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Harmonic cohomology classes of symplectic manifolds

OLIVIER MATHIEU

Introduction

First recall some definitions and some results of Hodge theory. Let X be an
oriented riemannian manifold and let d*: 4,(X) - 4, _,(X) be the associated
operator which is dual to the de Rham operator d (where 4x(X) denotes the space
of smooth complex valued forms). A form o is called harmonic if it satisfies
du =d*a =0. One of the main results of Hodge theory states that when X is
compact any cohomology class contains exactly one harmonic form.

The aim of this paper is to investigate similar questions for symplectic manifolds
(as opposed to riemannian onés).

Let us assume that we are given a symplectic manifold (X, w) of dimension 2m.
According to J. L. Kozsul [11] and J. L. Brylinski [4], one can similarily define the
operator d* and the notion of harmonic form (however d* is denoted 4 or ¢ in loc.
cit.). Define the harmonic cohomology H},.(X) to be the space of all cohomology
classes which contain at least one harmonic form. Our result is the following
characterization of H¥,(X) as a subspace of H*(X). Let G = SL(2) and let B be the
subgroup of all upper triangular matrices. For a rational B-module M, there exists
a unique maximal submodule 2M which is a quotient of a rational G-module (an
explicit construction of it will be given in section 2). In fact H*(X) has a canonical
structure of B-module. The corresponding infinitesimal action is generated by the
cup-product by [w] and the operator deg — m, where deg is the degree operator. We
then prove.

THEOREM 1. We have H%,(X) = DH*(X).

Roughly speaking, theorem 1 means that we can characterize the harmonic
cohomology classes in terms of [w]-divisibility. The proof of the result is an easy
consequence of a classification result for representations of the Lie super-algebra
sl(2) x C2. As corollary of the theorem we get.
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COROLLARY 2. Assume that X is compact. Then the following two assertions
are equivalent.
(2.1) Any cohomology class contains at least one harmonic form.
(2.2) For any k <m the cup-product [w])* : H™ ~%(X) » H™*X(X) is an isomor
phism.

Actually assertion 2.2 is often satisfied. When X is a projective algebraic variety
assertion 2.2 is nothing but the strong Lefschetz theorem. Assertion 2.1 has been
proved for compact Kaehler manifolds and conjectured for general compact
symplectic manifolds by J. L. Brylinski in [4] (see introduction and section 2.2 of
[4]). Therefore in order to disprove Brylinski conjecture it suffices to give an
example of a compact symplectic manifold which does not satisfy the strong
Lefschetz theorem. Then we check that a some four-dimensional symplectic nilman-
ifolds X do not satisfy the statement of the strong.Lefschetz theorem (see example,
10, 12). This example has been kindly communicated to us by Y. Benoist. Actually
nilmanifolds have been already extensively used by various authors to give exam-
ples of symplectic manifolds not satisfying various properties of algebraic or
complex varieties (see [1], [3], [S], [6], [7], [9], [10], [13], [14], [16] and [18]).

Remark. In [17] Dong Yan found a simpler proof of Corollary 7.

1. Indecomposable representations of the Lie super-algebra sl(2) x K?

Set K =R or C. In order to describe the indecomposable representations of the
Lie super-algebra sl(2, K) x K2, we will first describe the representation theory of a
certain quiver Q. The vertices of Q will be indexed by symbols n, and n_, where
n runs over the set of all non-negative integers. Any vertex n, with n >0 is the
origin of exactly two arrows, with targets (n — 1)_ and (n + 1)_. The vertex 0, is
the origin of an arrow with target 1_. The quiver has two infinite connected
components and its picture is as follows.

Op+ = 0y ¢—= 03+ —> 03— " "~

00- (‘—‘01+—“)02_ (_03+ e

By definition the support of a representation E = @, o E, of the quiver Q is the
set {y e Q | E, #0}.

For any non-negative integers a < b of the same parity we set [a,,b.] ={a,,
@+D_,@+2,,...,b.} and [a_,b_ 1l={a_,(@a+1),,(@a+2)_,...,b_}.
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Similarily when a <b have different parities we set [a,,b_]={a,,(@+1)_,
@+2),,....,b_} and [a_,b . ]={a_,(a+1),,(a+2)_,...,b,}. These sets
la, , b.] are called the finite intervals of Q (where we have assumed that the parities
and the signs of a, and b, are simultaneously equal or different). Clearly the finite
intervals are exactly all the finite connected subsets of the quiver Q. For any finite
interval I of Q, let £ = E(I) be the representation of Q defined as follows. As a vector
space we have E, =K if y e I and E, =0 if not. Moreover any arrow ¢ :n, —»m_
between two vertices in [ acts from E, to E,, as | and the other arrows act (neces-
sarily) as zero. Let & be the category of all representations of Q with finite support.

LEMMA 3. (3.1) Any representation E € € is a direct sum of indecomposable
representations.
(3.2) Any indecomposable representation E € € is one of the E(I).

Proof. The first statement is a general non-sense statement. Let E be any
indecomposable representation in € and let I be its support. Then [ is connected
and E can be seen as an indecomposable representation of the subquiver 1. As I is
a quiver of Dynkin type, the staement follows from Gabriel theorem [8]. Q.E.D.

Let a=g@® V be the Lie super-algebra over K defined as follows. Its degree 0
part is the subspace g with basis {e, f, h} and Lie brackets [4, €] = 2e, [h, f] = —2f,
[e, f1=h. As Lie algebra it is isomorphic with sl(2). The degree one part V' has
basis {d,d*} and is an abelian Lie super-algebra. The remaining brackets
e, d] =0,[h,d] =4d,[f, d]l =d* [e,d*] =d, [h,d*] = —d*,[f,d*] =0 correspond
with the natural action of sl(2) over the two-dimensional space. Thus a is the Lie
super-algebra sl(2) x K2.

Let ¥~ be the category of all a-modules M on which 4 acts diagonally with only
finitely many different eigenvalues (the multiplicity of each eigenvalue could be
infinite). In order to simplify the statements, we do not require that the a-modules
are Z/2Z-graded. We will now define two families of a-modules.

Definition of the a-modules I(n). For any non-negative integer n, let L(n) be the
unique simple g-module of dimension n + 1. Let I(n) = Ind(g, a)L(n) be the induced
module (actually I(n) is also coinduced from L(n)). As a vector space, we have
I(n) = L(n) ® /\ V. Let M be any a-module in the category ¥". The hypothesis on
the eigenvalues of 4 implies that as g-module M is a direct sum of finite dimensional
simple representations. (In particular M is a rational representation of the corre-
sponding group G = SL(2).) Thus the module I(n) is projective in the category ¥ .
As I(n) is self dual, I(n) is injective as well.

Definition of the a-modules V(I). Recall that L(n) ® ¥V = L(n — 1) @ L(n + 1) for
any n >0. So there is an arrow in Q from n_ to m_ exactly when there is an
intertwining operator from V ® L(n) to L(m). Moreover such an intertwining
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operator is unique up to scalar. Thus for any arrow ¢ : n, -»m_ we will denote by
O, : V® L(n) - L(m) the corresponding operator.

For any interval I of Q we define a representation V(I) of a as follows. As
g-module, we have V(I) = @, . ,L(]y|), where for any n, € Q we set |n,|=n. In
order to define the action u: V@ V(I) - V(I) of V on V(I) one only needs to
define its components u, . : ¥ ® L([y|) > L(|y’]), for y, y" € I. It is given by p, , = O,
if e :y —y’ is an arrow and by pu,, =0 otherwise.

Note that the representations V(I) and I(n) are indecomposable and non-iso-
morphic up to the case V([a,,a.]) ~V(a_, a_]), i.e. when V acts trivially. This
representation will be simply denoted by L(a).

PROPOSITION 4. (4.1) Any a-module in V" is a direct sum of indecomposable
representations.

(4.2) Any indecomposable a-module in ¥~ is isomorphic to some V(I) or to some
I(n).

Proof. As previously the first statement is an obvious categorical statement. We
will now prove the second statement. Let M be an indecomposable representation
in ¥. Set C =d.d*.

(1) First assume that C.M # 0. Choose a simple g-submodule L < M with
A.L #0and set n + 1 =dim(L). Let M’ be the a-submodule generated by L. Clearly
we have M’ ~ I(n). As I(n) is an injective module, we have M = M’ ~ I(n).

(2) Assume now that we have C.M =0. Let L be the space of V-invariant
vectors in M and let L’ be some g-invariant complement. For any integer n = 0, let
L" and L™ be the isotypical component of type L(n) in L and L’. Note that
V.L’ = L. Then define a representation E of the quiver Q as follows. As vector
space set E, = Hom,(L(n),L’) and E, = Hom,(L(n),L). For any arrow
e:n,—m_of I let ¥,:L"— L™ be the corresponding component of the action
Y:V®L —Lof Von M. Identify L"~E, ® L(n) and L™ ~E, ® L(m). Then
define the action of ¢ as the map p(e) : E, , - E,, _ by the formula ¥, = p(¢) ® O,.
Note that we call recover the a-module M from the quiver representation E. Hence
E is an indecomposable representation of I'. By Lemma 3, E is isomorphic to E(I)
for some finite interval I. Hence M is isomorphic to V(7). Q.E.D.

Let us introduce some notations. We will denote by G the group SL(2) and by
B its subgroup of upper triangular matrices. Let g and b be the corresponding Lie
algebras. We can choose a basis {e, f, A} of g in a such way that

(1) it satisfies [k, €] = 2e, [h, f] = —2f. [e,f] = h.
(2) {e, h} is a basis of b.
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By G-module (or B-module) we mean rational G (or B-module). Any B-module
M admits a weightspace decomposition M = @, .M, where M, ={me M |h.
m =n.m}. The weights of M are the integers n such that M, # 0. Denote by ¥
(respectively ¥7;) be the category of all B-modules (respectively G-modules) with
finitely many weights. Note that a G-module M belongs to ¥ if its decomposition
into isotypical components is finite (however the dimension of each isotypical
component could be infinite).

Let M be a G-module, and let p : g — End(M) be the corresponding infinitesimal
representation. For any interger n denote by M[n] the B-module with the same
underlying space and whose infinitesimal action is given by e.x = p(e).x and
h.x = (p(h) + n).x for any x € M[n] (in other words we get this new representation
of B by twisting by the character nw where w is the fundamental character of B).
For any B-module M let 2M be the maximal submodule which is a quotient of a
rational G-module.

LEMMA 5. Let M € ¥ 3.

(5.1) There are some M(n) € ¥ such that M ~ @, . M(n)[n]. Moreover we
have M(n) =0 for almost all n € Z.

(5.2) Set F M =@ ,, >, Mm)[m]. This gives rise to a filtration- - - F,M
cF,_M--- of M. This filtration is independant of the decomposition (5.1).

(5.3) We have 2M = F M. In particular we have QM [n] = M[n] if n <0 and
DM([n) =0 when n >0 for any M € V.

(5.4) We have M = F,M if and only if for any integer k = 0 the map
ek: M_, - M, is onto.

Proof. A B-module isomorphic to L[n] where L is a simple G-module is called
a string module. It is easy to show that any M € ¥ is a direct sum of string
modules. Thus the existence of the decomposition (5.1) follows easily.

A one dimensional B-modules is isomorphic to C[n], for some integer n. Clearly
C[n] is a B-factor of a G-module if and only if n <0. As we have 2L[n] =
L ® 2(C[n)) for any L € ¥ 5, the formula (5.3) follows. Then we deduce the asser-
tion (5.2) from the formula %,M = (2L[n))[—n]. Assertion (5.4) is easy.

Q.E.D.

For any a-module M e7", set h(M)=(Kerd|y)/(Imd|y) and M,, =
Ker d |, ~ Ker d* |, Moreover let hy, (M) be the image of M,, in h(M). By def-
inition the spaces A(M) and h,,, (M) are called (respectively) the cohomology of M
and the harmonic cohomology of M. As B normalizes Cd, these spaces are actually
B-modules.

PROPOSITION 6. For any M € ¥, we have h,,,(M) = Qh(M).
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Proof. First note that M,, is already a G-module. So we have
(M) = Dh(M). Tt suffices to check the proposition when M is indecomposable.
We will check the proposition by a case-by-case analysis by using the classification
of indecomposable modules given in Proposition 4. Note that when 2A(M) = 0 the
assertion is obvious.

First case: M = I(n). In that case we have A(M) = 0.
Second case: M = L(a). In that case we have W(M) = h,,, (M) = L(a).

Third case: M =V(a,, b_]). In this case Kerd=M,,, and (M) = h,,,
M)~L({(b—a—-1)/2)[—(a+ b+ 1)/2].

Fourth case: M =V[a_,b_]). In that case Kerd=M,,, and A(M) =
Phar(M) =~ L((a + b)/2)[(a — b)/2].

Fifth case: M = V([a_, b.]). In that case (M) ~L((b —a — 1)/2)[(a + b + 1)/
2]. In particular 2h(M) = 0.

Sixth case: M = V([a,,b_.]). In that case (M) ~ L((a + b)/2)[(b — a)/2]. In
particular 2h(M) = 0.

In the last four cases a < b are non-negative integers with the correct parity. The
proof in the first two cases are obvious. The third and fourth cases can be easily
proved by induction. We then deduce the proof for the last two cases by duality.

2. A characterization ‘of harmonic cohomology classes

Set K=R or C. For a manifold X, denote by 4x(X) the space of K-valued
forms. By symplectic form we mean a K-valued closed 2-form w such that @™ never
vanishes, where m = 1/2 dim X (usually one requires that w is R-valued).

Proof of Theorem 1. Let (X, w) be a symplectic manifold of dimension 2m. Let
v be the corresponding 2-vector. Let A& be the endomorphism of A4x(X) which acts
over A, (X) as k —m. Set e = e(w), f = i(v). Then following operators [2], [15], e, f
and 4 spans a Lie algebra isomorphic to sl(2). Moreover the operators d and d*
spans a two-dimensional sl(2)-module. As we have d*> = d**> =d.d* + d*.d =0, the
span of e, f, h, d, d* is precisely the Lie super-algebra a. The space of forms, viewed
as a-module belongs to class ¥". Moreover the cohomology and the harmonic coho-
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mology of M as defined in section 1 coincides with the cohomology and the
harmonic cohomology of X. Thus Theorem 1 follows from Proposition 6.

COROLLARY 7. Let X be a (not necessarily compact) symplectic manifold of
dimension 2m. Then we have H*(X) = H},.(X) if and only if for any k <m the
cup-product [w]*: H™ ~*(X) - H™+**(X) is onto.

Proof. Corollary 7 is an easy consequence of the theorem together with Lemma
5.4.

Proof of Corollary 2. Corollary 2 follows from Corollary 7 and Poincaré duality.

COROLLARY 8. (Assume K = R) Let X be a symplectic manifold of dimension
2m. Any cohomology class of degree 2 contains a harmonic form.

Proof of Corollary 8. Let E be the kernel of the map [w]™ ' : HA(X) - H**(X),
[¢] = [o].[w]™ . We claim that the following equality: H%(X) = E + K.[w] holds.
Actually when X is non-compact we already have: H*(X) = E. In the compact case
we have [@™] #0. So we have H*(X) = E ®K . [w]. Clearly we have K =« 2H*(X)
and [w] is a harmonic form. Thus Corollary 8 comes from the theorem.

Remarks. (1) By Corollary 7, we have H*(X) = H¥,(X) whenever H/(X) =0
for i > m (compare with Proposition 2.2.12 and Corollary 2.2.13 of [4]).

(2) Any closed form or degree 1 is harmonic (see Brylinski [4]; actually its
proof works also for K = C). However some cohomology classes of degree 3 are not
harmonic (see section 3).

3. Counter-examples to Brylinski conjecture

Let n be the real nilpotent Lie algebra with basis ¢,, e,, e;, e, and with Lie
brackets [e,, e,] = e;, [e;, 5] =e, and [e;, e] =0 for i +j = 5. Let (¢;); < ;<4 be the
dual basis. Set w, = ¢, A &, W, =&, A &; and w = w; + w,. Note that w, and w, are
cocycles.

LEMMA 9. The cohomology groups H'(n) and H>*(n) have dimension two.
However the multiplication map [x] € H'(n) — [o].[w] € (n) is zero.

Proof. Note that H'(n) ~ n/([n, n])* has dimension two and is generated by [e,]
and [¢,]. Hence by Poincaré duality, H?(n) also has dimension two.

We have w, Ae;=d(e3Nne), wyAne;=d(eyAne) and o, Ag =w, Ag=0.
Hence we have [w] . H'(n) =0. Q.E.D.
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Let N be the connected simply connected real Lie group with Lie algebra n.
Actually N is a semi-product R x R?. Thus N contains some cocompact discrete
subgroup I (the natural structure constant are rational). Set X = N/I" and identify
n with the space of all right invariant vector fields on N. In particular w is I
right-invariant. Thus it defines a symplectic form over X. We will still denote this
form by w.

EXAMPLE 10. For the compact symplectic nilmanifold (X, w) we have
H*(X) # H},,(X), i.e. it does not satisfy Brylinski conjecture.

Proof. There is a canonical isomorphism H*(X) ~ H*(n) (Nomizu, see e.g.
[12]). Following Lemma 9, we get [w]. H'(X) =0 and H3(X) # 0. Using Corollary
2, we get HY, # H*(X). Q.E.D.

Actually there is another way to give counter-examples to Brylinski conjecture.
For a manifold X, set b, = dim H'(X).

LEMMA 11. Let (X, w) be a compact symplectic manifold of dimension 2m. If X
satisfy Brylinski conjecture, then its odd degree Betti numbers b,,, , are even.

Proof. Let i be an integer, 0 < i < m. Assume that X satisfy Brylinsky conjecture.
By Corollary 2.2 and by Poincaré duality the bilinear map [a], [B] € H/(X) —
{[].[B).lw]™ | X) is non-degenerated. When i is odd, this bilinear map is skew-
symmetric. It follows easily that all odd degree Betti numbers are even.

EXAMPLE 12. Any four-dimensional nilmanifold whose first Betti number b,
is 3 does not satisfy Brylinski conjecture (see e.g. [7] for such an example of
nilmanifolds).

Remark. As the referee kindly pointed out, one can prove that the manifold X
of example 10 does not satisfy Brylinski conjecture without using Theorem 1.
Actually if a cohomology class is harmonic, then it contains an harmonic and
N-invariant cocycle. Thus one can disprove Brylinski conjecture by easy computa-
tions in the (finite dimensional) complex /\n*.
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