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Homological stability for automorphism groups of free groups

Allen Hatcher

Let Fn be a free group on n generators, Aut(FJ its group of automorphisms,
and Out(Fn) its outer automorphism group, the quotient of Aut(Fw) by inner

automorphisms. There has been much progress of late in the study of thèse groups
via the one-dimensional model which arises from regarding Fn as the fundamental

group of a graph; see e.g., [BH] and [CV\. In this paper we return to a three-dimen-

sional model first used by J. H. C. Whitehead in the 1930&apos;s, which involves looking
at embedded 2-spheres in a connected sum of S1 x S2&apos;s. Refining Whitehead&apos;s

techniques and applying subséquent results of Laudenbach, we use this three-di-
mensional model to prove:

THEOREM. (a) The map Ht Aut(FJ) -? Ht Aut(Fw +, induced by the natural
inclusion Aut(Fw) c Aut(Fw + is an isomorphism for n &gt; i2/4 + 2i — 1.

(b) The map #,(Aut(FM)) -&gt;/f,(Out(F,,)) induced by the projection
Aut(Fn) -&gt;Out(FJ is an isomorphism for n &gt; i2/4 -h 5i/2.

Hère the inclusion Aut(Fw) c Aut(Fw+ is obtained by extending an automorphism
of Fn to an automorphism of Fn+l fîxing the (n + l)st basis élément.

Homological stability results like the statement in (a) hâve a long history, going
back to the classical Lie groups and continuing more recently with various discrète

groups, including symmetric groups, braid groups, many linear groups, and map-
ping class groups of surfaces; see the Références at the end of the paper. In ail thèse

earlier cases the function &lt;p(i) giving the stable dimension range n &gt; q&gt;(i) is linear,
so it would be rather surprising if our cp cannot be improved to be linear as well.

Letting Aut^ dénote the union of the groups Aut(FJ under the inclusions

Aut(FJ c Aut(Fn+,) €=••-, the theorem implies that the stable groups
//,(Aut%) lim//, (Aut(FJ) are finitely generated since /^(Ou^FJ) is finitely
generated for ail i and «, by [CV]. (This can also be proved using the techniques of
the présent paper, as we show in an Appendix.) Other than finite génération, the
main thing known about the homology groups of Autx is that they contain quite
a lot of torsion. This cornes from the infinité symmetric group E^ \Jn En, which
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40 ALLEN HATCHER

can be viewed as the subgroup of Aut^ consisting of automorphisms permuting the
basis éléments.

PROPOSITION. The inclusion Iœ c Aut^ induces an isomorphism of Ht(Zoo)
onto a direct summand of ^(Aut^), for ail i.

This is easily deduced from a theorem of Waldhausen, as follows. Let \/Sk be the

wedge sum of an infinité séquence of A&gt;spheres and let Aut(\/Sk) be the //-space
of homotopy équivalences \/Sk -&gt; \fSk which are the identity on ail but finitely
many of the sphères. Suspension provides a diagram

Aut(\/S0) &gt; AutCN/S1) &gt; Km* Aut(\/Sk)
II i*
£oo &gt; Aut..

where the vertical map in the middle, taking the induced homomorphism on nl, is

a homotopy équivalence since \/Sl is a À^F^, 1). Now if we apply the functor B +

B denoting classifying space and &quot; + &quot;

denoting the Quillen plus construction, then

linifc Aut(\/S*) becomes the space A(*) of Waldhausen, who showed in [W12] that

A(*) splits up to homotopy as the product of B+E^ with another space (essentially
the stable smooth pseudo-isotopy space for a disk), the inclusion of the factor

B+E^ being induced by the map across the top of the diagram above. Hence we
hâve splittings /^(Aut^) « Ht(Eoo) ® (?)•

The complementary summand of HX^œ) in ^(Aut^) is zéro for / 1, 2 (see

[G] for the latter case), but whether it is trivial for ail / seems to be unknown. In
particular, it is not known whether /^(Aut^; Q) vanishes.

Our approach to homological stability for Aut(Fw) and Out(Fn) is modeled on
Harer&apos;s proof in [H] for the case of mapping class groups of surfaces, as refined by
Ivanov [I]. In our case, we consider the mapping class groups of the 3-manifolds

MnyS obtained from the connected sum of n copies of S1 x S2 by deleting the

interiors of s disjoint 3-balls. Thus Mns is Mn 0 with s punctures. When s 1 the

puncture provides abasepoint for MnX and we hâve a natural homomorphism from
the mapping class group n0Diff+(Mnl) to Aut(7r,(Mwl)) Aut^FJ. This is surjec-
tive since the classical Nielsen generators of Aut(Fn) are easily realized by orienta-

tion-preserving diffeomorphisms of MnJ. And by a theorem of Laudenbach [L2],
the kernel of n0Diiï+(Mnl) -&gt;Aut(Fn) is a finite direct sum of Z2&apos;s generated by
&quot;Dehn twists&quot; - diffeomorphisms supported in a product S2 x IczMnU each

sphère S2 x {t} being taken to itself by a rotation through angle 2nt. In the case of
the unpunctured manifold Mn0 there are corresponding statements with Aut(Fw)
replaced by Out(FM).
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Associated to Mns îs a simphcial complex §(Mns) whose A&gt;simphces are isotopy
classes of Systems of k 4- 1 disjointly embedded 2-spheres m Mns, none of which
bounds a bail or îs isotopic to a boundary sphère of Mnsy and no two of which are

isotopic The mapping class group of Mns acts on S&gt;(Mns), and from Laudenbach&apos;s

theorem that homotopic 2-spheres in Mns are isotopic (see [L12]) it follows easily
that twists along 2-spheres act tnvially on §(Mns) Hence there îs an mduced action
of the quotient group Fns nQ Diff+(MW5)/F, T bemg the subgroup gênerated by
twists, a normal subgroup Note that Fn, « Aut(FM) and Fn0 « Ont(Fn) by Laudenbach&apos;s

theorem mentioned in the previous paragraph
There are two parallel spectral séquence arguments for provmg stabihty of

Hl(Fns) with respect to n and s The spectral séquences in question are the natural
ones associated to the actions of Fns on two Fn s -invariant subcomplexes of
S(Mns), consisting of Systems with connected complément m one case and Systems
of sphères which separate off a simply-connected submanifold in the other case

(Technically, m the first case one must consider Systems which are ordered and
onented The mput needed to deduce stabihty from the spectral séquences îs that
the subcomplexes and their quotients by the action are highly connected For the

quotients this îs easy, and for the subcomplexes it reduces as in [H] to showing high
connectivity of the ambient complex S(Mns)

The main technical resuit in the paper îs that S(Mns) îs contractible if n &gt;0

This îs proved by îmitating the simple proof in [Hat] of contractibihty of the

analogous complex of arcs on a punctured surface However, for this scheme to
work one needs the fact that sphère Systems can be isotoped into a fairly canomcal
normal form with respect to a décomposition of Mns into &quot;pairs of pants,&quot; îe,
3-punctured S3&apos;s This normal form, which in retrospect seems such an obvious
analog of a well-known property of curves on a surface, îs the main new idea in the

paper It relies heavily on Laudenbach&apos;s homotopy-imphes-isotopy theorem for
2-spheres in Mns

The complex §(Mn0) îs closely related to Culler-Vogtmann&apos;s &quot;Outer Space&quot;

[CV] As we show m the Appendix, Outer Space can be identified with the dense

subspace of S(Mn0) which îs the complément of the subcomplex consisting of
sphère Systems having at least onê nonsimply-connected complementary compo-
nent The contraction we construct for §(Mn0) restncts to a contraction of Outer
Space, giving an alternative proof of the main technical resuit in [CV] We also
descnbe in the Appendix how Culler-Vogtmann&apos;s calculation of the virtual coho-
mological dimension of Aut(Fn) and Out(Fn) can be redenved via sphère complexes

The advantage of sphère complexes over Outer Space for the purposes of the

présent paper îs that the punctured mamfolds Mn s can be treated just as easily as

Mn0 In particular, Aut(Fn) Fn, can be handled as well as Out^) Tn0. But
more importantly from a technical standpoint, punctures are needed m order to
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identify the simplex-stabilizers for the actions of Fn0 on S(Mw0) and Fnl on §(Mnl).
In view of the connection between Outer Space and actions of Fn on R-trees, it is

natural to suspect that there should be a theory of &quot;IR-trees with punctures&quot; which
would allow homological stability for Aut(Fw) to be proved without using any
3-manifold topology.

We might remark that contractibility of §(Mns) contrasts strongly with the fact
that the actual space of ail smooth 2-spheres in Mns has a rather complicated
homotopy type, with non-finitely generated fundamental group for n &gt; 1 for example
[M]. In [HM] this complication was an obstruction to proving more than simple-con-
nectivity of sphère complexes without the idea of normal form.

Whitehead&apos;s method of studying automorphisms of free groups via 2-spheres in
a connected sum of S1 x S2&apos;s has also been used profitably in [GT, 2].

It is a pleasure to thank Karen Vogtman for numerous stimulating conversations
about this material, without which the paper would probably not hâve been written.

1. Normal form for sphère Systems

Let M be the manifold MrtvS, the connected sum of n S1 x S2&apos;s with s punctures.
By a system of2-spheres in M we shall mean a finite collection of disjointly embedded
smooth 2-spheres S,cz M none of which bounds a bail or is isotopic to a boundary
sphère of M, and no two of which are isotopic, i.e., form the boundary of an
52x/c=M.

We shall need Laudenbach&apos;s theorem that homotopic Systems of 2-spheres in M
are isotopic. This is proved in [Lj] for single sphères, and the extension to Systems,
which is easy, is described in [L2] (see in particular page 83 and Lemma V.4.2).
Actually, in this section and the next we shall need only a rather easy spécial case

of Laudenbach&apos;s theorem; this is explained in the Remark at the end of this section.
Let I \Jj Ij be a fixed maximal system. Splitting M along I then produces a

collection of 3-punctured sphères Pk. A system S \Jt S, is said to be in normal
form with respect to I if each St either coïncides with a sphère £, or meets I
transversely in a nonempty collection of circles splitting St into components called

pièces, such that the following two conditions hold in each Pk :

(1) Each pièce in Pk meets each component of dPk in at most one circle.

(2) No pièce in Pk is a disk which is isotopic, fixing its boundary, to a disk in
epk:

From (1) it follows that the pièces are either disks, cylinders, or pairs of pants. A
cylinder pièce connects two components of dPk and a pants pièce connects ail three

components of dPk. A disk pièce has boundary on one component of ôPk and
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séparâtes the other two components of ôPk, by (2). Hence a Pk cannot contain both
disk and pants pièces, and ail the disk pièces in a Pk must hâve their boundaries on
the same component of dPk. Each individual cylinder or pants pièce in a Pk must
be unknotted in Pk since its boundary circles lie on différent components of dPk,
but a collection of cylinder and pants pièces can be knotted and linked in a

complicated fashion. However, since homotopic Systems are isotopic, such knotting
and linking can always be eliminated by an isotopy of the System in M, though the

isotopy will generally hâve to move outside Pk.

PROPOSITION 1.1. Every System S a M can be isotoped into normal form with

respect to I.
Proof. We may assume S has been isotoped so that the maximum number of

S/s coïncide with I/s and the remaining S/s intersect I transversely. We shall

show that if S is then not in normal form, it can be isotoped to decrease the number
of circle components of S ni. We may suppose there are no circles bounding trivial
disks as in condition (2). Also there can be no S,&apos;s disjoint from I since thèse must
be parallel to L/s by the maximality of I.

We may perform a séquence of surgeries on ail the sphères S, which meet I
transversely, surgering along the circles of S n I, innermost circles in I first, then

innermost remaining circles, etc., to produce a collection of disjoint sphères Stm in

M — I. Inverse to this séquence of surgeries is a séquence of tubing opérations,

joining the Sim&apos;s by disjoint but possibly nested cylinders S1 x / crossing the T/s,
eventually reconstructing S. If S is not in normal form, then there is a Pk containing
a sphère Sim from which two tubes run across the same component of dPk. Let Tx

be the first of thèse tubes to be attached to Sim, T2 the second. Isotope S by

dragging the end of T2 attached to Sim first along Sim to where T] attaches, avoiding
other tubes along the way, then dragging this end of T2 along Tx across I. If there

are tubes passing inside T2, thèse are to be dragged along too.
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If there are r tubes inside T2, the net effect of this isotopy is to increase the
number of circles of SnZ by 2r + 1: one from T2 and two for each tube inside T2,

one of thèse two being inside T2 and the other near Tx, the resuit of dragging the

tube along with T2. After this isotopy, the part of T2 in Pk is a cylinder which can
be homotoped into X1, keeping its ends fixed. Hence by a homotopy of T2 and the

r tubes inside it we can produce a new sphère System S&quot; homotopic and therefore
isotopic to S, meeting I in 2r -h 2 fewer circles. Comparing S&quot; with the original S,

we hâve decreased by 1 the number of circles of S n I if S is not in normal form.

Two sphère Systems S and S&quot; in normal form with respect to I will be called

équivalent if there is a homotopy ht. S-+M from S to S&quot; with the following
properties:

(1) On the S,&apos;s which coincide with I/s, ht is the identity.
(2) On the other S/s, ht remains transverse to I for ail t, and ht(S)nE varies

only by isotopy in I. In particular, the circle components of ht(S)nZ stay
disjoint for ail t.

Systems which are isotopic through normal form Systems are équivalent, but the
relation of équivalence is more gênerai than this, allowing cylinder and pants pièces

to unknot and unlink in each Pk.

Equivalent sphère Systems are isotopic since they are homotopic. Conversely:

PROPOSITION 1.2. Isotopic sphère Systems in normal form are équivalent.

Proof. The idea is to look in the universal cover M, where oriented sphères
détermine well-defined éléments of n2(M) » H2{M).

Let S be the preimage of I in M. To the pair (M, S) we may associate a graph
T by first taking a letter &quot;F&quot; for each lift Pk, the three endpoints of the Y
correspnding to the three boundary sphères of Pk, then identifying the endpoints of
différent F&apos;s which correspond to the same sphère of I. Since M is simply-con-
nected, each component of ï séparâtes M, hence T is a tree. The endpoints of T&apos;s

corresponding to components of ï will be regarded as valence-two vertices of T.

For a sphère S in normal form, choose a lift S to M. We observe first that for
each Pfc,SnPk has at most one component. This is trivially true if S is a

component of S, and when § is transverse to £ it can be seen by considering the
dual tree T(§) to SnS in §, having a vertex for each component of S-Z and an
edge for each circle of Snï. The inclusion S c: M induces a natural map T(S) -&gt; T
which is locally injective, hence globally injective, and this implies that §nPk has

at most one component, for each Pk.
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Viewing T(8) as a subtree of T, it will be convenient to enlarge T(S) slightly so
that it is the union of the Y&apos;s corresponding to Pk*s meeting S. Thus a dise pièce
of 8 corresponds to an extremal Y of T(S), connected at only one of its three ends

to the rest of T(S); a cylinder pièce of 8 corresponds to a F in T(S) connected to
the rest of T(8) at two of its ends; and a pants pièce of 8 corresponds to a F
connected to the rest of T(8) at ail three of its ends. In particular, T(8) cannot
consist of a single Y. For completeness, when 8 is a component of S we define T(8)
to be the corresponding vertex of T.

Choosing a transverse orientation for S, then if T(8) is not a point, each end

vertex of T(8) can be labelled + or - according to whether the corresponding
sphère of ï u ôM lies on the + or the — side of S with respect to the chosen

transverse orientation. Since nx(M) 0, 8 séparâtes M and thèse sides are well-
defined. For an extremal Y of T(8), connected to the rest of T(8) at only one of
its three ends, the other two free ends hâve opposite sign. The non-extremal F&apos;s of
T(8) hâve either one free end, labelled + or —, or no free ends.

Let S+ be the union of the sphères of ï u ÔM corresponding to + ends of T(S)
and let 8_ be the union of the sphères corresponding to — ends. The transverse
orientation for 8 induces transverse orientations for the sphères of S±, in such a

way that 8 is homologous in M to 8+ and also to 8_. Observe that S+ détermines

T(8), namely, T(8) is the smallest connected union of 7&apos;s in T containing the

vertices corresponding to S+. This is because each extremal Y of T(8) contains
both a + and a — vertex. Since §+ détermines T(8), it also détermines §__.

The homology class of »? in M détermines S+ uniquely. To see this, suppose we
hâve another sphère S&apos; lifting a normal form sphère S\ with S&apos; homologous to 8.

For example, S&apos; might be obtained from 8 by lifting an isotopy from S to a normal
form sphère S&apos;. If T(8&apos;) ^ T(S), there would be a sphère of S separating Si into
two parts, one of which, Mo, contained ail of S&apos;+9 say, and ail but exactly one

sphère of S+. Then the classes of 8 and 8&apos; in H2(M) would hâve distinct images

in H2(M, Mo), zéro in one case and nonzero in the other. So T(S&apos;) T(8). If 8 and
8&apos; produced différent choices of signs for the ends of T(8) T(8y then we could
choose Mo as the part of M on one side of a sphère of S in such a way that there

was exactly one différent choice of signs outside Mo, and again 8 and 8&apos; would give

différent classes in H2(M, M0)l there are two subcases hère, according to whether
the différent choice of sign occurs in an extremal Y of T(8) or not.

From the preceding we can deduce that 8 and 5&apos; are isotopic staying transverse

to S at ail times. Namely, the tree T{8) T(S&apos;) détermines the combinatorial

pattern of pièces of 8 and §&apos;, so there is an isotopy of the pair (M, ï) which

deforms S&apos; so that S&apos;nZ coincides with »?nf as a collection of transversely

oriented circles in ï. Then S&apos; can be isotoped to 8, fixing S&apos;nï and without

introducing new intersections with S9 since the isotopy class rel boundary of a
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transversely orientée pièce in a Pk is uniquely déterminée by its orientée boundary
and, in the case of disk and cylinder pièces, the data of which side the components
of ôPk disjoint from it lie on, data specified by the signs on T(S). In particular there
is no problem of knotting or linking since S and S&apos; each contain at most one pièce
in a Pk.

Now we consider a normal form System S having any number of components.
Choosing transverse orientations for the sphères of S, it makes sensé to say that one
pièce of S lies on the positive or négative side of another pièce in the same Pk. If
S&apos; is another normal form System isotopic to S, the isotopy transfers the transverse
orientations from S to S&apos;. The considérations of the preceding paragraphs give a

bijective correspondence between the pièces of S and S&apos;. We assert:

(*) If sp and sq are pièces of S in Pk and sp and sq are the corresponding pièces

of S&apos;, then sq is on the same side of sp as sq is of sp.

To see this, consider a lift Pk of Pk in M. This contains lifted pièces sp,sq, etc. Let

sp and sq be contained in lifts St and §j of components of S, with sp and s&apos;q

contained in the corresponding lifts S\ and Sj. We may isotope S&apos;t to S, staying
transverse to S at ail times, as noted above. This isotopy extends to an isotopy of
the pair (M, S) so we may assume S, S&apos;^ If the assertion (*) were false we would
hâve Sj and §&apos;f lying on opposite sides of St. This evidently implies that St and Sj

hâve the same trees T(St) and T(Sj) with the same labels on end vertices, so St and

Sj would be isotopic. If thèse two sphères were lifts of différent components of S,

thèse components would be homotopic, hence isotopic, contrary to the définition of
a sphère System. On the other hand, if S, and Sj were lifts of the same sphère of S,

there would be a deck transformation carrying one to the other, hence preserving
the subtree T(St T(Sj of T, but this is impossible since a nontrivial deck
transformation cannot* leave a finite subtree of T invariant.

For the isotopic normal form Systems S and 5&quot; the tree data gives a bijective
correspondence between the transversely-oriented circles of S ni and S&apos;ni in I.
By (*) the &quot;side&quot; relations for thèse two Systems of circles in I also correpsond. It
is elementary to see that the isotopy class of a transversely-oriented circle System in
a sphère is determined by thèse side relations, so by an isotopy of (M, I) we may
deform S&apos; so that corresponding transversely-oriented circles of S ni and 5&quot;ni

are equal. As noted earlier when we were working in M, the individual pièces of S&apos;

can then be isotoped rel boundary within each Pk to make S&apos; 5, and ail thèse

isotopies together give an équivalence of 5&quot; with S.

Remark, The proof of Proposition 1.1 used only a spécial case of Laudenbach&apos;s

theorem that homotopic Systems are isotopic, namely, the case of a homotopy
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which consists of &quot;passing one nested family of tubes through another,&quot; by which
we mean the followmg In knot theory there îs the familiar opération of changing
an overcrossmg to an undercrossing by a regular homotopy which passes one
strand of the knot through another strand Imagine this opération as being
performed on a tubular neighborhood of the knot Then on the boundary of the
tubular neighborhood the opération amounts to &quot;passing one tube through another
tube &quot; More generally, each of thèse two tubes could contain a number of smaller
tubes in îts interior, possibly nested in some fashion, but just running straight
through the outer tube Then the crossing change yields the gênerai case of &quot;passing

one nested family of tubes through another &quot; In the absence of nesting ît îs obvious
how to reahze this homotopy of a sphère System by an isotopy (This îs essentially
the &quot;hght bulb tnck&quot; - unknottmg the cord from which a light bulb îs suspended

by slipping the knot over the bulb The gênerai case reduces to this spécial case by
a nice induction argument given on pp 71-73 of [LJ

An examination of the proof of Proposition 1 2 shows that the relation of
&quot;équivalence&quot; for normal form Systems could hâve been defined more restnctively
as isotopy through normal form Systems together with opérations of passing one
nested family of tubes through another m mdividual /ys Using this observation ît
would not be difficult to use the machinery of the proof of 1 2 to prove Lauden-
bach&apos;s theorem that homotopic Systems in Mns are isotopic, though this proof
would probably not be appreciably simpler than the one m [L2]

2. Contractibility of the full sphère complex

For the manifold M Mns define the simphcial complex §(M) to hâve as îts

fc-simphces the isotopy classes of Systems of k + 1 sphères m M The (k — l)-dimen-
sional faces of such a simplex are obtained by deleting the vanous sphères of the

System, one at a time The fact that §(M) îs indeed a simphcial complex, î e that

simphces are uniquely determined by their vertices, follows immediately from
Laudenbach&apos;s theorem that homotopic Systems are isotopic The maximal simphces

of S(M) ail hâve the same dimension, namely 3« + s — 4, as one sees by Euler
charactenstic considérations using the fact that the complementary régions of a

maximal System are ail 3-punctured sphères

THEOREM 2 1 §(Mns) is contractible ifn&gt;0

In the important cases s ^ 1 the contraction will be obtamed via a piecewise
lmear flow on §(M) which shrinks §(M) onto a given maximal simplex

Proof First we do the cases s £ l Consider a System S m normal form with

respect to the fixed maximal System I Let (tt) be the barycentnc coordmates of a
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point in the interior of the simplex of §(M) defined by S. Thèse can always be

normalized to hâve sum 1. We think of the numbers tx &gt; 0 as weights on the sphères
St in S. It is then convenient to replace each S, by a family S, x (0, t, ] of parallel
copies of S, of &quot;thickness&quot; tr Then when a weight f, goes to zéro at a face of the

simplex, the family St x [0, tt] shrinks to thickness zéro and is deleted. It is

convenient also to allow the opération of splitting the family St x [0, f,] into several

parallel families of total thickness tn as well as the inverse opération of glueing
parallel families together, adding their weights.

From the weighted System S we construct a collection of finite trees Tn one for
each sphère Z, which S meets transversely. The vertices of T} are the components of
Ij — S and the edges are the circles of S nlr The weights on the 5/s define lengths
for thèse edges, so 7) is a metric tree.

There is a canonical way to shrink each Tf to a point by shortening ail extremal
edges simultaneously at unit speed. Once an extremal edge has disappeared one
continues shrinking ail remaining extremal edges. We will show that this shrinking,
performed on ail the T/s at once, can be lifted to a path in §(M) starting with the

given weighted System S and ending with a System disjoint from Z, hence in the

simplex determined by Z.
The extremal vertices v of T3 correspond to disjoint disks Dv a Zy with

DvnS dDv. One can use thèse disks Dv to surger 5 to a new System in which the
circles dDv hâve been eliminated from S ni. Taking the weights into account, one

gradually surgers through the appropriate families St x [0, tt] at unit speed, decreas-

ing the weights of thèse families while increasing the weights of the new families
created by the surgery. The old and new families can be taken to be disjoint, so the

surgery can be viewed as simply transferring weights from the old family to the

new. It may happen that a family S{ x [0, tt] is being surgered by disks on both the

St x {0} and St 4- {t,} sides simultaneously, which just means that the thickness of
this family is decreasing twice as fast. When the thickness of a family S, x [0, tt] has

shrunk to zéro, this family is deleted and one continues the surgery process on the

remaining sphère families.
Let us see what this surgery process does in a single Pk. Surgery on a disk pièce

produces a sphère isotopic to a component of dPk. Surgery on one end of a cylinder
pièce produces a disk, and if this disk does not separate two components of dPk
then the other end of the cylinder would hâve to be surgered simultaneously,
producing a trivial sphère bounding a bail in Pk. Surgery on one end of a pants
pièce produces a cylinder joining the other two components of dPk. If an end of this

cylinder is being surgered at the same time, we are effectively in the case of a

cylinder pièce, already considered. We conclude: The surgery process produces
sphères which are either in normal form or trivial, bounding a bail or isotopic to a

puncture. Moreover, the trivial sphères are disjoint from £ so are not involved in
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further surgeries and can be deleted without affecting the surgery process. The
hypothesis s ^ 1 guarantees that not everything is deleted. This is because a normal
form sphère transverse to I has at least two disk pièces, and a single surgery can
make only one of thèse a trivial sphère since a disk pièce in Pk only becomes trivial
by becoming isotopic to a component of dPk in dM.

Thus the surgery process on a given weighted System 5 defines a path 5(0 in

§(M) starting at 5 5(0) and ending in the simplex X&quot;. This path is obviously
continuous, and in fact piecewise linear since the thicknesses of the families of
sphères in 5(0 vary linearly with the time parameter t.

It might be regarded as obvious that the path 5(0 varies continuously and

piecewise linearly with the weights (tl e A n on the various sphères of 5. However,
to spell this out in some détail, consider the function cp which assigns to each oriented
edge of a tree T} the length of the longest monotone edgepath in T} which begins with
the given oriented edge. Strictly, there are two functions cp+ and cp_ hère, depending

on whether the length of the given edge is counted or not. Note that q&gt;± dépends

piecewise linearly on the weights /, since it is the maximum of a finite collection of
linear functions measuring the distances to différent endpoints of Tj and the lengths
of the edges of T3 are given by weights tr Surgery on a family of circles of
(St x[0,tt])nE begins at the time specified by the smaller of the values of q&gt;_ on
the two possible orientations of the edge of a T} corresponding to the given family
of circles. In most cases, the surgery on this family of circles ends at the corresponding

value of &lt;p+, the exception being when the given edge of T} contains in its interior
the &quot;center&quot; of Tp from which the longest paths in both directions hâve equal length.
In this case the corresponding family of circles is being surgered from both sides

simultaneously, so the surgery ends sooner, at the time given by the length of thèse

two longest paths to the midpoint. More generally, we need to single out the f-values

when a single sphère in a family 5, x [0, t,] is being surgered from both sides at once.

This occurs when t is halfway between the starting time for one surgery and the

stopping time for the other surgery, i.e., the average of two &lt;p±&apos;s.

Thus we hâve a finite number of piecewise linear functions on the weight

simplex An whose graphs divide An x [0, oo) up into a finite number of closed

régions, in each of which the Systems 5(0 vary linearly within a simplex of S(M).
As we pass from the simplex containing 5 to a face by letting some weights go

to zéro, the paths 5(0 become the paths 5(0 associated to points in that face. This

is clear because ail that is happening to the trees T3 is that some edges are shrinking

to zéro length at the face. So the paths 5(0 give a well-defined déformation

retraction of S(M) onto the simplex of I. The déformation retraction is actually a

piecewise linear flow on §(M) since the restriction of the path 5(0 to t ^ t0 is the

path for S(t0).
The cases s &gt; 1 reduce to s ^ 1 by the next lemma. D
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LEMMA 2.2. Iffor some s ^ 1 §(MnJ is contractible, then so is S(Mn^s+x).

Proof Let the boundary sphères of M Mntg+i be denoted d0,..., ôs. Call a

vertex of S(M) &quot;spécial&quot; it it is a sphère in M splitting off a 3-punctured S3 having
d0 as one puncture. Let §&apos;(M) be the subcomplex of S(M) consisting of simplices
having no spécial vertices. For a fixed spécial vertex Ix, its link L(IX) in S(M) lies

in §&apos;(M) and can be identified with S(MHfS).

A déformation retraction of §&apos;(M) onto L(IX) can be obtained as follows.
Enlarge Ix to a maximal System £ and put other Systems S into normal form with
respect to I. Then Systems S not containing Ix will meet the 3-punctured sphère P
eut off by Ix in disks separating ô0 fronr the other puncture dk in P. Thus S nlx
consists of parallel circles in Ix, and we may surger S along thèse circles using the
disks they bound on the side of d0, innermost disks first, as usual. If the given
System S lies in S&apos;(M) then the surgery produces parallel copies of d0, which are to
be discarded, together with a new System in L(IX Therefore if we modify the proof
of 2.1 so that instead of surgering Systems S along ail the circles of S ni, we

surgery only the circles of Snlx, surgering in the way just described, then we
obtain a déformation retraction of S&apos;(M) onto L(IX).

S(M) is the union of §&apos;(M) with the stars of the spécial vertices. Thèse stars
hâve disjoint interiors since two distinct spécial vertices cannot be represented by
disjoint sphères. The links of spécial vertices are contractible, being copies of
S(Mns), so attaching the stars, which are cônes on the links, does not affect

homotopy type. Thus S(M) déformation retracts to S&apos;(M), which is contractible by
the preceding paragraph. D

3. Subcomplexes of S(M)

There are two subcomplexes of §(M) which will be needed for proving
homological stability. The first of thèse, denoted Y, has as its simplices the Systems

S for which M — S is connected. The other subcomplex is Z, whose simplices are

Systems S such that for one component Ms of M — S the map nx(Ms) -+nx(M) is

an isomorphism, the other components being necessarily punctured aS3&apos;s. We shall
also need the oriented version Y± of F, whose simplices are Systems S defining a

simplex of Y together with the additional data of an orientation for each component

of S. There will be no need to consider an oriented version of Z since the

sphères in a System S defining a simplex in Z hâve a natural normal orientation
determined by which side M$ lies on.

The dimension of Y and Y± is n — 1, while Z has dimension s —2.

PROPOSITION 3.1. Y and Y± are (n - 2)-connected, and Z is (s-3)-con-
nected. Hence ail three complexes are homotopy équivalent to wedges of sphères.
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Proof. Consider first the case of Z. Hère we follow the reasoning for Lemma
2.2, with Z in place of S(M). The subcomplex Z&apos; aZ consisting of simplices with
no spécial vertices déformation retracts onto the link of the spécial vertex E}, by
surgering Systems S in Z&apos; along S n Ix as in the proof of 2.2. The union of Z&apos; with
the star of Ix is then a contractible subcomplex Z&quot; c Z, and Z is obtained from Z&quot;

by attaching the stars of ail the other spécial vertices along their links. A space
homotopy équivalent to Z is produced by collapsing the contractible subcomplex
Z&quot; to a point, and this quotient space is the wedge of the suspensions of the links
of ail the spécial vertices other than I1,. Thèse links are copies of Z for the manifold
M with one fewer puncture, so induction on s gives the resuit for Z.

For 7, surgery along Ix gives a déformation retraction of Y{Mns) onto
Y(Mns_,) if s &gt; 1, reducing us to the case s ^ 1. Then we proceed as in the proof
of Theorem 1.1 of [H, pp. 219-220]. A map f:Sl-+Y may be extended to
/:/)/+1-&gt;§(M) since §(M) is contractible. We may assume fis piecewise linear
with respect to some triangulation of Dl+l. If f(Dl+l) is not contained in Y, the

image of some simplex is a System S with disconnected complément. This means the

associated graph Gs, with vertices the components of M — S and edges the

components of S, has at least two vertices. The edges of Gs whose endpoints are
distinct correspond to a subsystem 5&apos;c5 with the property that each of its

component sphères Sj séparâtes M — [jf¥zJSfe. Such a System is called purely
separating. Let a be a simplex of Dl+1 of maximal dimension k such that the

system S =/((t) is purely separating. Since a is not contained in ôDl+ \ the link of
a is a sphère S&apos;~k, and by the maximality assumption,/maps this S&apos;~k into Y(M&apos;)

where M&apos; is M split open along f(o). In case M&apos; is not connected, then Y(M&apos;) is,

essentially by définition, the join of the spaces Y for the various components of M&apos;.

Since s ^ 1, each component of M&apos; is a connected sum of fewer than n copies of
S1 x S2 (with punctures). If the total number of thèse S1 x 52&apos;s in M&apos;is m, then by
induction Y(M &apos;) is homotopy équivalent to a wedge of Sm ~ ^s. We hâve m ^n — k
since the purely separating system S has at most k + 1 sphères. If i ^ n — 2 then

i - k &lt; n - k — 2 ^ m - 2, the connectivity of Y{M&apos;), so /1 S1 ~ k extends to a map
D&apos;-/c +1 _&gt; Y(M&apos;). We modify the given/on the interior of the star of a by taking
the join of its values on da with this map Dl~k + l -? F(M0. The new / has no
simplices in the interior of the star of a which map to purely separating Systems, so

by a finite séquence of such modifications we can decrease k.

To prove that Y± is (w — 2)-connected, first choose arbitrarily a positive
orientation for each essential sphère in M. The subcomplex 7+ of positively
oriented Systems is then a copy of F, so it will suffice to deform a given piecewise

linear map/: St-^Y± into Y+ for / ^ n — 2, Let a be a simplex of 5; of maximum

dimension A: such that ail the vertices of 5 =f(a) are negatively oriented. The

linking sphère Sl~k~l then maps to Y+ and can be viewed as a map
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St~k-1 ^ y+(M&apos;) F(M&apos;) where M&apos;is M split along S. Since S contains at most
k + l sphères, M&apos; has at least n-k-\ S1 x S2 factors and so F(M0 is

(h — k — 3)-connectée. The assumption i&apos; &lt;&gt; n — 2 then implies that /1 Sl~k~l ex-
tends to a map £&gt;&apos;&quot;*-» F^M&apos;). We can modify/on the star of a by joining with
this extension, and the new/is homotopic to the old one by joining. Thus we can

step by step deform/to hâve image in Y+.

Let F Fns be the group of isotopy classes of orientation-preserving diffeomor-
phisms of MKiS taking each puncture to itself, modulo the normal subgroup
generated by twists along 2-spheres, i.e., diffeomorphisms supported in a product
S2 x I c M and taking each sphère S2 x {t} to itself by a rotation through the

angle 2nt about some chosen axis. Such a twist acts trivially on the sphère complex
S(M) since a sphère System may be isotoped to meet S2 x I in tubes transverse to
the levels S2 x {f}, and then the effect of the twist is to produce a new System which
is obviously homotopic to the old one, hence isotopic to it by Laudenbach&apos;s

theorem. Thus we get an action of F on S(M). Similarly, F acts on the complexes
7, F*, and Z.

LEMMA 3.2. The quotient Z/F is contractible.

Proof. Up to diffeomorphism of M fixing dM9 a sphère S corresponding to a

vertex of Z is determined by the set P(S) of punctures which are not boundary
components of Ms. More generally, a System S So u • • • u Sk corresponding to a

fc~simplex of Z is determined up to diffeomorphism fixing dM by the k + 1 sets

P(St). There is a distinguished vertex v of Z/F corresponding to a sphère S for
which P(S) is ail the punctures. If a sphère System corresponding to a simplex of Z
does not contain such a sphère S, then the System can always be enlarged so that
it does contain such an S. This implies that Z/F is the star of the distinguished
vertex v9 hence is contractible.

One can describe Z/F explicitly in terms of the simplicial complex Ps associated

to the poset of partitions of {1, ...,$}, partially ordered by refinement. Namely, to
each sphère S corresponding to a vertex of Z we may associate the partition
consisting of the set of punctures P(S) together with the single-element sets

consisting of the punctures not in P(S). This induces an embedding of Z/F as a

subcomplex of Ps, the link of the partition of {1,... ,5} into s single-element
subsets. The distinguished vertex v corresponds to the partition consisting of the

entire set {1,... ,s}.
For the action of F on Z, the stabilizer of a simplex crcZis the subgroup

F^cF represented by diffeomorphisms / : M -*M leaving invariant a sphère

System S corresponding to a. Such an/can be isotoped to be the identity on ail the
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complementary components of S in M except the nonsimply-connected component
Ms. Namely, there is at least one simple-connected complementary component of
S having ail but one of its boundary sphères in dM, and / fixes dM so it fixes the

one other boundary sphère of this component as well. Hence / is isotopic to the

identity on this component, and one can proceed inductively to the remaining
simply-connected components of M - S. Since Ms MHJ for some t &lt; s we then
hâve a natural surjection Fnt -&gt; Ta.

LEMMA 3.3. The natural surjection Tnt-*Ta is an isomorphism.

Proof. Suppose a diffeomorphism g : Ms -*- Ms extends to / : M -+ M via the

identity outside Ms, and/is isotopic to the identity in M. Let S&apos; be a sphère System

in Ms whose complément is connected and simply-connected. Then /(S&quot;) is isotopic
to S&apos;in M. By looking in the universal cover of M we see that/(S&apos;) is homotopic
to S&apos;in Ms. Laudenbach&apos;s theorem then implies that/(S&quot;) is isotopic to S&apos;in Ms,
so g may be isotoped to leave S&quot; invariant. Then g must take each component of
S&quot; to itself, preserving orientation, otherwise / would act nontrivially on H2(M).
Splitting Ms along S&apos; produces a punctured S3, and the corresponding splitting of
g is isotopic to the identity since it préserves ail the punctures. So g itself is isotopic
to a product of twists along sphères of S\ hence g is zéro in Fnt.

Consider now the question of identifying simplex-stabilizers Fa for the action of
Fns on the subcomplex Y c S(MM 5). If a corresponds to a System S containing k

sphères, there is a natural map Tn _ Ks + 2k^ra since splitting MWvS along S produces

Mn_kfS + 2k- This homomorphism will not be surjective, however, since diffeomor-

phisms fixing the System S can permute the différent sphères in 5 and reverse their

orientations, giving rise to diffeomorphisms of Mn_k^ + 2k permuting punctures,
which is not allowed in rn_ktS + 2k- The situation is slightly improved if we take the

natural action of Fns on the complex Y± of oriented Systems in Y. More is needed

however: Systems which are ordered as well as oriented. An easy way to achieve this

is to replace F* by the complex X whose A&gt;simplices are the simplicial maps
Ak-+ y±. Simplicial maps take vertices to vertices, but distinct vertices can map to
the same vertex. Thus the fc-simplices of X are the {k + l)-tuples (50,..., Sk) of
oriented sphères, not necessarily distinct (though repeated sphères hâve the same

orientation) whose union is a simplex of Y. Since sphères may be repeated

arbitrarily often, X is infinite-dimensional. There is a natural projection X-^Y±
sending a simplicial map Ak-&gt;Y± to its image simplex, and it is a classical fact in

algebraic topology that this projection induces an isomorphism on simplicial

homology, hence also on singular homology; see e.g. Theorem 4.6.8 in [S]. This uses

no spécial properties of Y±9 just that it is a simplicial complex.
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The action of Fns on Y± induces an action on X, and for a simplex a of X
whose image in Fis a System oik sphères, so k ^ dim a + 1, there is again a natural

map rn_kj + 2k-+r&lt;T&apos; % the définition of Xthis is surjective, and in the same way
that the preceding lemma was proved one shows:

LEMMA 3.4. The natural surjection Fn_ks + 2k-+F(r is an isomorphism.

The analog of Lemma 3.2 is:

LEMMA 3.5. X/FrtiS is (n - 2)-connected.

Proof. From basic 3-manifold topology, F acts transitively on &amp;-simplices of
F*, so every &amp;-simplex of F* is équivalent under a diffeomorphism of M to the

first k H-1 sphères of a fixed oriented System Si u • • • u Sn with connected complément.

Further, ail permutations of thèse S, &apos;s can be realized by diffeomorphisms of
M. It follows that X/F can be identified with the quotient Kn \Zn of the simplic-
ial complex Kn of séquences (n0,..., nk) of positive integers n, &lt;. n by the action
of the permutation group Zn. The inclusion Kn^xczKn induces an inclusion

Kn_,/£,,_, &lt;= KJIn, with the (n - 2)-skeleton of Kn/Zn contained in Kn_ {/En_,,
so it will suffice to show that Kn_l/In_l is contractible in Kn/In.

The inclusion Kn_xaKn extends to an embedding of the cône CKn _, in Kn

taking the cône point to the vertex (n). Factoring out the action of Zn_u we get
a map C(Kn_xIZn_x)-+KnIZn_x^KnjZn extending the inclusion Kn_xIZn_xa
Kjzn. a

4. Homological stability

We shall be interested in three homomorphisms

induced b^ maps Fns-&gt;Fmt which are obtained by enlarging the manifold Mns to

Mmi and extending diffeomorphisms via the identity on the added pièce. For a one

enlarges Mn5 by gluing on a 3-punctured S3 to a component of dMns. For P one

just fills in a puncture with a bail, and for y one adjoins an S2 x I Connecting two

punctures of MHy5, or equivalently one glues together two boundary sphères of Mns.
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Since we are factoring out twists along 2-spheres we don&apos;t need to worry about
whether diffeomorphisms are the identity on each boundary sphère or merely
orientation-preserving.

Our main theorem is about ya2 : Ht(fntl) -+HArn + ul) and fi : H,(Tntl) -»
Hi(rn,o)- Note that the composition j?a is the identity since this corresponds
to just adding a collar on a boundary component of MntS. So a is injective for
s &gt; 1 and p is surjective for s ^ 2. However, the latter fact does not directly apply
to the theorem, which involves jS for s 1.

Associated to a group F acting simplicially on a simplicial complex X there is a
well-known spectral séquence, described for example in Chapter 7 of [B] and
constructed as follows. Let ET be a contractible complex on which T acts freely
with quotient a classifying space ET for F. Then the diagonal action of T on
X x ET is free, and the quotient space X x r ET has homology the equivariant
homology H+(X) of X, essentially by définition. The cellular chain complex
C*(X xrET) can be identified with C+(X) ®r C*(ET), and is actually a double

complex, via the boundary maps in the two factors. Filtering this double complex
horizontally and vertically leads to two spectral séquences converging to H*(X).
One filtration has Epq equal to the pth homology group of the chain complex

C*(X) ®r Cq{ET) with the boundary map from X. Since Cq(ET) is free with free

action of T, we therefore hâve Elpq HP{X) ®r Cq(ET). The second filtration has

Epq the qth homology group of the complex CP(X) ®GC+(ET) with the boundary

map from ET, so Epq Hq(T; CP(X)) in this case, the coefficient group CP(X) being
twisted via the T action. Shapiro&apos;s lemma implies that Hq(T; CP(X)) « ®ff Hq(Ta)
where Ta a T is the stabilizer of the p-simplex g in X and there is one summand

Hq(Ta) for each orbit of the action of T on the /?-simplices in X. The actions we will
consider hâve the property that if an élément g e T satisfies g(&lt;r) a then g \ a is the

identity. Then the sum ©, Hq(Tc) is over the /?-sîmplices in X/T, which inherits a

natural cell structure from X with simplicial cells. Further, the term E2pq in this

spectral séquence can be interpreted as HP(X/T; {Hq(To)})y the simplicial homology
of X/T with coefficients in the System of groups Hq(Tff); see [B]. In our application
this System will be constant, so this will be just ordinary homology.

It will be more convenient to use a slight modification of the preceding

construction, obtained by replacing C*(X) by the augmented complex C+(X)
which has an extra Z in dimension — 1. Then the spectral séquence from the

first filtration has Elpq ÏÏp{X) ®r Cq(ET), and for the second filtration we

hâve Expq 0, Hq{Ta) for p * 0, with ElUq Hq(T) since T0 r, and E2pq «
ffp(X/T; {Hq(Ta)}).

To prove the half of the theorem concerning the stabilization

yoc2 : Ht(Tn_{l) -+HXrn,i) we shall construct a function &lt;p : N -* N such that the
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following two statements hold:

(4.1) (ak) oc : Hk(Fn_ls)-*Hk(Fn_ls + l) is an isomorphism for n&gt;q&gt;(k) and

(bk) y : Hk(Fn^_ i,5 + 2) -+Hk(TnJ) is an isomorphism for n &gt; q&gt;(k) and s ^ 1,

and a surjection for « q&gt;{k) and ,s ^ 1.

The strategy will be to détermine an appropriate value for cp(k) by induction on k,
so from now on we shall assume:

(*) A function cp : {0, 1,..., k — 1} -? N has been constructed such that (at)
and (bt hold for i &lt; k.

The function q&gt; will also be assumed to be strictly monotonie, so &lt;p(ï) &lt; cp(j) if / &lt;j\

and to satisfy q&gt;{i) &gt; L

A partial resuit toward condition (ak) is:

LEMMA 4.2. a : Hk(rntt^x) -&gt;Hk(rnJ is an isomorphism if s&gt;k + l and

n + ïxp(k - 1).

Proof. Consider the action of Fns on the subcomplex Z &lt;= §(Mns) defined in §3.

This action has the good property that simplices which are invariant under an
élément of F are fixed by it. For this action of Fns on Z the first spectral séquence
has E\q 0 for p &lt; s — 2 by Proposition 3.1, hence E%q =0 for p &lt; s — 2. Since

both spectral séquences converge to the same thing, this implies Efq 0 for
p +q &lt;s — 2 in the second spectral séquence. In particular the term
EL\ik Hk(Fns) in this spectral séquence must be killed by differentials if
— 1 + k &lt; s — 2. (The differentials in Er go r units to the left and r — 1 units
upward.)

In the E2 array of this spectral séquence we must hâve ail zéros below the fcth

row by Lemma 3.2 since the coefficient System {Hq{Fa)} is constant below the kth

row by the inductive hypothesis (*) and the assumption n + 1 &gt; q&gt;(k - 1), ail thèse

groups Hq(F0) having a canonical isomorphism with Hg(Fns). Thus the only
possibility is that the differential El^-tELut is surjective. The term Eltk is

®t&lt;sHk(Fnt)t the sum over the vertex stabilizers, and the differential is the sum
of the stabilizations Hk(Fntt)-+Hfc(FnJ. Each of thèse factors through Hk(Fns_,),
so a:Hk(rni^i)^Hk(FnJ is surjective. (The image of Hk(FnJ-+Hk(FnJ
dépends only on tt not on the vertex sphère realizing this stabilization since any two
such sphères are related by a diffeomorphism of Mns, inducing an inner automor-
phisra of Fns hence the identity on
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As noted at the beginning of this section, a : Hk(rns_ i)-&gt;Hk(rns) is injective if
s &gt; 1.

LEMMA 4.3. y : Hk(rn_lv, + 2)^&gt;Hk(rHw,) is surjective if « * q&gt;(k - 1) + 2.

Proof. Consider the two spectral séquences associated to the action of Fns on
the complex X defined in §3. The first of thèse has E\q 0 for p &lt; n - 1 by
Proposition 3.1 and the fact the Y± and Xhave isomorphic homology. Hence the
second spectral séquence has E™ 0 for p + q &lt; n - 1. In particular, if k &lt; n the
term El_Uk =Hk(Fns) must be killed by differentials originating on the Une

p + q k. As in the proof of the preceding lemma we shall show that the first
differential y is the only one which can be nonzero, hence y is surjective.

The term E\q is a sum of groups Hq(Fn_js + 2j) for j &lt;&gt;p -h 1 by Lemma 3.4. So
the kth row of the E1 array, with its differential, is

v d

The induction hypothesis (*) implies that E2pq 0 for p + q ^ k and q &lt; k provided
that n —p - 1 ^ cp(k -p) for p 1, 2,..., k and that k &lt; n - 1 so that Lemma 3.5

applies. By monotonicity of q&gt;, the condition n — p — 1 ^ q&gt;(k —p) reduces to the

case p 1, i.e., n ^ cp(fc — 1) + 2. This implies the earlier condition k &lt; n — 1 since

we assume cp(k — 1) &gt; k — 1.

Thus if « ^ &lt;p(A: — 1) + 2, y is the only differential which can kill Hk(Fns), so y

must be surjective.

Injectivity of y will require an extra step. What will be shown is that the

differential d in the séquence above is zéro. This implies injectivity of y since the

term Hk(rn_Xs + 2) must disappear by J?00 and as shown in the previous proof,
there are no terms below the kth row which could kill the kernel of y. For this

argument we need the E2 terms to vanish for one more unit to the right than in the

surjectivity argument, but this is taken care of automatically by the statement (bk)
which has strict inequalities for injectivity and weak inequalities for surjectivity.

The map d is easily described. On the first summand it is the différence between
the stabilizations y obtained by gluing together two différent pairs of boundary
sphères of Mn_2tS + 4, while on the second summand d is clearly zéro - the différence

between two coinciding stabilizations. If a3 : Hk(rn^2,s+i) &quot;^^4(^«-2,^ + 4)

were onto, then d would be zéro since there is a diffeomorphism of Mn_2,J+4
supported in Afw_2,j + 4 ~~ Mn^2,s+1 permuting the two différent pairs of punctures
being identified.

To show a3 : Hk(rn_ 2,s +1 -* #*(^«- 2,5+4) is onto we would like to use Lemma
4.2, but unfortunately this requires s to be large with respect to k. (This is in
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contrast to the situation for mapping class groups of surfaces, where the dimension

range for stabilization with respect to punctures dépends on n instead of s.) To get
around this problem, consider the commutative diagram

-j,s + 2/ - 1
&gt; Hte (^n -

where we need s ^ 2 in order for the upper a to be defined. By Lemma 4.3 we know
that the yJ on the right will be onto if n —j&apos; + 1 &gt; (p(k — 1) + 2. By Lemma 4.2 the

lower a in the diagram will be onto if k + 1 &lt; s + 2/ and n —j + 1 &gt; (p(k — 1). The
smallest j satisfying k + 1 &lt; s + 2/ is y&apos; [(k — s + l)/2] H-1, where [x] dénotes the

greatest integer in x. Choosing this value of y, we deduce:

(4.4) The upper a in the preceding diagram is surjective if

In particular

(4.5) a3 : Hk{rn_2s+l) -&gt;Hk(rn_2s + A) is onto, and hence y : Hk(rn_ M + 2) -&gt;

Hk{rnJ) is injective, provided that n - 2 &gt; cp{k - 1) + [(k - s - l)/2] + 1.

For the application to the statements in (4.1) we may restrict attention to s &gt; 1 in
this inequality, which then holds for s &gt; 1 if it holds for s 1, i.e., if
n &gt; (p(k — 1) 4- [k/2] + 2. Thus if we define cp recursively by cp{k) cp(k — 1) +
[k/2] + 2, starting with cp(O) 1, part (bk) of (4.1) holds. Part (ak) also holds since

by (4.4), the map a : Hk(Fn _ lvS) -&gt; //*(rw - u + i is an isomorphism if

With the recursive définition &lt;p{k) &lt;p(k - 1) + [fc/2] -h 2, &lt;p(0) 1, it is not
hard to check that the inequality n &gt; cp(k) is équivalent to n &gt; k2j4 + 2k + 1 for
positive integers n. Hence the first half of the main theorem is proved.

To prove the other half of the main theorem asserting that the stabilization
j8 : Hk(Fnl) -+Hk(rn0) is an isomorphism we use the diagram

y

Hk(rn_ï2) Hk(Fn0)

For the upper y to be an isomorphism we now need the inequality



Homological stability for automorphism groups of free groups 59

n - 2 &gt;q&gt;(k - 1) + [(k - s - l)/2] + 1 in (4.5) for s 0 as well as for s ^ 1, so we
get n &gt;cp(k - 1) + [(k - l)/2] +3. The map a and the lower y are also isomor-
phisms if n &gt; cp(k - 1) + [(k - l)/2] + 3, hence also the j3 on the right. For (p

defined recursively by cp{k) cp(k - 1) -h [(fc - l)/2] + 3, cp(O) 1, the inequality
n &gt; (p(k) translates into n &gt; k2/4 + 5k/2 + 1.

Appendix: The Connection with Outer Space

Hère we relate sphère complexes to the work of Culler-Vogtmann in [CV],
The points of the rank n Outer Space O of Culler-Vogtmann are équivalence

classes of homotopy équivalences / : Xo -&gt; X where Xo is a bouquet of n circles and

X is a metric graph which doesn&apos;t déformation retract onto any subgraph, the
metric being normalized so that the total length of ail the edges is 1. The

équivalence relation on such &quot;marked metric graphs&quot; / : Xo -? X is given by homotopy

of/and composition with isometries X-*Xf. Fixing the topological type of A&quot;

and varying only the lengths of its edges traces out an open simplex in O. Passing

to faces of this simplex corresponds to letting the lengths of some edges go to zéro.

Depending on which edges are collapsing in this way, the face might or might not
belong to O.

Let M — Mn0 and S S(M), and let S^ be the subcomplex of S consisting of
sphère Systems having at least one nonsimply-connected complementary component
in M. A sphère System S has a dual graph G(S) having vertices the components of
M — S and edges the sphères of S. We may view G(S) as embedded in M by

choosing a vertex point in each component of M — S and Connecting thèse vertices

by edges crossing the sphères of S, each sphère having a single edge crossing it
exactly once. Somewhat more canonically, G(S) is also a quotient of M, obtained

by thickening S to a product 5x[0,l]cM, then collapsing the components of
M — S x (0, 1) to points and also the components of S x {t} for each t g (0, 1). If
S is in S — S^ then both maps G(S) c+ M and M -&gt; G(S) are isomorphisms on n^.

Fixing a System So with G(S0) Xo, the composition G(S0) -+M ^G(S) is then a

homotopy équivalence. The barycentric coordinates of a point in the open simplex

of S determined by S give weights on the components of S and hence lengths on
the corresponding edges of G(S). In this way we obtain a map 0 : S — S^-^O
sending the weighted System S to G(S0) -? G(S). On each open simplex of S - S^
^ is a linear homeomorphism onto an open simplex of O, and &lt;P is continuous
when we pass to faces of simplices, hence &lt;P is continuous everywhere. Also, # is

equivariant with respect to the natural action of Ont(Fn) on S - Sx and O.

PROPOSITION. * : S — S% -?O is a homeomorphism.
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Proof. We construct an inverse map. Let/: Xo -&gt; X represent a point of O. We

may build a manifold M(X) diffeomorphic to M by taking a A&gt;punctured 3-sphere
for each valence-fc vertex of X and identifying the boundary 2-spheres of thèse

punctured 3-spheres according to the edges of X. Thèse identified boundary
2-spheres, weighted according to the lengths of the corresponding edges of X, then

give a weighted sphère System S(X) cz M(X) whose associated metric graph is

isometric to X. If we choose a diffeomorphism h : M -+M(X)9 then h~l(S(X)) is a

weighted System S a M with &lt;P(S) equal to g : Xo -» X for some homotopy équivalence

g. Since ail automorphisms of nx{M) are realized by diffeomorphisms of M,
we may rechoose h so that &lt;P(S) equals the given/: Xo-+X. With this condition on
h, the isotopy class of S /i ~^(Jf)) dépends only on the given/ : Xo-*X and not
on the choice of h since any other choice h&apos; induces the same isomorphism on nx

hence by Laudenbach&apos;s theorem is isotopic to h modulo twists along 2-spheres,
which hâve no effect on isotopy classes of sphère Systems. Any isometry X -? X&apos; can
be realized by a diffeomorphism M(X) -? M(X&apos;) taking S(X) to S(X&apos;), so we hâve

a well-defined map O-+S — S^ which is obviously an inverse to #.

The contraction of S constructed in section 2 restricts to a contraction of
S — S oo. This is because each flow Une of the contraction represents a séquence of
surgeries on a sphère System S, and simple-connectivity of the components of
M — S is preserved by the surgery process. Namely, each surgery cuts one comple-
mentary component of S along a disk and attaches a 2-handle to another comple-
mentary component, and both thèse opérations préserve simple-connectivity of the

complementary components. The flow also involves replacing sphères with parallel
copies of themselves and throwing away trivial sphères or parallel copies of other
sphères, and thèse opérations too préserve simple-connectivity of the complementary

components.
The space O has dimension 3n — 4, and Culler-Vogtmann describe a nice

&quot;spine&quot; of O which is a contractible subcomplex of dimension 2n — 3 on which

Out(Fw) acts with finite stabilizers and finite quotient. Using this they prove that
Out(Frt) has finitely generated homology groups and virtual cohomological dimension

2/î — 3. Their argument can be phrased in terms of S as follows.
For variety let us switch from Mw&gt;0 to MnA. Let So be the subcomplex of the

barycentric subdivision of S having vertices the Systems S with ail the components
of M — S simply-connected, and with jfc-simplices the chains So c • • • &lt;z Sk of such

Systems. The minimal number of sphères in such a System is n and the maximum
number is 3n — 2, so So has dimension 2n — 2. By a standard PL topology
argument So is a déformation retract of S —S,», hence is also contractible. The
action of Fni Aut(Fn) on So has finite stabilizers since an orientation-preserving
diffeomorphism of a punctured S3 is determined up to isotopy by how it permutes
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the punctures. The quotient S0/AuX(Fn) is finite since there are only finitely many
isotopy classes of 2-spheres in a punctured S\ such a 2-sphere being déterminée! up
to isotopy by how it séparâtes the punctures.

At this point we need the fact that Aut(Fn) has a torsionfree subgroup of finite
index. Namely, the composition Aut(Fn) -&gt; GLn(Z) -+ GLn(Zp) has torsionfree kernel
for p ^ 3. For the second of thèse two maps this is explained on p. 40 of [B], and
for the first map it can be deduced as a pleasant exercise from a resuit of Culler [Cu]
that any periodic automorphism of Fn is induced by a periodic homeomorphism of
a finite graph having fundamental group Fn. If G dénotes the kernel of Aut(Fn) -&gt;

GLn(Zp) then G acts freely on So and so the quotient §0/G is a finite CWcomplex
K(G, 1). Applymg the Lyndon-Hochschild-Serre spectral séquence to the fibration
K(G, 1) -&gt; K(Aut(FJ, 1) -? K(Aut(Fn)/G, 1) we can deduce that the homology groups
of Aut(JFw) are finitely generated: The E2 terms are Hp(A\xt(Fn)/G; Hq(G)\ Hq{G) is

finitely generated since we hâve a finite K(G, 1), and the homology groups of
Aut(Fn)/G are finitely generated with any finitely generated twisted coefficient System

since finite groups hâve CW K(n, l)&apos;s with finite skeleta

Since So/G has dimension 2n — 2, Aut^) had v.c.d. at most 2n — 2. On the

other hand, the v.c.d. is at least 2n — 2 since Aut(Fw) contains a free abelian

subgroup of rank 2n — 2 generated by the 2n — 2 automorphisms which fix ail

generators xt of Fn except for one xk with k &gt; 1, which is sent to xxxk or xkxx.
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