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Engoufirement symplectique et intersections lagrangiennes

FrRANCOIS LAUDENBACH

Abstract. Let {L,}, t € [0, 1], be a path of exact Lagrangian submanifolds in an exact symplectic manifold
that is convex at infinity and of dimension > 6. Under some homotopy conditions, an engulfing problem
is solved: the given path {L, } is conjugate to a path of exact submanifolds in 7*L,. This implies L, must
intersect L, at as many points as known by the generating function theory. Our Engulfing theorem depends
deeply on a new flexibility property of symplectic structures which is stated in the first part of this work.

En topologie différentielle la méthode d’engouffrement a été introduite par E. C.
Zeeman utilisée par J. Stallings [St] pour établir 'unicité de la structure différentielle
sur R”, n > 5. Elle a été aussitot reprise par B. Mazur [Ma] pour 1’équivalence stable
des variétés. Dans le deux cas elle est mise en oeuvre dans un procédé de répétition
infinie.

Dans [EG], Y. Eliashberg et M. Gromov ont donné une version symplectique du
théoréme de Mazur. Les champs de Liouville complets (voir la définition ci-dessous)
y jouent une rdle majeur, le plus souvent grace aux avatars du “truc d’Alexander”
C’est-d-dire des propriétés magiques de 'expression ! f(#x).

Notre travail deéveloppe aussi une méthode d’engouffrement symplectique et
propose une alternative topologique dans des problémes étudiés par M. Gromov puis
par A. Floer avec les courbes holomorphes.

La situation

(a) (M?", w) est une variété symplectique de dimension 21, supposée exacte,
Cest-d-dire w = dJ. La forme 4, comme toute primitive d’'une forme symplectique,
est appelée forme de Liouville. Le champ de Liouville associé A est le champ de
vecteurs défini par i(I)w = dA. On fait I’hypothése de convexité a I’infini (au sens de
Eliashberg—Gromov [EG])):

1l existe une hypersurface compacte sans bord, transverse a X, bordant un domaine
compact de M, et dont le saturé positif par le flot de A est complet et constitue un
voisinage de I’infini de M.
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(b) On considére une sous-variété lagrangienne L compacte connexe sans bord
et A-exacte, c’est-a-dire que 1 y induit la différentielle d’une fonction. Il est connu
qu’il existe une forme de Liouville A,, ne différant de A que par la différentielle
d’une fonction a support compact, et un plongement symplectique (non propre en
geénéral) T*L — M prolongeant I'inclusion L — M et tel que 4, y induise la forme de
Liouville canonique du cotangent. On désigne par U(L) un ouvert de M image d’un
tel plongement (on dira que U(L) est un ouvert cotangent).

On fait les hypothéses homotopiques:

n,(M,L) =0, n,(M, L) =0.

On peut dire aussi: n,(M, U(L)) =0, n,(M, U(L)) = 0.

(¢) On se donne une isotopie de sous-variétés lagrangiennes compactes A-
exactes, L, = M, t € [0, 1], partant de L, U(L). Sans perte de généralité, on peut
supposer que L, est transverse a L

Le principe d’engouffrement

Il énonce qu’il existe une isotopie hamiltonienne ambiante ¢,: M - M, t € [0, 1],
@y = identité, a support compact coincidant avec I’identité sur L et telle que, pour tout
t €[0, 11, @,(U(L)) contienne L UL,.

On dit aussi que U(L) peut engoufirer I'isotopie {L,} relativement a L (rel. L).
On se propose d’étudier la validité de ce principe.

Pour en souligner 'importance, notons tout de suite sa conséquence dans le cas
ou Ly=L (ou une approximation générique de L): la persistance d’intersection,
c’est-a-dire que L, n L reste non vide pour tout ¢. En effet, I'isotopie t — ¢ ;' (L,)
est hamiltonienne dans le cotangent de L donc persiste a recontrer la section nulle
L (Hofer [Ho]), en autant de points que le prescrit la théorie des fonctions
génératrices (Sikorav [Si]).

THEOREME D‘ENGOUFFREMENT. On considére la situation décrite ci-
dessus et on suppose n > 3. Alors quitte a remplacer {L,} par une ¢-approximation le
principe d’engouffrement est valide.

Grice au théoréme d’engouffrement, on retrouve par voie topologique certains
des résultats sur les intersections lagrangiennes que Gromov [G1] a établis par la
méthode des courbes holomorphes; cependant nos hypothéses homotopiques et
dimensionnelles sont plus restrictives. Par exemple, C” muni de sa structure sym-
plectique standard est convexe 4 'infini. Par ailleurs, par translation n’importe quel
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compact peut étre disjoint de lui-méme. Donc par P'absurde, le théoréme
d’engouffrement et son corrollaire sur la persistance d’intersection donne que, pour
n > 3, C" ne contient aucune sous-variété lagrangienne 1-connexe (une telle sous-va-
riété vérifierait ’hypothése homotopique du théoréme d’engouffrement).

Signalons que le théoréme d’engouffrement ne peut €tre vrai sans une hypothése
trés forte a I'infini. Dans [Mu] M.-P. Muller a construit une 3-sphére lagrangienne
plongée dans R® muni d’une structure symplectique (exotique) qui posséde néan-
moins un champ de Liouville complet dont le flot envoie tout compact & I'infini. Le
principe d’engouffrement n’y est donc pas valide.

Le travail est divisé en trois chapitres.

— chapitre I: Déformation de structures symplectiques: un exemple de flexibilité
— chapitre II: Engouffrement de cylindres de Liouville
— chapitre III: Engouffrement de sous-variétés lagrangiennes

Comme le titre I'indique, on résout au chapitre I un probléme de déformation
de structures symplectiques. Le théoréme qui y est établi trouve au chapitre II une
application immédiate & un premier probléme d’engouffrement. A partir de la on
peut démontrer au chapitre III le théoréme d’engouffrement annoncé. Chacun des
chapitres a sa situation propre, une variété symplectique M vérifiant certaines
hypothéses précisées a chaque fois, et enfin sa numérotation propre.

Chapitre 1
DEFORMAT!ON DE STRUCTURES SYMPLECTIQUES; UN EXEMPLE DE
FLEXIBILITE

Le h-principe de Gromov offre un outil trés général pour étudier les déforma-
tions de certaines structures géométriques, en particulier des structures symplec-
tiques, sur les variétés ouvertes. Ce principe interdit tout contrdle du support de la
déformation et on sait bien que si 'on se fixe un compact comme support, on se
trouve confronté aux phénomenes de rigidité de la géométrie symplectique. On
propose ici une situation intermédiaire ou la déformation cherchée doit étre a
support compact, mais dans un compact qui n’est pas donné a I’avance. Cela a un
sens en géométrie symplectique car les compacts ont une “taille”.

Soit donc M une variété de dimension 2n munie d’une forme symplectique .
Un champ de vecteurs X sur M est un champ de Liouville si son flot y satisfait
P'identiteé:

W =e'Yyw (1)
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Ici yio désigne I'image directe de w par le difffomorphisme x‘. En termes de
dérivée de Lie, (1) s’écrit Lyw = w et par la formule de Cartan L, = i,d + diy, ou
iy désigne le produit intérieur par X, le champ X est de Liouville si et seulement si

d(iyw) = w. (2)

Puisque w est symplectique, X — i, @ est un isomorphisme entre les champs de
Liouville et les formes de Liouville, i.e. les primitives de w. Donc un champ de
Liouville n’existe sur M que si @ est exacte, ce que ’on suppose dans la suite. On
note A > 4 I'isomorphisme inverse et on dit que Jest le champ de vecteurs w-dual
de la 1-forme A.

Quand le flot y n’est pas engendré par un champ de Liouville, la formule

w(t) =e‘ysw (3

définit une déformation de w parmi les formes symplectiques. On résout ici, dans un
cas particulier, le probléme d’étendre a tout M une déformation donnée au
voisinage du bord par des formules locales du type (3). L’originalit¢ majeure de la
solution résidera dans une technique de chirurgie.

§1. Enoncé du résultat principal

La variété symplectique considérée est de la forme M =S x R, ou S est une
variété compacte, a bord éventuellement non vide, et R* =[0, + ). La varieté M
peut donc étre a coins. On note u: M —»R* la coordonnée “verticale” (projection
sur le second facteur): on note T* le (semi)-flot (x, u) > (x,u + t) et d, son
générateur infinitésimal. On fait ’hypothése:

(H,) 1l existe une primitive 4 de w dont le w-dual 1 coincide avec 8, prés de
{u= +o0} et de 0S5 x {0}.

Pour tout >0, la forme symplectique e'Thw n’est définie que sur
T(M) =S x [t, + ). Cependant comme J, est un champ de Liouville sur
V x[0,a], ou V est un voisinage collier de 0S dans S et a >0, la structure
symplectique w admet un prolongement canonique & ¥ x R de sorte que J, soit un
champ de Liouville sur ¥ x (— 00, a]. Ce prolongement étant admis, la formule

o(f) =e'Tyw (4)
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a un sens pour ¢ >0 sur ¥ x R* et y définit une forme symplectique qui coincide
avec w sur V x [0, a].

1.1 THEOREME. I/ existe un chemin (d(0))o <, <1 de formes symplectiques sur M
avec les propriétés suivantes:

() &(0) = w;

(i1) @&(¢) a le méme germe le long de 0S x R* que le w(t) défini par (4);

(iii) le chemin (&(t)) est constant, égal a w, prés de {u =0} et de {u = + 0}.

Le méme résultat vaut avec un paramétre 0 € [0, 11* pour une famille (w, = dA,)
de formes symplectiques exactes, ou toutes les primitives A, vérifient les propriétés
suivantes:

(iv) A4 est indépendant de 0 sur un voisinage fixe de {u = + o0},

(v) 0, est le wy-dual de iy sur un voisinage fixe de Uinfini et de 0S x {0}.

1.2 Remarques. Si 0, est un champ de Liouville au voisinage de S x {0}, le
résultat est évident, le prolongement étant donné par (4) avec V' =S. Il en est de
méme s’il existe un champ de Liouville Z au voisinage de S x {0} qui pointe vers
Iintérieur de M et qui coincide avec d, au voisinage de 05 x {0}. Malheureusement
il y a en général une obstruction a trouver un tel champ Z; elle sera expliquée plus
loin.

En revanche il n’est pas difficile de résoudre le probléme de prolongement pour
un temps petit ¢ > 0. Pour le prolongement global le probléme est d’exhiber une
procédure de prolongement en temps petit qui posséde la propriété de microcom-
pressibilité au sens de Gromov [ G2, chapter 2], de sorte que la méme procédure puisse
étre appliquée pour ¢ € [, 2¢], ¢ € [2¢, 3¢], etc. .. L’ingrédient principal permettant
cette démarche est I'existence de bandes caractéristiques [La), qui repose sur le fait
que d, est un champ de Liouville prés de I'infini. Le probléme est finalement résolu
par une suite de chirurgies.

1.3 Terminologie. Dans la suite et sauf mention du contraire, par forme de
Liouville (resp. champ de Liouville) on entend une primitive de w de la forme 4 + dH,
ou H est une fonction a support compact, (resp. le w-dual d’une telle primitive).

§2. Réduction a un cas particulier

On rappelle que les caractéristiques d’une hypersurface N sont les lignes L < N
dont I’espace tangent T, L est le w,-orthogonal de T, N. Si N est le niveau régulier
d’une fonction H, le champ hamiltonien dH est tangent 4 N et les caractéristiques
de N sont les courbes intégrales de cTI—ﬂN.



Engouffrement symplectique et intersections lagrangiennes 563

2.1 Cylindres de Darboux et bandes caractéristiques

Un cylindre de Darboux B est une sous-variété de dimension 2n, proprement
plongée dans M, munie d’une sous-variété symplectique 4 de dimension 2n — 2 et
d’un diffétomorphisme x +— (n(x), v(x), A(x)) de B sur 4 x R*[-9, +6],0 >0, avec
les propriétés suivantes:

(1) six €4, on a n(x) = x, v(x) =0, h(x) =0;
(ii) sur B,on a w = n*w, + dv A dh ou w, est la forme symplectique induite par
w sur A.

La base du cylindre de Darboux est définie par A= {v =0}. D’autre part on
dira que B est un cylindre de Darboux normal si

(iii) 0, pointe a I'extérieur de Ble long de 0B quand u (ou v, par propreté) est
assez grand.

Si cette propriété est satisfaite pour u > u,, on dira parfois que Best en forme
normale pour u > u,.

Une bande caractéristique (normale) B est 'ame {h =0} d’un cylindre de
Darboux (normal). Alors B est une hypersurface propre de M, avec une sous-va-
riété symplectique 4 (appelée la base de B) et un diffeomorphisme x — (7(x), v(x))
de B sur 4 x R* tels que n(x) =x si x €4 et que les fibres de n soient les
caractéristiques de B.

L’hypothése (H,) garantit ’existence de beaucoup de bandes caractéristiques
normales. De fagon précise on a le résultat suivant prouvé dans [La].

2.2 THEOREME. Soit Bi, ..., B, des boules de dimension 2n — 2 mutuellement
disjointes, plongées dans ir~1t{u =0} transversalement aux caractéristiques (elles sont

donc symplectiques). Soit B; cint{u =0},i =1, ..., p, obtenu en épaississant pB; dans
la direction des caractéristiques de {u = 0}. Alors il existe des bandes caractéristiques
normales By, ..., By de bases A,, ..., Ay avec les propriétés suivantes:

(i) elles sont les dmes de cylindres de Darboux normaux et mutuellement dis-
joints, de bases contenues dans {u = 0};
(ii) toute caractéristique de f; rencontre lintérieur d’un 4,.

2.3 Une construction

Soit U cint U’ < U’ < U” des voisinages colliers de dS dans S, U et U’ étant
compacts et U” ouvert, assez petits pour que J, soit un champ de Liouville au
voisinage de U” x {0}. Identifiant un instant {u =0} avec S, on choisit des boules
de dimension 2n —2, By, . . ., B,, qui détruisent la récurrence du feuilletage caracte-
ristique de S = {u =0} hors de U au sens suivant:



564 FRANCOIS LAUDENBACH

(a) toute caractéristique de {# =0}, ou demi-caractéristique infinie, non con-
tenue dans U intersecte 'intérieur d’un des f;;

(b) de méme pour tout segment caractéristique non contenu dans U” et dont les
extrémités sont dans U’;

(c) tout segment caractéristique dont les extrémités sont dans un méme f; coupe
I'intérieur d’un autre f,.

On applique le théoréme 2.2 a ces boules et on trouve des bandes caractéris-
tiques normales B,,..., By, dont les bases 4,,..., 4, cint{u =0} détruisent
aussi la recurrence du feullletage caractéristique, c’est-a-dire qu’ils verrﬁent aussi
(a)—(c). Les B sont les cylindres de Darboux donnés par 2.2 et les A désignent
leurs bases respectives. On note alors S’ 'adhérence de S\UA e

2.4 LEMME. 1l existe un champ de Liouville Y qui pointe vers les u >0 le long
de S’ x {0} et qui coincide avec 0, prés de 3S x {0}.

Preuve. (Chaperon) On veut construire un hamiltonien a support compact H
sur M tel que le w-dual Y de A + dH vérifie Y =9, prés de S x {0} et Y- u >0 sur
S’ x {0}. La derniére condition peut &tre réécrite A-u + {H,u}>0, ou {H,u)
désigne le crochet de Poisson, ou encore:

du-H<Z u surS x{0},

Puisque du est tangent a {u =0}, cette condition ne fait intervenir que les deux
fonctions A(x) := H(x, 0) et g(x) := (I “u)(x, 0), x € S, ainsi que le champ de vecteurs
Z sur S’ obtenu en prenant la restriction de dua S x {0}. Le probléme est de
construire A: S’ — R satisfaisant

Z-h<g | ()

et (par exemple) # =0 pres du bord de S, sachant que g(x) =0, - u=1si x € U".

On pose 2 =0 comme germe de fonction le long de U. On introduit une
fonction 6 : R—R telle que 6(¢) <t pour tout ¢ et 8(¢) =0 pour ¢t > 1. Soit K, la
réunion de toutes les lignes du champ Z (c.-a-d. les caractéristiques de S’ x {0}) qui
rencontrent U. D’aprés 2.3(a) K, est compact. On affirme qu’il existe exactement
une extension de 4 en un germe de fonction le long de K, solution de I’équation
différentielle

~

Z-h=0og (6)
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(ce qui implique (5) au voisinage de K;). En effet, si { désigne le flot de Z, (6)
définit h par la formule

ML) = f 0 gL () ds, %

0

pour tout (x, f) € U x R appartenant au domaine de définition de {. Tant que
I'orbite de x reste dans U”, la fonction vaut 0O et si elle sort de U” elle ne revient
jamais dans U, d’apres 2.3(b). Donc la définition de 4 est univoque sur K. Elle vaut
aussi pour un germe de fonction le long de K|, car la formule (7) convient encore
pour x € U’. Alors, comme germe de fonction le long de K|, on a I'identité

M) = h(x) + J "0 g((()) ds. (8)

Chaque (M est l’umon disjointe d’une face d’entree A + le long de laquelle Z pointe
vers l’mteneur de A d’une face de sortie A T le long de laquelle Z pointe vers
Pextérieur et d’un face latérale a laquelle Z est tangente. Par 2.3(c), toute orbite
dans S'\K, va dun A ; a un A7. On peut donc définir des compacts
K,c--- < Ky=S' contenant K, comme suit: pour 0 < <Jj <N, K; est I'union de
K;_, et des orbites de Z qui rencontrent I'adhérence de A ~. On suppose que A est
construite au v01smage de K;_,, satisfaisant (6)- (8) On etend le germe induit le
long de K; _, madh(A ) en un germe le long de adh(A ) tout entier satisfaisant (6).
Comme cette hypersurface est transverse a Z, il n’y a pas d’obstruction a le faire.
Puis on utilise la formule (8), avec x voisin de adh(4 7 ), pour prolonger £ comme
germe le long de K. cfqd

2.5 Remarque. 1 obstruction mentionnée en 1.2 est claire. Par exemple si un
segment caractéristique de S x {0} a ses extrémités a, b dans S x {0}, (5) peut
interdire & H de prendre la méme valeur en a et b.

2.6 Le situation modéle
Elle est définie par les hypothéses suivantes:

(H,) S est elle-méme le produit D x [0, 1], ou D est une boule fermée standard
de R>"~-2 Ainsi tout point de M s’écrit (x, y,u) € D x [0, 1] x R™.



566 FRANGOIS LAUDENBACH

(H3) Les caractéristiques de {u =0} sont les segments {x} x [0, 1] et la forme
induite par w sur {u =0} reléve la structure symplectique standard de
R> -2,

(H4) 1 existe un voisinage collier compact U de S et une bande caractéristique
normale B dans M vérifiant:
— 0, est un champ de Liouville au voisinage de U x {0};
— la base 4 de B rencontre transversalement et en un seul point toutes les

caractéristiques {x} x {0, 1} de {# =0} non contenues dans U.

Remarque. Sauf sous des hypothéses de convexité, il est impossible d’avoir
04 c 08S.

2.7 LEMME. Pour obtenir le théoréme 1.1 (sans paramétres), il suffit de le
prouver sur la situation modéle (H,)—(H,).

Preuve. On peut changer la structure produit M =S x R* qui n’a aucune
signification particuliére vis-a-vis de la structure symplectique sauf au voisinage de
Iinfini et de 0S5 x {0}. On reprend la construction 2.3. Disons que dans {u > u,}
les cylindres de Darboux E, ey EN sont sous forme normale. Comme 2n # 3, un
arc allant de {u =0} a {¥ =u,} dans {0 <u <u,} n’est jamais noué et deux tels
arcs ne sont jamais enlacés. De 1a on déduit que I'adhérence de {0 <u < uo}\Uﬁi
est un produit S’ x [0, u,] prolongeant la structure produit des l},-. On élargit
chaque base 4; de B; en une boule 4] transverse aux caractéristiques de {u = 0} et
contenant 4; en son intérieur, puls on épaissit 4 en A dans la direction des
caractéristiques de sorte que int A’ D A A cause de la structure produit mention-
née plus haut, il existe un champ de vecteurs Z sur M avec les propriétés
suivantes:

(i) Z coincide avec J, dans {u > u,} et au voisinage de M n {u > 0};

(i1) Z coincide avec le champ de Liouville Y donné par 2.4 au voisinage de
S’ x {0};

(iii) toute orbite de Z va de {u =0} a I'infini;

(iv) toute orbite issue d’un point de {u =0} n’appartenant pas aux A’ evite les
cylindres B, jusqu’a {u=u,} et définitivement a cause de leur forme
normale.

La nouvelle structure produit sur M est alors donnée par le flot de Z. Dans
cette structure, notons M’ I’adhérence de (S\UZ ;) xR*. Comme Z =0, est
un champ de Liouville au voisinage de {u =0} dans M’, le prolongement cherché
@(f) peut étre donné par la formule (4) au voisinage de M’. Il ne reste plus qu’a
boucher les trous A i xR*, qui correspondent chacun a une situation mo-
dele. cqfd
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§3. Démonstration du théoréme 1.1 (sans paramétre)
3.1 Hypothéses et notations

Par }g lemme 2.7, on peut supposer (H,)-(H,). Par (H;) on a
{u,y} =du-y #0 le long de {u =0}. Alors, quitte a changer y en 1 — y, on peut
supposer {u,y} <0 le long de {u=0}. Autrement dit 0, et du orientent les
caractéristiques de {u =0} dans des sens opposés.

On note U, et U, des voisinages colliers compacts de dD dans D avec
UcInt U, Uy x[0,1] c U et d4 < U, x [0, 1] x {0} (voir (H,)); leurs bords in-
térieurs sont des sphéres euclidiennes. On choisit des constantes positives ¢ et &
satisfaisant (9)—(11) ci-dessous;

A=0d,présde {1—-d<y<l,u=0}etde{y=1-6,0<u<e). (9)

En fait au départ, on peut choisir & et ¢ tel que 4= 0, prés de
{1—-6<y<1,0<u<e}, mais seule la condition indiquée sera utilisée et aura son
analogue a chaque étape du prolongement.
indiqués. En effet, le long de {u =0}, cela revient a Mdu) <0 ou encore
w(z, &'ﬂ) <0, ce qui se lit du(d,) > 0, qui est vrai. La méme conclusion vaut sur les
autres niveaux de  au voisinage de {y =1— 9,0 <u < ¢}, puisque le flot du champ
de Liouville 0, préserve 1 a un facteur positif pres.

Maintenant ¢ est fixé. La condition suivante sur ¢ est relative aux caractéris-
tiques de {y =1—4}: comme cette hypersurface est transversale aux caractéris-
tiques de {# = 0}, ses propres caractéristiques sont transversales aux niveaux de u de
valeurs voisines de 0. Donc pour ¢ assez petit on a:

toute caractéristique de {y =1—9} allant de {u =0} a Uyx {1 -4} x [0, €]
vient d’un point de U, x {l —§} x {0} (Figure 1). (10)

Pour ¢ assez petit et quitte & changer les verticales sauf au voisinage du bord de
M et de I'infini, on peut encore satisfaire & la condition suivante:

Il existe un cylindre de Darboux propre Bc {l-8<y<1,u>0} dont la base
A dans {u =0} intersecte en un unique intervalle toutes les caractéristiques de

{u =0} qui ne sont pas contenues dans U, x [0, 1] x {0}. (11)

En effet on prend la bande caractéristique donnée par (H,). Par une isotopie
hamiltonienne & support compact on déplace chaque point de 4 sur sa propre
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U U
{y=1-§,0< u< ¢}

Figure 1

caractéristique dans {u = 0} jusqu’a ce qu’on ait 4 < {y > 1 — d}. On procéde alors
comme dans la preuve de 2.7: on change les verticales sauf au voisinage du bord de
M et de 'infini de sorte que B soit contenu dans {y > 1 —4}. Si ¢ est assez petit, J,
n’est pas changé dans {u <¢} et les conditions (9)—(10) sont préservées.

Remarque. En fait B peut étre choisi normal, mais on n’insiste plus sur cette
propriété qui ne sert en fait que pour ’argument 2.7.

3.2 LEMME. Il existe un hamiltonien H: M —R dont le champ de Liouville
associ¢ X = A+ dH a les propriétés suivantes:

H =0 prés de U, x[0,1] x {0} et de {y =0,u =0}; (12)
X-u>0et H>0 le long de {0 <y <1,u=0}; (13)

X-y=0lelongde {y=1-06,0<u<¢e}
et Hx,1—6,u) =0 si x e Uy, u €0, ¢]; (14)

X-u=1présde{y=1-6,0<u<e}. (15)

Preuve. Sur {u =0}, la condition X-u >0 revient a du- H < A u. Ecrivant
0, = —adu avec « > 0, la condition s’écrit 0,  H > —ai - u. On peut renforcer cette
condition en demandant en plus: d,- H>0 et d,- H=0 prés de {y =0}, de
{y =1—0} etde U, x[0, 1] dans {u = 0}. Autrement dit, on peut construire Hy, _o,
satisfaisant (12)-(13) en lui demandant d’étre nulle prés de {y =0} et de croite
suffisamment vite avec y. Dans la suite on choisit un tel H sur {u = 0}.
- Comme 6,,=I le long de {y =1—6,0<u <¢}, (14) revient a ﬁ{-y =0 ou
dy - H = 0. Autrement dit, H doit étre constant le long de chaque caractéristique de
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v =1-46,0<u <¢}. Alors, si un tel segment caractéristique y vient de {u =0},
H,, est déterminé par la valeur qui lui est attribuée dans I’étape précédente. A cause
de (10), si 4 aboutit dans U, x [1 — 6} x [0, &], H, est nul. On compléte la construc-
tion de Hy, _y_; 0<u<c €n prenant H =0 le long des autres caractéristiques; alors
(14) est satisfaite.

La condition (15) revient & du - H = 0, ce qui est facile a satisfaire a partir

Hy,_1_50<u<s DuUisque du est transversal a {y=1-06,0<u<e}. cqfd

Remarque. Si les conditions (9)—(15) sont satisfaites, elles le sont encore si on
diminue ¢, sans toucher ni a é ni & H. Compte tenu de cette remarque une derniére
condition de petitesse sera imposée a ¢ en 3.10 (21). Son énoncé nécessite d’autres
préliminaires.
3.3 Un champ de vecteurs Z

On fixe une fois pour toutes un champ de vecteurs Z sur un voisinage de
{ <1—0} égal au champ de Liouville X (donné par 3.2) au voisinage de
{u=0}u{y =1-06,0<u <e} et vérifiant les hypothéses additionnelles suivantes:

Zesttangent a {y =1—9} et Z-u =1 au voisinage de {y =1—05}; (16)

Z =0, prés de S x [0, +00) dans {0<y<1—4} et au
voisinage de l'infini. (17)

On note {’ le flot de Z et on rappelle que 7" est le flot de d,. On va utiliser {’
pour obtenir une “solution naive” du probléme de prolongement pour 0 <t <e.
Cette “solution” présente une discontinuité le long de {y =1 — &} qui sera résorbée

par une technique de chirurgie (coupure et recollement). On verra ensuite sous
quelle condition la méme procédure peut étre appliquée pour ¢ <t < 2¢, etc. ..

3.4 Un prolongement naif
Pour 0 <t <¢, on pose

&, () =e'liw sur{0<y<1-4}, (18)

@) =e'Tho sur{l—d<y<l,u<e}. (19)
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La formule (18) définit bien @,(?) sur ‘({0 <y <1—4}). Mais comme Z est un
champ de Liouville au voisinage de {# = 0}, @, (¢) se prolonge canoniquement sur la
partie manquante (voir (4)). La méme remarque doit étre faite pour la formule (19).
Par ces formules on a &,(f) = w = @,(¢f) au voisinage de {y =1—-0,0<u <e¢};
cependant, les formules (18) et (19) ne se recollent pas le long de {y =1 —J, u > ¢},
excepte a linfini.

On va résorber cette discontinuité seulement pour ¢ = ¢; cela pourrait étre fait de
la méme fagon pour 0 <t <e. On observe d’abord que les formes induites sur
{ =1-0,u >¢} par &,(¢) et @,(¢) sont conjuguées: la seconde est 'image directe
de la premi€re par

¢:=T£OC_6i{y=1_69u28}a

qui d’apres (15) et (16) est bien un diffeomorphisme de cette hypersurface. De plus
la restriction ¢ de @ a {y =1—0,u =¢} est Pextrémité d’une isotopie partant de
Pidentité,

P =T ol 0<t<e

qui est hamiltonienne pour la forme symplectique induite par w. D’ailleurs on peut
vérifier, ce qui ne servira pas dans la suite, que le hamiltonien correspondant est la
fonction —e’H o T, négative on nulle.

On preéférera utiliser une isotopie hamiltonienne légérement différente; on pren-
dra ¢’ allant de Id a ¢ et stationnaire pour ¢ voisin de 0 et de . Par exemple si
a: [0, e] =[O0, €] est une fonction croissante telle que a(f) =0 pres de 0 et a(?) =¢
pres de ¢ on prendra

¢t — Tz(t) & C—z(l)‘

Son hamiltonien K, = —a'(t)e'H > T, ( <0), vu comme une fonction définie sur D,
est nul pour ¢ voisin de 0 et de ¢ et aussi pour x € U, d’aprés (14).

3.5 Graphe d’un hamiltonien

On considére le cylindre de Darboux B donné par (11). Son image T“(B) est un
cylindre de Darboux pour la forme @,(¢). Soit (x', 7, v) un systéme de coordonnées
de Darboux sur T "‘(5) =~ A4 x[0,¢] x[0, +o0) (noter que le z-intervalle peut étre
choisi arbitrairement). Sa base {v = 0} est contenue dans {u = ¢} et I'espace réduit
4 est muni d’une forme symplectique que I'on peut identifier (en suivant les



Engouffrement symplectique et intersections lagrangiennes 571

caractéristiques de {u = ¢}) 4 la forme w§ induite par @,(e) sur {y =1 —38, u =¢}.
Le vecteur 0, dirige les caractéristiques de {t = const} et, le long de {v =0}, il pointe
vers {u > ¢}. On choisit d, de sorte que le long de (v = 0} il oriente les caractéris-
tiques de iu =¢} dans le méme sens que du. A priori @,(¢)(d,, d,) = +1. Comme
@,(€)(8,, du) = —1, on déduit que @,(e)(@,,d,) = —1 et donc sur TB) on a

@D,(e) = wg+ dt A d.

On note 2 le graphe du hamiltonien, Cc'est-a-dire I’hypersurface de
{1 -6 <y<1,u>¢} définie par 'équation

v=—K/(x)
dans T ‘(E) et par u =¢ en dehors.

Remarque. Sion ne connait pas le signe du hamiltonien, on considére le cylindre
doublement infini T%(B)° =4 x[0,¢] xR et 2 est alors une hypersurface de
{1-d<y<lu=e}uT(B)"

LEMME. Le difféomorphisme d’holonomie A x {0} x {0} - 4 x {e} x {0} obtenu
en suivant les caractéristiques de X est donné par ¢°, si on identifie la source et le but
a la méme boule de ’espace réduit.

Preuve. On rappelle que le générateur infinitésimal de ¢° est dK,. 11 s’agit de voir
que les caractéristiques de 2 se projettent (dans les coordonnées de Darboux) sur les
graphes dans 4 x [0, ¢] des solutions de I’équation différentielle x’ =JK(x’), ou
encore que dK, + 0, dirige le noyau de wg—dr A dK, dans 4 x [0, ¢]. Or

i(dK. + 0.) (w5 — dt A dK,) = i(dK.,)w§ — dK, = 0. cqfd

3.6 Chirurgie

On prolonge le diffeomorphisme de conjugaison @ de {y =1—J,u > ¢} en un
difféomorphisme, noté encore @, de {1 — <y <1, u =¢} sur X avec les propriétés
suivantes:

(i) @ envoie les caractéristiques de {u = ¢} sur celles de Z pour la forme @,(¢);
(ii) @ est I'identité au voisinage de {y =1};
(ili) @ = T?o{~* au voisinage de {y =1—4}.
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D’aprés (15), la derniére formule opére bien de {u =¢} dans lui-méme au
voisinage de {y =1 — §}. Ce difféeomorphisme se prolonge en un germe de symplec-
tomorphisme pour la forme @,(¢) d’un voisinage de {1 —d <y <1,u =¢} sur un
voisinage de Z. On peut pour cela invoquer un argument général de Givental (voir
[Be]) ou vérifier que, dans les coordonnées de Darboux,

(x', 7, 0) = (9(x), 7, v — K (X))

est un difffomorphisme symplectique.

On pose M, ={0<y <1 —4} que 'on munit de la forme symplectique &, (e).
On pose M,={1-6<y<1,0<u<e} que ’on munit de la forme @,(s). Au
voisinage de M, M,, on a @,(¢) = w = @,(¢). Donc M' =M, UM est muni
d’une forme symplectique. Enfin on note M”" la partie de {1—-0<y<
Luzelu T‘(§)° au-dessus de 2, que ’'on munit de la forme @,(e).

La chirurgie consiste & couper M le long de {y =1—-0,u>¢}u{l—-d<y<
1,u =¢} et a recoller M’ a M" par le difféomorphisme @. On pose

M(®) =M U, M.

Les propriétés de @ et de son prolongement comme germe impliquent I’énoncé
suivant (Figure 2).

LEMME. De fagon naturelle, il existe sur M(®P) une structure différentiable et
une forme symplectique () telles que:

(a) M(®) soit difféomorphe a M par un difféomorphisme qui est identité au
voisinage du bord et de !’infini,

(P

M"

M,

Figure 2
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(b) par la projection M'u M"— M(®), la forme de) induise &,(e) sur M, et
@, (&) sur M;UM".

Si on identifie M et M(®P) par ce difféomorphisme, on obtient la forme cherchée
@(e) sur M qui coincide avec e'Thw pres de M n{u >0} et avec w prés de
{u =0, +o0}. La chirurgie a résorbé la discontinuité du prolongement naif.

3.7 Peut-on faire la seconde étape ¢ <t < 2¢?

Sur la partie gauche {y <1—4}, on continue avec la formule (18)
@, (1) = e'{,w. Vu au voisinage de {y =1—9} dans M", le champ utilisé pour ce
prolongement est ®,Z=T,Z 11 est de Liouville au voisinage de
{r =1-9,¢ <u <2} pour la forme @,(¢). Le champ 0, a aussi cette propriété. De
plus les champs @, Z et 0, coincident au voisinage de U, x {1 — d} x [e, 2¢] d’aprés
(14).

D’autre part, (M", &,(¢)) contient un cylindre de Darboux propre dont la base
recontrent toutes les caractéristiques de X qui ne sont pas contenues dans
Uy x[1—0,1] x {¢}, a savoir la partie de T*(B)° au-dessus de Z. Tout est donc
comme dans la figure initiale, sauf que I’on ne sait pas s’il existe un champ qui
jouerait sur M" le rdle joué par 0, sur {1 —d <y <1, u >0}. Ou encore, on ne sait
pas s’il existe un champ de Liouville pour @,(¢) transverse a 2 et coincidant avec
0, au voisinage de Uy x[1—03,1] x{e} et de {y =1—6 ou l,u=¢}. On va
contourner cette difficulté en se fondant sur la remarque suivante.

Remarque. A priori la classe d’isotopie de d(e) dépend du choix qui a été fait
pour l'isotopie hamiltonienne de I'identité a ¢ a travers les difféomorphismes
symplectiques de (D, w§) coincidant avec l'identité au voisinage de U,. Par un
argument a la Moser, cette question dépend de savoir si I'espace de ces difféomor-
phismes symplectiques est simplement connexe; cette question est ouverte. Devant
cette ignorance, on part a la recherche d’une isotopie hamiltonienne qui nous
convienne. Pour cela on tire profit du lemme de fragmentation de Banyaga
[Ba, II1.2] (voir aussi ’appendice).

3.8 Enoncé de lemme de fragmentation

On considére la boule standard (D, w,) dans (R**~2, standard) et son voisinage
collier U,. Soit G le groupe des difffomorphismes symplectiques de (D, w,),
coincidant avec lidentité au voisinage de U,. On se donne des domaines
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Aoy ..., Ay, _», dits domaines de fragmentation, dont les intérieurs forment un
recouvrement de D — U,. Alors il existe un C*-voisinage de [’identité dans G dans
lequel tout élément ¢ peut étre fragmenté, c’est-a-dire étre écrit comme le produit de
2n — 1 diffeomorphismes symplectiques

¢ =¢o° P2,

ou chaque ¢, est le temps 1 d’une isotopie hamiltonienne a support dans
int(4, N (D — Dy)).

Il ne faut pas penser que les A, sont connexes. Au contraire un procedé
classique pour se donner les A, consiste a partir d’une triangulation 7 d’un
voisinage de D — U, dans int D. A chaque k-simplexe g; on associe une anse A, ;
d’indice k qui recouvre la partie de o, non couverte par les anses d’indice inférieur;
la construction des anses se fait par récurrence sur k et, pour i #j, A, ;N A ; =&
(voir [Ba, p. 200]). On prend alors pour A, la réunion des anses d’indice k. Par ce
procédé, si la triangulation J est assez fine on peut rendre le diamétre (euclidien)
des composantes connexes A4, ; de 4, arbitrairement petit.

3.9 Choix des domaines de fragmentation

DEFINITION. Soit (/3, d) une (2n —2)-boule symplectique pointée dans
{1 —6 <y <1,u =0} dont la projection par la réduction est un domaine (4, a) de
D, étoilé par rapport a a. Soit A; la forme de Liouville induite par A sur A et soit
) 4 le champ de Liouville dual pour la structure symplectique de A. On dira que
(/’1‘, d) est A-standard si by 4 se projette sur le champ de Liouville linéaire radial de
(4, a), 32(x; — a;)0,., ou (x;) (resp. (a;)) sont les coordonnées euclidiennes de x (resp.
de a) dans R*"~2,

Le lemme suivant montre qu’il existe beaucoup de boules A-standard. Pour
I’énoncer sous la forme qui sera utile, il convient d’introduire une nouvelle
constante géométrique de la figure.

On définit 6, > 0 comme la borne inférieure des longueurs, mesurées
par |A|, des caractéristiques complétes de {1 —d <y <1,u =0}. (20)

thant O le flot de —du et sachant que A( —du) = +1, on voit que O est bien
défini sur {y =1—9,u =0} x [0, 6,], a valeurs dans {u =0}; son image est munie
de coordonnées (x, 0) € D x [0, 6,], ou 6 est le temps du flotet ou {y =1—9, u =0}
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est identifié a I’espace réduit D. On va fractionner la longueur 6, en 4n(2n — 1)
parties égales; la raison pour cet entier apparaitra plus loin.

LEMME. I existe r > 0 tel que, pour toute boule euclidienne (A, a) centrée en un
point a de D — U, et de rayon <r, il existe un relévement A-standard

. ~ 0,
(A,a)c{u—0,0<0<4n(2n_’1)}.

Preuve. Soit 4, la forme de contact induite par A sur {#=0,0<0<
6,/4n(2n — 1)}. Comme —du est le champ de Reeb de A, on peut écrire

do= o;(x) dx; + db,

Comme diy =X dx,; .| A dxy;,,, pour tout a € D — U, il existe une fonction A,,
unique a une constante additive pres, vérifiant I'identité

1
Z a;(x) dx; + dh,(x) = 5 Z [(x2j+ 1= A4 1) dx2j+2 — (X742 = i1 2) dxy 1]

Soit C une constante de Lipschitz uniforme pour 4,,a € D — U,. On prend

r "‘——————90
" 8n(2n - 1C’

On définit alors A par: 8 = h,(x), x € A. Si on choisit h,(a) = 6,/81(2n — 1), A est
bien dans la région prescrite. cqfd

Remarques. (1) La O-translation laisse aux boules leur caractére A-standard.
Donc on peut également prendre

) k8, (k + 1),
A< {4n(2n 1 <Y <amn = 1)}

(2) Le lemme vaut aussi lorsque (A, a) est seulement un domaine étoilé de
rayon <r.

On note 4, la projection de 4 dans ’espace réduit, ou, rappelons-le, 4 est la
base de la bande caractéristique donnée par (11). On choisit une triangulation
d’un voisinage de D — U, dans int 4,, ou le diamétre de chaque simplexe est <2r.
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Pour chaque simplexe ¢ de 4, de barycentre a(s), on associe une anse A(c)
étoilée par rapport a a(o). Si ¢ et ¢’ sont de méme dimension, 4A(¢) N A(c") = .
Enfin la réunion des anses A(o) associées aux cellules de dimension <k recouvre le
k-squelette de 7. Soit A4, la réunion des A(c) avec dimo =k. Les A, sont les
domaines de fragmentation cherchés.

On note (A(0), d(0)) le relévement A-standard de (A(c), a(o)) dans {u=0},o0ula
#-coordonnée de d(c) ne dépend que de la dimension k& de o et est donnée par

k +1/2)

bk) = 4n(2n — 1)

0,.

On note /ik la réunion des /i(o-) ou ¢ parcourt I’ensemble des simplexes de
dimension k (Figure 3).

3.10 Utilisation des domaines de fragmentation pour la premiére étape

LEMME. Les /ik sont les bases de bandes caractéristiques propres B, dans
({y =1 -6}, w), mutuellement disjointes et disjointes de B, et tangentes a 0, au
voisinage de la base.

Preuve. Soit (x’, T, v) des coordonnées de Darboux pour le cylindre B donné par
(11). Le lemme est évident si on remplace /ik par un relévement 4, de 4, dans
{t —t(k)}, ou t(k) est une constante ne dépendant que de k, avec
7(0) > (1) > - - - > 1(2n — 2), ’axe des 7 €tant orienté dans le méme sens que du.
Or ujk se déduit de LA} par glissement le long des caractéristiques de {u =0},

B B, B,

{y=1-8} — -— {y=1}
A R, A,

Figure 3
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c’est-a-dire par une isotopie (hamiltonienne) qui déplace chaque point sur sa propre
caractéristique. La base étant fixée, le germe de la bande caractéristique au
voisinage de la base peut étre choisi arbitrairement, & condition d’étre transversal a
{u = 0}; cela permet de satisfaire la derniére condition. cqfd

On considére de nouveau le difféfomorphisme ¢ = T {~*de {y =1 -6, u =¢}.
Le diffeomorphisme 7 ~%¢*T* peut étre vu comme un diffeomorphisme symplectique
de l'espace réduit de {u =0} a support dans D — U,. Voici enfin la derniére
condition de petitesse imposée a ¢. D’apres le lemme de Banyaga, pour ¢ assez petit:

T—*¢*T* est fragmentable relativement a la famille des domaines A,. (21)

On fixe définitivement un tel ¢ et on écrit

T—sd)sTr: = ¢0 errro ¢2n—2a

ou ¢, est isotope a I'identité avec un hamiltonien 4, : 4, x [0, 1] =R a support dans
Pintérieur de (4, N (D — U,)) x [0, 1].

Soit Ek un cylindre de Darboux pour @ d’ame B, et de base dans {u = 0}; les Ek
sont choisis mutuellement disjoints. On obtient Ek a partir de B, en I’épaississant au
moyen d’un champ hamiltonien qui lui est transversal. Pour la suite, on impose
qu’au voisinage de la base,

Ek s’obtienne en appliquant le flot de pJI:l, ou p est une constante assez
petite pour que le flot existe sur I'intervalle de temps [ —1, +1]. (22)

Sur I'image Tc(ﬁk) on a des coordonnées de Darboux (X, 7, 6) € 4, x[—1, 1] X
[0, + o) qui s’étendent au cylindre doublement infini T°(B,)°, dont la partie {# <0}
est extérieure a {u >¢}. On convient aussi que J; dirige les caractéristiques de

{u = ¢} dans le méme sens que du, que I'Ame {f =0} est T%(B,) et qu’au voisinage
de la base on a

b= p(u —e). (23)
Comme en 3.5, on a dans chacun des cylindres de Darboux
@,(e) = w§+dt A db.

On définit Phypersurface 2 de {l—-d <y <l,u>¢e}u Te(l}o)ou- XAV T‘(Ez,,_z)o
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par I’équation
6=—h, (24)

dans le k-iéme cylindre de Darboux et, en dehors de ces cylindres, X coincide avec
{u =¢}. L’holonomie globale de X est bien le difféomorphisme ¢°. On peut donc
procéder a la chirurgie comme en 3.6. Cela achéve la premiére étape et va permettre
la poursuite du prolongement sans toucher a e.

3.11 En vue de la seconde étape ¢ <t <2¢

On rapelle que (M, @(¢)) est présentée en deux morceaux M’ et M” et que I'on
a 2 cdM”. Par 3.10, T%(B) est contenu dans M"; c’est une bande caractéristique
pour @(¢) dont la base coupe toutes les caractéristiques de 2 non contenues dans
U, x [1 — 0, 1] x {&¢} (comme ici, les coordonnées (x, y, u) ne seront utilisées dans la
suite que 1a ou elles ont un sens canonique).

LEMME. Il existe dans M" une hypersurface X' munie d’un germe de forme de
Liouville A" pour &(g) vérifiant les conditions suivantes:
(i) 2’ se déduit de X par une isotopie dans M" laissant fixe un voisinage de 0%,
(i) toute caractéristique de X’ va de {y =1} a {y =1—4};
(ii1) A est transverse a X’ et coincide avec 0, au voisinage de 0X' = 0%,
(iv) lintégrale de A’ sur toute caractéristique complete de X' est >e®0,(1 — 1/4n),
ou 0, est défini en (20).

Remarque. On pourrait €tre tenté de prendre 2’ =2 et A’ =e°T5%A. Mais la
condition (iii) (premiére partie) n’a pas de raison d’étre satisfaite.

Preuve. En dehors des cylindres T%(B,), 2’ coincide avec X et donc avec {u = ¢}.
Dans le k-iéme cylindre, X' est défini par ’équation

b=m (%, 1), fed, te[—1,+1]

ou la fonction m, > 0 est choisie comme suit:
(a) m, > —h;, ce qui garantit X' = M";
(b) m, est nulle si X est proche de dA, ou si 7 est proche de +1;
(c) ©0my <0;
(d) (décroissance radiale a 7 fixé) pour toute composante A(c) de A,, de
barycentre a(o),

(X —a(6), 0,m, ) <0.
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Il n’y a pas de difficulté a trouver une telle fonction. Les conditions (i) et (ii) sont
alors satisfaites.

SOUS-LEMME. Sous la condition (23), au voisinage de {¢ =0}, le champ 0,
(qui est de Liouville pour @,(g)) est sous forme normale:

1
6u=§(5c‘——a(0'))6f+‘faf+p@ﬁ.

Preuve. D’aprés (23), 0, = «(X, T, 9) 0; + B(X, 1, §) 0; + p 0;. Dualement, il vient
eTiA =o' dt + fdb — pdi, ou o se déduit de a par la dualité symplectique.

Ecrivons que d(e‘T% 1) = @,(¢) est la forme symplectique canonique dans les
coordonnées de Darboux. On obtient que o’ ne dépend pas de 7 et que
B =1+ B'(%, ¥). Comme J, est tangent & {f = 0} au voisinage de ¥ = 0 (lemme 3.10),
on a B’ =0. On déduit alors que o est aussi indépendant de &.

Dualement, il en est de méme de «. L’écriture de a est alors déterminée par
I’hypothése que {7 =0, § = 0} est standard vis-a-vis de e*T%A. Cela termine la preuve
du sous-lemme.

La forme de Liouville A" au voisinage de X' est définie hors des cylindres par
' =eT5 A (dans ce cas A'=3,) et dans les cylindres par

o1
¥ =2 (% —a(0)) - 3 + 10 + pd. (25)

Les conditions (c¢) et (d) impliquent la transversalité requise en (iii).

Le point (iv) est une estimation grossiére qui sera affinée ci-dessous. Notons 0’
la fonction définie sur {1 — 8 <y <1,u =¢} comma la distance a {y =1 —J} me-
surée le long de ses caractéristiques avec la forme e°7T% A. Par définition de 6,, toutes
ces caractéristiques sont de longueur >e°0,, et la base TE(E,() est contenue dans

ke®6, . (k+1)e,
{4n(2n <Y <@ -1

pour k =0,1,...,2n —2. Alors toute caractéristique de X’ court dans {# =¢} de
0'=e0y/4n & 0’ = e°0,.
3.12 Analyse de la longueur des caractéristiques de X’

On précise le choix des fonctions m, et donc le choix de 2’. Pour cela on note
A} le domaine de R?"~2 obtenu en retirant & A, un petit collier du bord de sorte
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que | J, 4% contienne D — U, en son intérieur. La fonction m, est alors notée mj et
on impose:

pour X € A¥, m;(X, 7) est indépendante de X. (26)

On note %, un anneau fermé de int 4,, collier extérieur de A} et contenant tous
les points ou d,mj #0. On note ¢° = | ), . On note Uj la composante connexe
du complémentaire de ¥* dans D contenant 0D.

L’espace réduit de ({1 -0 <y <1,u =¢}, @,(¢)) est (D, e° standard) que 'on
identifie a ({y =1 — 6, u = ¢}, w§) (voir 3.5). On repére une caractéristique y de 2’
pour @,(¢) par son extrémité e(y) dans {y =1 — 4, u = ¢}, c’est-a-dire par un point
de D; I(y) désigne la longueur de y mesurée par 4’

LEMME. Sie(y) € €°, on a l(y) = e®0,(1 — 1/4n). Sinon, on a I(y) = e°0,.

Preuve. Si e(y) € €°, on applique le (iv) du lemme 3.11. Si e(y) € Ug, v est
contenue dans {1 —d <y <1, u =¢}; elle est alors mesurée par e°T%4 et la conclu-
sion est claire. Sinon, e(y) appartient & au moins 'un des A;. Dans ce cas y est
contenu dans {u = ¢}, excepté lors de la traversée des T “(B,); chacune de celles-ci
se fait en restant dans X = const. et on a:

+1 +1
f |x|=J pdf+f m, ds.
90 THBy) -1 -1

Le premier terme est la longueur d’un arc caractéristique de la base de T "(ﬁk)
formant avec y N T<(B,) un lacet et le second terme est 'aire entourée par ce lacet
mesurée par w,(¢). On a l'inégalité voulue. cqfd

3.13 La seconde étape

La variété M" n’a pas une structure produit canonique. En revanche, d’apres
3.11, si on note N” la partiec de M” au-dessus de X', il existe sur
N"=D x[1-6,1] x[0, +o0) des coordonnées (x’, y’, u’) avec les propriétés sui-
vantes:

(i) 6,=0, au voisinage de dIM"\X2 =0N"\XZ’ et en particulier le long de
r=1-46}

(ii) J, = 4’ au voisinage de Z’; J, est donc un champ de Liouville pour @(¢) au
voisinage de X’ (Figure 4).
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Notons N'={({0<y <1-6}). Le champ Z (voir 3.3) est un champ de
Liouville pour &(¢) au voisinage du bord inférieur de N', a savoir
(({0<y<1-06,u=0}). A la seconde étape (¢ <t <2¢) le prolongement naif
consiste & prendre sur N’ (et méme au voisinage)

@, (1) = e’ " (xie), (27)

avec la méme convention qu’en (4) pour définir @, (?) sur N'\{'({0<y <1-—4}), et
a prendre sur N”

@,(f) = e' *TLaxe), (28)

ou 7" est le flot de d,. En dessous de N'UN", on garde @(e).

Regardons ¢ = 2¢. Comme Z (resp. d,) est de Liouville pour d(e) au voisinage
de {y =1—9,¢ <u <2¢} (voir 3.7), les deux formes @,(2¢) et @,(2¢) coincident
avec @(e) sur ce voisinage. En revanche, on a une discontinuité de la structure
symplectique le long de {y =1 — 3, u >2¢}. Vu au voisinage de {y =1—46,u > ¢}
dans (la carte) N”, le champ Z, générateur de , se lit 7% Z. Donc au voisinage de
{y =1—06,u >2¢} dans N”, on a:

@(2e) = (T T™*) 4 A(e)
@,(2¢) = e*T5 @(e);

les formes w,(2¢) et @,(2¢) sont donc conjuguées par T%(®):=T°@T~°. En parti-
culier sur {y =1-d,u=2} on a @,(2) =% (d,(2¢)), ou par définition
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¢* = T%(¢%. En suivant les caractéristiques, ’espace réduit de X’ s’identific a
{y =1—-90,u=¢} muni de la forme @(¢) donc & (D, e standard). Le difféomor-
phisme ¢°¢ vérifie ¢ = T°¢p>T* et, dans le réduit (D, e® standard), ¢* se lit T~*¢*T*
(voir (21)); il est donc fragmentable dans les domaines 4,.

LEMME. Les A, admettent des relevements 1'-standards /i; dans X' mutuelle-
ment disjoints. Plus précisement /i,i prend place dans une bande caractéristique de X'
de base {y =1 — 0, u = ¢} dont les caractéristiques sont toutes de A'-longueur égale a
€“0y/4n(2n —1).

Preuve. Comme dans le lemme 3.9, ce résultat dépend d’une part de la A'-
longueur des caractéristiques de 2’ et d’autre part d’une constante de Lipschitz
uniforme pour une primitive de

1
A,|:Y=l—6,u=s} “5 Zes[(x2j+l _02j+1) dx2j+2 - (x2j+2 "azj+2) dx2j+l]

lorsque a = (a;) parcourt D — U,. Or cette primitive, & une constante preés, est e,
de constante de Lipschitz uniforme e*C (voir 3.9). D’autre part la A’-longueur des
caractéristiques de 2’ est >e®0y(1 — 1/4n) (lemme 3.11); c’est >e%0y(1/4n), qui est
la longueur suffisante pour faire ces relévements. cqfd

La bande caractéristique 7% B) pour @(e) est contenue dans N”. Donc les A %
sont les bases de bandes caractéristiques mutuellement disjointes B}, disjointes de
T%(B) et tangentes & 0, au voisinage de la base (comparer avec 3.10). La fragmen-
tation du diffeomorphisme ¢° donne lieu a la construction de graphes de hamil-
toniens dans des cylindres de Darboux qui ont pour dme les translatés “verticaux”
T"(B;). L’hypersurface X% ainsi obtenue (son bord est dans {u = 2e}) intervient
dans la chirurgie de la seconde étape qui résorbe la discontinuité existant entre les
formules (27) et (28). Ceci termine la construction de @(2¢).

3.14 Fin dg la démonstration du théoréme 1.1 (sans paramétres)

En vue de la troisiéme étape on met en place une hypersurface X%, au-dessus de
2% et de méme bord dans {u = 2¢}, et une forme de Liouville 1% pour &,(2¢) avec
des propriétés analogues a celles du lemme 3.11. En particulier au voisinage du bord
de X' on a: A¥=e*T%\ L’hypersurface X'* est faite avec des graphes de
fonctions >0

mi: A, x[—1, +1] >R,
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tracés dans des cylindres de Darboux. Pour contréler les longueurs des caractéris-
tiques de X'* mesurées par A%, on choisit judicieusement les supports de ces
fonctions:

I’ensemble des points ou d.m¥ # 0 est contenu dans un anneau €% disjoint de €
et l’entourant.

On note 4;* la réunion des composantes du complémentaire de ¥2° dans A4, ne
rencontrant pas 04,. Comme en 3.12 on forme la réunion

C*=FFubru - UEE _,

et on note UZ la composante connexe du complémentaire de € dans D contenant
oD.

Concernant les longueurs des caractéristiques 7y tracées sur X'* et mesurées par
A% on a les résultats suivants.

LEMME.

(1) Si e(y) n’appartient ni a €° ni a €%, on a l(y) = e*6,.

(2) Si e(y) appartient exactement & un des colliers €°, €%, on a I(y)>
eZ0,(1 — 1/4n).

(3) Si e(y) e €*N€°, on a l(y) = e*0,(1 — 2/4n).

Preuve. Pour une extrémité fixée dans le réduit, on a trois caractéristiques: 7y,
dans ({u =0}, w), y, dans (Z":=2", &,(¢)), et y, =7 dans (Z'%, @,(2¢)); elles sont
mesurées respectivement par A, A>:=41’, 4% Dans le cas 1), on a I(y,) = €l(y,) =
eZl(y,) = e*0,. Dans le cas 2), on a I(y,) = e’l(y,) — e*0y/4n et I(y,) > e®l(y,). Dans
le cas 3), on a I(y,) > e’l(y,) — e*0y/4n et I(y,) = e’l(y,) — e°0y/4n. cqfd

Ces minorations permettent de trouver des relévements A*-standards pour les 4,
mutuellement disjoints.

Si on itére la construction, en prenant les colliers 7" a chaque fois a I’extérieur
du précédent, on observe que, pour toute suite de 2n + 1 entiers go < - - < gy,
on a:

EUENENEA- - - NE92n¢ = Q_ (29)

Cela implique que si ’on estime en fonction de g les longueurs des caractéristiques

7, tracées sur les 2'% ayant une extrémité fixée dans I'espace réduit, on ne peut
trouver plus de 2n raccourcissements. On trouve donc pour tout g < 1/g,

2n 90

I(y,) =e®0y| 1 —— |=e?—.
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Cette estimation a priori assure que la construction peut effectivement étre pour-
suivie jusqu’a g ~ l/e, puisque, pour tout g, Iinégalit¢ /(y,) > e” 6,/4n permet
d’avoir des relévements 1%-standards de A4, dans X, mutuellement disjoints. Ceci
achéve la démonstration du théoréme 1.1 sans paramétres.

§4. Preuve du théoréme 1.1 avec paramétres

Soit I le cube unit¢é d’un espace euclidien. On considére une famille
wy = dAy, 0 € I, de formes symplectiques satisfaisant les hypotheses du théoreme 1.1.
On note wy(t), 0 <t <1, la déformation de w, donnée au voisinage de S x R* par
la formule (4)

(Ug(t) = etT’* wg.

On veut construire une famille @,(¢) de formes symplectiques sur M satisfaisant
(1) —(ii1) du théoreme 1.1

La difficulté principale tient au fait que la géométrie des caractéristiques de
S x {0} peut changer avec 6. Pour éviter un probléme de bifurcation similaire, A.
Hatcher [Ha] a utilisé une technique de partition de I'unité, dont on va s’inspirer ici.

4.1 Construction de bandes caractéristiques dans le cas a paramétres

Etant donné une bande caracteristique B de w, , de base 4, et un voisinage A"
de 4 dans {u = 0}, la proposition 5 de [La] énonce ce qui suit: si la forme induite par
wq sur A est assez proche de celle induite par w, , il existe des bandes caractéristiques
normales B,(0), ..., By(0) pour w,, mutuellement disjointes et C* en 0, dont les
bases dans {u =0} rencontrent toutes les caractéristiques de N~ qui coupent A.

Noter que la condition de proximité ne porte que sur les bases.
4.2 Un recouvrement de ’espace des paramétres

On recouvre I par des cubes [, 1 <k <p. Si le recouvrement est assez fin, il
existe des ensembles finis J, et des (2n — 2)-disques 4, ; = S x {0}, j € J,, munis de
voisinages A", ; avec les propriétés suivantes:

— les 4, détruisent la récurrence du feuilletage caractéristique de ({u = 0}, w,)
hors d’un voisinage du bord (voir 2.3), pour tout 6 € I;

— les formes induites sur 4, ; par w,, 0 € I, satisfont la condition de proximite
de 4.1;
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— les 4, ; sont les bases de bandes caractéristiques normales pour w, , ou g, est
le centre de I,.

Par hypothése, le champ 0, est un champ de Liouville pour tous les wy, 8 € I,
dans un voisinage fixe de 0S x {0}. Comme en 2.4, on peut étendre ce champ de
Liouville en un champ Y,, 6 € I, le long de S x {0}, C* en 6, qui est de Liouville
pour w, et qui pointe vers {u >0} excepté au voisinage des 4, ;.

En effet, comme dans la preuve de 2.4, on doit construire une fonction avec une
certaine propriété de croissance le long des caractéristiques. Pour chaque 6 € [, le
role de 4 est joué par 4,. En fait, si on travaille dans S x [, la construction est
exactement la méme qu’en 2.4.

4.3 Fin de la preuve

Comme dans le célébre livre de Steenrod, on choisit une partition de 'unité o,
subordonnée au recouvrement (/). On peut supposer «,(6,) =1. On pose
A (0) = 0,(0) + ... + 2, (0). On construit la famille (@y(2))o <, < 4, PAr récurrence
sur k. Observer que A4,(0) > A4, _,(6) implique 0 € I,.

Pour 6 € I, on pose Q, = @y(A,_(8)). Cette forme coincide avec w, prés de
{u=0} et avec w prés de l'infini; en particulier elle satisfait la condition de
proximité 4.1. Comme 4, _,(6,) =0, on a Q, = w,, sur M tout entier. Alors, par
4.2, le disque 4, ; est la base d’une bande caractéristique By ; pour €, .

On applique 4.1 & Q5,0 €1, avec B=B,; et A/ =47 ;. Il existe donc un
nombre fini de bandes caractéristiques normales B, ;,(0),/ € L, ;, pour la forme
symplectique 4, C* en 0 € I, ; leurs bases 4, ;,(0),! € L, ;, sont dans A", ; et leur
union sur / recontre toute caractéristique de 47, ; qui coupe 4, ;. Le long de
Pintérieur de 4", ;, on peut modifier Y, en un champ de Liouville pour €, = w, et
qui pointe vers {u# > 0} excepté le long des 4, ;,(0); de nouveau cela peut se faire
exactement comme en 2.4.

Pour 0 € I,, la procédure de prolongement décrite au paragraphe 3 s’applique en
prenant , comme condition initiale au lieu de w,. Elle fournit une famille de
formes symplectiques flg(t). 0<t<1,C* en 0 €l,, qui coincident avece'T",Q,
prés de 65 x R*, avec Q, = w, prés de S x {0} et avec w prés de I'infini. On peut
définir alors @,(f) pour A, _,(0) <t < A,(0) par

5 (f) = ée(t — A, _1(0)) pour 0 €l,
Doll) = @y(Ay _1(0)) pour 0¢7,

Ces deux formules se recollent car 4,(0) = 4, _,(0) prés du bord de I,. Les formes
@,(t) ont les propriétés requises au voisinage du bord de M car T* est un groupe 4
un parameétre.
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4.4 Compléments sur les primitives

Concernant les formes symplectiques @(f) données par le théoréme 1.1, on sait
qu’elles sont toutes exactes puisqu’a I'infini elles coincident toutes avec une méme
forme exacte. De fagon plus précise on a la proposition suivante.

PROPOSITION. Soit (w,) = (dAg) une famille de formes symplectiques exactes
satisfaisant les hypothéses du théoréme 1.1, c’est-a-dire que:

— Ag = A est indépendant de 0 hors d’un compact fixe sur lequel 0, est le di.-dual

de A;

— 0, est le dl,-dual de Ay dans un voisinage fixe de 0S x {0}.
Dans ces conditions on peut choisir les formes @&(f) avec des primitives A(f) ayant les
propriétés suivantes:

Q) J(0) = %3

(ii) A¢(¢) = A en dehors d’'un compact fixe;

(iii) 4y(f) = 4o au voisinage de S x {0}

(iv) A,(5) = e'(T,) 4 44 au voisinage de 8S x [0, + o0).

Preuve. Le seul probléme, qui n’existe pas lorsque S est simplement connexe, est
de satisfaire la condition (iii).

Considérons d’abord le cas simple ot il existe un champ de vecteurs Z,, rentrant
dans M le long de {u =0}, C* en 6, qui coincide avec J, au voisinage de dS x {0}
et de I'infini et qui au voisinage de {u =0} est le w,-dual d’une forme de Liouville
que I’on peut écrire globalement A; = 4, + dH,, ou H, est une fonction a support
compact dans M. On considére

A1) = e (Ah),

ou {, est le flot de Z, (comparer avec la remarque 1.2): cette formule est bien définie
au-dessus de (§({u = 0}) et se prolonge canoniquement en-dessous de {§({u = 0})
en utilisant le fait que Z, est un champ de Liouville au voisinage de {u =0} (voir
(4)); ce prolongement vaut /Tg(t) =y au voisinage de {u =0}. Une solution du
probléme dans ce premier cas est alors donnée par

Zo(0) = 1y(t) — dH,.

Dans le complémentaire de cylindres bien choisis, on est dans cette situation,
d’aprés 2.4 et 2.7. Les primitives choisies en dehors des cylindres se prolongent en
primitives dans ces cylindres en vertu du lemme de Poincaré. Prés de la base des
cylindres, les primitives ainsi trouvées ne coincident peut-étre pas avec 4y, mais
comme ces bases sont simplement connexes on récupére la bonne restriction a
{u =0} en corrigeant les primitives par des différentielles de fonctions. cqfd
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Appendice: démonstration du lemme de fragmentation

On donne ici une démonstration du lemme de fragmentation de Banyaga énonceé
en 3.8.

Au départ on a des domaines A4,,k =0,...,p, formant un recouvrement de
D — U,. Chaque A4, est une réunion finie de boules disjointes, mais cela ne servira
pas. On se donne un rétrécissement A, < int 4, tel que les A; recouvrent encore
D — U,. On choisit une fois pour toutes une fonction cloche indépendante du
temps, o: D —[0, 1], & support dans int 4, et valant 1 sur un voisinage de Ag.

Soit A: D x [0, 1] >R, un hamiltonien dépendant du temps a support dans
(D — U,) x[0, 1] et soit @', t € [0, 1], I'isotopie hamiltonienne correspondante. Si A
est assez petit (en topologie C'), ¢'(4;) = int a~!(1) pour tout ¢ € [0, 1].

On pose h, = ah et on note ¢§ I'isotopie hamiltonienne correspondante. Si x est
proche de A, on a pour tout ¢ € [0, 1]

bo(x) = d'(x) et h(do(x), 1) = ho(do(x), 1).

D’autre part le support de 4, est contenu dans (D — U,) x [0, 1].

On considére le diffeomorphisme ¢ = (¢))~'o@'. Son support est dans
D — (Uyu Ayp). La différence “tordue” de h et de Ay est un hamiltonien pour une
isotopie hamiltonienne de l‘identité a y, a support dans D — (U,u 4g). La diffeé-
rence “tordue” est définie par la formule:

H(x, 1) = h(¢5(x), 1) — ho(do(x), ).

Par récurrence sur le nombre de domaines de fragmentation, on sait que si H est
assez petit,  peut étre fragmenté comme produit

=yiooo,

ou chaque ¥, est le temps 1 d’une isotopie hamiltonienne dont le hamiltonien est a
support dans

[(D — (U,u 4p)) nint 4] x [0, 1].

Comme la petitesse de H en topologie C* ne dépend que de celle de 4, on a le
resultat cherché:

¢ =dooyo oy, cqfd
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Remarque. La démonstration montre aussi que si on part d’une isotopie hamil-
tonienne dont le hamiltonien est positif, on peut imposer aux “fragments” d’€tre
donnés par des hamiltoniens positifs. D’autre part, le nombre de dérivées consom-
mées est le nombre de domaines de fragmentation, a une unité prés. Comme ce
nombre est arbitraire, on doit utiliser la topologie C*.

Chapitre 11
ENGOUFFREMENT DE CYLINDRES DE LIOUVILLE

Le probléme qui est résolu dans ce chapitre est totalement trivial du point de
vue de la topologie différentielle alors qu’en topologie symplectique il nécessite des
hypothéses trés fortes a I'infini. Le théoréme de flexibilité établi au chapitre I en est
la cheville ouvriére, il sera réénoncé sous la forme ou il sera utilisé.

§1. Enoncés des resultats

1.1. On considére une variété symplectique exacte de dimension 2n
(M*, w =dA), avec un bord S = AM compact. Le champ de vecteurs A, qui est le
w-dual de la forme de Liouville A, est supposé positivement complet; en particulier,
le champ de Liouville 4 rentre dans la variété le long du bord S, qui est alors
concave (au sens de [EG]) pour son orientation comme bord. Si ¢, est le flot d’'un
champ de Liouville pour w et si ¢, désigne ’opérateur image directe sur les formes
différentielles, on a I'identité caractéristique

w=e'gp,w.

Tous les champs de Liouville de (A{, w) considérés dans ce chapitre rentrent dans M
le long du bord et ne différent de 4 que par un hamiltonien a support compact; en
revanche, ils peuvent différer le long du bord. On fait I’hypothese de convexité a
I'infini [EG]:

(H1) 1l existe une hypersurface compacte sans bord X, transverse a A, limitant avec
S une variété compacte, et dont le saturé positif par A est complet et constitue
un voisinage de infini de M.

1.2 Engouffrement d’un cylindre de Liouville

Soit 4 un domaine de S et C =~ A4 x [0, 1] un cylindre dans M de base 4; on
suppose que C est un cylindre de Liouville, c’est-a-dire qu’il existe un champ de
Liouville Y défini seulement au voisinage de C et tangent aux lignes a x [0, 1],a € 4
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(on ne demande pas que Y se prolonge en un champ de Liouville rentrant dans M
le long de tout le bord). Enfin on note U, le saturé positif de S par A.

THEOREME A. Sous I’hypothése (H1) le cylindre C peut étre engouffré par Us:
il existe une isotopie hamiltonienne ambiante a support compact dans int M poussant
U, jusqu’a contenir C.

On déduit ce théoréme d’un théoréme d’engouffrement plus technique.

1.3. Soit Y, et Y, deux champs de Liouville rentrant dans M le long de S; pour
i =1, 2, U, désigne le saturé positif de S par le champ Y,.

Soit alors 4, et A, deux domaines compacts dans S; on note 4 =4, A4,. On
considére d’une part le cylindre R, (resp. R), difftomorphe a A4, x [0, 1] (resp.
A x [0, 1]), qui est le saturé de A, (resp. 4) par le champ Y, jusqu’au temps 1. On
considére d’autre part un cylindre R, =~ 4, x [0, 1] de base 4,, contenu dans U,
(il n’est pas demandé que Y, soit tangent & R,). On suppose:

(H2) R = R,N R, et, au voisinage de cette intersection, Y, =Y,.
Enfin on fait I’hypothese topologique suivante:
(H3) A, — A se rétracte par déformation sur un polyédre de dimension k pour un
entier k tel que le cobordisme compact W entre S et X ait une décomposition en

anses a partir de S sans anses d’indice >2n — k.

Par exemple, ’hypothése (H3) est satisfaite si 4, — 4 est une réunion de boules
disjointes. En effet, & cause du champ de Liouville rentrant le long de S, toute

Figure 5
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composante connexe de W touche X et admet donc une décomposition en anses
sans anses d’indice 2n. Dans la situation décrite ci-dessus on a cet autre théoréme
d’engouffrement de cylindres:

THEOREME B. 1 existe une isotopie hamiltonienne de plongement de R, dans
M — (R, — R), stationnaire au voisinage de R U A,, partant de I’inclusion et aboutis-
sant dans U, (Figure 5).

Pour la démonstration, on pourra se limiter au cas ou R, et R, sont disjoints.
En effet soit M’ la variété obtenue en retirant a M un petit voisinage régulier de
S UR qui 8’y rétracte en suivant les lignes de champ de Y,. Soit S’ le bord de M.
Les champs de Liouville Y, et Y, pointent tous les deux vers I'intérieur de M’ le
long de S’. Soit A;=R,nS',R;=R,nM’' pour i=1, 2. Par construction

1N R, = et engouffrement dans M’ donne ce que I’on veut dans M.

1.4 Déformation de formes symplectiques

On rappelle le théoréme de prolongement de formes symplectiques établi au
chapitre I (th. 1.1 et prop. 4.4). On considére une variété V, compacte a bord de
dimension 2n — 1, et le produit V' x [0, + c0). Notant u la derniére coordonnée, on
considére sur ¥ x [0, + o) le semi-flot ¢ € R* — T, engendré par d/0u. On se donne
une famille de formes symplectiques exactes w, = di, dépendant d’un parameétre
s € [0, 1]*. On fait les hypothéses suivantes:

a) hors d’un compact fixe {u > uy}, A, est indépendant de s,
b) 0/0u est le champ de Liowville w,-dual de A, dans {u > u,} et au voisinage de
oV x {0}.

On considere, pour ¢ € [0, 1], le chemin w,(7) de germes de formes symplectiques
le long du bord de V x [0, 4+ o0) défini par les deux formules suivantes:

w,(t) =e'(T,),w, au voisinage de dV x [0, +00) (1)
w,(t) = w, au voisinage de ¥V x {0}. (2)
Pour donner complétement un sens a la formule (1), on observe que d/0u étant un
champ de Liouville au voisinage de 0V x {0}, la structure symplectique w, se
prolonge canoniquement comme germe le long de 0V x (— oo, 0], en imposant que

d/0u y soit un champ de Liouville; la formule (1) est alors bien définie et produit
une déformation de w, stationnaire au voisinage de dV x {0}.

THEOREM DE PROLONGEMENT. Dans les cogditions ci-dessus, il existe
des formes symplectiques exactes ,(t) et des primitives A (t) dépendant continiiment
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des deux paramétres et vérifiant.
(a) hors d’un compact fixe {u > u,}, }:;(t) est indépendant de s et de t;
(b) au voisinage du bord, &,(t) est donné par les formules (1) et (2);
(c) au voisinage de {u =0}, L) = A
(d) au voisinage de dV x [0, + o), Is(t) =e'(T,), A;
(e) pour t =0, 1,(0) = 4,.

1.5 NOTATION. Revenant & la variét¢ M de 1.1, pour un ouvert U de M
contenant S, on note ' (U) ’ensemble des formes symplectiques exactes de M dont
une primitive coincide avec 4 au voisinage de S et hors d’un compact de U. On ne
considére pas A4 (U) comme un espace topologique mais comme un ensemble
simplicial; les k-simplexes sont les familles & k paramétres de formes symplectiques
exactes se relevant en une famille de primitives qui coincident avec 4 au voisinage
de S et hors d’'un compact fixe de U. D’aprés le lemme de Moser [Mo], dans un
k-simplexe de ' (U) tous les €léments se déduisent les uns des autres par une isotopie
ambiante a support dans le compact indiqueé.

§2. Démonstration du théoréme B

Comme on I’a dit, on peut se limiter au cas ou R, et R, sont disjoints.

Voici le plan de la démonstration: on pousse R, dans U, par une isotopie
hamiltonienne du type “Alexander”; on crée ainsi des intersections de R, avec R,.
On fait fuir ces intersections par le bord libre de R;, ce qui détruit la structure
symplectique. Le théoréme de prolongement rappelé précédemment, joint au lemme
de Moser, permet le redressement de la structure symplectique tout en laissant R,
disjoint de R,. On établit enfin que cette construction est le résultat d’une isotopie
hamiltonienne.

Voici les détails. On note #,(¢) le semi-flot de Y; et S, Phypersurface 5,(1)(S).

LEMME 1. L’hypersurface S, est isotope a S, par une isotopie hamiltonienne
ambiante fixe prés du bord.

Preuve (4 la Alexander). La formule n,(6)n,(6) ~!|S, est une isotopie hamilto-
nienne que 1’on prolonge a support compact dans int M et qui convient. cqfd

Quitte a remplacer le temps 1 du flot n, par un temps plus grand, on peut supposer
que R, est dans la composante compacte limitée par S et S,. On récolte ainsi une
isotopie hamiltonienne ¢,: R, — M, t € [0, 1], ou @, est 'inclusion de R, dans M ou
¢, (R, = U,. Mais ¢,;(R,) n’a aucune raison d’étre disjoint de R,. Soit
Yu: M — M, u [0, 1], une isotopie (non hamiltonienne), fixe prés du bord, a support
compact dans U, — R, et déplagant chaque point sur son Y;-orbite dans le
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sens du champ. On demande que x;'(R,), qui est contenu dans R, soit disjoint de
¢,(R,) pour tout ¢ € [0, 1]. L’isotopie t+— (y,¢,: R, > M — R,) est hamiltonienne
pour w':=y; @ €t non pour w.

La forme symplectique o’ coincide avec w prés de S. Ceci permet de considérer
la formule suivante qui donne une déformation de w’ jusqu’a w le long de R,:

w; = e’ (5), @’ (3)

Pour s =0, on a wy = w’ et, pour s proche de 1, on a w;, = w le long de R, a cause
de 'identité caractéristique des champs de Liouville. On applique alors le théoréme
de prolongement a cette déformation de formes symplectiques. Voici comment on
le fait (Figure 6).

On considére un champ }7, (de flot #n,(s)), coincidant avec Y, prés de S U R, et
hors d’un compact de U,. On demande que le saturé de A, par Y, évite 11 9:1(R,)
et que U, soit encore le saturé de S par ce nouveau champ; ceci est facile a assurer
car, topologiquement, y,¢,(R,) se rétracte sur A4,.

Si dans la formule (3), on remplace #, par #,, on obtient une déformation de w’
définie par (4) sur 'adhérence de U, dans U,, ou U est le ¥,-saturé d’un voisinage
de R;:

w'(s) = e, (s),". (4)

On considére U7, obtenu a partir de U, — U] en retirant I'intérieur d’un voisinage
régulier ouvert de y,¢,(R,). Cette variété est de la forme V x [0, + o0), ou V est
une variété compacte a bord. La déformation, donnée par (4) le long de
oV x [0, + o0), et stationnaire égale a w’ le long de V x {0}, s’¢tend a U} d’apres

(U{' est en pointillés)

Figure 6
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le théoreme de prolongement. Finalement, la déformation (4) de w’ a w le long de
R, se prolonge en une famille de formes symplectiques définies sur M tout entier et
notées w,,. La déformation est a support compact dans U, et est stationnaire sur
X191 (R;); de plus les formes w, ; sont exactes et ont chacune une primitive 4, qui
coincide avec 4 hors d’un compact fixe de U,. Par le ¢) du théoréme de prolonge-
ment, on peut choisir les primitives de sorte que 4,, = x; 4 sur un voisinage de
SV ¢1(Ry).

On pose w, ; =: £,. Le plongement y, ¢, est symplectique d’un voisinage de R,
muni de w vers U; — R, muni de Q,.

LEMME 2. Q, est isotope a w par une isotopie a support compact dans U, et
stationnaire au voisinage de R,. De plus le lacet formé des chemins décrits de w a o’
(u — (1), w) puis de o' a Q, (s — w, ), complété par Pisotopie rel R,, de 2, a w, est
contractile dans A (U,).

Preuve. D’aprés le lemme de Moser [Mo], pour établir la premiére partie du
lemme, il suffit de trouver un chemin dans #°(U,) joignant Q, & w constitué¢ de
formes symplectiques qui coincident avec w au voisinage de R,. En effet, comme ce
cylindre se rétracte par déformation sur sa base, on peut trouver des primitives qui
coincident avec 4 sur R, U S et hors d’un compact fixe; le générateur infinitésimal de
I'isotopie de Moser est alors nul sur ces deux domaines.

On obtient ce chemin dans 2 (U,) en appliquant le théoréme de prolongement
avec un paramétre. Précisément, considérons la famille de formes symplectiques

w, = X, o, u €[0, 1], et sa déformation le long de I'adhérence de U} donnée par

COu,s = es(ﬁ] (s)),wuﬂ S € [0, 1]

Comme plus haut, par le théoréme de prolongement elle s’é¢tend a
Ui =V x[0, + o) et donc a U, en prenant w, ; = w, sur U, — (U} u UY) pour tout
s. C’est un 2-simplexe dans X#'(U;). Pour u =1, le chemin w, est celui décrit
précédemment de w’ a Q,. Pour s =1 et tout v €[0, 1], on a w,; = @ au voisinage
de R, (Figure 7).

On peut faire mieux car, en méme temps que I’on change la condition initiale '
en w,, on peut changer le plongement de V x[0, +o0), sans changer celui de
oV x [0, 4+ ), de sorte que, pour u =0, V' x {0} soit contenu dans S: la rétraction
de R, sur A, fournit une isotopie de U} jusqu’a U, — Uj. Dans ce cas, comme Y,
est un champ de Liouville le long de S tout entier, la déformation de formes
symplectiques pour u =0 peut étre globalement donnée par w,, = e*(;(s)), w.

Cependant ce dernier chemin n’est pas encore stationnaire, car Y, nlest pas un
champ de Liouville pour @ sur tout U,. Pour y parvenir, on choisit, pour
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u € [—1, 0], une famille de champs de vecteurs Z,, de flots {,, joignant Z, = f’, a
Z_,=Y, parmi les champs de vecteurs qui coincident avec Y, au voisinage de
S UR, et hors d’un compact de U, et dont les orbites sont propres dans U, (donc
le saturé de S est toujours U,). On applique alors la formule globale

W, = es(éu(s))*w’ ue [—— 1’ O]s s € [0’ 1]

Pour u = —1, w_, , = w pour tout s. Finalement w,, pour u variant de —1 a +1
joint w a Q,, avec les propriétés requises.

Enfin, la contractibilité du lacet décrit dans ’énoncé résulte de la construction
méme du chemin de 2, a w. cqfd

L’isotopie de Moser a support dans U, — R, qui rameéne 2, sur w modifie le
plongement ¢, | R, en un plongement ¥,: (R,, w) = (U, — R,, w). 1l reste & voir
que ce plongement symplectique est isotope, de fagon hamiltonienne dans
(M — R,, w), a l'injection de R,.

Dit briévement, le chemin de R, 2 ¥,(R,) est “hamiltonien vis-a-vis de formes
variables”. On applique a ce chemin de formes une procédure de redressement de
la structure symplectique analogue a la précédente; mais cette fois-ci, elle est
appliquée 2 M et non a U, et c’est 1a que ’on utilise les hypotheses a I'infini.

Notons ¥,,t €[0, 1], la famille de plongements R, —» M — R, obtenue en met-
tant bout & bout le chemin g, ¢, | R, puis 'isotopie de Moser; ¥, est I'inclusion et
¥, est w-symplectique a valeurs dans U, — R,.

LEMME 3. Il existe un lacet {w(t)} contractile dans A (M) tel que
¥Y,:(R,, w) = (M — R,, w(t)) soit symplectique.
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Preuve. Essentiellement le lacet {w(f)} est donné par le bord du rectangle de la
figure 7. En changeant le paramétrage, on peut supposer que ¥, = ¥, sur un
intervalle de temps au cours duquel on déforme w en w’ par (x,),; cette déforma-
tion est stationnaire sur R,. Ensuite ¥, varie comme y, @, et est symplectique de
(R,, w) vers (M — R, ®’). Puis on déforme w’ en Q, selon le chemin de la figure 7;
cette déformation est constante sur x;¢,(R;). On finit en déformant yx, ¢, et Q, par
I’isotopie de Moser. (cqfd)

Pour la fin, on peut oublier comment ¥, et w(?), t € [0, 1], ont été fabriqués et
partir simplement du lemme 3. Par commodité, on suppose que I’'un et ’autre sont
indépendants de ¢ pour ¢ voisin de 0 et de 1. Le lemme suivant permettra de
conclure grace a Moser.

LEMME 4.

(1) Il existe une famille de formes symplectiques w,(t) € X' (M),s,t €[0, 1]
vérifiant

(1) w,(t) = w(t) le long de ¥,(R,),

(i) wo(?) = (),

(iii) w,(?) = w le long de R,,

(iv) pour tout s, w,(0) = w,(1) = w.

(2) Le lacet t v+ w,(t) est contractile dans le sous-espace (M mod R,) des
formes symplectiques qui coincident avec w voisinage de R,.

Preuve. 1) Comme les anses de la paire (M, S) peuvent s’attacher sur S sans
toucher A, (hypotheése H2), il est facile de trouver un champ de vecteurs Z,,
coincidant avec Y, sur un voisinage V(R,) de R, et hors d’un compact, tel que le
saturé de V(R,) par Z, évite R, et soit proprement plongé dans M. Soit ¥, une
isotopie ambiante prolongeant ¥, a support compact dans M — R,;; on pose
Z, = ?’,‘ZO et on note s — ¢&,(s) son flot. Le Z,-saturé de V(R,) est proprement
plongé, évite ¥,(R,) et est indépendant de ¢ hors d’'un compact; dans ce domaine,
on considére la formule:

w,, = e(¢,(s), w(?). (5)

Soit M, la variété obtenue a partir de M en retirant le Z,-saturé de V(R,), un
voisinage de ¥,(R,) et un voisinage des anses de la paire (M, SU ¥,(R,). Cette
variété est de la forme V x [0, +oc) ou V est une variété compacte a bord.

La formule s — w,, donne une déformation de w(f) le long de dV x [0, + o0),
que I'on étend de fagon stationnaire égale a w(¢) le long de ¥ x {0}. Son prolonge-
ment & V x [0, +oc) donne le w,(f) cherché, vérifiant (i)-(iii). La propriété (iv)
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s’obtient en jouant sur l'intervalle ou varie s (voir Figure 8). En effet, pout ¢ =0,
1, le champ Z,, qui coincide avec Y, au voisinage de R,, est un champ de Liouville
pour w sur R, et la formule (5) donne une forme symplectique indépendante de s
sur R;; donc si on tronque I'intervalle de variation de s pour ¢ voisin de 0 et 1, on
ne perd pas la propriété (iii) et on gagne la propriété (iv).

2) Le lacet {w(?)} est contractile dans #"(M); il en est donc de méme du lacet
homotope {w,(?)}. Mais ce dernier se trouve dans /(M mod R,). On considére la
contraction de {w,(#)} dans # (M) et on lui applique la formule habituelle (voir
(3)) pour redresser les formes le long de R,, puis le théoréme de prolongement avec
deux paramétres pour obtenir une contraction dans (M mod R)). cqfd

On achéve la démonstration du théoréme comme suit: d’apreés le (i) du lemme
4, ¥, est un plongement symplectique de (R,, w) dans (M — R,, w,(?)). Le lemme de
Moser (a paramétre) permet de redresser w,(f) en w par une isotopie a support
compact dans M — R, dépendant continiment de ¢ et valant I’identité pour ¢ =0,
1. En modifiant ¥, par cette isotopie on obtient I’engouffrement cherché, ce qui
termine la démonstration du théoréme B.

§3. Démonstration du théoréme A

3.1 En remplagant 4 par un voisinage dans S, on peut supposer que 4 est un
polyédre.

LEMME. Si la triangulation est assez fine, on a la propriété de prolongement
suivante:
(H4) Pour tout (2n — 1)-simplexe o de A, le germe de Y au voisinage de o se
prolonge en germe de champ de Liouville Y, le long de S rentrant dans M.
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Preuve. Au départ Y est le champ dual d’une forme de Liouville 4 = A + df. Soit
u une fonction sans point critique au voisinage de S telle que S=u"'(0) et
que du(/l) =1 le long de A4. Les caractéristiques de S sont dirigées par du, le champ
hamiltonien dual de du. La question de prolonger Y en un champ de Liouville le
long de S rentrant dans M, c’est-a-dire vérifiant du(Y) > 0 ou encore w(c?i}, Y)>0,
revient a prolonger a S la fonction f de sorte que:

w(df, du) + (7., du) <0, (6)

ou encore df (&':l) <l.

En général I'application de I'inégalité des accroissements finis sur un segment
caractéristique de S ayant ses deux extrémités dans A4 interdit ’existence d’un
prolongement. En revanche si o est assez petit, il n’y a pas d’obstruction a trouver
un prolongement de f|, satisfaisant (6) en tout point de S. Précisément I’obstruction
est nulle s’il existe 7 > 0 vérifiant:

— max fj,-min f, <T,
~ o est contenu dans une boite B du flot de du telle que le temps de retour de
B dans lui-méme soit > T (voir chap. I, 2.4).
Cette condition est satisfaite si le diamétre de o est assez petit. cqfd

3.2. La démonstration du théoréme A se fait maintenant par récurrence sur le
nombre de (27 — 1)-simplexes de 4 dans une triangulation vérifiant (H4).

Soit ¢ un (2n — 1)-simplexe de 4. On écrit A =0 UA avec 6NnA'=1<do;1
est un sous-polyédre de 4'. Par hypothése de récurrence, 'ouvert U, saturé positif
de S par J contient le cylindre de Liouville C'= A" x [0, 1] aprés une isotopie
hamiltonienne convenable a support compact dans int M. Soit Y, = Y, le champ de
Liouville donné au voisinage de S par le lemme 3.1 et globalisé par partition de
'unité de sorte que Y, = Yle long de ¢ x [0, 1]. Notons U, le saturé positif de S par
Y,. En vertu du lemme 1 du §2, U, peut engouffrer C’ par une isotopie hamilto-
nienne & support compact dans intM. Notons U, le résultat sur U, de cette isotopie:
U, o C'. Cet ouvert est muni naturellement d’un champ de Liouville Y3, transporté
de Y, par Iisotopie. Considérons les polyédres P, et P, respectivement saturé positif
de 7 jusqu’au temps 1 par les champs Y, et Y5. On a P,c C’ car Y, =Y au
voisinage de t x [0, 1]. Donc P, et P, sont tous les deux dans U,.

LEMME. Il existe une isotopie hamiltonienne a support compact dans U, — S
transportant P, sur P, avec leurs champs de Liouville respectifs.

Preuve. La structure symplectique au voisinage d’un cylindre de Liouville est
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conjuguée a celle d’'un modéle Q déterminé par la structure symplectique et le
champ de Liouville au voisinage de la base du cylindre. Comme Y, =Y} au
voisinage de 7, P, et P, ont des voisinages symplectomorphes. L’isotopie va étre
donnée par une interpolation. A l'aide d’une partition de I'unité, on choisit un
champ de Liouville Y coincidant avec Y, au voisinage de S U P, et avec Y, hors
d’un compact de U,. Cette derniere condition assure que le saturé positif de S par
Y est contenu dans U,. Soit Y, =( —1)Y,+ (2 — 1Y), t €[1, 2]; c’est un champ
de Liouville coincidant avec Y’ hors d’un compact de U, —S. Soit P, le saturé
positif de 7 par Y, jusqu’au temps 1; P, est 'image d’un plongement canonique
¢, x[0,1]-U, et te[l, 2] — ¢, est une isotopie d’'un plongement canonique
¢,:1x[0,1]->U, et t e[l, 2] — ¢, est une isotopie hamiltonienne de plongements.
L’isotopie cherchée s’obtient par extension des isotopies. cqfd

On note alors Y, le transporté de Y’ par cette isotopie. L’ouvert U, est le saturé
positif de S par Y, et contient C’. Par construction Y,= Y, au voisinage de
1 x[0,1]. Les hypothéses du théoréme B sont satisfaites, avec R, =0 X
[0,1], R,=C"= A" x [0, 1], ce qui acheve la démonstration du théoréme A.

Chapitre III
ENGOUFFREMENT DE SOUS-VARIETES LAGRANGIENNES

On revient a la situation décrite dans l'introduction et en se fondant sur le
théoréme d’engouffrement des cylindres de Liouville on va établir le théoréme
d’engouffrement des sous-variétés lagrangiennes qui y a été annonce.

On rappelle que:

— (M?", w = dA) est une variété symplectique exacte convexe a I'infini de dimen-
sion >6,

— L est une sous-variété lagrangienne exacte compacte connexe,

— U(L) est un ouvert de M isomorphe a T*L,

~ m,(M, L) =0, n,(M, L) =0,

— {L,} est un chemin de sous-variétés lagrangiennes compactes A-exactes avec
L, < U(L).

THEOREME D’ENGOUFFREMENT GENERIQUE. L’ouvert cotangent
U(L) peut engouffrer rel. L une e-approximation de {L,}.

Tous les champs de Liouville considérés dans ce chapitre sont équivalentes a A
au sens ou ils ne différent de 4 que par un hamiltonien a support compact.
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§1 Préliminaires
1.1 Stratification associée a L.

Considérons I'espace £ des sous-variétés lagrangiennes A-exactes diffeomorphes
a L,, muni de la topologie C*. Le type de contact d’un élément L' € ¥ avec L
permet de stratifier ¥ comme suit:

— %Y est formé des sous-variétés transverses a L; c’est un ouvert dense;

~ &' est formé des sous-variétés ayant exactement un point de contact avec L,
lequel est quadratique; #' est une ‘‘sous-variété de codimension 1”’;

-~ P =% —(L°UPL"); c’est un fermé de codimension > 1.

Le theéoréme de transversalite de Thom énonce que génériquement un chemin {L, }
dans & est transversal a #' et évite ¥2.
Dans ce cas I'isotopie est formée d’'un nombre fini de chemins des types suivants:

— chemin ou L, reste transverse a L;
— chemin conjugué a un chemin élémentaire d’elimination ou de naissance d’une
paire de points d’intersection avec L.

Cette derniere definition sera précisée ultérieurement. Pour le théoréme d’engouf-
frement générique, il suffit de considérer successivement ces deux types de chemins.
Dans les deux cas, I'ingrédient essentiel est le théoréme suivant, établi au chapitre
II.

1.2 Le théoréme d’engouffrement des cylindres de Liouville

On considére une hypersurface S compacte connexe, bordant un domaine
compact. La composante non compacte du complémentaire est notée Ext S (extérieur
de S) et la composante compacte est notée Int S (intérieur de S).

On suppose que S est transverse 4 un champ de Liouville X (qui pointe
nécessairement vers Ext S); on note Uy le saturé positif de S par X. On se donne
un cylindre C =4 x [0, 1] dans Ext S, dont la base 4 = 4 x {0} est contenue dans
S. On suppose que C est un cylindre de Liouville, c’est-a-dire qu’il existe au voisinage
de C un champ de Liouville Y, transverse a S et tangent aux lignes {a} x [0, 1], a € 4.

THEOREME. 1 existe une isotopie hamiltonienne de Ext S, stationnaire sur S, a
support compact et poussant Uy jusqu’a contenir C.
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1.3 Premiére réduction, chemin de type constant

Deux chemins {L,} et {L;} sont dits conjugués s’il existe une isotopie hamiltoni-
enne préservant L, y,: (M, L) — (M, L), telle que, pour tout ¢ € [0, 1], L, = y,(L,). Si
Iouvert U(L) peut engouffrer le chemin {L, } rel. L, il peut aussi engouffrer tout autre
chemin qui lui est conjugué.

LEMME. Un chemin dans £° est conjugué a un chemin, dit de type constant, ou
L, L est fixe et ou {L,} est stationnaire au voisinage de I’intersection avec L.

En effet, d’'une part il existe une isotopie de L en lui-méme qui raméne L, N L
a sa position initiale. Comme L est lagrangienne cette isotopie s’étend en isotopie
hamiltonienne ambiante. D’autre part I'espace des germes de disques lagrangiens
transverses & L en un point donné est contractile. Une seconde isotopie hamilto-
nienne permet donc de redresser L, au voisinage de L, n L. cqfd

1.4 Seconde réduction, chemin linéaire

Soit U(L,) = T*L, un ouvert cotangent muni de sa structure fibrée. Soit fiL,—»R
une fonction C*. Le graphe de df dans T*L, donne une sous-variété lagrangienne
A-exacte. Réciproquement tout élément de ¥ assez proche de L, est un tel graphe
car la A-exactitude équivaut a ’exactitude dans le cotangent.

Le chemin {L,} formé des graphes des différentielles tdf,t [0, 1], est le
prototype d’un chemin linéaire dans & et la fonction f est sa fonction génératrice.
On obtient un chemin linéaire par morceaux en mettant bout a bout un nombre fini
de chemins linéaires (& reparamétrage prés).

Si L, est transverse a L et si df est assez petite, le chemin linéaire associé est dans
#°. Si de plus f est constante au voisinage de chaque point d’intersection avec L,
le chemin linéaire est de type constant.

Gréice a la compacité de I’intervalle [0, 1] et sachant que tout élément de ¥ donne
lieu & un ouvert cotangent, on établit immédiatement:

LEMME. Pour tout chemin de type constant {L, } et tout ¢ > 0, il existe un chemin
linéaire par morceaux {L,} ayant les mémes extrémités et tel que, pour tout
t €[0, 1], L, soit e-proche de L,.

Au §2 on établira que le théoreme d’engouffrement vaut pour les chemins linéaires
de type constant. Comme conséquence on aura I’engouffrement des chemins de type
constant linéaires par morceaux et donc I’engouffrement des isotopies génériques
{l:,} ou L, reste transverse a L. L’engouffrement des chemins élémentaires de
naissance ou d’élimination d’une paire de points d’intersection avec L sera traité au
§3, achevant ainsi la démonstration du théoréme d’engouffrement générique.
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Pour finir ce paragraphe de préliminaires, on dégage une idée d’équivalence trés
utile pour I’engouffrement.

1.5 Principe d’équivalence

Si S est une hypersurface transverse 4 un champ de Liouville Y et borde un
domaine compact, on note W(S, Y) la réunion de ce domaine et du saturé positif
de S.

LEMME. Soit (S,, Y,), t € [0, 1], une famille a un paramétre d’hypersurfaces et de
champs de Liouville transverses (ou Y, différe de Y, par un champ hamiltonien). Alors
W (S,, Y,) et W(S,, Y,) engouffrent les mémes compacts; autrement dit, tout compact
du premier ouvert peut étre poussé dans I’autre par une isotopie hamiltonienne.

Preuve. Observant que S, 5, est encore transverse a Y, pour J¢ assez petit, par
une discrétisation du paramétre il suffit de considérer le cas ou S, = S, pour tout ¢.
Soit K un compact de W(S,, Y,) et soit S; 'image de S, par le flot de Y, au temps
T choisi assez grand pour que Sy, soit au-dela de K (Ext S, K =0). Soit S} I'image
de S, =S, par le flot de Y, au méme temps 7. On sait qu’il existe une isotopie
hamiltonienne rel. S, poussant S} sur S; (truc d’Alexander, lemme 1 §2 Chap. II)
et donc W(S,, Y,) jusqu’a contenir K. cqfd

Le principe d’équivalence s’applique évidemment

(1) a des hypersurfaces isotopes en restant transverses 4 un méme champ de
Liouville;

(2) a une hypersurface munie de deux champs de Liouville transverses;

(3) adeux hypersurfaces se déduisant I'une de I’autre par isotopie hamiltonienne.

Avec ’hypothése du lemme ci-dessus, on dira que S, et S; sont des hypersurfaces
équivalentes. Si toutes les S, sont au-deld d’un compact K on les dira équivalentes
rel. K. On donne ci-dessous un critére d’équivalence.

1.6 Critere d’équivalence

Soit (S, X) une hypersurface munie d’un champ de Liouville transverse. Soit A4
une sous-variété compacte de S et C = A x [0, 1] un cylindre de Liouville engendré
par un champ de Liouville Y (défini seulement au voisinage de C); Y est transverse
a Slelong de A et CnS =4 x {0}. Soit " une hypersurface obtenue a partir de
S par un glissement le long des orbites de Y.
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LEMME. Sidim A <n — 2 et quitte a remplacer S par une hypersurface voisine,
S’ est équivalente a S.

Remarque. S est bien équivalente a toutes ses approximations; cela ne prouve pas
qu’aprés glissement elles restent équivalentes.

Preuve. D’apres 1.5 il suffit de prouver que Y se prolonge en un champ de Liouville
transverse a S. Au voisinagede Cona Y =X + c?]", ou El}’ est un champ hamiltonien.
Si u est une fonction, telle qu’en tout point de .S on ait u = 0 et du(X) > 0, et si du
est le champ hamiltonien correspondant, la transversalité de Y a S s’écrit:

df (du) < du(X).

Disons que du(X) > 1. Soit T = max f, — min f,. Génériquement sur S, le flot de
du ne va pas de 4 sur lui-méme en temps < T'; en effet ’espace des orbites de du est
de dimension 2n — 2 > 2 dim 4. Le prolongement de la fonction f vérifiant I'inégalité
ci-dessus se fait sans difficulté (voir chap. I, 2.4). cqfd

Sidim 4 =n — 1,1l y a un nombre fini de retours en temps < 7. Si de tels retours
n’existent pas, S’ est équivalente a S.

§2. Rideau d’un chemin linéaire

2.1 DEFINITION. Etant donné un chemin linéaire de type constant de fonction
géneratrice f: Ly — R, le rideau associé est la réunion R( f) des graphes des différen-
tielles ¢ df, t € [0, 1] dans U(L,) =~ T*L,.

Le rideau R(f) est une sous-variété singuliére de dimension n + 1, difftomorphe
a L, x [0, 1], chaque segment au-dessus d’un point critique de f étant écrasé sur un
point.

L’engouffrement d’un chemin linéaire de type constant est réalisé par ’engouftre-
ment du rideau associeé.

2.2 PROPOSITION (Engouffrement d’un rideau). I/ existe une isotopie hamilto-
nienne @,: M — M, t € [0, 1], a support compact, stationnaire sur L U L, et telle que
h,(U(L)) contienne R(f).

2.3 Réduction a I’engouffrement d’un rideau régulier
" Via la projection R(f)— L, induite par la projection T*L,— L,, on étend

f: Ly— R en une fonction f: R(f) — R. Une sous-variété de dimension n contenue
dans un niveau de f est lagrangienne.
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Remarque. Comme toute isotopie interne a une sous-variété lagrangienne s’étend
en une isotopie hamiltonienne ambiante préservant celle-ci, on peut supposer au
départ que U(L) contient la préimage par f des valeurs critiques de £, Ainsi il reste
a réaliser ’engouffrement d’un rideau régulier (définition ci-dessous) disjoint de L.

DEFINITION. Un rideau régulier R est une sous-variété (non singuliére) de
dimension n + 1, munie d’une submersion 7#: R —|[a, b] x [0, 1], avec les deux
propriétés suivantes:

(i) la forme induite par w sur R est n*(ds A du), ou (s, u) désigne les coordon-
nées du but;

(i) les fibres de m sont des sous-variétés compactes sans bord A-exactes.

EXEMPLE. Si R < R(f) est la préimage par f dintervalles de valeurs régulicres
de f, alors R est un rideau régulier. Sur chaque composante connexe de R on a
Som = f et uon =1—1¢ (la raison de ce retournement de la verticale apparait plus
loin).

Le bord principal du carré [a,b] x [0, 1] est la réunion F, des trois cdtés
{a} x[0, 1], [a, ] x {1}, {b} x[0,1]. Le bord libre F, est le quatriéme cOté
[a, b] x {0} (Figure 9).

Le bord principal du rideau R est d,R =n~'(F,) et le bord libre du rideau est
O,R =n~\(F)).

D’aprés la remarque ci-dessus ’engouffrement d’un rideau se réduit a la
proposition suivante.

PROPOSITION (Engouffrement d’un rideau régulier). Soit R un rideau ré-
gulier. Soit K un compact de U(L) tel que Kn0,R et qui se rétracte sur un polyédre
de codimension >3. Alors, sous I’hypothése de convexité a linfini, il existe une
isotopie hamiltonienne ¢,: M — M, t € [0, 1], a support compact, stationnaire sur K et
telle que h,(U(L)) contienne R.

Figure 9
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Pour déduire 2.2, on prend R comme dans l’exemple ci-dessus et K =
LULyU(R(f)— R).

La stratégie est la suivante: on considére une hypersurface S dans U(L) au-dela
de K et un champ de Liouville X, transverse a S, tel que Ext S n U(L) soit le saturé
positif de S. On prend S transverse & R. Supposons provisoirement qu’il existe un
champ de Liouville Y transverse a S et tangent & R. L’image de S en un temps T
assez grand du flot de Y est au-dela de R. Le principe d’équivalence 1.5 donne
I’engouffrement cherché.

En fait, cette méthode se heurte a des obstructions mais on peut au moins
simplifier S N R jusqu’a pouvoir appliquer le théoréme d’engouffrement des cylin-
dres de Liouville (1.2) qui a une hypothése moins restrictive concernant le champ
Y.

2.4 Champ de Liouville sur un rideau régulier
Les deux remarques suivantes sont élémentaires:

(1) Tout champ de vecteurs sur [a, b] x [0, 1] dont les orbites vont du bord
principal au bord libre peut étre rendu de Liouville pourds A du (resp. anti-
Liouville = 'opposé d’un champ de Liouville) en le multipliant par une fonction
positive convenable, de sorte que son flot dilate (resp. contracte) les aires exponen-
tiellement.

(2) Tout champ tangent a R relevant un champ de Liouville de [a, 5] x [0, 1] est
la restriction d’un champ de Liouville pour w, équivalent & A car les cycles de
dimension 1 de R sont dans les fibres de 7 sur lesquelles A est exacte. Bien entendu,
ce champ global ne peut pas généralement étre transverse a S; dans ce qui suit cette
question est étudiée de plus pres.

2.5 Contour apparent

Si S est une hypersurface transverse & R, S " R est une variété de dimension n
dont le rang symplectique est non constant. Elle est de rang 2, sauf le long du
contour apparent a la source de @ | S N R, lieu qui génériquement est une courbe I’
et en chaque point duquel le plan tangent 3 S N R est lagrangien.

Pour s € [a, b] tel que S soit transversal a 7 ~'({s} x [0, 1]) on note A, la fonction
hauteur u o n|S nan~'({a} x [0, 1]). Les points critiques de A, sont les points de I
d’abscisse 5. Génériquement I" est ’adhérence de | J, crit 4.

On a une autre caractérisation de I':
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LEMME. I est le lieu des points ou R est tangent aux caractéristiques de S.

Preuve. Siz eI, le plan tangent & S N R en z est lagrangien donc il doit contenir
la direction caractéristique de 7,S. Si z¢r, il existe un vecteur v tangent a la fibre
de m contentant z et transverse & S; si 7 est un vecteur tangent & R, w(v,7) =0 ce
qui interdit que 7 soit dans la direction caractéristique de S. cqfd

Le contour apparent au but n(I') est une courbe qui génériquement ne présente
pas de points triples et un nombre fini de points remarquables:

— points doubles & croisement normaux,
— points de rebroussement,
— points a tangente verticale (paralléle a d/du).

Pour chaque arc o < I' tel que n(«) ne contienne aucun point a tangente verticale
et aucun point de rebroussement sauf éventuellement aux extrémités, on peut associer
un indice, I'indice de Morse de la fonction hateur A, au point de o d’abscisse s (qui
est indépendant de s). On peut associer aussi la variété instable W*(a) pour un champ
descendant tangent aux feuilles S "z ~!({s} x [0, 1]) et qui sur chaque feuille est de
gradient pour /4, au sens d’une métrique auxiliaire.

2.6 LEMME. Soit A une bande verticale dans [a,b] x [0, 1]. On suppose que
(') N A = n(x) ou o est un arc de I' dont la projection n’a pas de tangente verticale.
Alors il existe un champ de Liouville Z tangent a n~'(A) avec les propriétés suivantes:

(a) Z reléve un champ de Liouville vertical sur A.

(b) Z est transverse a S le long de S nn~'(A) et pointe vers Ext S.

Preuve. En un point de a, un vecteur tangent au rideau et pointant vers I'extérieur
de S a une composante sur d/du dont le signe + ou — est indépendant du point sur
a, car n(o) n’a pas de tangente verticale. Connaissant ce signe on détermine sur 4
un champ de Liouville £ vertical dirigé dans le méme sens. On choisit des relevements
locaux de & que I'on recolle par partition de I'unité. En un point de S N R qui n’est
pas sur le contour apparent, on est libre de choisir le relévement pointant vers
P’extérieur ou l'intérieur de S; on fait le premier choix. cqfd

2.7 Un lemme de la théorie de Morse

Le lemme suivant est bien connu en théorie de Morse. La situation est la méme
que dans le lemme précédent.

LEMME. Soit {n(x). }, t €[0, 1], un glissement descendant de I’arc n(«) le long des
verticales, fixe prés du bord. Alors il existe un glissement de S Nnn~'(A4) le long de
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Z, a bord fixe, tel que pour tout t €[0,1], n(a), soit le contour apparent de
[S nn=Y(A)].. De plus le glissement est fixe hors d’un voisinage de W*(a).

Commentaire. Tout se passe dans un voisinage du Z-saturé descendant de
W*(a), noteé W% (a). Cest une sous-variété (a bord et coins) et chaque orbite de Z
qui lui est tangente descend jusqu’au niveau u = 0.

2.8 Descente d’un point

LEMME. Soit A un sous-rectangle [a’, b'] x [0, 1] de [a, b] x [0, 1]. On suppose

que n(I') N A est connexe et ne contient qu’un point remarquable n(z,). Alors:

(1) il existe une isotopie hamiltonienne de A a support dans intA descendant n(z,)
Jjusqu’a un niveau inférieur {u =u,} donné a I’avance. De plus, au cours de
Pisotopie I’image de tout segment vertical descendant d’un point de n(I') reste
verticale au-dessus du niveau u;.

(2) Le relévement a R est la restriction d’une isotopie hamiltonienne ambiante
préservant R. L’allure du contour apparent au but est préservée (méme nombre
de points remarquables).

(3) Les mémes conclusions valent encore si n(I') nA = J et si z, est un point
quelconque de n='(4A) N S.

Preuve. (1) Il existe une isotopie de plongements de n(I") "4 — A, déplagant
n(zo) comme on le veut, déplagant chaque point de n(I") sur sa verticale et préservant
l'aire de chaque composante du complémentaire. Elle n’introduit aucun point
remarquable. La figure 10 représente le cas d’un point de croisement. Cette isotopie
se prolonge en isotopie de 4 préservant I’aire. Si on prend soin des deux conditions
suivantes, on peut avoir le résultat complémentaire demandé sur les verticales:

— P’aire balayée par tout arc de n(I") N A est plus petite que I’aire en-dessous du

niveau {u =u, };

— le déplacement vertical des points qui montent est inférieur a u, (Figure 10).

(2) Soit ¢, un relévement a R de cette isotopie. C’est une isotopie hamiltonienne
pour w|R qui donc se prolonge en isotopie hamiltonienne ambiante par prolonge-
ment de fonctions. Enfin le contour apparent de ¢,(S N R) est I'image par ¢, du
contour apparent de SN R. Le point (3) est évident. cqfd

2.9 Démonstration de I’engouffrement du rideau

Sans le répéter, il est entendu que toutes les isotopies sont stationnaires sur le
compact K donné dans la proposition 2.3.
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Figure 10

LEMME 1. Il existe une isotopie hamiltonienne de M poussant S en S' de sorte
que le contour apparent au but de S’ N R n’ait aucun point remarquable.

Preuve. On considere le point remarquable z, le plus bas, puis sur la méme
verticale le point 7n(z,) le plus bas de n(I'). On applique le lemme 2.8 a ce point et
ainsi de suite jusqu’a I’appliquer a n(z,). A chaque fois on utilise une bande verticale
qui descend un peu en-dessous de {# = 0}. On fait ainsi fuir n(z,) vers le bas du rideau
et on diminue d’une unité le nombre de points remarquables. cqfd

Apres ce lemme, le contour apparent au but se présente comme suit (on appelle
de nouveau S I’hypersurface). Chaque branche du contour apparent porte un indice
compris entre 0 et n — 1.

LEMME 2. Il existe une hypersurface S’ équivalente a S (rel. K) telle que le
contour apparent au but de S' N R ne présente aucun point remarquable et que des
branches d’indice n — 1 (Figure 11).

/\/\/\

Figure 11
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Preuve. Soit o une branche du contour apparent d’indice kK <#»n — 1, minimal; on
prend la branche la plus basse parmi celles d’indice minimal. Alors, pour un champ
de gradient générique, W*(x) descend jusqu’au niveau {u = 0} et pour chaque z € «
d’abscisse s on a une membrane m,, disque (a coins) de dimension k + 1, contenue
dans n~'({s} x [0, 1]), s’appuyant sur W*(z) et descendant jusqu’au niveau {u# = 0};
I'intérieur de m, évite SN R. La collection des membranes forme un cylindre de
Liouville C dont une des extrémités est la variété W*(a) de dimension kK + 1 <n et
dont le champ de Liouville générateur Y est tangent aux membranes.

ler cas: k <n — 2. Les hypothéses du lemme 1.6 sont satisfaites. Par glissement
on fait fuir cette branche du contour apparent par le bas du rideau.

2¢me cas: k =n — 2. On est en présence d’une obstruction. Précisément si dH est
un champ hamiltonien tangent a S, il existe un temps 7T (dépendant de C et du
choix de dT)J) tel que les retours du flot de dH de W*(a) sur lui-méme en temps >0
et <T soient une obstruction a trouver un champ de Liouville transverse a S et
tangent & C. Or génériquement il n’y a qu’un nombre fini de points de W*(«) ayant
un tel retour. De plus si s est I’abscisse d’un tel point z,, génériquement le retour
n’a pas la méme abscisse. On fait fuir z, vers le bas du rideau par application du
lemme 2.8.

Apres cette isotopie le temps 7 a considérer est le méme qu’initialement car
S, dH et le champ de Liouville Y tangent a C le long de W*(a) sont transportés par
la méme isotopie en vertu du complément au 1 du lemme 2.8. Une fois qu’on a fait
fuir ces obstructions, le champ Y se globalise en un champ de Liouville transverse

a S et le glissement de S au voisinage de C donne des hypersurfaces équivalentes.
cqfd

Le contour apparent au but se présente maintenant de la méme fagon, mais
toutes les branches ont I'indice maximum n — 1. Chaque composante de S N R est
un disque D” bordant, avec un n-disque de {u =0}, une (n + 1)-boule anguleuse.
L’ensemble de ces disques est muni d’un ordre partiel (un disque est au-dessus
d’un autre); supposons pour simplifier qu’il n’existe qu'un disque maximal. On peut
alors reéaliser les sommes connexes au bord de certaines composantes de SN R.
Précisément:

LEMME 3. Il existe S’ hypersurface équivalente a S (rel. K) telle que S’ R ne
soit formé que de disques maximaux et que le contour apparent au but de chacun
d’eux ait allure ci-dessous (Figure 12).

~

Preuve. 11 suffit en fait de savoir faire la somme connexe du disque maximal
avec un disque immédiatement inférieur dont le contour apparent au but est lui
aussi immédiatement inférieur a celui du disque maximal; puis on poursuivra en
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Al 2

Figure 12

traitant séparement les disques maximaux ainsi obtenus. En topologie différentielle
ordinaire, on sait modifier Iintersection d’une hypersurface séparante, ici S, et d’'une
sous-variété, ici L, (le bas du rideau), par une isotopie de S pour réaliser la somme
connexe de deux composantes de S N L, joignables par un arc de L, qui ne retraverse
pas S.

Il y a deux conditions homotopiques et une condition de dimension. Les condi-
toins homotopiques sont

n,(Ext S, S) =0 et n,(IntS,S)=0.

Elles sont vérifiées car S est isotope au bord d’un voisinage tubulaire de L dans
M avec n,(M, L) =0, ce qui garantit la premiére condition, et codim L > 2 ce qui
garantit la seconde. La condition dimensionnelle est codim L, > 2. Dans ce cas il
existe un 2-disque de Whitney 4 avec la moiti¢ du bord dans S et 'autre dans L,.
L’isotopie est donnée par un mod¢le au voisinage de 4.

Comme K se rétracte sur un polyédre de codimension >3, 4 peut étre pris disjoint
de K et I'isotopie se fait loin de K.

Pour modifier I'intersection S N R par somme connexe au bord, sachant que L,
est dans le bord de R, on choisit 4 tangent a d/0u le long de L, n 4, du c6té de la
tangente sortante de R; le modéle de Whitney fait le travail demandé.

Pour contréler le contour apparent de la projection n: S "R - R? et le réaliser
tel qu’il est demandé il suffit de choisir I’arc L; n 4 avec les deux propriétés suivantes:

(1) une extrémité de L,nA4 est sur le contour apparent de la composante
“inférieure”’;

(2) som|L,n4 est une fonction sans point critique.

(3) 5o (L, A4) ne recoupe pas le contour apparent au but.

En présence d’une structure symplectique, le disque 4 peut étre symplectique. En
effet on commence par le rendre symplectique au voisinage du bord, ce qui est
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facile dés que la condition générique, que 4 N S soit non tangent aux caractéristiques
de S, est satisfaite; on peut aussi supposer que I'intégrale de w sur 4 est non nulle.
Puis par le A-principe de Gromov, on déforme A rel. un voisinage du bord en un
disque symplectique immergé, et donc plongé en position générale.

Lorsque A est symplectique, il peut étre muni d’une structure de cylindre de
Liouville. Comme son bord dans S est un arc, on peut appliquer 1.6 et conclure que
I’hypersurface S’ donnée par le modele de Whitney est équivalente a S. cqfd

LEMME 4. Dans la situation donnée par le lemme 3, il existe un champ de
Liouville ¢ sur le rectangle image de m, transversal a chaque branche du contour
apparent, pointant dans le sens indiqué par Ext S et dont toutes les orbites coupent
{u = 0}.

Remarque. Le sens en question ne se lit pas sur le contour apparent au but car,
s’il est vrai que deux disques ordonnés de S N R (avant la somme connexe) donnent
des branches ordonnées du contour apparent au but, deux disques non comparables
peuvent aussi donner des branches ordonnées.

Preuve. On la fait par récurrence sur le nombre de branches de n(I'). D’aprés 2.4
1), la question est purement topologique. Soit £, une solution pour k£ — 1 branches.
On considére une bande 4 d’orbites de &, aboutissant dans {u =0} et on y insére
une courbe y avec un point de rebroussement, munie d’un champ transverse. Dans
les deux cas de figures, on peut modifier &, sur 4 pour le rendre compatible avec cette
donnée (Figure 13). cqfd

On peut maintenant conclure. Dans la situation donnée par le lemme 3, SN R
est un disque D bordant avec un disque D’ de {# =0} un domaine C dans Ext S.
Le champ de Liouville £ donné par le lemme 4 se reléve dans C en un champ de Liou-
ville dont les orbites vont de D a D’. Donc C est contenu dans un cylindre de Liou-
ville. Le théoréme 1.2 est applicable et finit ’engouffrement du rideau. cqfd

Figure 13
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§3. Engrouffrement des chemins élémentaires de naissance ou d’élimination

On rappelle que #' est ’ensemble des L' e ¥ ayant exactement un contact
quadratique avec L.

3.1 Modéle du contact quadratique

Soit L' € £!' et soit a le point de contact de L’ avec L. D’aprés Darboux, il
existe un voisinage de a isomorphe & un polydisque D x D*, muni de la forme
symplectique standard de T*R”, ou D x {0} est un voisinage de a dans L et ou les
fibres {pt} x D* coupent L' en un seul point et transversalement. Dans ces
coordonnées, L’ est le graphe de df pour une certaine fonction f: D — R ayant a
’origine une singularité de codimension 1. Donc quitte a rétrécir D autour de a et
a y choisir des coordonnées convenables (x,, . ., Xx,), on a la forme normale:

f(xla'-°’xn)=x?+q(x27-"axn)

ou g est une forme quadratique non dégénérée. Par conséquent ce qui est connu sur
cette singularité et sur son déploiement universel établit que #"' est une sous-variété
de codimension 1 et que tout germe de chemin y: (R, 0) —» (%, ¥"), C* et trans-
verse 3 Z' en L’ est conjugué (au sens 2.3) 4 un chemin dit “élémentaire” ou
chemin de Cerf-Smale (voir Cerf [Ce]).

Le germe de chemin y en L' =y(0) est élémentaire si, pour t voisin de 0, la
sous-variété y(r) passe dans le polydisque D x D* selon le graphe de la différentielle
de la fonction

(xX),...,x,) > xi+tx;+q(xs, ..., X,).
Avec le signe +, le chemin est dit ¢lémentaire d’élimination parce que deux points

d’intersection avec L disparaissent lorsque ¢ croit de 0_ a 0. Avec le signe —, le
chemin est dit élémentaire de naissance.

3.2 Un autre modéle de chemin élémentaire

A partir des formules précédentes, on effectue un changement d’axes qui fait
disparaitre la notion d’indice pour g. Voici donc une nouvelle description du
chemin élémentaire typique.
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Le modéle est un polydisque B, voisinage du point de contact a de L’ avec L.
Il a des coordonnées

n| <R}

(e &y, | (x,8) e[—6,8%, (y,m) eR" x (R"H* |y <R,

et, sur B,w =dx A d¢ +dy A dy.
L’intersection L N B est définie par £ =0, n =0, section nulle de T*R". L’inter-
section L' N B est définie par y =0, ¢ = x2. La situation de produit cartésien est

résumée sur la figure, ou il faut penser 6 <1 (Figure 14).
Le chemin élémentaire d’élimination, vu dans B, consiste en une translation

paralléle a ’axe &. Précisément, pour ¢ € [0, 1],

2
L,mB={y=O,§=x2+(2t——l)%}.

Hors de B, L, est seulement assujetti a rester transverse a L. Pour un chemin de
naissance, on change t en 1 —1.

Remarque. On peut modifier le modéele précédent pour que le chemin d’élimina-
tion soit a support dans le polydisque. Cela suppose que R soit assez grand devant
0. Nous n’avons pas besoin d’utiliser ce modg¢le.

Avec le modéle ci-dessus, on pose les deux définitions suivantes.

(a) Pour L,, dont deux points d’intersection avec L sont en position de

s’éliminer, on appelle disque de Whitney le disque défini par

52
A:{y ::O,n:O,OZéZXZ‘—Z}

p g

..................... --;—y SR

L E LR rY NP R

Figure 14
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On dit que 4°={y =0,n =0, x*> — 6%/4 < & < x>+ §2/4} est le disque de Whitney
étendu.
(b) Pour L,, qui ne rencontre pas L N B, on appelle arc de naissance le segment

2
J={y=0,n=0,x=0,0s5$%~}.

3.3 Engouffrement d’un chemin élémentaire

PROPOSITION. Le principe d’engouffrement est valide pour tout chemin élé-
mentaire de naissance ou d’élimination.

Preuve. Disons que {L,,t€[0,1]} est un chemin élémentaire d’élimination;
L, < U(L). La premieére étape consiste a engoufirer le disque de Whitney 4. Comme
m,(M, U(L)) =0 et que dim 4 <3 dim M, on peut le faire en vertu du A-principe
[G2]. Donc on peut supposer 4 < U(L). Comme le disque de Whitney étendu a la
propriété que Lu Lyu 4° se rétracte sur L U Lyu 4, le méme argument permet de
supposer que 4° < U(L).

Ensuite, par les mémes réductions qu’au §2, on peut supposer qu’en dehors du
polydisque B, L, est stationnaire au voisinage de son intersection avec L et que le
chemin L, est linéaire. On est ramené a I’engouffrement d’un rideau régulier R
contenant B.

La projection n: R —[a, b] x [0, 1] induit un plongement du disque de Whitney
étendu 49 allant du niveau v =0 au niveau u =1. Donc les mouvements de
I’hypersurface S effectués en 2.9 pour simplifier le contour apparent ont tous lieu
dans le complémentaire de 4°, donc dans le complémentaire de L, ce qui achéve
I’engouffrement du chemin d’élimination.

Pour un chemin de naissance (le méme chemin {L,} parcourude t =1 a t =0),
on réalise d’abord I'engouffrement de P'arc de naissance en utilisant
n, (M, U(L)) =0, puis I'engouffrement de A° car L,uL w4’ se rétracte sur
L,uLuJ. La fin de la preuve est la méme que ci-dessus. cqfd
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