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Deleting-Inserting Theorem for smooth actions of finite nonsolvable
groups on spheres*

ERKKI LAITINEN, MASAHARU MORIMOTO AND KRZYSZTOF PAWALOWSKI!

Abstract. The paper presents a method which allows to construct smooth finite nonsolvable group
actions on spheres with prescribed fixed point data. The idea is to consider an action on a disk with the
required fixed point data, and then to apply equivariant surgery to the equivariant double of the disk to
remove the second copy of the fixed point data. In this paper, the method is applied to construct smooth
group actions on spheres with exactly one fixed point, and more general actions with fixed point set
diffeomorphic to any given closed stably parallelizable smooth manifold. The method is expected to be
useful for constructions of smooth group actions on spheres with more complicated fixed point data.

Introduction

The main goal of this paper is to prove the Deleting-Inserting Theorem
(Theorem 2.2) and to provide some of its applications (Theorems A and B) in the
case of smooth G-actions on spheres for a large class of finite nonsolvable groups
G. For a given smooth G-action on a homotopy sphere fulfilling some conditions
(see Situation 2.1), the Deleting-Inserting Theorem allows us to remove any G-fixed
point set connected component, or to create a number of its copies together with
the copies of its equivariant normal bundle, so that to obtain a smooth G-action on
a new homotopy sphere with the new G-fixed point data (the G-fixed point set and
its equivariant normal bundle). In the applications, the idea is usually similar. First,
we construct a linear or more generally, a smooth G-action on a disk D" with
prescribed G-fixed point data. Then we take the equivariant double (D" x D') of
D", where G acts trivially on D!, to get a smooth G-action on the sphere
S" = d(D" x D) with “doubled” G-fixed point data. Finally, we apply the Deleting-
Inserting theorem to remove the second copy fo the G-fixed point data, and thus to
obtain a smooth G-action on S” with the prescribed G-fixed point data.

* 1991 Mathematics Subject Classification: 57517, 575825, 5TR67, STR8S.

I Current address: SFB 170 “Geometrie und Analysis”’, Mathematisches Institute, Universitit Gottin-
gen Bunsenstr. 3-5, D-37073 Géttingen, Germany.
e-mail: kpa@cfgauss.uni-math.gwdg.de
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Smooth actions of finite nonsolvable groups on spheres 11

First, we deal with the problem of construction smooth one fixed point actions
on the standard spheres. We wish to give a brief history of the problem. In 1946,
in connection with their work on fiberings with singularities, D. Montgomery and
H. Samelson [MS] made a comment to the effect that when a compact Lie group
acts smoothly on the standard n-sphere S” in such a way as to have one fixed point,
it is likely that there must be a second fixed point. In 1977, E. Stein [St] presented
the first examples of smooth group actions on a standard sphere with exactly one
fixed point. He obtained such G-actions on the sphere S’ for G = SL(2, Z/5) and
SL(2, Z/5) x Z|r, where (120, r) =1. However, note that examples of one fixed
point actions on homology spheres were obtained earlier (see, e.g., [Br], pp. 55-57,
for a description of the Floyd—Richardson construction of a smooth G-action on
the Poincaré homology 3-sphere with exactly one point left fixed under the action
of the alternating group G = A;). Then, during the period of 1978-1982, T. Petrie
([Pel]—[Pe3]) constructed smooth one fixed point actions on homotopy spheres of
finite odd order abelian groups having at least three noncyclic Sylow subgroups, as
well as of the compact connected Lie groups S* and SO(3). He also announced that
there exist smooth, one fixed point actions on homotopy spheres of SL(2, F) and
PSL(2, F) with characteristic F odd and F # Z/3. It is well-known that SL(2, F)
(resp. PSL(2, F)) is a perfect (resp. simple) group when |F| = 4. We refer the reader
to [BKS] and [M1]-[M3] for more details of the history of smooth one fixed point
actions on sphere, including the discussions on the existence of such actions on low
dimensional spheres. Also, we would like to note that the work [LT] deals with
some kind of smooth group actions on homotopy spheres which cannot have
exactly one fixed point, confirming the speculation of D. Montgomery and
H. Samelson.

As the first application of the Deleting-Inserting Theorem, we show that many
finite nonsolvable groups G have smooth actions on the standard spheres with any
given finite number of G-fixed points (cf. [Pal], Section 4 and [Sch], Problems on
group actions, 7.16, p. 551). Recall that every group G has a unique maximal
perfect subgroup R, and R is a characteristic subgroup of G. If G is finite, then R
is the smallest term of the derived series of G (cf. [Ro], Exercises 5.4, p. 151) which
amounts to saying that R is the unique smallest normal subgroup of G such that
G /R is solvable (cf. [tD], Chapter IV, Proposition (6.7)). Hereafter, we set G*/ = R.
Clearly, G is perfect if and only if G** = G. With the above notation, the following
theorem holds.

THEOREM A. Let G be a finite nonsolvable group such that |G/G*"| is odd.
Then, for any even integer { = 6, there exists a smooth action of G on the standard
sphere S" of dimension n = ¢(|G|—|G/G*|) with any given finite number k 2 1 of
G-fixed points.
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For k =1, Theorem A provides further evidence to the conjecture (posed, e.g.,
in [Pal], Section 4 or [Sch], Problems on group actions, 7.15, p. 551) that a
compact Lie group which acts smoothly in a disk without fixed points, is also able
to act smoothly on a sphere with exactly one fixed point (the converse follows from
the Slice Theorem). By the work of R. Oliver [O1], [O2], the class of compact Lie
groups admitting smooth fixed points free actions on disks is well-known, and the
class contains all finite nonsolvable groups. In general, a finite group G has a
smooth fixed point free action on a disk if and only if G has no normal series of the
form P < H < G, where P is of p-power order (possibly |P|=1), G/H is of
g-power order (possibly G = H), and H/P is cyclic for two (possibly the same)
primes p and q.

As the second application of the Deleting-Inserting Theorem, we generalize the
result of Theorem A to the effect that we replace each isolated G-fixed point by any
closed connected stably parallelizable smooth manifold. More precisely, we obtain
the following theorem.

THEOREM B. Let G be a finite nonsolvable group such that |G|G**| is odd. Let
M be a closed smooth manifold whose connected components all are stably paralleliz-
able and all have the same dimension =0. Then there exists a smooth action of G on
a standard sphere with G-fixed point set diffeomorphic to M.

A few remarks on the material organization of this paper are in order. In
Section 1, for a finite group G, we describe G-connected sums which we form in the
paper, and using such a sum, we show that if G is not of prime power order, then
smooth G-actions on homotopy spheres can often be converted to smooth G-
actions on the standard spheres without changing the G-fixed point data (Proposi-
tion 1.3). In Section 2, we state the Deleting-Inserting Theorem (Theorem 2.2)
which, using Proposition 1.3, yields a corollary (Corollary 2.3) applied in Section 5
to prove Theorems A and B. The proof of Theorem 2.2 is provided in Sections 3
and 4. The proof employs G-surgery and thus, as ingredients, we need a procedure
to construct G-normal maps and a procedure to kill G-surgery obstructions in
order to modify a given G-normal map so that to produce a homotopy equivalence.
In Section 3, we construct a G-normal map by using a procedure invented by
T. Petrie ([Pel]-[Pe3]). This procedure involves a localization method of the
cohomology theory w¥() and the G-transversality arguments. In Section 4, we
apply the technique of G-connected sum to kill the G-surgery obstructions. This
technique is expected to be applicable in other situations, and it should be
compared with the earlier one used to get explicit evaluation of the surgery
obstructions in the construction of smooth, one fixed point 45-actions on spheres
presented by M. Morimoto ((M1]-[M3]).
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In Theorems A and B we impose the restriction on G to the effect that |G/G*”|
is odd, which is always the case when G is perfect or G is an extension of a finite
odd order group by a finite (nontrivial) perfect group (cf. Remark to Proposition
5.1). In Appendix, we show that by using the work [BM], we can prove the
Deleting-Inserting Theorem also under the weak gap hypothesis (WGH) imposed in
(2.1.4). This allows us to get the result in Theorem A without the restriction that
|G/G*| is odd.

In this paper, even if not stated explicitly, all manifolds with group actions should
be understood in the smooth category. We refer the reader to [Br] and [tD] for the
background material on transformation groups, and to [DP], [PR], and [M4] for
basic concepts and facts of equivariant surgery that we use in the paper. For a finite
group G, we always denote by #(G) the set of all subgroups of G, consider the action
of G on &¥(G) given by conjugation, and put (H) = {gHg ~'|g € G}. Thus, for a
G-invariant subset # of £(G), (H) = & if and only if (H) € #/G.

1. G-connected sum construction

Let G be a finite group. We start with the description of G-connected sums
which we form in the paper. First, recall that the Burnside ring Q(G) of G is the
Grothendieck ring on the set of isomorphism classes of all finite G-sets with
addition and multiplication established, respectively, by disjoint union and cartesian
product. Additively, Q(G) is the free abelian group on the set of isomorphism
classes [G/H] of the transitive G-sets G/H for all (H) = ¥(G). Moreover, Q(G) is a
commutative ring with unit [G/G] (see, e.g., [tD], Chapter I, (2.18)).

Let X be an orientable G-manifold (with a chosen invariant Riemannian metric)
such that the G-action is orientation preserving. Choose an orientation of X and
write + X (resp. —X) for X with the specified (resp. reversed) orientation and the
same G-action. Let w be an element of (G), so that using the free abelian group
presentation,

o= Y a(H)G/H]

(H) € #(G)

for some integers a(H). Put #(w) = {H € #(G) | a(H) # 0}. Consider the disjoint
union
la(#)|

oX= I1I Il G/H xsigna(H)Xx,, X =X,
(HYceF(w) i=1
where each product G/H x (+X) with the diagonal G-action is defined for a
chosen subgroup H within the given isotropy type in & (w). Now, from the disjoint
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union of + X (denoted also by X) and wX, we will form a G-connected sum using
connected sum data

D(H) = (x;(H), p;(H)D,  (H) = (o),

given as follows: each x;(H) is a point in X with isotropy subgroup H, and each
¢;(H) is an orthogonal H-automorphism of the H-module determined on the
tangent space T, X, such that

+1 when a(H) <0
deg ¢:(H) = {—1 when a(H) > 0.
Moreover, we assume that the orbits of points x;(H) all are different. In order to
form the G-connected sum, for all (H) =« #(w) and all i =1, ..., |a(H)|, choose
sufficiently small H-invariant closed disk neighborhoods D(x;(H)) of x;(H) in X so
that H acts orthogonally on D(x;(H)) and the G-invariant closed tubular neighbor-
hoods GD(x;(H)) =2 G x 4, D(x;(H)) of the orbits G(x;(H)) all are disjoint. By
identifying each D(x;(H)) with the H-invariant closed (unit) disk in T, X, we
obtain the G-embedding

&,(H) : GD(x;(H)) » G/H x sign a(H)X;, X, =X
gx > (gH, g(o,(H) - x)).

From the disjoint union of X\ U, c 5@ U G(x;(H)) and

la(#)|

I 11 (G/H x sign a(H)X,)\(G/H x {x;(H)}),

(HycF(w) i=1
we form the quotient space by identifying G(tx) with @,(H)(G((1 — t)x)) for all
H)cFFw),i=1,...,a(H),x € 0D(x;(H)), and 0 <t < 1. As the result, we ob-
tain an orientable G-manifold (and the G-action is orientation preserving) which we
denote by

X #c0X rel{2(H) |(H) c F(0)}

and call the G-connected sum of X and wX along orbits of types (H) with connected
sum data D9(H) for all (H) < F (w).

Remark. The G-space G/H x ( + X) with the diagonal G-action and the twisted
product G x , Res§(+ X) are naturally G-diffeomorphic, so that in our construc-
tion, we can replace the cartesian products by the corresponding twisted products.
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Now, using such a G-connected sum, we wish to show that G-actions on
homotopy spheres can often be converted to G-actions on the standard spheres
without changing the G-fixed point data (cf. [St], Section 4, as well as [M2], Section
3 and [M3], Section 3). Here, we say that a G-invariant subset & of S(G) is
efficient if for all (H) < %, the representatives H are proper subgroups of G and the
integers |G /H| are relatively prime, where (H) runs through the classes in &, which
amounts to saying that for some integers b(H) given for all (H) < &,

Y b(H)|G/H|=1. (1.1)

(Hyc F

Clearly, if such a (nonempty) subset # of Y(G) exists, G is not of prime power
order.

EXAMPLE 1.2. Let G be a finite group not of prime power order. Then the set
of all Sylow subgroups of G is an efficient G-invariant subset of £(G).

PROPOSITION 1.3. Let G be a finite group not of prime power order, let ¥ be
a (nonempty) efficient G-invariant subset of ¥(G), and let £" be a homotopy sphere
of dimension n > 5. Suppose there exists a smooth, orientation preserving action of G
on X" with G-fixed point set M, such that for each (H) c &, the submanifold X7y, of
all orbits in X" of type (H) has a connected component of positive dimension. Then
there exists a smooth, orientation preserving action of G on the standard sphere S"
containing M as the G-fixed point set, such that the equivariant normal bundles
(M, 2") and v(M, S") are equivalent as G-vector bundles.

Proof. Consider X" with a chosen orientation as an element of @,, the group of
oriented homotopy n-spheres with addition given via connected sum. In O,
2" #(—2") =0 and more general, for any integer k, 2" # (kX") =(1+k)Z".
Moreover, @, is a finite group (see [KM]). Assume |@,|> 1 (otherwise, there is
nothing to prove).

Let {b(H) | (H) = %} be a set of integers b(H) such that (1.1) holds. For each
(H) « #, choose an integer c(H) so that

a(H) =(|0,| - Db(H) + |0, |c(H) < 0.

Since for each H € #, X" has infinitely many points with isotropy subgroup H, we
can form the following G-connected sum:

z"#a( 3 a(H)[G/HJ) " rel{9(H) | (H) = ),

(HYc #
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where in all connected sum data 2(H) = (x;(H), ¢,(H))I*®) each ¢,(H) is the

identity on T, 4 2". We claim that the underlying space S” of this G-connected
sum is the standard n-sphere. In fact, in @,

S"=<1+ Y a(H)|G/H})Z"

(Hyc &F

1+ Y (6,]- 1)b(H)|G/H|)Z"

(.2
(

- ¥ b(H)lG/H])Z”

(Hyc &F

0,

I

proving the claim. Clearly, for the G-action on S” (which is orientation preserving),
M occurs as the G-fixed point set and v(M, Z") = v(M, S™). O

Remark. As the proof of Proposition 1.3 shows, in order to get the result, we do
not need to assume that for each (H) < #, X7y, has a connected component of
positive dimension. What we need is that for each H € %, X” has sufficiently many
points with isotropy subgroup H.

2. Deleting-Inserting Theorem

In the current paper, we use three kinds of dimension conditions, and the usage
does not necessarily coincide with that of other papers. The dimension conditions
are the strong gap hypothesis, the gap hypothesis, and the weak gap hypothesis. Let
G be a finite group and let X be a G-manifold. As usual, such hypotheses, put some
dimension conditions on the connected components X{, X%, X%, ... of the H-
fixed point sets X* for subgroups H of G. More precisely, let # be a subset of
F(G). We say that X satisfies the strong gap hypothesis for &, if

dim XY 25forall He #,i=1,2,3,...,and

(SGH)<dim Xf > 2(dim X} + 1) for K € #(G), provided
HEK and X¥ 5 XK.

We say that X satisfies the gap hypothesis for &, if

dmX? 25foralHe #,i=1,2,3,...,and
(GH)<{dim X} > 2 dim X[ for K € #(G), provided
HZK and X} > XF.



Smooth actions of finite nonsolvable groups on spheres 17

We say that X satisfies the weak gap hypothesis for ¥, if

(dim X >5forall He F,i=1,2,3,..., and
dim X7 2 2 dim X[ for K € #(G), provided
HZK and X[ > XK, where the equality

| may happen only when |K/H|=2.

(WGH) <

Following Oliver [O2], p. 92, we say that a G-invariant subset # of &(G) is a
separating family, if for any pair H < K of subgroups of G such that K/H is of
prime (power) order, either both H and K are in # or neither is. For a finite
nonsolvable group G, we write Z(G) for the smallest separating family containing
G. Note that H € Z(G) if and only if H 2 G*. Now we set

J(G) = L(G)\F(G).

For example, if G is perfect, #(G) = {G} so that #(G) = ¥(G)\{G}. In this paper,
for a finite nonsolvable group G, we say that a separating family # of subgroups
of G is proper if £ is closed under taking subgroups, contains the trivial subgroup
of G, and does not contain G. Clearly, such an # contains all solvable subgroups
of G, and £ is contained in #(G). Thus, in £(G), the smallest proper separating
family consists of all solvable subgroups of G and #(G) is the largest proper
separating family.

SITUATION 2.1. Let G be a finite nonsolvable group and let .# be a proper
separating family in %(G). Let Y be a homotopy sphere with a smooth action of G
such that the G-fixed point set Y€ is nonempty and the following four conditions
hold.

(2.1.1) # =1Is0(G, Y\ YY), the set of all isotropy subgroups appearing for the

G-action on Y\Y¢.

(2.1.2) For each H € #, Y# is connected and simply connected.

(2.1.3) For each H € .#, each element of Ng(H), the normalizer of H in G, acts

on Y# via an orientation preserving transformation.

(2.1.4) Y satisfies the strong gap hypothesis (SGH) (resp. gap hypothesis (GH))

for .
Furthermore, let M be a manifold obtained from all connected components
M, M,, ..., M, of Y° by deleting some of them and, perhaps, inserting copies of
some of the maintaining connected components. More precisely, for a sequence
dy,d,,...,d, of integers d; > 0, define M as the disjoint union



18 ERKKI LAITINEN ET AL.

so that d; = 0 means that we have deleted the M, connected component. Finally, let
v be the G-vector bundle over M which restricts to v(M;, Y) over each copy of the
connected component M, of M.

THEOREM 2.2. (Deleting-Inserting Theorem) Let G, .#, Y, M, and v be as in
Situation 2.1. Then there exists a smooth action of G on a homotopy sphere X with
G-fixed point set X€ diffeomorphic to M and the equivariant normal bundle v(X°, X)
equivalent to v, such that the following four conditions hold.

(2.2.1) Iso(G, X\X°) = 4.

(2.2.2) For each H € #, X" is connected and simply connected.

(2.2.3) For each H € #, each element of N;(H) acts on X" via an orientation

preserving transformation.
(2.2.4) For each H € #,dim X" = dim Y*.

The proof of Theorem 2.2 will be provided in Sections 3 and 4. Clearly, in the
condition (2.1.4), the restriction (SGH) implies the restriction (GH) on Y for .#.
The reason we distinguish the two cases is to stress that in the proof of Theorem
2.2, the equivariant surgery theories (in particular, the surgery obstruction groups)
that we use are different for the two cases. When (SGH) (resp. (GH)) is satisfied,
we may apply the equivariant surgery from [DP], [PR], or [LiiMa] (resp. [M4]).
The case of (SGH) is sufficient to use Theorem 2.2 in order to prove Theorems A
and B. Now, Theorem 2.2, the proof of Proposition 1.3, and Example 1.2 yield
immediately the following corollary.

COROLLARY 2.3. Let G, #,Y, M, and v be as in Situation 2.1. Then there
exists a smooth action of G on the standard sphere S" of dimension n = dim Y, such
that S" contains M as the G-fixed point set with equivariant normal bundle v, and
Iso(G, S"\M) = £.

Now we wish to recall (e.g. from [tD], Chapter IV) that for a finite group G,
the Burnside ring Q(G) of G (originally defined to be the Grothendieck group on
all finite G-sets) can be defined as the set of equivalence classes [X] for all finite
G-CW complexes X, where [X] =[Y] if and only if the Euler characteristics y(X*)
and y(Y*) are equal for all H € #(G). Addition and multiplication in Q(G) are
defined by using (again) disjoint union and cartesian product, respectively.
Clearly, [X] =0 in Q(G) if and only if y(X*”) =0 for all H € #(G), and —[X] =
[X x F], where F is a finite CW complex with trivial G-action and y(F) = —1.
Moreover, [X] =1 in Q(G) if and only if y(X*) =1 for all H € #(G). In the proof
of Theorem 2.2, we will make use of the following ring homomorphisms defined
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on Q(G) for any H € ¥(G),

X AG)—Z,  [X] (X,
Res$ : Q(G) - Q(H), [X] — [ResF (X)),
Fix$ : Q(G) » QIN/H), [X]+ [X"],

where N = N;(H), so that X* has the canonical action of N/H. Clearly, for an
element p € (G), Res§(u) =0 in Q(H) if and only if y(u) =0 for all subgroups
K of H. Now, recall also that there is an embedding of rings,

QA6)— @ z

(H) = #(G)

o = (xu(w) [ (H) = L(G),

and an element (a(H) | (H) = %(G)) lies in the image of this embedding if and only
if

Y n(H,K)a(K) =0  mod|Ng(H)/H|

(K)

for all (H) = #(G), where n(H, K) are some integers with n(H, H) = 1, and the sum
is over the G-conjugacy classes (K) such that H <] K and K/H is cyclic (see, e.g.,
[tD], Chapter IV, Theorem (5.7)). In particular, we get the following idempotent 1,
(different than 0 and 1) in the Burnside ring of G (cf. [tD], Chapter IV, Proposition
(7.1) and Theorem (7.7)).

PROPOSITION 2.4. Let G be a finite nonsolvable group and let S be as in

Situation 2.1. Then there exists an idempotent 1, in the Burnside ring (G) such that
for any H € ¥(G),

0 whenHe S,
Xu(is) = {l when H ¢ #.

COROLLARY 2.5. Let G be a finite nonsolvable group and let ¥ be as in
Situation 2.1. Then there exists an element u in the Burnside ring Q(G) such that the
following two conditions hold.

(2.5.1) For the homomorphism yg : QG) - Z, xs(n) = 1.

(2.5.2) For all H € #, Res§ (1) =0 in Q(H).
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3. Construction of G-normal maps

For a finite group G and a G-module V, the product G-vector bundle X x V
over a G-space X we denote by &(V') provided the base space X is obvious from the
context and we use the notation &(R) when V is just R with the trivial action of G.
Moreover, if ¢ is a G-vector bundle over X (with a chosen invariant inner product),
then for a subgroup H of G and a subspace A of X¥, we get the decomposition of
¢ | A4 into the Whitney sum,

(A= [ Du@® |,

of the H-nontrivial summand '(é | A)y and the H-trivial summand (£ | 4)~.
In the current paper, for a finite group G, by a G-normal map (with source
manifold X and target manifold Y'), we mean a triple w = ( f; b; ¢) defined as follows.

Source-Target Data. f: X — Y is a G-map between two closed G-manifolds X
and Y with # =Iso(G, X\X°) =Iso(G, Y\Y%), and for each H e #, X¥ and Y#
are oriented and (usually) connected, dim X” =dim Y#, and f7: X" > Y*" has
degree one.

Bundle Data. b is a stable G-vector bundle isomorphism between the taﬁgent
bundle 7X and the induced bundle f*(7TY); that is,

b:TX®e(V) > PHTY)@e(V)

is a G-vector bundle isomorphism for some real G-module ¥, and c is a collection
of H-vector bundle isomorphisms,

cu (TX | Xy S PMTY| Y™, Hed,
such that on each
(TX | X @e(V)u =(TX | X))y @ e(Vy),

b restricts to ¢, on (TX | X*), and the identity on (V).

If X# and Y¥ are not connected, we assume that f“ induces a bijection
fH 7o (X)) - ny(YH) between the sets of the connected components of X and Y#,
respectively, and define ¢ similarly as above by restricting the bundles to the
connected components, so that ¢ occurs as “a part” of 5. More precisely, ¢ is a
IT1;(X)-bundle map related with b as described in [Pe3], p. 9, by using the notion
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of stabilization (see [DP], Definitions 4.11 and 4.12 for the notions of I1;(X)-bundle
map and stabilization in more general circumstances).
The goal of this section is to prove the following theorem.

THEOREM 3.1. Let G, #, Y, M, and v be as in Situation 2.1, and assume that
for each H € #, Y" has a specified orientation. Then there exists a G-normal map
w = (f; b; ¢) with source G-manifold X such that X¢ and M are diffeomorphic, and the
G-vector bundles v(X°, X) and v are equivalent.

For a finite group G, we will make use of the G-equivariant cohomology theory
defined as follows. Let (X, A) be a pair of finite G-CW complexes (X contains A4 as
a G-invariant subcomplex) with a base point in 4. For a real G-module U, we let
U’ = U u{o} to be the one-point compactification of U with oo as base point, and
note that there is a canonical pointed G-homeomorphism U’ = S(U @ R) with 0 in
U’ corresponding to (0, —1) in S(U@ R) and oo in U corresponding to (0, 1) in
S(U @ R). For any integer g = 0, put

wg (X, A) =1im [(#R[G])" A (X/A), (nR[G])" A S7G,

where [, ]2 denotes the set of all G-homotopy classes of base point preserving
G-maps between the occuring smash products and SY=R?U{c0} has the trivial
G-action.

For a finite G-CW complex Y, we put

w&(Y) = 0§ (Y L pt, pt),

where the isolated point pz is the base point of Y L1 pr. Assume U is the realification
of a complex G-module including C[G]. Then one has the isomorphisms

QG) = % (pi) 2 [U", UTS. (3.2)

Via the first isomorphism (noticed by Segal [Se]), % (X, 4) is a module over the
Burnside ring €(G); cf. [Pel], Chapter II, Section 6. For the description of the second
isomorphism, see (e.g.) [H] and [Ru]. In particular, it follows from [Ru], Sections
4 and 7 (especially the proof of Theorem 7.2) that the following lemma holds.

LEMMA 3.3. (Rubinsztein Lemma) Via the isomorphisms in (3.2), each
element

z(H)[G/H] in Q(G)

(H) = #(G)
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corresponds to an element in [U’, U']|% which has a representative ¢ : U — U’ a base
point preserving G-map, such that the following four conditions hold.
(3.3.1) ¢ is G-transverse regular to 0 in U'.
(3.3.2) The number of points in ¢ ~'(0) with isotropy subgroup H is equal to
|Ng(H)/H| - |z2(H)|.
(3.3.3) ¢ is orientation preserving (resp. reversing) at each point in ¢ ~'(0) with
isotropy subgroup H provided z(H) > 0 (resp. z(H) < 0).
(3.3.4) For each point x € ¢ ~'(0) with isotropy subgroup H, the normal derivative

do,: Uy =(T,U)y > (ToU)y = Uy

is the identity map.

Hereafter, for a G-manifold X and a G-module U, we identify X with X x {0} in
X x U’, and similarly as in [Pe3], p. 11, for a smoothmap ¢ : X x U' - X x U’, by
the normal derivative of ¢ at x € ¢ ~'(X) with H = G, we mean the H-endomor-
phism pr ° de, ° in is the composition

in do, . r .
U Tu(X x U) —5 Ty (X x U') — N (X, X x U') = U.

Now, with the hypothesis of Theorem 3.1, consider an element u in the Burnside
ring Q(G) provided by Corollary 2.5. Then it follows from (2.5.1) and (2.5.2) that
the following lemma holds (cf. [Pel], Localization Lemma 1.8, [Pe2], Lemma 3.9,
and [Pe3], Lemma 1.6).

LEMMA 3.4. (Localization Lemma) Let j: Y° ¢, Y be the inclusion map and
let S < Q(G) be the multiplicatively closed subset consisting of the powers u™ for all
m 2 0. Then the localized restriction homomorphism

S*: ST lwd(Y) > S 'w&(Y)

is an isomorphism.
Proof of Theorem 3.1. For a finite G-CW complex B, wZ(B) has a special
element 1, which is represented by the map

UArBLp) — U, [x,y] = x and [x, pt]+ ©

for all x e U’ and y € B. From Situation 2.1, recall that

d;-times

k k
Y=]IM and M=]IMII --11M,

i=1 i=1
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for some integers d; = 0. Clearly, 0% (Y% = @*_, % (M,). Set
k
o =((1 _di)lMi)f’(=l € _@l g (M;).
=

Using Lemma 3.4, take an element y € S~ 'w%(Y) such that S—'j*(y) = pud in
S 'w(Y%). Then, for a sufficiently large integer m, there exists an element
B € w(Y) such that

J*Bw) =um*18 i 0%(YO).

Now, take a base point preserving G-map U’ A (Y LI pf) » U which represents
1, — Bu. This map induces a G-map ¢ : U" x Y — U’ such that ¢(o0, y) = oo for all
yeY Nowwe geta G-map ¢ : Y x U =Y x U’ by setting

Y(y, x) = (y, o(x, y)) forall xeU" and yeV.

Here, U is a sufficiently large real G-module (which may be suppose to be a
realification of a complex G-module) with G-invariant inner product. As before, we
identify Y with Y x {0} in Y x U". The restriction y,; of Y to M; x U" may be
supposed to be a product of the identity map on M, with a G-map U’ — U", since
the i-th component of j*(1, — pu) is equal to (1 —u”*'(1 —4,))1,, . By assump-
tion,

we(1—p"+t'(1—d))=d  fori=1,..., k.

We can suppose that y, is transverse regular to M,,

d;-times

—M
ll’i_l(jui) =Mi-I—I"’LIMi,

and the normal derivative of y at any point in ¢ ~'(Y°) is the identity map (cf.
Lemma 3.3, the conditions (3.3.1) and (3.3.4)).

Deform ¢ by a G-homotopy relative to Y x U’ so that the resulting map
0:YxU Y xU is transverse regular to Y (see [Pe3], Lemma 2.7). Set
X=0"'(Y)and, as f: X > Y, take 0 | X. Then X n(Y x {0}) = . Moreover, it
follows from the construction that X¢ and M are diffeomorphic, and the G-vector
bundles v(X°, X) and v are equivalent. Write p, : Y x U'> Yand p,.: Y x U - U’
for the projection maps. Let v, and v, be the equivariant normal bundles of X and
Y, respectively, in ¥ x U". Note that v, and the pull-back bundle f*(v,) are
equivalent as G-vector bundles. Clearly, v, is just the product bundle &(U) over Y.
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Now observe that, as G-vector bundles,

TX@eU) ®&(R) = TY ®/*(=(V)) ® &(R)

=TX®f*(vy) ®e(R)

~TX @ vy De(R)

=T(Y x U) | X De(R)

=(P¥TY)Dpt-(TU)) | XDpt-((R) | X

=p3(TY) | X®pt-(TU ®e(R)) | X

=p3(TY) | XDpt-(V) ®e(R)) | X

=y*(p3(TY)) | X ®Y*(pt-(e(U) ®e(R)) | X

= 0*(pY(TY)) | X ®0*(pt-(e(U) ®e(R)) | X

=0*(p¥(TY)) | X ®O*(pt-(TU @(R))) | X

=0*(pUTY) ®pt-(TU)) | X D O*(pE-((R)) | X

=0%T(Y x U")) | X D &(R)

=fXT(Y xU) | Y) ®&R)

=fHTY)Df*(vy) De(R)

=fXTY) @eU) D e(R),
where = (resp. =, resp. =) indicates that there exists a standard isomorphism
(resp. a metric-preserving isomorphism, resp., an isomorphism). Therefore, we
obtain a stable isomorphism b : TX —f*(TY). Since we may assume that the
normal derivative of 0 at any point in X is the identity map, we also obtain the

required collection ¢ of H-vector bundle isomorphisms, H € #. As a result, we get
the triple w = (f; b; ¢). Moreover, for H € .4,

Res§ (1Y — Bu) = ResG(1,) in o (Y).
Thus, we can obtain an H-normal cobordism between Res%(w) and the identity

H-normal map on Res%(Y). This allows us to orient X* so that f: X¥ —» Y# is of
degree one, producing the required G-normal map w = (f; b; ¢). O
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4. Modification of G-normal maps

Let w = (f; b; c¢) be the G-normal map constructed in Theorem 3.1. By perform-
ing G-surgery on w of types (H) < f =Is0o(G, X\X°) =Iso(G, Y\Y°), we may
assume that

A X% Y* is [dim X¥/2]-connected for each H € 4. (4.1)

In particular, X# is connected and simply connected, and so is the set of all points
in X with isotropy subgroup H.

As usual, by —w = (—f; —b; —c) we mean a copy of w (denoted also by +w)
with the orientations of all underlying spaces reversed. For each H € .4, we will
consider the obvious G-normal maps

Ind%(ResG(+w)) =G x 4 ResG(+w).

Let 5# be a proper separating family in &(G) with s# < .#. Then it follows from
Proposition 2.4 that the following corollary holds.

COROLLARY 4.2. For the idempotent 1, € Q(G) occuring in Proposition 2.4,
the idempotent k =1—1, in the Burnside ring SNG) fulfills the following two
conditions.

(4.2.1) For some integers a(H) with (H) < £,

k=Y a(H)G/H].

(H)cs

(4.2.2) For each H € #,Resé (k) =1 in Q(H).

Now, for the element k € (G) occuring in Corollary 4.2 and any integer ¢, we
define a G-normal map

W #G IKW=(f #¢ IKf, b #¢ tkb, ¢ #¢ tkc)
by forming a G-connected sum of w and (simultaneously) a number of copies of
Indg(Res; (£ w)) for types (H) = £. More precisely, first we consider the following
G-connected sum:

X #0cX rel{@(H) | (H) = F, t - a(H) # 0}

(cf. Section 1), where in all connected sum data 2(H) = (x,(H), @, (H))I.4*, each
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H-automorphism ¢, (H) of T, )X is the identity on the H-nontrivial summand of
T, X, and it restricts to ¢,(H)" on (T, ) X)" with

w_ )+l whent-a(H) <0,
deg ¢:(H)" = {—1 when ¢ - a(H) > 0.

Remark. 1t follows immediately from the condition (4.1) that the G-connected
sum X #stkX rel{2(H) |(H) = #,t - a(H) #0} is unique (up to G-diffeomor-
phism); that is, it does not depend on the choice of points x;(H), as well as the
choice of H-automorphisms ¢;(H) with deg ¢,(H)" = + 1. Therefore, in the nota-
tion of the G-connected sum, we drop the connected sum data.

Now, similarly as X # ;tkX, we form Y #;txY, and by G-homotopy deforma-
tions of f, using Whitney’s trick on the H-fixed point sets X“ H e .#, (recall
dim X¥ > 5), we obtain the degree one G-map

f# i X #stkX > Y #51KY

whose bundle data b # . tkb and ¢ # tkc are obtained by forming the appropriate
G-connected sums of bundle data in w and Ind§, (Res%( +w)).

Now, with the hypothesis in Theorem 2.2, assume . is a G-invariant subset of
H such that if Ke A", L e #, and K < L, then L € & . In the following theorem,
we deal with w=(f;b;c) modified by performing G-surgery of type X (i.e.,
G -surgery operations of isotropy types in #") and taking G-connected sums of the
form described above, which we simply refer to as G-connected sums of type .#.
The modified w is a G-normal map rel #"; that is, a G-normal map such that for
the modified degree one G-map f: X - Y, f*: XX - YX is a homotopy equivalence
for all K € ). The theorem may be compared, e.g., with [PR], Chapter 3, Theorem
12.4 and Chapter 4, Theorem 2.2.

THEOREM 4.3. Let H be an element in #\A such that K € #, H S K implies
K e . If the G-normal map w = (f; b; c) can be modified by G-surgery of type KA
and G-connected sums of type S to a G-normal map rel A", then w can be modified
by G-surgery of type X" U(H) and G-connected sums of type F to a G-normal map
rel X U (H).

Using Theorem 4.3, we complete the proof of Theorem 2.2 inductively on %".
We start our induction with ) = ¢, do the inductive step by adding one isotropy
type at a time as described in Theorem 4.3, and end the induction with
A u({e}) = #. As the result, after all modifications of w = (f; b; ¢), we obtain a
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G-normal map w' = (f; b’; ¢’) with a degree one G-map f’: X' — Y’ such that
fH. X" Yy'"  is a homotopy equivalence for all H € #. (44)

Sincy Y is a homotopy n-sphere, so is Y’, and hence by (4.4) applied for H = {e},
X’ is a homotopy n-sphere. It follows from the construction that X’¢ and M are
diffeomorphic, and the G-vector bundles v(X’¢, X’) and v are equivalent. Moreover,
the conditions (2.2.1)-(2.2.4) all hold, proving Theorem 2.2.

Proof of Theorem 4.3. Suppose w = ( f; b; ¢) is modified by G-surgery of type )
and G-connected sums of type .# to a G-normal map rel #. Observe that in
Situation 2.1, (SGH) (resp. (GH)) holds for the modified target Y. Also, for the
modified X, Iso(G, X\X°) =.# and X satisfies the strong gap. (resp. gap) hypo-
thesis for #.

Let H be an element in s\ such that Ke #, H £ K implies K € . Set
N = N;(H). By performing G-surgery of type (H), we may assume that

. x%->Y" s [dim X*/2]-connected.

In particular, X is connected and simply connected. Note that if K e £(G),
H < K, and K/H is a nontrivial hyperelementary group, then K € )". Therefore,
the surgery kernel (in the sense of [M4], Definitions 3.1 and 4.1) of f* is a stably
free Z[N/H]-module. We denote by o,(w) the obstruction for G-surgery of type
(H) to changing w so that to make f: X# - Y# a homotopy equvalence. If X
satisfies the strong gap hypothesis for (H), then by [DP] or [PR], the obstruction
0,(w) lies in the Wall group L:(Z[N/H]), where ¢ =dim X”. If X satisfies the
gap hypothesis for (H), then by [M4], 6,(w) lies in the Bak group W_(Z[N/H],
I'(N/H, X)), where I'(N/H, X*) is the form parameter on Z[N/H] generated
by all elements g in N/H such that g?=1 and dim(X*)¢ =[(q — 1)/2]. We have
mentioned above two kinds of surgery obstruction groups; that is, the Wall groups
and the Bak groups. In both cases, we denote the surgery obstruction groups by
the same notation O(N/H, X*), and consider the assignment:

S O(S, Res§y'#(X*)), S eP(N/H).
It is well-known that in the case of Wall groups, as well as Bak groups, this
assignment defines a Mackey functor from the category of subgroups of N/H to the

category of abelian groups. Therefore, in both cases,

{O(S, Resy'H(X*™)) | S € F(N/H)} is a Mackey functor.



28 ERKKI LAITINEN ET AL.

Moreover, this functor has the defect set consisting of all solvable subgroups of
N/H. That is,

Res
ON/H, X¥) — @ (S, Res¥H(XH))  is injective. (4.5)

S solvable

This is well-known in the case of Wall groups, as well as Bak groups. In fact, in
these two cases, the defect sets consist of all 2-hyperelementary subgroups of N/H
(see [Dr] and [Ba], Section 12). Now, for an integer ¢, we form w # ;txw, and we
wish to compute the corresponding G-surgery obstruction o, (w # ;tkw). First, we
claim that for each L € .#,

0y (Indf (Resf (£ w) = [(G/L) "o, (£ w), (4.6)
where [(G/L)"] lies in Q(N/H). Indeed, for N = N;(H) and L € #, choose a
complete set &/ of (N, L)-double coset representatives in G (say, with ee G
representing NL). For each a € o7, let Res$(X), be the (Nnala~")-space

(NnaLa=') x Res¢(X) — Resf(X), (g, x) — a~! gax.

Then we get the following N-equivalences (cf. [tD], Chapter I, Section 4, (4.6)):

Res$(G x, Res$(X)) = JI NaL x, Resé(X)

ae A

~ G

= I_I N X NraLa—1 ReSL(X)a'
ae A

Moreover,

(G x L Res§XN? =TI N X ynara—1 Res§(X)a™'H,

where the disjoint union runs over all a € & with H cala~'. Thus, we get the
following equalities, where the sums run over all a € & with H cala™!:

o, (Ind§ (Resf(+w))) = Z Indmfmm -hy/H ou(Res§ o -1(£W)

= Z Indmﬁ aLa—V)/H Resﬁ'é’,’wm —iyu(oy( £ w))
=[(G/L)"lo,(+w),

proving the claim.
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Now consider the Burnside ring homomorphism Fix§, : &(G) —» Q(N/H), where
N =Ng(H). If H= L < N and L/H is solvable, then L € 5. Thus, for such an L,
Res¢(x) = 1, by (4.2.2), and hence Res}/ff(Fix§(x)) = 1. Now, by the injectivity in
(4.5), Fix§ (k)oy(w) = 05(W), so that

Fix$ (1 + t)o (W) = (1 + D)o 5 (W).

On the other hand, it follows from (4.6) and the definition of G-surgery obstruction
that

o (W#stew) = Fix§ (1 + tx)a,(w).
Consequently, we obtain
ou(W#gtkw) = (1 + )o,(W). (4.7)

completing the calculation of g, (w # gtkw). Since the modified w is a G-normal
map rel A7, so is w # gtkw. Now, for t = — 1, the obstruction g, (W # ;txw) vanish
by (4.7). Thus, we can perform G-surgery on w #;(—1)xw of type (H) to make

(f#6(=Dr) 1 (X #6(—DxX)" > (Y #6(—DeY)"

a homotopy equivalence, to produce the required G-normal map rel ¥ U(H). O

S. Proofs of Theorems A and B

First, recall from the introduction that for a finite group G, we let G* be the
unique smallest normal subgroup of G such that G/G** is solvable. In other words,
G*°' is the smallest term of the derived series of G. Moreover, the separating family
Z (G) defined in Section 2 can be characterized as follows: H € #(G) if and only if
H 2 G**. Finally, recall that #(G) = #(G)\Z(G).

PROPOSITION 5.1. Let G be a finite nonsolvable group. Then, for any integer
£ 25, the real G-module V = ¢(R[G] — R[G/G**)) fulfills the following three condi-
tions.

(5.1.1) Iso(G, V\{0}) = 4£(G).

(5.1.2) V satisfies the weak gap hypothesis for #(G).

(5.1.3) For any automorphism ¢ : G -G, @*V and V are equivalent as G-mod-

ules, where @*V has the same underlying vector space as does V, and the
G-action given by (g,v) — @(g)v.
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Proof. Consider the canonical G-module embedding of R[G/G*"] into R[G] and
take the orthogonal complement

W = R[G] — R[G/G*"]
of R[G/G*] in R[G]. Then, for each H e #(G),
dim W* = |G/H| — |G/HG*"!|. (5.2)

Thus, dim W# = 0 if and only if ‘IH | = |HG*"!|, if and only if H = HG*", if and only
if H=2G*, if and only if H € #(G). In other words,

dim WH>1  if and only if H e 4(G). (5.3)

We claim that the following condition holds for ahy H, K € 4(G).

{IfH <K, then dim WH = 2 dim WX (5

and the equality holds if and only if |K/H| = |KG*"|HG*"| =2,
In fact, since |KG**'/HG*"'| < |K/H| for H S K, thus

dim W* = |G/H| — |G/HG*"!|
=|K/H||G/K|— |KG*'/HG*"||G/|KG*"|
> |K/H|(|G/K| - |G/KG*!|)
> 2 dim WX,

proving the claim. Now, the conditions (5.1.1) and (5.1.2) follow immediately from
(5.3) and (5.4); remember £ = 5. The condition (5.1.3) follows from the fact that
G*°' is a characteristic subgroup of G. O

Remark. In Proposition 5.1, suppose further |G/G*| is odd (for example, G is
perfect or G is an extension of a finite odd order group by a perfect group). Then
|KG**!|HG*"'| is odd, too, whenever H < K for H, K € #(G). According to (5.4), the
G-module W = R[G] — R[G/G*""] satisfies the gap hypothesis for #(G). Therefore,
it follows that for £ = 5, the G-module /W satisfies the strong gap hypothesis for
J#(G). Note also that if X is any G-manifold (or a G-CW complex) with nonempty
G-fixed point set, then the cartesian product X x /W (with the diagonal G-action)
satisfies the strong gap hypothesis for #(G) provided ¢ is sufficiently large.
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If ¢ is even, the real G-module /(R[G] — R[G/G*)) is the realification of the
complex G-module #/2(C[G] — C[G/G*""]). Therefore, Proposition 5.1 yields imme-
diately the following corollary.

COROLLARY 5.5. Let G be a finite nonsolvable group, let W = R[G] —
R[G/G**"), and let V = ¢ W for an even integer £ = 6. Then the G-module V of dimen-
sion £(|G| — |G/G*")) fulfills the conditions (5.1.1)—(5.1.3) in Proposition 5.1, and for
H € #(G), each element of the normalizer Ng(H) acts on V¥ via an orientation
preserving transformation.

Proof of Theorem A. Let G be a finite nonsolvable group such that |G/G*| is
odd. Let # = #(G). For any G-module V' = /W occurring in Corollary 5.5, let Y be
the double of the G-invariant unit disk D(V) in V; ie., Y=S(V@®R), the
G-invariant unit sphere in ¥ @ R, where G acts trivially on R. Since V¢ = {0}, thus
Y = {x, y}. Moreover, Iso(G, Y\ Y®) = #(G). Set M = {x}. Then, for G, 4, Y, M,
and v = V, Situation 2.1 is fulfilled with Y satisfying the strong gap hypothesis for
# (see Remark to Proposition 5.1). Therefore, Corollary 2.3 yields a smooth action
of G on §” with exactly one G-fixed point x at which the tangent G-module is
equivalent to V. In particular, n = dim V. The “inserting part” of Theorem 2.2 and
Corollary 2.3 complete the proof of Theorem A. O

Proof of Theorem B. Let G be a finite nonsolvable group such that |G/G*"| is
odd. Let £ = #(G). According to [O2], Section 2, Theorem 4 and Proposition 8§,
there exists a finite contractible G-CW complex X such that X* is nonempty and
contractible for each solvable subgroup H of G, and X is empty for each
nonsolvable subgroup H of G. Let M be a closed smooth manifold whose
connected components all are stably parallelizable and all have the same dimension
m 2 0. Consider the join X * M with the join G-action. Then X » M is a finite
contractible G—~CW complex with (X « M)¢ = M. For a G-module V = ¢W occur-
ing in Corollary S.5, take the product G-vector bundle e(R™ @ V') over X»M, where
G acts trivially on R™. By using this bundle for sufficiently large #, the equivariant
thickening ([Pa2], Theorem 2.4 and Corollary 3.3) converts X * M into a disk D"
with a smooth G-action such that (D")¢ = M, Iso(G, D"\M) = .#, and as G-vector
bundle, the tangent bundle T(D") is equivalent to the product G-vector bundle
e(R™® V) over D". Now the equivariant double of D" yields a smooth action of G
on the sphere Y =S8" such that Y°= M 11 M. Moreover, it follows from the
equivariant thickening that for G, .#, Y, M, and the product G-vector bundle
v=¢V) over M, Situation 2.1 is fulfilled with Y satisfying the strong gap
hypothesis for .# (provided ¢ is sufficiently large) because dim Y = m + dim V'*
for any H € # (cf. Remark to Proposition 5.1). Thus, the “deleting part” of
Theorem 2.2 and Corollary 2.3 completes the proof of Theorem B. O
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Added in proof. Recently, Laitinen and Morimoto [LM] proved that for each
finite group G admitting a smooth fixed point free action on a disk, there exists a
smooth action of G on a standard sphere with any given finite number k£ > 1 of
G-fixed points. However, the dimensions of the spheres occurring in Theorem A of
this paper differ from the dimensions of the corresponding spheres in [LM]. Also,
for a class of groups G, the result in [LM] depends on the work [BM] by making
use of a G-module satisfying the weak gap hypothesis.

Appendix

The goal of this appendix is to point out that by using the work [BM] and [MS5],
our arguments show that the Deleting-Inserting Theorem (Theorem 2.2) holds for
any finite nonsolvable group G, when the target G-manifold Y satisfies only the
weak gap hypothesis for # =1Iso(G, Y\Y°). Consequently, by argueing as in the
proof of Theorem A, it follows that Theorem A is true without assuming that
|G/G*"!| is odd.

In order to show that Theorem 2.2 holds when Y satisfies the weak gap
hypothesis for .#, it suffices to point out that Theorem 4.3 is true under the weak
gap hypothesis. To do it, we just repeat the proof of Theorem 4.3 with Wall (or
Bak) surgery obstruction groups replaced by the Witt groups whose definition
follows. Assume G is a finite group, 4 = (—1)%, w : G > {1, —1} is a group homo-
morphism, @(G) is a finite G-set, and p = p; : O(G) - F£(G) is a G-map. The
involution — on 4 = Z[G] = Map(G, Z) is given so that g — w(g)g ~! for g € G. We
fix G-invariant (with respect to conjugation) subsets S_; =S_,(G) and S, = S,(G)
of Gsuch that S_; c{geG|g=—Agin A} and S; ={geG|g=4g in 4}, and
we set

A_, =Z[G\S;] =Map(G\S;,Z) and 4, =Z[S,] =Map(S,, 2).

Clearly, A=A_, @ A;. Let A is the smallest form parameter on 4 containing all
elements of S_;.
By a quadratic module we mean the quadruple M = (M, {, ), ¢, a), where

® M is a finitely generated, stably free A-module,

e {(,>: M x M- A is a nonsingular A-hermitian form over A4,

® g:M—>A_,/Ais a quadratic map, and

® a:60(G) > M is a G-map (which will be called a positioning map).
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Here we assume the following properties

(Q1) ¢, ) is biadditive,

(Q2) <ax, by) =b<x, yra,

(Q3) <{x,y)> =4y, x),

(Q4) q(gx) =gq(x)g in A_; /A =A[(A + A4)),

(Q5) g(x +y) —q(x) —q(y) =<x,y) in 4_; /A =A/(A+ 4,), and

(Q6) g(x) + Aq(x) = (x, x> in A_, = A/A,,

where x,ye M,a,be A,g € G, and qf(\;c) is a lifting of g(x).

Let 2(A4) be the category of quadratic modules of this kind. A morphism
f:M->M in 2(4) is a homomorphism between the underlying 4-modules, pre-
serving hermitian form, quadratic form, and positioning map.

For M=(M, <, ), q, ), we define V : M - Z/2[S;] by

V(x)(g) =[e(<2*(g) —x,gx>) €Z/2, forxeM and geS§S,,
where

Z%(g) =) {ay) |y € U(G) and p(y) > g}
Y
and ¢ : 4 - Z is the map defined by

s( Y agg> =, for a, € Z, where e is the neutral element of G.
ge G

We denote by & 2(A4) the full subcategory of 2(A4) consisting of all M with trivial

V. If M e £2(A) has a laglangian L = M such that L 2 «(@(G)), then we call M a
null module in the category %2(A).
Now we define the Witt group:

WulZ,G,S_;,S,, O(G)) = Ky(#£2(A))/<{null modules in L2(A4)),
where K,(#2(A)) is the Grothendieck group of the category 2(A).

APPENDIX LEMMA. Let Z be a finite G-set and let © : #(G) = P(Z) be a
G-map, where P(Z) is the power set of Z. For H € ¥(G), suppose O@(H) = O(G), put

S*A(H)=HF\S_;‘, S)_(H)=H(-\SA,
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and consider py : O(H) - F(H), y — H np(y). Then the assignment
Hw— Wy(Z,H, S_;(H), S,(H), O(H))

is a Mackey functor from the category of all subgroups of G to the category of abelian
groups if the following three conditions are satisfied.
(C1) 8({e}) = @.
(C2) O(H)nO(H')=O(HNH’) for all H, H' € #(G).
(C3) v lies in ©({g)), whenever p;(y) 3 g for y € @(G) and g € S,(G).
Furthermore, for a set # of subgroups of G,

Res

Wui(Z, G, S_,;(G), $,(G), ©(G)) — He®# WulZ, H,S_,(H), S;(H), O(H))
is injective if the conditions (C1)—(C3), as well as the next three conditions all are
satisfied.

(C4) 5 contains any 2-hyperelementary subgroup of G.

(C5) Unex(O(H) x O(H)) = O(G) x 6(G).

(C6) There exists an element B € Q(G) such that B =X . ,» a(H)[G|H] for some
integers a(H), and Res§(f) =1 in Q(H) for all H € #.

The proof of Appendix Lemma can be provided by straightforward arguments
using induction of Dress type. For the details, we refer the reader to the work [BM]
or [MS5].

An explanation about the definition of the surgery obstruction o,(w) in the
Witt group is in order. Consider the context in the proof of Theorem 4.3 with
H = {e}. Since the G-action on X is orientation preserving, the homomorphism
w:G — {1, —1} is given as the trivial map. Performing G-surgery of the G-normal
map w = (f;b;c) until the middle dimension, we can assume that f: X - Y is
k-connected, where 2k =n = dim X. Then

K.(f) =Ker[fy: H(X) > H (Y)]

is a finitely generated, stably free 4-module. Set
S_;,={geCG|g?’=1,dim X¢*=k — 1},

and -
S,={geCG|g>=1,dim X*=k}.

Let © be the set of all k-dimensional connected components of L-fixed point sets,
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L € #(G). For every member X, of ©, there is a unique subgroup L of G such that
L is of order 2 and X, = X*. Furthermore, such X* must be l-connected. Let
p: 0 - £(G) be the map sending X, = X" to L. It may be assumed that each
member X~ of @ is oriented in such a way that g: X% — X%~ is orientation
preserving for any g € G. By the same argument as in ordinary surgery theory, we
can obtain the A-hermitian form {, ) : K, (f) x K. (f) = A from intersection num-
bers, and the quadratic form g : K, (f) = A _, /A from selfintersection numbers. The
positioning map a : @ — K, (f) is given by

a(XL) = proj o incl o [X*],

where [X£] is the orientation class of X*, inc/ : X*— X is the canonical inclusion
map, and proj: H.(X) - K, (f) is the standard projection. Then, M=
(Ke(f), ¢, D, q,) belongs to the category ¥2(A). For H ={e}, we define the
element a,(w) in

WZk(Z’ Gs S—l’ SM @)

as the equivalence class containing this M. For an arbitrary H € £(G), we replace
G by N/H with N = N;(H) in the definition above, and apply the same definition
for the trivial subgroup of N/H to get the element o,(w) in

Wul(Z, N/H, N/H(X", k — 1), NJH(X", k), O(N/H, X))

with N/H(X*",k —1), NJH(X?, k) and O(N/H, X*) defined in (D2)-(D4) and
(A3) below, where 2k = dim X“. In order to apply the G-surgery theory presented
in [BM] and [MS5], we should note that the following four assertions hold.

(A1) For each subgroup K of N/H such that dim(X#)¥ =k, |K|=2.

(A2) For such a K, (X*)X is connected and orientable.

(A3) The set @(N/H, X*) of all k-dimensional connected components of K-
fixed point sets (X)X, where K runs over all subgroups of N/H, can
be identified with the set {K € #(N/H) |dim(X?)¥=k} via the map
P s (XX K.

(A4) One can orient (X)X e O(N/H, X*) so that g : (X*)X - (X¥)ske~! is an
orientation preserving map for any g € N/H.

The assertions (A1) and (A3) both obviously hold. The assertion (A2) is seen as
follows. Take a subgroup L of N such that L > H and L/H =K. Since He #, L
also belongs to J#, as well as to ). Thus, Y’ is connected and simply connected
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by the assumption (2.1.2). Since f“:X“- Y’ is a homotopy equivalence,
(X¥)X = X* is connected and simply connected. The assertion (A4) follows from
the assumption (2.1.3).

With this background, the Witt group depends only on the following four data.

(D1) The group ring Z[N/H] with involution — and symmetry ( — 1)
(D2) The set NJH(X#,k —1)={ge N/H | g?>=1,dim(X*)e¢ =k — 1}.
(D3) The set N/H(X", k) ={g e N/H |g> =1, dim(X7)* = k}.

(D4) The set @(N/H, X*¥) with map py,, : O(N/H, X*) - S (N/H).

As we did in the proof of Theorem 4.3 for the Wall and Bak groups, we denote the
Witt surgery obstruction groups by O(N/H, X*), and consider the assignment:

S > O(S, Res¥Y#(XH)), S € P(N/H).

If X satisfies only the weak gap hypothesis for (H), then also in the case of Witt
groups, this assignment defines a Mackey functor by [BM] or [MS5], Theorem 3.4
(cf. Appendix Lemma) because

OGS, HNHNnOS, XH=60(SNnS", X) for all S and S’ in S(N/H).
Therefore, also in the case of Witt groups,
{O(S, Resg/"(X*™)) | S € #(N/H)} is a Mackey functor.

Moreover, this functor has the defect set consisting of all solvable subgroups of
N/H. That is, as in (4.5),

Res *
ON/H, X"y — @ 0(S, Res¥ (XH)) is injective.
S solvable
In the case of Witt groups, this injectivity follows from [BM], and [M5], Theorem
3.4 (cf. Appendix Lemma) because the following three properties hold.

(P1) Any finite 2-hyperelementary group is solvable.
(Pz) US solvable (@(Ss XH) X @(Ss XH)) = @(N/Hs XH) X @(N/H, XH)
(P3) x =1 —1, satisfies the conditions (4.2.1) and (4.2.2).

The second property follows from the fact that any finite group generated by two
elements or order 2 is a cyclic group or a dihedral group.
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