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Convex functionals and generalized harmonic maps into spaces of
non positive curvature

JURGEN JosT

Introduction

The theory of harmonic maps between compact Riemannian manifolds is well
developed under the assumption that the image has nonpositive sectional curvature
(see e.g. [Al], [A2], [ES], [H], [DO], [D], [C1], [JY3], [La]) and has found
important applications (see the introduction of [JY4] for a survey). These applica-
tions in turn led Gromov-Schoen [GS] to consider harmonic maps into more
general metric spaces. With further applications in mind, a theory of generalized
harmonic maps between metric spaces was developed in [J] and [KS]. These latter
papers in particular treat the existence of harmonic maps into non locally compact
target spaces while the domain still needs to satisfy some compactness (and in [KS]
in addition some smoothness and other) properties.

It is one of the purposes of the present paper to abandon all hypotheses on the
domain, apart from those structures required to make the definition of a generalized
harmonic map meaningful. This definition which is taken from [J] is given at the
beginning of §2. (A similar definition was achieved in [KS]). An advantage of this
definition is that it puts the well developed theory of I'-convergence (see [dM]) at
our disposal.

The main result of §2 then is the following

THEOREM. Let X,, X, be metric spaces. Assume that X, is complete and
nonpositively curved in the sense of Alexandrov (see §1 for the definition, in particular,
X, is simply connected). Let T be a subgroup of the isometry group of X, and
suppose the measures on X, required for defining the energy of a map from X, are
I-equivariant. Let p : T - 1(X,) be a reductive homomorphism into the isometry
group of X,. If there exists a p-equivariant map [ : X, — X, (i.e. f(yx) = p(y)f(x) for
all x € X,,y €T of finite energy, then there also exists a p-equivariant harmonic map
from X, to X,.

p-equivariant maps include, but are more general than maps between quotients
of X, and X,. Thus, there are essentially three hypotheses:
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660 JORGEN JOST

(M1) The target X, has nonpositive curvature in the sense of Alexandrov.
(M2) p is reductive.
(M3) There exists a finite energy map in the class under consideration.

Alexandrov’s definition of nonpositive curvature as required in (M1) includes
Riemannian manifolds of nonpositive sectional curvature. Other examples of such
nonpositively curved spaces that are important for applications are trees and
Euclidean buildings. Even in the case of smooth Riemannian manifolds, no general
condition other than nonpositive sectional curvature of the image so far has been
found that allows to construct a theory of harmonic maps that is strong enough for
far reaching geometric applications. Therefore, (M1) seems to be a natural and
acceptable assumption, and in applications, it is usually easy to verify.

(M1) is the most important one among the three hypotheses for the present
paper. This curvature condition entails certain convexity properties of the distance
function that will be crucial for the constructions of §1. In that §, we study convex
functionals F : ¥ - RuU {00} on a complete metric space Y, and we seek minimizers
of such functionals via Moreau-Yosida regularization. This means that for x € ¥
and 4 >0, we put

Fi(x) = jnf (AF(y) + d(x, y))

(d(.,.) denotes the distance function on Y). If Y is complete and nonpositively
curved, this infimum is realized by a unique point J;(x) = y,. The main theorem of
§1 says that if (y; ),.n 1s bounded for some sequence 4,0, then (y;);.¢
converges to a minimizer of F as 4 — 00. The existence result for harmonic maps
then easily follows by letting Y be the space of p-equivariant maps from X, to X,
that are locally of class L2

(M2) prevents minimizing sequences from escaping to oo. It is a necessary
hypothesis that is usually easy to verify in concrete applications.

(M3) can be much harder to check. The generality attempted in the present
paper does not allow to study this hypothesis in more detail. Examples where it has
been successfully verified can be found in [JY1], [JY2], [C2], [JZ1], [JZ2]. In other
cases, the existence of a finite energy map is open, and this sometimes presents the
only obstacle for the application of harmonic maps to a geometric problem.

In the present paper, we do not study regularity questions. Regularity results for
generalized harmonic maps have been obtained in [GS] and [KS]. Any such
regularity result necessarily needs additional assumptions on the domain that are
more special than compatible with the general framework adopted here.

As mentioned above, in §1, we develop a general theory of convex functionals
F:Y->Ru{owc} on a complete metric space of nonpositive curvature, and this
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represents the second main purpose of the second paper. In nonlinear analysis, one
often studies convex functionals on Banach spaces, or somewhat more general
topological vector spaces. While the functional is nonlinear, the underlying space
still has a linear structure. The method of Moreau-Yosida approximation in this
context is well presented in [At]. In order to develop an analytic theory that more
truely deserves the epithet “nonlinear”, we wish to study functionals in spaces that
only carry a complete metric, but not necessarily a linear structure. Without further
assumptions, however, this might be too general a setting for obtaining strong
analytical results. We find that the assumption on the space of nonpositive
curvature in the sense of Alexandrov ties in very well with the convexity assumption
on the functional, and that the method of Moreau-Yosida approximation can be
extended to that setting. Even some resolvent type identities that one might suspect
to depend crucially on some linear structure in fact still hold in the present fully
nonlinear setting. (While these identities are not needed for our harmonic map
results, we still present them here for use in a future paper.)

The author would like to thank Igor Nikolaev for stimulating discussions about
the Alexandrov geometry of metric spaces and generalized harmonic mappings. He
also thanks Scot Adams for suggesting the definition of reductivity employed
below. The author acknowledges generous financial support from the DFG during
the preparation of this paper.

1. Convex functionals on spaces of nonpositive curvature

Let Y be a simply connected, complete metric space in which any two points can
be connected by a shortest arc. In particular, Y is connected, and its metric is
intrinsic (cf. [N]). We also assume that Y has nonpositive curvature in the sense of
Alexandrov, that means (cf. [N]) that whenever

y:[0,6] =Y

7:00,5] »R?

are geometric arcs parametrized by arclength (R? is equipped with its Euclidean
metric, and so § is a straight line) and p € Y and j € R? satisfy

d(p, y(0)) =d(p, 7(0))
d(p, y(b)) = d(p, 7(b))
then for all ¢ € [0, b]

d(p, y(1)) < d(p, ¥(1)) (L.1)
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where the distances on the left hand sides are taken in Y and those on the right
hand sides are the Euclidean ones of R

Nonpositive curvature implies that the shortest connection between any two
points is unique. Also for any x;, € Y,

2
d ( s xO)
is a convex function.
For x,, x, € Y, we define their mean value m(x,, x,) as the unique point on the

geodesic arc from x, to x, that has equal distances to x; and x,.
For x € Y and r > 0, we put

B(x,r):=={y e Y:d(x,y) <r}.
Let D(F) c Y, and let F: D(F) - R be a functional. We say that F is densely
defined if D(F) is dense in Y. We say that F is convex if whenever y : [0, 1] - Y is

a geodesic arc parametrized proportionally to arclength, and if y(0), y(1) € D(F),
then also y(f) € D(F) and

F(y(@) < tF(»(0)) + (1 — F(y(1)) (1.2)
for all t € [0, 1]. If F is convex and A < D(F), then also the convex hull C, of 4 is

contained in D(F), see Lemma 2.6 of [J]. We extend any convex functional
F : D(F) - R to a functional

F:Y-Ru{w}
by putting

F(y) = if y € Y\D(F).
The extension still satisfies the inequality (1.2) characterizing convexity, since if the
left hand side takes the value co, so does the right hand side. We therefore call any

functional F: Y - RuU {00} convex if it satisfies (1.2) in this extended sense.

. DEFINITION 1. Let F: Y- Ru{o}. For 4 > 0, the Moreau-Yosida approx-
imation F* of F is defined as

FH(x) = yltelg (AF(y) + d*(x, ). (1.3)
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LEMMA 1. Let F:Y->Ru{w} be a function, A, u>0. We then have the
resolvent equation

LY L) g (1.4)
u\4i A+u |
Proof.

[ N 4 L}
;(EF)(X) —y“e‘fy (AF‘(y) +”d2(xay))

= inf (mf (F 2) +~ : dz( ¥, z)) ~d?(x, y)).

yeY \zeVY

Now for each z € ¥,

inf ( d(y, z) +— dz(x y))

yeY

is realized by a unique point y,, namely the point on the geodesic arc from x to z
with

A
d(x, yo) _—d(x z),  d(z,¥) —Td(x 2).
Thus
1 1
7 d(yo,2) +- dz(x Yo) ————dz(x 2),
and

1/1 .\ ) | S, 1 i
Bl el = S = — F**¥(x). e.d.
#(AF)(x) ;EE»(F(Z)+A+yd(x’Z)) Tta (x) q.c

LEMMA 2. We assume that F is convex, ¥ oo, and lower semicontinuous. For
every x € Y and A > 0, there exists a unique y, € Y with

AF(y,) +d*(x, y;) = FY(x).

We write y, = J;(x).
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Proof. We have to show that the infimum in (1.3) is realized by a unique y,.

Uniqueness is easy: If there were two different such points y!, y3, we could take
their mean value y9. By convexity of F

1
F(y?) SE(F(yi) + F(y?))

and by nonpositive curvature of Y,
1
d2(x, y?) < E (dz(xa y,]{) + dz(xa y%))s

and hence

AF(y?) +d%(x, y3) <AF(y)) +d%(x, y}) = AF(y3) +d%(x, y?)
contradicting the minimizing property of y! and y2. In order to prepare the
existence proof, we observe that for any two points y,, y, € Y, their mean value

yo=m(y,, y,) is the midpoint of the geodesic arc connecting y, and y,, and it
satisfies

1 1
dz(x’ yO) S—Z_(dz(xa yl) +d2(x’ y2)) —Zdz(ylay2) (15)

because that inequality holds for the Euclidean metric and Y has nonpositive
curvature. We now let (,),.n be a minimizing sequence, i.e.

AF(y,) +d*(x, y,) — ian (AF(y) + d*(x, ) =:k;. (1.6)
ye
We claim that y, is a Cauchy sequence. For /, k € N we let y, ,:==m(y,, y,). Using

the convexity of F as in the uniqueness argument and the stronger version of
convexity for d*(x, .), (1.5), we obtain

AF(yi,) + d(x, Y
1 1 1
<3 F () + &, 1) +5 AF(n) + 5, 1)) = 3 &0 0.

By definition of «;,, the left hand side cannot be smaller than k;, and so we obtain
from (1.6) that d*(y,,y,) =0 as k,[—> o0, and (y,),.n is @ Cauchy sequence
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indeed. Since the distance function is continuous and F is assumed to be lower
semicontinuous, the limit of (y,) then is the desired y,. g.e.d.

COROLLARY 1. Let F:Y->Ru{w} be convex and lower semicontinuous,
xeY,y,=Jy(x) for some A>0. For 0<s <1, we define y,, as follows: Let
y :[0, 1] > Y be the geodesic arc with y(0) = x, y(1) = y,, parametrized proportion-
ally to arclength, and put

yl,s = '})(S)
Then
Ju—s)/l()’;.,s) =V (1.7)

Proof. Given the uniqueness result of Lemma 2, this follows from the proof of
Lemma 1. g.e.d.

LEMMA 3. Let Y, be as in Lemma 2. Assume that F is densely defined. For
A —0, we have

Yy, — X.

Proof. Since F is densely defined, for every é > 0 there exists x; € B(x, d) with
F(x;) < o0. Then

}iilg (AF(x;5) + d*(x, x5)) < 62,
and consequently
}i{l{l) sup k; <0.
Let us now assume that there exists a sequence 4, —0 for n - oo with
d*(x,y, ) =a>0  for all n.
Then
lim sup (4, F(y; ) + d*(x,y;,)) <0,

n-—-r

and hence
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F(y,)——o as n-— oo.
But then
F(y)) +d*(x,y,) <F(y,) +d*(x,y,) ——© as n— oo,
which is impossible. The claim follows. g.e.d.

Remark. If F is not necessarily densely defined, the result still holds for all x in
the closure of D(F).

THEOREM 1. Let F: Y >Ru{} be convex and lower semicontinuous, and
assume that F is not identically co. For x€Y, let y, =J,(x) as in Lemma 2. If

(¥3,)ne n is bounded for some sequence 1, — 0o, then (y;), o converges to a minimizer
of F as A — 0.

Proof. Since (y, ) is bounded, it is a minimizing sequence for F, i.e.
F(y,,) — inf F(y),
yeY

because y, minimizes

L e, y),

Hw+%

We now show that

dZ(x’ yl)

is monotonically increasing in A. Indeed, let 0 <y, < p,. Then by definition of y,
1 2 1 2
F(y[tz) +_—d (x’y}tz) ZF(y,”) +—d (x’ yu,)’
M 131
hence
\FU@)+ d%xn)>FU%)+ d%an

Ky
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which is compatible with the definition of y,, only if

dX(x,y,) <d(x,y,,),

and monotonicity follows. The monotonicity then implies that

dz(xs y/l)

is bounded independently of A since it is assumed to be bounded for the sequence
A, = c0. This monotonicity also implies that

F(y;)

monotonically decreases towards

inf F(y)

yeY

for A - co. Namely, from the definition of y,,

F(y, )= inf  F(y),

y € B(x,d(x,y;))

and F(y,) indeed decreases since d(x, y;) increases as A — oo.
We now show that (y,),., satisfies the Cauchy property, i.e. for every € >0
there exists 4, such that for all 4, u > 4,

dz(yls yu) <€

For that purpose, we choose 4, so large that for 4, u > 4,

€
|d(x, ;) —d*(x, y,)| < 5

which is possible by the preceding monotonicity and boundedness results. We may
also assume

F(y,) =z F(y,)

We let y’ be the mean value of y, and y,. Then by convexity of F and nonpositive
curvature of Y,



668 JURGEN JOST
’ l 2 ’
F(y)+1d(x,y)
1/1 5 1 ) 1 )
<F(y, +7 Ed (x, ) +5d , »,) _Zd (V1> V)
1(, e 1 ,
<F(yl)+z d(x9yl)+z—zd(yiayu) '

This, however, is compatible with the definition of y, only if

dz(yb yy) <E€.

Since Y is complete, (y;) converges for 4 — o0 towards some y € Y which then
minimizes F because F(y;) decreases to inf, . y F(y) and F is lower semicontinuous.
g.e.d.

We now establish a stabilizing property of the Moreau—Yosida approximates.

LEMMA 4. Let F: Y -»Ru{o0} be convex and lower semicontinuous. Then for
any x;,x, € Y,A >0

d(J,(x1), J;(x,)) <d(xy, x,).

Proof. We put y;==J,(x;),i=1,2, and we let y : [0, 1] -» Y be the geodesic arc
from y, to y,, parametrized proportionally to arclength. Since F(y,) and F(y,)
have to be finite and F is convex, the restriction of F to y is a bounded convex
function. It then assumes its minimum at some point y, € y. If y, is an interior point
of 7, then y; has to be the point on 7y closest to x;, because otherwise we would
decrease both the values of F and of d*.,x;) by moving on y closer to y,,
contradicting the definition of y,. In that case, however, it is an easy consequence
of nonpositive curvature that

d(xy, x3) 2 d(y1, ¥2)-

If y, is an endpoint of y, say y,, we assume

d(y1, y2) > d(x1, X2) (1.8)

and shall reach a contradiction.
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Since y, is the minimum of F on y and since F is convex, we have for 0 < ¢ < |

F(y(0) — F(y,) < F(y,) — F(y(1 — 1)) (1.9)

(recall y, =(0), y, = y(1)). A consequence of Reshetnyak’s quadrilateral compari-
son theorems ([Re]), namely Formula (2.1v) of [KS], implies

d*(y(0), x,) + d*(y(1 — 1), x;) <d*(x,, y,) +d*(x, ;)
+ td*(x,, x,) — td¥(y,, ¥»)
+21%d*(y,, y,)
—t(d(x,, x,) +d(yy, y2)~ (1.10)

For sufficiently small ¢ > 0, we then conclude from our assumption (1.8)

d*(y(1 — 1), x5) —d*(y2, X2) <d*(yy, x;) — d*(¥(1), X)) (1.11)
From (1.9), (1.11), we obtain for such ¢ >0

AF(y(1 = 1) + d*(y(1 — 1), x,) < AF(y;) + d*(y;, x5)
+ {AF(y,) + d*(y,, x,) — (AF(y(1)) + d*(y(1), x,) }
< AF(y,) + d*(y,, Xx3)

by definition of y, = J,(x,). This, however, contradicts the definition of y, = J,(x,).
Thus, (1.8) cannot hold. q.e.d.

2. Existence of harmonic maps between metric spaces

We recall the definition of equilibrium maps of [J] (a related, though less general
construction was given in [KS]). Let X, and X, be metric spaces with metrics
indiscriminately denoted by d(.,.). We assume that X, is complete. Let a measure
u as well as a family of measures u$ depending on x € X, and € > 0 be given on X.
A typical example is

us = pu | B(x, e). (2.1)

For fe L%, (X,, X,), we define
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[ &)%), £()) dus(»)
[ d2(x, y) dus(y)

E(f)= J dp(x)

and
E(f)=TI — lim(i)t E.(f)

whenever this I'-limit in the sense of de Giorgi (cf. [dM]) exists. Provided we
are willing to restrict ourselves to some fixed subsequence €, — 0, this limit indeed
exists under quite general assumptions. See for example, by Thm. 8.5 of [dM] if
L?*(X,, X,) as a metric space has a countable base. If X, is a finite dimensional
Riemannian manifold, with u the volume form and u< as in (2.1), the existence of
E(f) as the I'-limit can also be verified in an elementary manner, see [J; §1], for any
complete metric space X,. It also follows from a general result ((dM; Thm. 6.8])
that E as a I'-limit is lower semicontinuous on L*(X,, X,).

For applications, it is important to consider the case of p-equivariant maps,
where p : I' - I(X,) is a homomorphism from some subgroup I' of the isometry
group I(X;) of X, into the isometry group I(X;) of X,. f: X, — X, here is called
p-equivariant if

f(yx) = p(y)f(x) for all x e X,,y€eT.

Typical examples are the lifts of maps between compact quotients of X, and X,.
The following definition was suggested by Scot Adams:

A subgroup G < I(X;) is called reductive if there exists a complete totally geodesic

subspace X of X, that is stabilized by G with the following property: Whenever

there is an unbounded sequence (p,,),.n in X with

d(p,, yp.) < const.

for all y € G (with a constant that is allowed to depend on y, but not on »n), then
G stabilizes a finite-dimensional complete, flat, totally geodesic subspace of X. p is
called reductive if p(I') is.

THEOREM 2. Let X, be a complete metric space of nonpositive curvature in the
sense of Alexandrov. Let I" be a subgroup of the isometry group of the metric space
X, and assume that the measures p and p5, are I'-equivariant (y.u5 = p5, for all x, y,
and p induces a measure u, on X,|I'). Let

p: I -1(X;)
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be a reductive homomorphism. Assume that there exists some p-equivariant
f . X 1> X 2 Wlth

E*(f) < oo,
with E*(f):=I —limit._ o E?(f) (or perhaps for a subsequence €, —0) and

[ d2(f(x), f() dus(y)
[ d%(x, y) dus(y)

E(S) =f dpr(x).

Then there exists a p-equivariant equilibrium map, i.e. a map that minimizes E’ in the
class of p-equivariant maps.

Proof. We define Y as the space of p-equivariant maps f: X; - X, of class L2
on X,/I'. Y then is a complete metric space, with metric given by

d*(f,g) = J d*(f(x), g(x)) dup(x).

X\[T

Since X, has nonpositive curvature, so does Y. We then apply the results of §1 to
F = E’. We choose f, € Y and put for n € N

So=d.(f0) (Moreau-Yosida approximation).
Since E” is not identically oo, we have
E’(f,) < 0.

We have for y e I'

(S foo V) = J d*(fu(x), P(V)f(x)) dpr(x).

X,/r

Since by equivariance J,(f;° y) =f,°y, Lemma 4 implies

d*(fo fuo V) <d*(fo, foo D),

and this quantity is bounded for each y independently of n. Thus, if £, is unbounded,
i.e. if £,(x) is unbounded on a set of positive u measure, the reductivity assumption
implies that p(I') stabilizes a finite dimensional totally geodesic flat subspace L.
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We can then search for the desired minimizer among p-equivariant maps from X,
into L. Since the metric of L is Euclidean, its group of translations is commutative,
and we may therefore conjugate with suitable translations, in order to construct a
bounded minimizing sequence, without destroying the p-equivariance. Therefore,
we obtain in any case a bounded minimizing sequence.

Since X, has nonpositive curvature, d* is convex, and consequently, for € > 0, E,
is a convex functional on Y. Therefore, also

E:Y-R

is convex by Thm. 11.1 of [dM]. By Thm. 1, we then obtain the existence of a
minimizer of E. g.e.d.

Remark. Thm. 2 includes the case of infinite dimensional or other non locally
compact domains. Of course, for such domains, one needs to check whether
measures appropriate for the definition of harmonic maps exist. The standard
examples where such measures do exist are Wiener measures or other Gaussian type
measures, e.2. on loop spaces.

Our methods can also be used to treat some generalizations of harmonic maps
that have been considered in Riemannian geometry. Let, for simplicity, M and N be
compact Riemannian manifolds. N having nonpositive sectional curvature. Let
o : M —> R be a positive function, and for a Sobolev map f: M — N, we consider

I0f) = L 4 Jo() d Vol (),

with expressions defined through the Riemannian metrics in the standard manner.
It then follows from Thm. 1 and the arguments of Thm. 2 that / assumes a
minimum in a given homotopy class (expressed through an equivariance condition
for the lifts to universal covers).

Likewise, we can treat, for compact M again, variational problems of the type

5 O of
H(f):= J gii(x, f(x))y ﬂg};@ det (y,,) dx

(in local coordinates, (y,;) is the metric of M, (y¥) =(y,)~"), if for each
x € M, g;;(x, -)defines a Riemannian metric of nonpositive sectional curvature. We
thus consider harmonic sections of fibre bundles, with nonnegatively curved fibres.
The existence of energy minimizing sections in this context has been shown by
Kourouma [K], and our methods reproduce his result (obtained by a different
method).



Convex functionals and generalized harmonic maps into spaces of non positive curvature 673

REFERENCES

[Al] AL’BER, S. I., On n-dimensional problems in the calculus of variations in the large, Sov. Math.
Dokl. 5 (1964), 700804,

[A2] AL’BER, S. L, Spaces of mappings into a manifold with negative curvature, Sov. Math. Dokl. 9
(1967), 6-9.

[At] ATTOUCH, H., Variational convergence for functions and operators, Pitman, 1984,

[C1] CorLETTE, K., Flat G-Bundles with canonical metrics, J. Diff. Geom. 28 (1988), 361-382.

[C2] CoRrLETTE, K., Archimedean superrigidity and hyperbolic geometry, Ann. Math. 135 (1992),
165-182.

[D] DONALDSON, S., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.
55 (1987), 127-131.

[dM] DAL MAso, G., An introduction to I -convergence, Birkhduser, 1993,

[DO] DiepericH, K. and OHSAWA, T., Harmonic mappings and disk bundles over compact Kihler
manifolds, Publ. Res. Inst. Math. Sci. 21 (1985), 819-833.

[ES] EELLS, J. and SAMPSON, J., Harmonic mappings of Riemannian manifolds, Am. J. Math. 85 (1964),
109-160.

[GS] GroMov, M. and SCHOEN, R., Harmonic maps into singular spaces and p-adic superrigidity for
lattices in groups of rank one, Publ. Math. THES 76 (1992), 165-246.

[H] HARTMAN, P., On homotopic harmonic maps, Can. J. Math. 19 (1967), 673-687.

[J1  Jost, J., Equilibrium maps between metric spaces, Calc. Var. 2 (1994), 173-204.

[JY1] JosT, J. and YAU, S. T., The strong rigidity of locally symmetric complex manifolds of rank one and
finite volume, Math. Ann. 271 (1985), 143-152.

[JY2] JosTt, J. and YAu, S. T., On the rigidity of certain discrete groups and algebraic varieties, Math.
Ann. 278, (1987) 481-496.

[JY3] Jost, J. and YAu, S. T., Harmonic maps and group representations, in: B. Lawson and K.
Tenenblat (eds.), Differential Geometry and Minimal Submanifolds, Longman Scientific, 1991, pp.
241-260.

[JY4] JosT, J. and YAu, S. T., Harmonic maps and superrigidity, Proc. Sym. Pure Math. 54, Part |
(1993), 245-280.

[JZ1] Jost, J. and Zuo, K., Harmonic maps and Si(r, C)-representations of n, of quasi projective
manifolds, J. Alg. Geom., to appear.

[JZ2] JosT, J. and Zuo, K., Harmonic maps into Tits buildings and factorization of non rigid and non
arithmetic representations of n, of algebraic varieties.

[KS] KOREVAAR, N. and SCHOEN, R., Sobolev spaces and harmonic maps for metric space targets,
Comm. Anal. Geom. 1 (1993), 561-569.

[K] KouUROUMA, M., Harmonic sections of Riemannian fiber bundles.

[La] LABOURIE, F., Existence d’applications harmoniques tordues a valeurs dans les variétés a courbure
négative, Proc. AMS 111 (1991), 877-882.

[N] NIKOLAEV, 1., Synthetic methods in Riemannian geometry, Lecture Notes.

[Re] RESHETNYAK, Y. G., Nonexpanding maps in a space of curvature no greater than K, Siberian
Math. Journ. 9 (1968), 683—-689.

Ruhr - Universitdt Bochum
Fakultit und Institut fiir Mathemutik
D-44780 Bochum

Received September 4, 1994



	Convex functionals and generalized harmonic maps into spaces of non positive curvature.

