which is sent to x;x, or x,.x,.
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