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Harmonie cohomology classes of symplectic manifolds

Olivier Mathieu

Introduction

First recall some définitions and some results of Hodge theory Let X be an
onented nemanman manifold and let d* Ak(X)-+Ak_x(X) be the associated

operator which îs dual to the de Rham operator d (where A*(X) dénotes the space

of smooth complex valued forms) A form a îs called harmonie if ît satisfies

da d*ot 0 One of the main results of Hodge theory states that when X îs

compact any cohomology class contams exactly one harmonie form
The aim of this paper is to mvestigate similar questions for symplectic manifolds

(as opposed to nemannian ones)
Let us assume that we are given a symplectic manifold (X, co) of dimension 2m

According to J L Kozsul [11] and J L Bryhnski [4], one can similanly define the

operator d* and the notion of harmonie form (however d* is denoted A or S m loc

cit Define the harmonie cohomology H%ar(X) to be the space of ail cohomology
classes which contain at least one harmonie form Our resuit is the followmg
charactenzation of Hfar(X) as a subspace of H*(X) Let G SL(2) and let B be the

subgroup of ail upper tnangular matrices For a rational ^-module M, there exists

a unique maximal submodule ®M which is a quotient of a rational G-module (an
exphcit construction of ît will be given in section 2) In fact H*(X) has a canomcal

structure of ^-module The corresponding infinitésimal action is generated by the

cup-product by [co] and the operator deg — m, where deg is the degree operator We

then prove

THEOREM 1 We hâve H*har(X) @H*(X)

Roughly speakmg, theorem 1 means that we can charactenze the harmonie

cohomology classes in terms of [co]-divisibihty The proof of the resuit is an easy

conséquence of a classification resuit for représentations of the Lie super-algebra

sl(2) x C2 As corollary of the theorem we get
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COROLLARY 2. Assume that X is compact. Then the following two assertions

are équivalent.
(2.1) Any cohomology class contains at least one harmonie form.
(2.2) For any k &lt;m the cup-product [œ]k : Hm~k(X) -+ Hm + *(X) is an isomor

phism.

Actually assertion 2.2 is often satisfied. When X is a projective algebraic variety
assertion 2.2 is nothing but the strong Lefschetz theorem. Assertion 2.1 has been

proved for compact Kaehler manifolds and conjectured for gênerai compact
symplectic manifolds by J. L. Brylinski in [4] (see introduction and section 2.2 of
[4]). Therefore in order to disprove Brylinski conjecture it suffices to give an

example of a compact symplectic manifold which does not satisfy the strong
Lefschetz theorem. Then we check that a some four-dimensional symplectic nilman-
ifolds X do not satisfy the statement of the strong Lefschetz theorem (see example,
10, 12). This example has been kindly communicated to us by Y. Benoist. Actually
nilmanifolds hâve been already extensively used by various authors to give examples

of symplectic manifolds not satisfying various properties of algebraic or
complex varieties (see [1], [3], [5], [6], [7], [9], [10], [13], [14], [16] and [18]).

Remark. In [17] Dong Yan found a simpler proof of Corollary 7.

1. Indécomposable représentations of the Lie super-algebra sl(2) x K2

Set K R or C. In order to describe the indécomposable représentations of the

Lie super-algebra sl(2, K) x K2, we will first describe the représentation theory of a

certain quiver Q. The vertices of Q will be indexed by symbols n+ and n_, where

n runs over the set of ail non-negative integers. Any vertex n+ with n &gt;0 is the

origin of exactly two arrows, with targets {n — 1)_ and {n + 1)_. The vertex 0+ is

the origin of an arrow with target 1 _. The quiver has two infinité connected

components and its picture is as follows.

o0+ —&gt; O! - &lt;— o2+ —? o3- • •

o0- &lt;— o1 + —? o2_ &lt;— o3+ • • •

By définition the support of a représentation E ®y e QEy of the quiver Q is the

set {yeQ\Ey*Q}.
For any non-negative integers a ^ b of the same parity we set [a+, b+] {a+,

,...,ô+} and [a_,b_] {a_9(a + l)+,(
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Similarily when a &lt;b hâve différent parities we set [a+, b_] {«+, {a + 1)_,

(a+2)+,...,6_} and [a_, 6+] {a__, {a + 1)+, (a + 2)_ b+}. Thèse sets

[a±, 6±] are called the finite intervais of Q (where we hâve assumed that the parities
and the signs of a± and b± are simultaneously equal or différent). Clearly the finite
intervais are exactly ail the finite connected subsets of the quiver Q. For any finite
interval / of Q, let E E(I) be the représentation of Q defined as follows. As a vector

space we hâve Ey K if y e I and Ey 0 if not. Moreover any arrow e : n+ -&gt;m__

between two vertices in / acts from En to Em as 1 and the other arrows act (neces-

sarily) as zéro. Let # be the category of ail représentations of Q with finite support.

LEMMA 3. (3.1) Any représentation Ee%&gt; is a direct sum of indécomposable

représentations.
(3.2) Any indécomposable représentation E €%&gt; is one of the E(I).

Proof The first statement is a gênerai non-sense statement. Let E be any
indécomposable représentation in # and let / be its support. Then / is connected
and E can be seen as an indécomposable représentation of the subquiver /. As / is

a quiver of Dynkin type, the staement follows from Gabriel theorem [8]. Q.E.D.
Let a g © V be the Lie super-algebra over K defined as follows. Its degree 0

part is the subspace q with basis {e,f h} and Lie brackets [h, e] 2e, [h,f] —2f
[e, f] h. As Lie algebra it is isomorphic with sl(2). The degree one part V has

basis {d, d*} and is an abelian Lie super-algebra. The remaining brackets

[e, d] 0, [A, d]=d, [f d] d*, [e, d*] d, [h, d*] -&lt;/*, [/, d*] 0 correspond
with the natural action of sl(2) over the two-dimensional space. Thus a is the Lie

super-algebra sl(2) x K2.

Let Y be the category of ail a-modules M on which h acts diagonally with only
finitely many différent eigenvalues (the multiplicity of each eigenvalue could be

infinité). In order to simplify the statements, we do not require that the a-modules

are Z/2Z-graded. We will now define two families of a-modules.

Définition of the a-modules I(ri). For any non-negative integer n9 let L(n) be the

unique simple g-module of dimension n + \. Let I(ri) Ind(q9 a)L(ri) be the induced
module (actually I(n) is also coinduced from L(n)). As a vector space, we hâve

I(n) L(n) ® /\ V. Let M be any a-module in the category ir. The hypothesis on
the eigenvalues of h implies that as g-module M is a direct sum of finite dimensional
simple représentations. (In particular M is a rational représentation of the corre-
sponding group G SL(2).) Thus the module I{n) is projective in the category Y.
As I{n) is self dual, I{ri) is injective as well.

Définition of the a-modules V(I). Recall that L(n) ®V L(n - \)®L(n + 1) for
any n &gt;0. So there is an arrow in Q from n+ to m_ exactly when there is an

intertwining operator from V®L(n) to L(m). Moreover such an intertwining
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operator is unique up to scalar. Thus for any arrow e :n+^&gt;m_ we will dénote by
@e : V®L(ri)^L{m) the corresponding operator.

For any interval / of Q we define a représentation V(I) of a as follows. As
g-module, we hâve V(I) ©ye/L(|y|), where for any n± e Q we set |w±| «. In
order to define the action /i : V® F(/)-&gt; F(/) of F on V(I) one only needs to
define its components nyy, : K® L(|y|) -»L(|y&apos;|), for y, y&apos; e Lit is given by fiyy Oe

if s : y — yf is an arrow and by juyy 0 otherwise.
Note that the représentations V{I) and I(n) are indécomposable and non-iso-

morphic up to the case V([a+,a+]) ~ V([a_, a_]), i.e. when V acts trivially. This
représentation will be simply denoted by L(a).

PROPOSITION 4. (4.1) Any a-module in V is a direct sum of indécomposable

represen talions.

(4.2) Any indécomposable a-module in &apos;V is isomorphic to some V(I) or to some

Proof. As previously the first statement is an obvious categorical statement. We
will now prove the second statement. Let M be an indécomposable représentation
in r. Set C d.d*.

(1) First assume that CM #0. Choose a simple g-submodule La M with
A.L # 0 and set n + 1 dim(L). Let M&apos; be the a-submodule gênerated by L. Clearly
we hâve M&apos; ^ /(«). As l(n) is an injective module, we hâve M M&apos; ^ /(«).

(2) Assume now that we hâve CM 0. Let L be the space of F-invariant
vectors in M and let U be some g-invariant complément. For any integer n &gt; 0, let
Ln and Z/w be the isotypical component of type L(n) in L and L&apos;. Note that
F.Z/ c L. Then define a représentation E of the quiver Q as follows. As vector

space set En
+ Homg(L(n), L&apos;) and Em Homg(L(n), L). For any arrow

s : «+ -*m_ of F, let !Ffi : L&apos;n-*Lm be the corresponding component of the action

•P:F®r-&gt;LofFonM. Identify Ln^En + ® L(n) and L&apos;m ^ £m_ ®L(m). Then
define the action of e as the map p(e) \En-*Em by the formula We — p(s) ® &lt;9e.

Note that we call recover the a-module M from the quiver représentation E. Hence

E is an indécomposable représentation of F. By Lemma 3, E is isomorphic to E{I)
for some finite interval /. Hence M is isomorphic to V(I). Q.E.D.

Let us introduce some notations. We will dénote by G the group SL(2) and by
B its subgroup of upper triangular matrices. Let g and b be the corresponding Lie

algebras. We can choose a basis {e, /, h) of g in a such way that

(1) it satisfies [h, e] 2e, [hj] -2/, [ej] A.

(2) {e, A} is a basis of b.
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By G-module (or 5-module) we mean rational G (or 5-module). Any 5-module
M admits a weightspace décomposition M ®nez^«» where Mn {m e M \ h.

m n.m). The weights of M are the integers n such that Mn # 0. Dénote by irB
(respectively YG) be the category of ail i?-modules (respectively G-modules) with
finitely many weights. Note that a (/-module M belongs to &apos;VG if its décomposition
into isotypical components is fini te (however the dimension of each isotypical
component could be infinité).

Let M be a G-module, and let p : g -* End(M) be the corresponding infinitésimal
représentation. For any interger n dénote by M[n] the 5-module with the same

underlying space and whose infinitésimal action is given by e.x p(e).x and

h.x (p(h) -f n).x for any x e M[n] (in other words we get this new représentation
of B by twisting by the character nœ where co is the fundamental character of B).
For any ^-module M let $)M be the maximal submodule which is a quotient of a

rational G-module.

LEMMA 5. Let Me^B.
(5.1) There are some M{ri) e i^Q such that M ^ ®wez^(w)M- Moreover we

hâve M(ri) 0 for almost ail n e Z.
(5.2) Set &amp;nM ®m^nM(m)[m]. This gives rise to a filtration- • • &amp;nM

c^n_xM • - - of M. This filtration is indépendant of the décomposition (5.1).

(5.3) We hâve $)M ^0M. In particular we hâve &lt;3M[n] M[n] ifn^O and

9M[n] 0 when n&gt;0 for any M e tTg.
(5.4) We hâve M ^0M if and only iffor any integer k ^ 0 the map

ek : M_k -+Mk is onto.

Proof A 5-module isomorphic to L[n] where L is a simple (/-module is called

a string module. It is easy to show that any M e f5 is a direct sum of string
modules. Thus the existence of the décomposition (5.1) follows easily.

A one dimensional /^-modules is isomorphic to C[/i], for some integer n. Clearly
C[n] is a 2?-factor of a (/-module if and only if n ^ 0. As we hâve @L[n]

L ® @(C[ri\) for any L e VB, the formula (5.3) follows. Then we deduce the assertion

(5.2) from the formula ^nM (9L[ri\)[-n]. Assertion (5.4) is easy.

Q.E.D.

For any a-module AfeiT, set h(M) =(Ker d\M)/(Imd\M) and Mhar

Ker d \MnKer d* \M.Moreover let hhar{M) be the image of Mhar in h(M). By
définition the spaces h(M) and hhar(M) are called (respectively) the cohomology of M
and the harmonie cohomology of M. As B normalizes Crf, thèse spaces are actually
/^-modules.

PROPOSITION 6. For any Mer.we hâve hhar(M) 9h(M).
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Proof. First note that Mhar is already a G-module. So we hâve

hhar{M) a Sih{M). It suffices to check the proposition when M is indécomposable.
We will check the proposition by a case-by-case analysis by using the classification
of indécomposable modules given in Proposition 4. Note that when @h(M) 0 the
assertion is obvious.

First case: M /(«). In that case we hâve h{M) 0.

Second case: M L(a). In that case we hâve h(M) hhar(M) L(a).

Third case: M=V([a+, b_]). In this case Ker d Mhar, and h(M) hhar

(M) * L((6 - a - l)/2)[ -(a + A + l)/2].

Fourth case: M F[a_, 6_]). In that case Ker d AfAar, and

Fifth case: M V([a_, b+]). In that case h(M) c~ L((b -a- \)/2)[(a + 6 + 1)/
2]. In particular ^A(M) 0.

Sixth case: M V([a+, 6+]). In that case /&lt;M) -L((a +6)/2)[(6 - a)/2]. In
particular ^A(M) 0.

In the last four cases a &lt; b are non-negative integers with the correct parity. The

proof in the first two cases are obvious. The third and fourth cases can be easily
proved by induction. We then deduce the proof for the last two cases by duality.

2. A characterization of harmonie cohomology classes

Set K R or C. For a manifold X, dénote by A*(X) the space of K-valued
forms. By symplectic form we mean a ÀT-valued closed 2-form co such that com never
vanishes, where m — 1/2 dim X (usually one requires that co is R-valued).

Proof of Theorem 1. Let (X, œ) be a symplectic manifold of dimension 2m. Let
v be the corresponding 2-vector. Let h be the endomorphism of A*(X) which acts

over Ak(X) as k — m. Set e e(co),/= i(v). Then following operators [2], [15], e,f
and h spans a Lie algebra isomorphic to sl(2). Moreover the operators d and rf*
spans a two-dimensional sl(2)-module. As we hâve d2 d*2 d.d* + d*.d 0, the

span of e,/, h9 d, ûf* is precisely the Lie super-algebra a. The space of forms, viewed

as a-module belongs to class i^. Moreover the cohomology and the harmonie coho-
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mology of M as defined in section 1 coïncides with the cohomology and the

harmonie cohomology of X. Thus Theorem 1 follows from Proposition 6.

COROLLARY 7. Let X be a (not necessarily compact) symplectic manifold of
dimension 2m. Then we hâve H*(X) H%ar(X) if and only if for any k &lt;&gt;m the

cup-product [œ]k : Hm ~k{X) -? Hm + k(X) is onto.

Proof Corollary 7 is an easy conséquence of the theorem together with Lemma
5.4.

Proof of Corollary 2. Corollary 2 follows from Corollary 7 and Poincaré duality.

COROLLARY 8. (Assume K R) Let X be a symplectic manifold of dimension

2m. Any cohomology class of degree 2 contains a harmonie form.

Proof of Corollary 8. Let E be the kernel of the map [œ]m-l : H2(X) -? H2m(X\
[oc] h-&gt; [a].[co]w~ l. We claim that the following equality: H2(X) E + K.[co] holds.

Actually when X is non-compact we already hâve: H2(X) E. In the compact case

we hâve [œm] # 0. So we hâve H2(X) =E®K. [œ]. Clearly we hâve K c ®H*(X)
and [œ] is a harmonie form. Thus Corollary 8 cornes from the theorem.

Remarks. (1) By Corollary 7, we hâve H*(X) Htar(X) whenever H&apos;(X) =0
for / &gt; m (compare with Proposition 2.2.12 and Corollary 2.2.13 of [4]).

(2) Any closed form or degree 1 is harmonie (see Brylinski [4]; actually its

proof works also for K C). However some cohomology classes of degree 3 are not
harmonie (see section 3).

3. Counter-examples to Brylinski conjecture

Let n be the real nilpotent Lie algebra with basis el9 e2, e39 e4 and with Lie
brackets [ex ,e2] e3, [e{, e3] e4 and [et, ej 0 for i +j ^ 5. Let (e, ^, ^ 4 be the
dual basis. Set a&gt;x e, a e4, co2 s2 a a3 and œ œ{ H- co2. Note that œx and œ2 are
cocycles.

LEMMA 9. The cohomology groups Hl(n) and H3(n) hâve dimension two.
However the multiplication map [a] g H &apos;(n) h-+ [a].[a&gt;] e (n) is zéro.

Proof Note that H\n) a n/([n, n])* has dimension two and is generated by [e,]
and [e2]. Hence by Poincaré duality, H3(n) also has dimension two.

We hâve co, a e2 */(e3 a e4), co2 a e2 rf(e2 a e4) and a&gt;! a e! co2 a e2 0.

Hence we hâve [œ]. Hl(n) 0. Q.E.D.
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Let N be the connectée simply connectée real Lie group with Lie algebra n.

Actually N is a semi-product R x R3. Thus N contains some cocompact discrète

subgroup F (the natural structure constant are rational). Set X N/F and identify
n with the space of ail right invariant vector fields on N. In particular œ is F
right-invariant. Thus it defines a symplectic form over X. We will still dénote this
form by co.

EXAMPLE 10. For the compact symplectic nilmanifold (X, co) we hâve

H*(X) # H%ar(X), i.e. it dœs not satisfy Brylinski conjecture.

Proof. There is a canonical isomorphism H*(X) ~ H*(n) (Nomizu, see e.g.
[12]). Following Lemma 9, we get [œ].H](X) =0 and H\X) ^0. Using Corollary
2, we get Ht, # H*(X). Q.E.D.

Actually there is another way to give counter-examples to Brylinski conjecture.
For a manifold X, set bt dim Hl(X).

LEMMA IL Let (X, co) be a compact symplectic manifold of dimension 2m. IfX
satisfy Brylinski conjecture, then its odd degree Betti numbers b2l+, are even.

Proof Let i be an integer, 0 £ i &lt; m. Assume that X satisfy Brylinsky conjecture.
By Corollary 2.2 and by Poincaré duality the bilinear map [a], [/?] e Hl(X) \-+

{[ot].[p].[co]m~f j Xy is non-degenerated. When / is odd, this bilinear map is skew-

symmetric. It follows easily that ail odd degree Betti numbers are even.

EXAMPLE 12. Any four-dimensional nilmanifold whose first Betti number bx

is 3 does not satisfy Brylinski conjecture (see e.g. [7] for such an example of
nilmanifolds).

Remark. As the référée kindly pointed out, one can prove that the manifold X
of example 10 does not satisfy Brylinski conjecture without using Theorem 1.

Actually if a cohomology class is harmonie, then it contains an harmonie and
JV-invariant cocycle. Thus one can disprove Brylinski conjecture by easy computa-
tions in the (finite dimensional) complex /\n*.
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