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Almost periodic Sturm-Liouville operators with Cantor homogeneous
spectrum

MIKHAIL SODIN AND PETER YUDITSKII

To the memory of B. Ya. Levin (1906—1993) who was a teacher of our teachers and
who gave us so much

Being based on the infinite dimensional Jacobi inversion found earlier, we
establish the direct generalization of the well-known properties of finite-band
Sturm-Liouville operators in the case of operators with a homogeneous and,
generally speaking, Cantor-type spectrum, and with pseudocontinuable Weyl func-
tions.

In our investigations the group of unimodular characters of the fundamental
group of the resolvent set plays a role of the isospectral manifold of the operator.
The generalized Abel map conjugates the nonlinear evolution of spectral data with
a linear motion on this torus. In particular, the operators we consider turn out to
be uniformly almost periodic.

§1. Statement of main results
1.1. Consider the Sturm-Liouville equation
Ligly = —y"+4q(x)y =4y, —o0o<x <o, (1.1.1)

with a real bounded continuous potential g(x). We denote by C(x, ) and S(x, 4)
the fundamental solutions of Equations (1.1.1) satisfying initial conditions

C(0,2) =80, ) =1, C'(0, 1) =S(0, 1) =0.

By virtue of the classical Weyl theorem (see, for example, Titchmarsh [25, Ch. 2]),
for each nonreal A Equation (1.1.1) has solutions

W, (x, A) = C(x, 1) + m,(A)S(x, 4), such that ¥, e L}(R,).

This work was partially supported by ISF Grant no. U2Z000.
639



640 MILKHAIL SODIN AND PETER YUDITSKII

The functions m, are holomorphic outside the real axis, m, (1) =m_ (1) and

Fm,(AD)/FL>0, Fm_(A)/FA <O.

The functions m, (1) are called the Weyl functions; they are defined uniquely by
virtue of the boundedness from below of the potential g(x).

We denote by g(x, y; 4) the Green function of L[g] which is defined as the kernel
of the resolvent R, = (L[g] — A) ~!. Then (see Titchmarsh [25, Ch. 2])

1 m_()—m,. ()
glx, x; 1) WL (x AW_(x, D)

Without loss of generality, we assume that the origin is the lower bound of the
spectrum of L[g].

(1.1.2)

1.2. DEFINITION. Let E be a closed set

E=[0, o)\|J (g, b)) (1.2.1)

iz

satisfying the conditions:
(i) E is homogeneous (Carleson [5], Jones and Marshall [10]), i.e., there is an
¢ >0 such that for all A e F and all 6 >0

(A =6, +8)NE|=¢d; (1.2.2)

(i1) the sum of lengths of gaps in FE is finite:

Y (b, —a;) < . (1.2.3)

j=1

A potential g belongs to the class Q(F) if the spectrum of L[g] coincides with E and
the Weyl functions are pseudocontinuable:

m, (4 +i0)=m_(4 —i0) for a.e. A€cE. (1.2.4)

1.3. Let us stop for 2 moment at this definition and make some comments.

First, we note that the homogeneity condition (1.2.2) can be written in the
equivalent form which looks slightly more invariant: there is an ¢ > 0 such that for
all AieEand all 6 >0

f dt f dt
2 & .
(i.—é,/‘.+6)nE1+t2 (.= 8,5+ 0) 1+12

It will allow us to apply later function theory results obtained in [24].
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Equations (1.1.2) and (1.2.4) imply that the potential g € Q(E) is reflectionless
in the sense of Craig [6]: for every x € R

Rg(x, x; 4 +i0) =0 forae. A€E. (1.3.1)

It may be proved (see Appendix) that, vice versa, the Craig condition (1.3.1)
implies condition (1.2.4).

If there is a finite number of gaps in E, then (1.2.4) implies that there is a
rational function m(4) on the hyperelliptic Riemann surface 2, of the function

A}le_bj

such that m_ (1) =m(4) and m_(A) = m(A*) where * means the involution of the
sheets of the surface £;. Hence in this case Q(E) coincides with the well-known
class of finite-band Sturm-Liouville operators (see, e.g., McKean and van Moer-
beke [19], Dubrovin, Matveev and Novikov [7], Moser [22], and the recent book
Belokolos, Bobenko, Enol’skii, Its, and Matveev [4b]). With the special choice of E
the class Q(E) also contains infinite-band periodic potentials investigated by
Marchenko and Ostrovskii [17, 18] (see also Marchenko [16]), by McKean and
Trubowitz [20, 21], and by Garnett and Trubowitz [9]. Such potentials are
connected with hyperelliptic Riemann surfaces of infinite genus.

From the other hand, condition (1.2.4) naturally arises in the spectral theory of
ergodic (or random) Sturm-Liouville operators due to well-known Kotani’s theorem
(see Pastur and Figotin [23a] or Carmona and Lacroix [5a], see also Belokolos,
Bobenko, Enol’skii, Its, and Matveev [4b, Sect. 8.1]). Putting together with the
Pastur-Ishii result, it asserts that if L is an ergodic Sturm-Liouville operator with the
density of an absolutely continuous spectrum positive a.e. on a Borelian set 4 € R,
then condition (1.2.4) holds a.e. on A. That is, all ergodic (particularly, almost
periodic) Sturm-Liouville operators with a homogeneous spectrum E and with the
density of absolutely continuous spectrum positive a.e. on E belong to the class Q(E).

1.4. Set
N
E(N) = [09 OO)\ U (aja b_])
Jj=1

APPROXIMATION THEOREM. For a fixed homogeneous set E and for each
sequence of finite-band potentials q € Q(E™Y), N = 1,2, ..., there is a subsequence
which converges uniformly on the whole axis R and the set of all limit potentials

coincides with Q(E).
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In particular, Q(E) is compact in the topology of uniform convergence on the
whole axis, and since finite-band potentials are uniformly almost periodic (see, for
example, Levitan [14] or Moser [22]), we obtain that every potential of the class
Q(E) is uniformly almost periodic.

Under more restrictive conditions imposed on the set E, the almost periodicity
of potentials of the class Q(F) has been proved in Levitan [14, 15], Pastur and
Tkachenko [23], Egorova [8, 8a].

1.5. Let @ =C\E be the resolvent set of the operator L[g], and let
n(2) = n(2, — 1) be the fundamental group of 2 with the marked point z = —1 (in
fact, its choice is inessential). By n*(22) we denote the group of unimodular
characters of n(2) endowed with the topology dual to the discrete one on w(Q).
Further, we will use the additive form of notations for the compact abelian group
n*(Q):

n*(Q2) = {a(y) € Rmod Z: y € m(Q), oy, ° ;) = a(y,) + () }-

The group n*(R2) is a finite-dimensional torus if Q is finitely connected, and is an
infinite-dimensional torus if Q is infinitely connected. We will use this torus for a
parameterization of operators L[gl, ¢ € Q(F) with a given E.

Let us consider the conformal map of the upper half-plane onto the slitted
quarter-plane (see Figure 1):

w:C, »{Rw <0, Fw >0\ | {Fw =nid;, —h, < Rw <0}, (1.5.1)

Jjzl

normalized by the conditions w(0) =0 and

W(=2) ~ =22, Ao, (1.5.2)
A
40, ©
v w(a)
—¢ —
— ¢ 5if. Y,
h, /
AN NN NN NN & —> SBEr/ (Eria e /i aal PP A—

Figure 1
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It maps the spectrum E onto the imaginary semi-axis and the gaps in E onto the
slits. The normalization (1.5.2) is possible by virtue of condition (1.2.3) and
well-known results by Akhiezer and Levin [4, p. 127] (see also Levin [13]). Such
maps were introduced into the spectral theory of Sturm-Liouville operators by
Marchenko and Ostrovskii [17, 18] (see also Marchenko [16]). Later, they were
used by Garnett and Trubowitz [9], and by Pastur and Tkachenko [23].

Let us continue the function w(4) analytically across all intervals (a;, ;) and
(— o0, 0) into the lower half-plane. We obtain a multivalued function on Q whose
real part is single-valued. The ramification of Fw generates a character
0 =d(E) € n*(2). Namely, d(y;) = é,, where numbers 9, are defined in (1.5.1) and
{7;} = () being a system of generators of the group n(2), consisting of loops v;,
which begin and end at A = —1, and contain E; = En[b;, o0) inside and E\E;
outside (see Figure 1).

Now we are able to formulate our main result.

1.6. MAIN THEOREM. There exists a homeomorphism between the compacts
Q(E) and n*(Q) conjugating the shift of the potential q(x) v q(x + t) and the linear
motion o — o + 0t on n*(Q), where 6 = d(E).

COROLLARY. Every potential of the class Q(E) is a uniform almost periodic
function whose frequency module is spanned by {9, }.

In the finite-band case w(A) coincides with the normed abelian integral of the
second kind with a pole at infinity, and n*(©2) is a finite-dimensional torus
isomorphic to the real part of the Jacobian of the corresponding hyperelliptic
Riemann surface #;. In this case our Main Theorem is a restatement of the
well-known results due to Dubrovin, Matveev and Novikov [7], and McKean and
van Moerbeke [19] (see also Moser [22]). Such results are going back to works by
Akhiezer originally published in the early sixties in a series of papers in Soviet
Math. Doklady and in Proceedings of the Kharkov Math. Society. Later, they were
summed up in Akhiezer [1-3] (see also Akhiezer and Rybalko [4a]). In fact, in his
papers Akhiezer considered only operators acting on the semi-axis (R, or Z.).

1.7. Let us introduce a class of divisors

YD (E) = { U(J,j)/lej,J]s=il}.
j=1

If A, coincides with one of the points a;, b, we arrange (4, +1) =(4;, —1). We

endow Z(E) with the compact topology of the product of circles I7, where I7 is a

two-sheeted covering of I, =[a;, b;] with ends identified.
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Following Craig [6], we associate with every potential ¢ € Q(FE) the collection of
spectral data D € Z(E) of the operator L{g]. The function g(0, 0; 1) is a Nevanlinna
function (it preserves the upper half-plane) and by virtue of (1.3.1) its multiplicative
representation may be rewritten in the form

A= 4 ) €la;, b;]. (1.7.2)

1
2./ ‘-'/11'12_[1 \/(aj _’1)(bj ""1), ’

(see, for example, Appendix in Krein and Nudelman [11] or Craig [6]). By (1.1.2)
with x =0 we obtain

g(0,0; 4) =

g(0,0; ) =(m_(4) —m (D)™, (1.7.2)

and if 4; € (a;, b;) then 4; is a pole of one of the functions m,(4) (ie., 4, is an
eigenvalue of L[g] acting on one of the semi-axes R, ). If 1, was a pole of both of
the functions m,(4) then A, would belong to the spectrum of L[g] what is
impossible. Thus, we may define ¢, = +1 depending on which of the functions
m (A) has a pole at 4; € (g;, b;), and the map Q(E) —» Z(FE) is well-defined.

The shift of the potential ¢(x) +— g(x + ) defines a continuous curve
{D(®)},.r = D(E), D(0) = D, and the potential ¢(f) can be recovered by this curve
using the trace formula proved for this class by Craig [6]

a0 = Y. (a;+ b, —24,(1)), (1.7.3)

jz1
where 4;(?) € [a;, b;] correspond to the divisor D(¢).

1.8. UNIQUENESS THEOREM. The map Q(E) - %(FE) is a homeomorphism
of the compacts Q(E) and 2D(E).

This theorem establishes a continuous parameterization of operators of the class
Q(E) by divisors from Z(FE). In the periodic case this parameterization was found
in Marchenko and Ostrovskii [17]. We should also mention that a bijection between
sets Q(E) and 2(E) was established in Craig [6] under certain conditions imposed
on the spectrum E which seem to be more restrictive than the homogeneity; on the
other hand in that paper the set of potentials Q(F) was endowed with a weaker
topology of the uniform convergence on each compact subset of R.

1.9. The key to the proofs of our theorems is the fact that the generalized
infinite dimensional Abel map 4: 2(E) - n*(Q2), being a homeomorphism of these
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compacts, linearize, as in the finite-band case, the curve D(f) mapping it onto the
line o + J(E)t on ©*(Q).

Here is a plan of the rest of the paper. In Sect. 2 we remind the definition of the
Abel map from Sodin and Yuditskii [24]. In Sect. 3 we prove a ‘“half” of the
Uniqueness Theorem, namely we prove that the collection of spectral data D of the
operator L[q] defines the potential g uniquely, i.e. the map Q(E) — 2(E) is injective.
In Sect. 4 we bring some auxiliary facts concerning a “finite-band approximation”
of 2(E) by 2(E™) and of n*(Q) by n*(Q™), where Q¥ = C\E; and in Sect. 5
we prove Approximation Theorem. Simultaneously, our Main Theorem and
Uniqueness Theorem will be also proved.

§2. The Abel map A4: D(E) — n*(R2)

2.1. Let w(4, F) be the harmonic measure of a set F < E at 4 € 2 with respect
to the domain Q. The Abel map was defined in [24] as

1 b

A(D)[y,] =§Zsj f w(dA, E,) mod Z, k=1,2,.... (2.1)
iy

where D = | J; (4, ¢;) € D(E), E, = En[b;, 0), and {y, } being the system of loops

generating the group n(2) (see Sect. 1.5). As it was checked in this paper, the

homogeneity of E yields the convergence of the series in the right-hand side of (2.1)

(see also Sect. 4.2 below). This definition of the Abel map agrees with the classical

one in the finite-band case.
2.2. In the just mentioned paper we have proved

THEOREM A. If a set E is homogeneous, then the Abel map gives a homeomor-
phism between the compacts Y(E) and n*(£).

2.3. In the sequel, we denote by G(z, z,) the Green function (for the usual
Laplacian) of the domain Q with the pole at z = z,, and we denote the complex
Green function of Q with a zero at z=z, by &(z,z,) =exp[—G(z, z)
—i % G(z, z,)]. The function &(z, z,) is character-automorphic (Widom [26]): it has
a single-valued modulus and after analytic continuation along the loop 7y, the
variation of its argument — *G(z, z,) equals

—2nfw(zq, Ex) — Ind;-k(zo)]-
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Hence a character a = o[ ®(:, z,)] associated with &(-, z;) equals

o D(-, zo)I(ve) = —w(zy, E,) mod Z, k=1,2,.... (2.3.1)

§3. An operator L|gq], ¢ € (E), is uniquely defined by the collection of its spectral
data D

3.1. Now, let us consider the Weyl functions m, . Since m, and —m_ preserve
the upper half-plane, these functions have Nevanlinna representations as Cauchy
integrals of nonnegative measured do , . These measures are spectral measures of the
restrictions of the operator L[g] on the semi-axis R, correspondingly. By the
Marchenko uniqueness theorem (see, for example, Levitan [14]) these measures
define uniquely the potential g(x). So we have to prove that these measures in turn
are defined by the divisor D.

3.2. LEMMA. Let q € Q(E). Then the Nevanlinna measures do . of the functions
m, and —m_ are defined uniquely by the divisor D = J; (4, ¢;).

Proof. In the proof we will use the relations
L
g0,0)

m, (A +i0) =m_(4 +i0) for ae. A €E. (3.2.2)

—m_, (3.2.1)

Set

’;’+(/1) =m+('1) “m+('_1)>
m_(A) =m_(4) —m, (1),

and consider the product F(1) = m (A)m_(A). The argument arg F(4) varies in the
upper half-plane from —= to z. It follows from (3.2.2) that

arg F(A +i0) =0 for ae. A €E.

Since both functions 1, (4) are real in the gaps, arg F(4) takes there values 0 and
+ .

Now, let us look at the behaviour of 72, (4) in the gap (— oo, 0). The function
i, (A) increases there (because its Nevanlinna measure does not support this gap),
consequently

. >0, Ae(—1,0),
m““{<a de(—o, —1).
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Since g(0,0,4) >0 as 4 € (—o0,0) (it follows, for example, from representation
(1.7.1)), we have

. " 1 N
m_(1)=m+(l)+m > m (4), Ae(—o0,0).

In addition, m_(A) is decreasing there and hence #_(4) >0, A € (— o0, 0). Thus,

n, Ae(—o0, —1),

arg F(4) = {0, Je(—1,0).
Similarly, we establish that only one of the functions 7, (4) may have zero A{" on
(a;, b;), and we set ¢V = +1 if A{" is zero of 1, (4) and &V = —1 if A" is zero of
m_(4) (see Figure 2)

Taking into account the fact that log F(A) is represented on A >0 by the
Cauchy integral of the boundary values of arg F(4 + i0), we obtain a multiplicative
representation

PRI

F(A) = Cz(/l-l—l)r[}L /1 ).(”E{aj,bj] (3.2.3)
G\I
N
l | -7
‘ |
|
| { o
Y, 1
T l % - >
. ) ,)(4) _ 2
) o ﬂd} ) 64.
l
|
| (4) )
| Ca-i,E:J = £k="i)5k =1

Figure 2
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Simultaneously, we have defined the divisor

DM = U (l}l)’ eM), DM e Q(E).
j

Now we will use some arguments from Sodin and Yuditskii [24]. By Theorem
D from this paper, the functions F(4) and 1, (4) are functions of bounded type on
Q = C\E (it means that they are represented as a quotient of bounded functions),
and, moreover, these functions have no singular inner factors (the latter means that
the logarithm of modulus is represented in E as a sum of the Green potential and
the Poisson integral of its boundary values). The factorization F(4) =, (A)ri_(A)
should be considered as a representation of the positive function on E, given by
(3.2.3), as a square of modulus of boundary values of the function 72, (1) which has
no singular inner component and whose zeros and poles are known. It allows us to
write a multiplicative representation

A
. (A) = CJ/(h + Do@, —1) \/ 1 '1[ iﬁ" 4’((;(;1'15:)): (3.2.4)
J - 4 s Ay 4

(see details in the cited paper by the authors).

The left-hand side of (3.2.4) is single-valued on , hence, the right-hand side
also should be single-valued. Evaluating the character of the right-hand side of
(3.2.4) and making use of (2.3.1), we obtain

1 1
0= —E Q)( s 1, Ek) - 5 Z [S}l)w(i}l)s Ek) - Sjw(ij’ Ek)]’

J

or
A(DD) = A(D) + 1, (3.2.5)

where ©(y,) = —iw(—=1,E,)mod Z, k =1,2,... defines a fixed character from
n*(Q).

By Theorem A (Sect. 2.2) Equation (3.2.5) implies that the divisor D" € Q(E)
is defined uniquely by the divisor D.

A constant C is evaluated from the condition

1

SR S

Thus, the functions 77, are determined uniquely by the divisor D and the Lemma
1s proved.
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§4. “Finite-band” approximation of D(E) and n*(R2)

4.1. As before, we set

]?

N
EM =10, o)\ | ) (ag;, b)), QM) = C\EW,
j=1

Let {y;} be a system of generators of the fundamental group n(f) introduced in
Sect. 1.5. Note that {y;},.y is a system of generators of n(2*’) and hence an
arbitrary character «‘™ e n*(Q‘V) may be extended to a character « € n*(Q™) by
setting

y;) = a™(y,) JEN,
=00, j>N.

It defines a continuous embedding n*(2™) ¢ n*(Q). And, vice versa, by o'V we
denote a “projection” of the character a € n*(Q) on n*(Q™’) which is defined as

aM(y) =a(y;), 1<j<N.

Similarly, every divisor D'V e 2(EY) may be complemented to a divisor
D=D™Mul| ;5 y (b)), D € D(E), and, vice versa, for a given divisor D € (E) we
denote its “projection” onto 2(E™’) by D™). Then

o™ g, D™ D as N - o0, (4.1.1)

as it follows directly from the definition of convergence in n*(2) and Z(E).

We denote by A™: Q(EM)) —»n*(Q™) the classical Abel map which due to
above may be considered as a map A"): 9(E) - n*(2). Our next goal is to prove
that

ANY(D) - A(D) for every D € 9(E), (4.1.2)
and

S(E™) - 6(E), (4.1.3)
as N — oo.

4.2. Proof of (4.1.2). We should prove that for every k it holds

b; b;
Y g J w(dl, EM, QM) -3y ¢ J w(dA, E,, Q) (4.2.1)
J A

J<N Ty Yy
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In the proof of this relation we will use two consequences of the homogeneity of E
which are pertaining to potential theory. At first, we will use the regularity of E
with respect to the Dirichlet problem on 2 = C\E. Landkof [12]. It follows, for
example, from the Wiener criterion. Secondly, we will use that if E is homogeneous
then C\E = Q satisfies the Parreau-Widom condition

G(c;, 49) < © (4.2.2)

{Cji VG(CI-,/IO) == 0}

(see Jones and Marshall [10]).
First of all, we will show that for every 4 € Q and every k

w(l, EM, Q™) 501, E,, ), N ow. (4.2.3)
To this end, we consider a harmonic function on Q®
w(A, EM, Q™) —w(4, E,, Q), N >k,

and remark that the homogeneity of E implies the regularity of E with respect to
the Dirichlet problem on C\E. Hence, by the regularity of E,

max, lo(, EV, Q™) — w(4, Ey, )| -0, N -
ieFE
(see, for example, Landkof [12]).

Now, in order to prove (4.2.1), we will show that the series in the left-hand side
of (4.2.1) is majorized by a converging series consisting of positive terms which do
not depend on N.

Tr
1
Y

Figure 3
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Let 11,7 be a connected vicinity of [b;, ) on the Riemann sphere and let IT;
be a connected vicinity of [0, a,] (see Figure 3). We assume that [T} N [1; = & and
that —1 e C\(II;7 uII;). Denote I'f = 0IT¢ and set

:ul-ct = min G(As _l)a
P

ie
where G(4, —1) is the Green function of Q with a pole at A = — 1. By the Maximum
Principle applied in T nQ®™, we obtain
#l: Cl)(},, Ech)’ Q(N)) < G(’L - 1)9 A € Hl—c-s
#I—c'-(l - 0)(2«, EScN)a Q(N))) < G(’L _l)a A€ Hlj’

Therefore, the convergent series

1

mm(#f > Kk ) {cj: VG(cj, —1) =0} !

is a majorant we were looking for.

4.3. Proof of (4.1.3). For this purpose, we will use the connection between con-
formal maps onto comb-like domains (as in (1.5.1)) and subharmonic majorants
(Levin [13]). Denote by wy, the conformal map (1.5.1) corresponding to the set E?
and put v = Rw, vy, = Rwy. We will prove that

opy(A) s v(d), N->oo, (4.3.1)

uniformly on each compact in Q. This relation implies that for every k the variation
of ¥w, along the loop 7y, converges to the variation of Fw along y, as N — oo, what

is equivalent to (4.1.3).
Define a class K of subharmonic functions u(4), 4 € C, nonnegative on E and

such that

: u(4)
111}1_’5;1p |—l|'_2r_' <l

Similarly, we define the class Kgw). As it follows from Levin’s results (see Levin
[13, Theorem 2.5]), the asymptotic (1.5.2) yields

v(A) = sup{u(d):u € K; }
va () = sup{u(A) :u € Kpm},



652 MILKHAIL SODIN AND PETER YUDITSKII

Since Kz < Kg, then vy(4) <v(4), 4 € C. By the theorem of uniqueness (Levin
[13, Theorem 3.2]) every limit function for the normal family {v,(2)} coincides with
v(4), i.e., (4.3.1) holds.

§5. The proof of Approximation Theorem

Now everything is ready for the proofs of our results. In Sect. 5.1 we will show
that the set of potentials Q(E™) is precompact in the topology of the uniform
convergence on the real axis and that every limit (as N — oo0) potential belongs to
Q(E). In Sect. 5.2 we will show that every potential from Q(FE) is a uniform limit
of potentials from Q(E™), N - co. It will prove our Approximation Theorem.
Simultaneously, our Main Theorem and Uniqueness Theorem will also be proved.

5.1. Let gy e Q(E™) be a sequence of finite-band potentials and let
D™ e 9(EM)) ¢, 9(FE) be a corresponding sequence of spectral data. Since Z(E) is
compact, we may assume that

DM 5 D, N - 0.

We should prove that

gn(®) —>q(r)  uniformly on R, (5.1.1)
and that
g € Q(E). (5.1.2)

Define a curve {D™)(¢)}, . g which solves the classical Jacobi inversion problem
ANMDN(D)) = ANDMY + FEM),  teR. (5.1.3)

Taking into account that Z(E) is compact and that the functions 4"’ and 4 are
continuous on Z(E), we obtain by (4.1.2) that AY) converges to 4 uniformly on
2(E). Hence, making use of (4.1.1) and (4.1.3), we may pass to the limit in the
right-hand side of (5.1.3) for every ¢ € R:

AM(DMNY1)) - A(D) + §(E)t, N - o0,

This relation together with compactness of 2(E) and n*(E), with the relation
(4.1.2), and with Theorem A yield
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DM(f) = D(f) uniformly on R,
where
A(D(1)) = A(D(0)) + 6(E)t, D(0) =D,

D() =) (4(2), &(0).

Now passing to the limit in the trace formula

N

an(t) = ), (a;+ b, — 22 (1)),

Jj=1

we obtain (5.1.1), where the limit potential ¢(rf) may be recovered by the trace
formula (1.7.3).

The relation (5.1.1) implies (see for example Craig [6]) that the spectrum of the
limit operator L[g] coincides with the set E =)y, , E*? and that

gn(x, x;A) »g(x,x;4), N-wo, xekR (5.1.4)

uniformly with respect to 4 lying on each compact in Q. Then (5.1.4) together with
Lemma 5.2 from Craig [6] imply the reflectionless of g (1.3.1), what is equivalent to
(1.2.4) by Appendix. So (5.1.2) is verified.

5.2. Now we show that an arbitrary potential ¢ € Q(E) may be approximated
by potentials from Q(E™) uniformly on the real axis.

Let D = D(0) € 2(E) be a divisor corresponding to the potential g. We denote,
as before, by D™ a “projection” of D on 2(E™’). There is a finite-band potential
gdn € Q(E™) which corresponds to D). As we have proved in Sect. 5.1, the set of
potentials {g, } is precompact in the topology of the uniform convergence on the
real axis and each limit potential belongs to Q(E). By (4.1.1) all limit potentials for
{g~} have the same divisor D of their spectral data and by the result proven in Sect.
3 every limit potential should coincide with g(f). So Approximation Theorem is
proved.

Since Main Theorem and Uniqueness Theorem are true for the finite-band
situation, our arguments together with Theorem A prove both of these two

theorems as well.
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Appendix
Reflectionless in the Craig sense implies pseudocontinuability of the Weyl functions

Let g(x) be a bounded continuous potential. We will show that the Craig
condition

Reg(x, x; A +i0)=0 for a.e. 1 € E =a(L[q]) (A1)
implies that
m_ (A +i0) =m_(A+i0) for a.e. A € E. (A2)

Since the Weyl solutions ¥, (x, ) of the Sturm-Liouville equation can be
represented in the form

X

Y,(x, )= exp{f m, (s, A) ds}, (A3)

0

where m (s, 4) are the Weyl functions of the potential g(x + s) (Titchmarsh [25]),
the diagonal of the resolvent kernel g(x, x; 1) equals

V. (x, Y _(x, 4)
m_(4) —m, (1)

1
“m_() —m, ()

g(x, x; 4) =

exp{j [m_(s, 1) + m_ (s, 4)] ds}.
0
Consequently,

;; logg(x, x, ) =m_(x,2) +m,(x, 1), Fi+#0,
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whence

d
2 28 8%, x, 4) = §lm_(x, 1) + m_ (x, A)]. (A4)
Denote the right-hand side of (A4) by u(x, A) and set A =1t +ig, ¢ > 0.

Let y(7) be an arbitrary continuous function with a compact support and let
0 <x; <x,<1 be arbitrary values. Integrating twice (A4) and changing the order
of integration, we obtain

*2 40) :
J;] de1+t2u(x,t+la)dt

2 Y(r) d .
=Ldt 5 1+t2‘—1;argg(x;x;t+ze)dx

¥
B

{arg g(x,, x,; t + i) — arg g(x,, x,; t + ig)} dt. (A5)

Since 0 < arg g(x, x; t + ie) < n, we may pass to the limit in the right-hand side of
(AS). Using condition (A1), we obtain

limf i dx J w(t)z u(x, t +ie)dt =0. (A6)
e—0 E 1 +t

X1

Observe, that the internal integral in (A6) is bounded uniformly with respect to
x €[0, 1] and ¢ €0, 1/2]:

j ll/;(_t)t 5 u(x, t + ie) dt

st/J B (Fm. (et + i) — Fm_(x, 1 + i)}
g1+t

<M dt % 1
S e 1+ 2 Vg, Xt + i)

<M,C sup ———.
= xe[oI,)11|g(x,x;z)|

The latter supremum is finite since the function x + g(x, x;{) is continuous. It
allows us to rewrite (A6) in the form

J - dx {lim v u(x, t + ic) dt} =0. (A7)

e—=0 El+t2

X1
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Now we consider a family of charges

XE( )

p.(x,dt) = u(x, t + 18) 5 dt, x €[0, 1], e €[0,1/2],

where yx; is the indicator-function of the set E. The family p.(x, df) converges
weakly to a certain charge p,(x, dt), as ¢ > 0. Together with (A7) it implies that

J " dx L (Do, di)

=j dx{hmJ Y(D)p.(x, dt)}

Since x, and x, are arbitrary values, we conclude that

J Y(®)po(x,d) =0 for a.e. x €[0, 1].

The absolutely continuous part of the charge p, equals

&lm_(x,t +i0) + m_(x, t +i0)] T% ,
whence for a.e. x € [0, 1]

&m_(x,t +i0) + m_ (x,t +i0)] =0 for ae. t € E. (A8)
Further, (A1) and the equation

1

m =m_(x, ) —m_(x, A)
imply that for every x € [0, 1]

Rim_(x,t +i0) —m_(x,t +i0)] =0 for a.e. 1t € E. (A9)

Comparing (A8) and (A9), we obtain that for some x € (0, 1)

m,_(x,t+i0) =m_(x, t +i0) for a.e. t e E.
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Note, that by virtue of (A3)

d
m(x, 2) = log . (x, )

_C(x, ) +m, (A)S'(x, 4)
CCx, A +m o (A)S(x, A’

where all four functions C, S, C’ and S’ are real as 4 € E. Thus, we have obtained
the condition (A2).
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