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Engouffrement symplectique et intersections lagrangiennes

François Laudenbach

Abstract Let {Lt},te [0, 1], be a path of exact Lagrangian submanifolds in an exact symplectic manifold
that îs convex at mfinity and of dimension &gt; 6 Under some homotopy conditions, an engulfing problem
îs solved the given path {Lt} îs conjugate to a path of exact submanifolds in T*L0 This implies Lt must
mtersect Lo at as many points as known by the generating function theory Our Engulfing theorem dépends
deeply on a new flexibihty property of symplectic structures which îs stated in the first part of this work

En topologie différentielle la méthode d&apos;engouffrement a été introduite par E. C.

Zeeman utilisée par J. Stallings [St] pour établir l&apos;unicité de la structure différentielle
sur Rn, n &gt; 5. Elle a été aussitôt reprise par B. Mazur [Ma] pour l&apos;équivalence stable
des variétés. Dans le deux cas elle est mise en oeuvre dans un procédé de répétition
infinie.

Dans [EG], Y. Eliashberg et M. Gromov ont donné une version symplectique du
théorème de Mazur. Les champs de Liouville complets (voir la définition ci-dessous)

y jouent une rôle majeur, le plus souvent grâce aux avatars du &quot;truc d&apos;Alexander&quot;

c&apos;est-à-dire des propriétés magiques de l&apos;expression -tf(tx).
Notre travail développe aussi une méthode d&apos;engouffrement symplectique et

propose une alternative topologique dans des problèmes étudiés par M. Gromov puis

par A. Floer avec les courbes holomorphes.

La situation

(a) (M2m, co) est une variété symplectique de dimension 2«, supposée exacte,
c&apos;est-à-dire œ dX. La forme X, comme toute primitive d&apos;une forme symplectique,
est appelée forme de Liouville. Le champ de Liouville associé X est le champ de

vecteurs défini par i(X)co — dX. On fait l&apos;hypothèse de convexité à l&apos;infini (au sens de

Eliashberg-Gromov [EG]):
// existe une hypersurface compacte sans bord, transverse à X, bordant un domaine

compact de M, et dont le saturé positifpar le flot de X est complet et constitue un

voisinage de l&apos;infini de M.
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(b) On considère une sous-variété lagrangienne L compacte connexe sans bord
et A-exacte, c&apos;est-à-dire que X y induit la différentielle d&apos;une fonction II est connu
qu&apos;il existe une forme de Liouville AL, ne différant de k que par la différentielle
d&apos;une fonction a support compact, et un plongement symplectique (non propre en
général) T*L -&gt; M prolongeant l&apos;inclusion L -» M et tel que XL y induise la forme de
Liouville canonique du cotangent On désigne par U(L) un ouvert de M image d&apos;un

tel plongement (on dira que U(L) est un ouvert cotangent)
On fait les hypothèses homotopiques

ti1(M,L)=0, 7r2(M,L)=0

On peut dire aussi nx(M, U(L)) 0, n2(M, U(L)) 0

(c) On se donne une isotopie de sous-variétés lagrangiennes compactes À-

exactes, Lt &lt;=.M,t e [0, 1], partant de Lo c U(L) Sans perte de généralité, on peut
supposer que Lo est transverse à L

Le principe d&apos;engouffrement

II énonce qu&apos;il existe une isotopie hamiltonienne ambiante q&gt;t M -&gt; M, t e [0, 1],

cp0 identité, à support compact coïncidant avec l&apos;identité sur L et telle que, pour tout
t € [0, 1], &lt;pt(U(L)) contienne LuLt

On dit aussi que U(L) peut engouffrer l&apos;isotopie {Lt} relativement à L (rel L)
On se propose d&apos;étudier la validité de ce principe

Pour en souligner l&apos;importance, notons tout de suite sa conséquence dans le cas
où Lo L (ou une approximation générique de L) la persistance d&apos;intersection,

c&apos;est-à-dire que Ltr\L reste non vide pour tout t En effet, l&apos;isotopie 11~» cp~l(Lt)
est hamiltonienne dans le cotangent de L donc persiste à recontrer la section nulle
L (Hofer [Ho]), en autant de points que le prescrit la théorie des fonctions
génératrices (Sikorav [Si])

THÉORÈME D&apos;ENGOUFFREMENT On considère la situation décrite ci-
dessus et on suppose n&gt;3 Alors quitte à remplacer {Lt} par une s-approximation le

principe d&apos;engouffrement est valide

Grâce au théorème d&apos;engouffrement, on retrouve par voie topologique certains
des résultats sur les intersections lagrangiennes que Gromov [Gl] a établis par la

méthode des courbes holomorphes, cependant nos hypothèses homotopiques et

dimensionnelles sont plus restrictives Par exemple, Cn muni de sa structure
symplectique standard est convexe à l&apos;infini Par ailleurs, par translation n&apos;importe quel



560 FRANÇOIS LAUDENBACH

compact peut être disjoint de lui-même. Donc par l&apos;absurde, le théorème
d&apos;engouffrement et son corrollaire sur la persistance d&apos;intersection donne que, pour
n &gt; 3, Cn ne contient aucune sous-variété lagrangienne 1-connexe (une telle sous-variété

vérifierait l&apos;hypothèse homotopique du théorème d&apos;engouffrement).

Signalons que le théorème d&apos;engouffrement ne peut être vrai sans une hypothèse
très forte à l&apos;infini. Dans [Mu] M.-P. Muller a construit une 3-sphère lagrangienne
plongée dans R6 muni d&apos;une structure symplectique (exotique) qui possède
néanmoins un champ de Liouville complet dont le flot envoie tout compact à l&apos;infini. Le

principe d&apos;engouffrement n&apos;y est donc pas valide.
Le travail est divisé en trois chapitres.

- chapitre I: Déformation de structures symplectiques: un exemple de flexibilité
- chapitre II: Engouffrement de cylindres de Liouville

- chapitre III: Engouffrement de sous-variétés lagrangiennes

Comme le titre l&apos;indique, on résout au chapitre I un problème de déformation
de structures symplectiques. Le théorème qui y est établi trouve au chapitre II une

application immédiate à un premier problème d&apos;engouffrement. A partir de là on

peut démontrer au chapitre III le théorème d&apos;engouffrement annoncé. Chacun des

chapitres a sa situation propre, une variété symplectique M vérifiant certaines

hypothèses précisées à chaque fois, et enfin sa numérotation propre.

Chapitre I
DÉFORMATION DE STRUCTURES SYMPLECTIQUES; UN EXEMPLE DE
FLEXIBILITÉ

Le h -principe de Gromov offre un outil très général pour étudier les déformations

de certaines structures géométriques, en particulier des structures symplectiques,

sur les variétés ouvertes. Ce principe interdit tout contrôle du support de la

déformation et on sait bien que si l&apos;on se fixe un compact comme support, on se

trouve confronté aux phénomènes de rigidité de la géométrie symplectique. On

propose ici une situation intermédiaire où la déformation cherchée doit être à

support compact, mais dans un compact qui n&apos;est pas donné à l&apos;avance. Cela a un
sens en géométrie symplectique car les compacts ont une &quot;taille&quot;.

Soit donc M une variété de dimension 2n munie d&apos;une forme symplectique œ.

Un champ de vecteurs X sur M est un champ de Liouville si son flot x satisfait
l&apos;identité:

co=e&apos;X*co (1)
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Ici x*co désigne l&apos;image directe de œ par le difféomorphisme %&apos;. En termes de

dérivée de Lie, (1) s&apos;écrit Lxœ co et par la formule de Cartan Lx ixd + dix, où

ix désigne le produit intérieur par X, le champ X est de Liouville si et seulement si

d(ixœ) o). (2)

Puisque œ est symplectique, X i—? ixœ est un isomorphisme entre les champs de

Liouville et les formes de Liouville, i.e. les primitives de co. Donc un champ de

Liouville n&apos;existe sur M que si œ est exacte, ce que l&apos;on suppose dans la suite. On

note X h-* X l&apos;isomorphisme inverse et on dit que X est le champ de vecteurs co-dual

de la 1-forme X.

Quand le flot % n&apos;est pas engendré par un champ de Liouville, la formule

co(t)=etXt*co (3)

définit une déformation de co parmi les formes symplectiques. On résout ici, dans un

cas particulier, le problème d&apos;étendre à tout M une déformation donnée au

voisinage du bord par des formules locales du type (3). L&apos;originalité majeure de la

solution résidera dans une technique de chirurgie.

§1. Énoncé du résultat principal

La variété symplectique considérée est de la forme M S x R+, où S est une

variété compacte, à bord éventuellement non vide, et R+ [0, + oo). La variété M
peut donc être à coins. On note u: M-&gt;R+ la coordonnée &quot;verticale&quot; (projection

sur le second facteur): on note V le (semi)-flot (x, u) i-&gt; (x, u +1) et du son

générateur infinitésimal. On fait l&apos;hypothèse:

(Hj) II existe une primitive X de co dont le co-dual 1 coïncide avec du près de

{u +00} et de dS x {0}.

Pour tout t&gt;0, la forme symplectique e&apos;T&apos;+œ n&apos;est définie que sur

Tl(M) =S x[t9 + 00). Cependant comme du est un champ de Liouville sur

V x [0, a], où V est un voisinage collier de ôS dans S et a &gt; 0, la structure

symplectique œ admet un prolongement canonique à V x R de sorte que ôu soit un

champ de Liouville sur V x — 00, a]. Ce prolongement étant admis, la formule

œ(t)=e&apos;Tt*œ (4)
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a un sens pour t &gt; 0 sur V x R+ et y définit une forme symplectique qui coïncide

avec œ sur V x [0, a],

1.1 THEOREME. // existe un chemin (c5(ï))o &lt;, &lt; i déformes symplectiques sur M
avec les propriétés suivantes:

(i) d)(0)=co;
(ii) œ(t) a le même germe le long de dS x R+ que le œ(t) défini par (4);
(iii) le chemin (co(t)) est constant, égal à œ, près de {u 0} et de {u +oo}.
Le même résultat vaut avec un paramètre 6 e [0, 1]* pour une famille (œ9 dke)

de formes symplectiques exactes, où toutes les primitives Àe vérifient les propriétés
suivantes:

(iv) kQ est indépendant de 9 sur un voisinage fixe de {u + oo},

(v) du est le œe-dual de Xe sur un voisinage fixe de Vinfini et de dS x {0}.

1.2 Remarques. Si du est un champ de Liouville au voisinage de S x {0}, le

résultat est évident, le prolongement étant donné par (4) avec V S. Il en est de

même s&apos;il existe un champ de Liouville Z au voisinage de S x {0} qui pointe vers
l&apos;intérieur de M et qui coïncide avec ôu au voisinage de dS x {0}. Malheureusement
il y a en général une obstruction à trouver un tel champ Z; elle sera expliquée plus
loin.

En revanche il n&apos;est pas difficile de résoudre le problème de prolongement pour
un temps petit e &gt; 0. Pour le prolongement global le problème est d&apos;exhiber une

procédure de prolongement en temps petit qui possède la propriété de microcom-

pressibilité au sens de Gromov [G2, chapter 2], de sorte que la même procédure puisse
être appliquée pour t e [e, 2e], t e [2e, 3e], etc.. L&apos;ingrédient principal permettant
cette démarche est l&apos;existence de bandes caractéristiques [La], qui repose sur le fait
que du est un champ de Liouville près de l&apos;infini. Le problème est finalement résolu

par une suite de chirurgies.

1.3 Terminologie. Dans la suite et sauf mention du contraire, par forme de

Liouville (resp. champ de Liouville) on entend une primitive de œ de la forme X + dH,
où H est une fonction à support compact, (resp. le co-dual d&apos;une telle primitive).

§2. Réduction à un cas particulier

On rappelle que les caractéristiques d&apos;une hypersurface N sont les lignes L c N
dont l&apos;espace tangent TXL est le œx-orthogonal de TXN. Si N est le niveau régulier
d&apos;une fonction H, le champ hamiltonien dH est tangent à N et les caractéristiques
de N sont les courbes intégrales de dH^N.
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2.1 Cylindres de Darboux et bandes caractéristiques

Un cylindre de Darboux B est une sous-variété de dimension 2w, proprement
plongée dans M, munie d&apos;une sous-variété symplectique A de dimension 2n — 2 et
d&apos;un difféomorphisme x i-&gt; (n(x), v(x), h(x)) de B sur A x R+[ — ô9 -h 5], ô &gt; 0, avec
les propriétés suivantes:

(i) si x e A, on a 7c(x) x, i;(x) 0, h(x) 0;

(ii) sur B, on a co 7i*co0 ±dv Adh où a&gt;0 est la forme symplectique induite par
co sur J.

La iûwe du cylindre de Darboux est définie par A {v 0}. D&apos;autre part on
dira que B est un cylindre de Darboux normal si

(iii) du pointe à l&apos;extérieur de B le long de dB quand u (ou v, par propreté) est

assez grand.

Si cette propriété est satisfaite pour u &gt; w0, on dira parfois que B est en forme
normale pour u&gt;u0.

Une fowde caractéristique (normale) B est l&apos;âme {/z=0} d&apos;un cylindre de

Darboux (normal). Alors B est une hypersurface propre de M, avec une sous-varié

té symplectique A (appelée la base de B) et un difféomorphisme x h-&gt; (7i(x), v(x))
de B sur A xR+ tels que 7r(x) x si x e A et que les fibres de n soient les

caractéristiques de B.
L&apos;hypothèse (i/,) garantit l&apos;existence de beaucoup de bandes caractéristiques

normales. De façon précise on a le résultat suivant prouvé dans [La].

2.2 THÉORÈME. Soit pl9..., j3p des boules de dimension 2n-2 mutuellement

disjointes, plongées dans int{w 0} transversalement aux caractéristiques (elles sont
donc symplectiques). Soit /?, c int{w 0}, / 1,...,/?, obtenu en épaississant f}t dans

la direction des caractéristiques de {u =0}. Alors il existe des bandes caractéristiques
normales Bu BN de bases Au AN avec les propriétés suivantes:

(i) elles sont les âmes de cylindres de Darboux normaux et mutuellement

disjoints, de bases contenues dans {u 0};

(ii) toute caractéristique de fit rencontre Vintérieur d&apos;un Ak.

2.3 Une construction

Soit U cz înt U&apos; a U&apos; c: U&quot; des voisinages colliers de dS dans S, U et U&apos; étant

compacts et U&quot; ouvert, assez petits pour que du soit un champ de Liouville au

voisinage de U&quot; x {0}. Identifiant un instant {u =0} avec 5, on choisit des boules

de dimension 2n — 2, fil9..., (lp9 qui détruisent la récurrence du feuilletage caractéristique

de S {u 0} hors de U au sens suivant:
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(a) toute caractéristique de {u 0}, ou demi-caractéristique infinie, non con¬

tenue dans U intersecte l&apos;intérieur d&apos;un des j8, ;

(b) de même pour tout segment caractéristique non contenu dans U&quot; et dont les

extrémités sont dans U&apos;;

(c) tout segment caractéristique dont les extrémités sont dans un même fi, coupe
l&apos;intérieur d&apos;un autre ftk.

On applique le théorème 2.2 à ces boules et on trouve des bandes caractéristiques

normales Bu ,BN, dont les bases Au AN cint{w =0} détruisent
aussi la récurrence du feuilletage caractéristique, c&apos;est-à-dire qu&apos;ils vérifient aussi

(a)-(c). Les Bt sont les cylindres de Darboux donnés par 2.2 et les At désignent
leurs bases respectives. On note alors S&apos; l&apos;adhérence de

2.4 LEMME. // existe un champ de Liouville Y qui pointe vers les u &gt; 0 le long
de S&apos; x {0} et qui coïncide avec du près de dS x {0}.

Preuve. (Chaperon) On veut construire un hamiltonien à support compact H
sur M tel que le co-dual Y de k + dH vérifie Y du près de ôS x {0} et Y • u &gt; 0 sur
Sf x {0}. La dernière condition peut être réécrite k • u 4- {H, u} &gt; 0, où {//, u}
désigne le crochet de Poisson, ou encore:

du- H &lt;ku sur S&apos; x {0},

Puisque du est tangent à {u 0}, cette condition ne fait intervenir que les deux

fonctions h(x) :=//(jc, 0) et g(x) -=(k ¦ u)(x, 0), x e S, ainsi que le champ de vecteurs

Z sur S&quot; obtenu en prenant la restriction de du à S&apos; x {0}. Le problème est de

construire h: S&apos;-»R satisfaisant

Z-h&lt;g (5)

et (par exemple) h 0 près du bord de S, sachant que g(x) du ¦ u 1 si x e U&quot;.

On pose h 0 comme germe de fonction le long de U. On introduit une
fonction 6 : R-»R telle que 6(t) &lt; t pour tout t et 6(t) 0 pour t &gt; 1. Soit Ko la

réunion de toutes les lignes du champ Z (c.-à-d. les caractéristiques de S&apos; x {0}) qui
rencontrent U. D&apos;après 2.3(a) Ko est compact. On affirme qu&apos;il existe exactement

une extension de h en un germe de fonction le long de Ko solution de l&apos;équation

différentielle

Zh^dog (6)
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(ce qui implique (5) au voisinage de Ko). En effet, si Ç désigne le flot de Z, (6)
définit h par la formule

A(C(x))= 0° *«&apos;(*)) &amp;, (7)
Jo

pour tout (x, t) e U x R appartenant au domaine de définition de Tant que
l&apos;orbite de x reste dans £/&quot;, la fonction vaut 0 et si elle sort de U&quot; elle ne revient

jamais dans U, d&apos;après 2.3(b). Donc la définition de h est univoque sur Ko. Elle vaut
aussi pour un germe de fonction le long de Ko car la formule (7) convient encore

pour x eU&apos;. Alors, comme germe de fonction le long de ^0, on a l&apos;identité

A(C&apos;(*)) h{x) + f* 6 o g(Cs(x)) ds. (8)
Jo

Chaque dAj est l&apos;union disjointe d&apos;une face d&apos;entrée A + le long de laquelle Z pointe
vers l&apos;intérieur de AJ9 d&apos;une face de sortie A~ le long de laquelle Z pointe vers
l&apos;extérieur et d&apos;un face latérale à laquelle Z est tangente. Par 2.3(c), toute orbite
dans S&apos;\K0 va d&apos;un Aj à un Al. On peut donc définir des compacts
Kx c • c KN S&apos; contenant Ko comme suit: pour 0 &lt;j &lt; N, K} est l&apos;union de

Kj_x et des orbites de Z qui rencontrent l&apos;adhérence de Aj. On suppose que h est

construite au voisinage de Kj_u satisfaisant (6)-(8). On étend le germe induit le

long de Kj_ x nadh(zl/ en un germe le long de adh(Jy~ tout entier satisfaisant (6).
Comme cette hypersurface est transverse à Z, il n&apos;y a pas d&apos;obstruction à le faire.

Puis on utilise la formule (8), avec x voisin de adh(zl/), pour prolonger h comme

germe le long de Kj. cfqd

2.5 Remarque. L&apos;obstruction mentionnée en 1.2 est claire. Par exemple si un

segment caractéristique de S x {0} a ses extrémités a, b dans dS x {0}, (5) peut
interdire à H de prendre la même valeur en a et b.

2.6 Le situation modèle

Elle est définie par les hypothèses suivantes:

(H2) S est elle-même le produit D x [0, 1], où D est une boule fermée standard

de R2&quot;-2. Ainsi tout point de M s&apos;écrit (x,y, u) e D x [0, 1] x R+.
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(H3) Les caractéristiques de {u 0} sont les segments {jc} x [0, 1] et la forme
induite par œ sur {u 0} relève la structure symplectique standard de
R2* 2.

(H4) II existe un voisinage collier compact U de ôS et une bande caractéristique
normale B dans M vérifiant:

- du est un champ de Liouville au voisinage de U x {0};

- la base A de B rencontre transversalement et en un seul point toutes les

caractéristiques {x} x {0, 1} de {u 0} non contenues dans U.

Remarque. Sauf sous des hypothèses de convexité, il est impossible d&apos;avoir

dA c dS.

2.7 LEMME. Pour obtenir le théorème 1.1 {sans paramètres), il suffit de le

prouver sur la situation modèle (H!)-(H4).

Preuve. On peut changer la structure produit M — S x R+ qui n&apos;a aucune
signification particulière vis-à-vis de la structure sympîectique sauf au voisinage de
l&apos;infini et de dS x {0}. On reprend la construction 2.3. Disons que dans {u &gt;u0}

les cylindres de Darboux Bx,..., BN sont sous forme normale. Comme 2n ^ 3, un
arc allant de {u 0} à {u =u0} dans {0 &lt; u &lt; u0} n&apos;est jamais noué et deux tels

arcs ne sont jamais enlacés. De là on déduit que l&apos;adhérence de {0 &lt; u &lt; wo}\(JZ?,
est un produit S&apos; x [0, u0] prolongeant la structure produit des Bt. On élargit
chaque base A; de B} en une boule Aj transverse aux caractéristiques de {u 0} et

contenant A; en son intérieur, puis on épaissit Aj en JJ dans la direction des

caractéristiques de sorte que int Aj 3 Aj. A cause de la structure produit mentionnée

plus haut, il existe un champ de vecteurs Z sur M avec les propriétés
suivantes:

(i) Z coïncide avec du dans {u &gt;u0} et au voisinage de dM n{u &gt; 0};
(ii) Z coïncide avec le champ de Liouville Y donné par 2.4 au voisinage de

S&apos; x {0};
(iii) toute orbite de Z va de {u 0} à l&apos;infini;

(iv) toute orbite issue d&apos;un point de {u 0} n&apos;appartenant pas aux A&apos;} évite les

cylindres Bk jusqu&apos;à {u u0} et définitivement à cause de leur forme
normale.

La nouvelle structure produit sur M est alors donnée par le flot de Z. Dans
cette structure, notons M&apos; l&apos;adhérence de (5\(jJj)xR+. Comme Z &lt;3M est

un champ de Liouville au voisinage de {u 0} dans M&apos;, le prolongement cherché

&lt;5(0 peut être donné par la formule (4) au voisinage de M&apos;. Il ne reste plus qu&apos;à

boucher les trous A] x R+, qui correspondent chacun à une situation
modèle, cqfd
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§3. Démonstration du théorème 1.1 (sans paramètre)

3.1 Hypothèses et notations

Par je lemme 2.7, on peut supposer (H,)-(H4). Par (H3) on a

JMj}=à7^0 le long de {u 0}. Alors, quitte à changer y en 1 —y, on peut
supposer {u,y}&lt;0 le long de {u=0}. Autrement dit dy et du orientent les

caractéristiques de {u 0} dans des sens opposés.
On note Uo et Ux des voisinages colliers compacts de ôD dans D avec

UQ c Int UuU,x [0, l]cUctdàcUox [0,1] x {0} (voir (H4)); leurs bords in-
teneurs sont des sphères euclidiennes. On choisit des constantes positives s et ô

satisfaisant (9)-(11) ci-dessous;

1 du près de {1 - ô &lt; y &lt; 1, u 0} et de {y 1 - &lt;5, 0 &lt; u &lt; s}. (9)

En fait au départ, on peut choisir ô et e tel que X ôu près de

{1— ô &lt;y &lt;\,0&lt;u &lt;e}, mais seule la condition indiquée sera utilisée et aura son

analogue à chaque étape du prolongement.
Concernant l&apos;orientation de l&apos;axe des y, on voit que k{dy) &gt; 0 sur les domaines

indiqués. En effet, le long de {w=0}, cela revient à À,(du)&lt;0 ou encore
(o(l, du) &lt; 0, ce qui se lit du(du) &gt; 0, qui est vrai. La même conclusion vaut sur les

autres niveaux de u au voisinage de {y 1 — ô, 0 &lt; u &lt; s}, puisque le flot du champ
de Liouville du préserve A à un facteur positif près.

Maintenant ô est fixé. La condition suivante sur e est relative aux caractéristiques

de {y \— ô}: comme cette hypersurface est transversale aux caractéristiques

de {u 0}, ses propres caractéristiques sont transversales aux niveaux de u de

valeurs voisines de 0. Donc pour e assez petit on a:

toute caractéristique de {y 1 - ô} allant de {u 0} à Uo x {1 — ô} x [0, a]

vient d&apos;un point de Ux x {1 - 6} x {0} (Figure 1). (10)

Pour e assez petit et quitte à changer les verticales sauf au voisinage du bord de

M et de l&apos;infini, on peut encore satisfaire à la condition suivante:

II existe un cylindre de Darboux propre 2?c{l-&lt;5&lt;j&gt;&lt;l,w&gt;0} dont la base

A dans {u 0} intersecte en un unique intervalle toutes les caractéristiques de

{u =0} qui ne sont pas contenues dans Uo x [0, 1] x {0}. (11)

En effet on prend la bande caractéristique donnée par (H4). Par une isotopie
hamiltonienne à support compact on déplace chaque point de A sur sa propre
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Figure 1

caractéristique dans {u 0} jusqu&apos;à ce qu&apos;on ait A a {y &gt; 1 — ô}. On procède alors

comme dans la preuve de 2.7: on change les verticales sauf au voisinage du bord de

M et de l&apos;infini de sorte que B soit contenu dans {y &gt; 1 — ô}. Si e est assez petit, ôu

n&apos;est pas changé dans {u &lt;e} et les conditions (9)-(10) sont préservées.

Remarque. En fait B peut être choisi normal, mais on n&apos;insiste plus sur cette

propriété qui ne sert en fait que pour l&apos;argument 2.7.

3.2 LEMME. // existe un hamiltonien H: M
associé X k + dH a les propriétés suivantes:

R dont le champ de Liouville

H 0 près de Ux x [0,1] x {0} et de {y=0,u= 0};

Xu&gt;0 et H &gt;0 le long de {0 &lt;&gt;&gt; &lt; 1, « =0};

X • y 0 fe fo/zg &lt;fe {j 1 - &lt;5, 0 &lt; u &lt; £}

et H{x, l-ô9u)=0 si xeU0,ue [0, e];

X • m 1 1 — ô, 0 &lt; m &lt; e}.

(12)

(13)

(14)

(15)

Preuve. Sur {w=0}, la condition X u&gt;0 revient à du- H &lt;k u. Ecrivant
dy — ocdu avec a &gt; 0, la condition s&apos;écrit ôy H &gt; —oïl u. On peut renforcer cette

condition en demandant en plus: dy • H &gt; 0 et dy • H 0 près de {y 0}, de

{y l — S} et de f/, x [0,1] dans {u 0}. Autrement dit, on peut construire //|{M=0}
satisfaisant (12)-(13) en lui demandant d&apos;être nulle près de {y =0} et de croîte
suffisamment vite avec y. Dans la suite on choisit un tel H sur {u 0}.

Comme du k le long de {j 1 — ô, 0 &lt; u &lt; e}, (14) revient à rf/f j; 0 ou

dy- H 0. Autrement dit, H doit être constant le long de chaque caractéristique de



Engouffrement symplectique et intersections lagrangiennes 569

{y 1 - &lt;5, 0 &lt; u &lt; s}. Alors, si un tel segment caractéristique y vient de {u 0},
jffjy est déterminé par la valeur qui lui est attribuée dans l&apos;étape précédente. A cause
de (10), si k aboutit dans Uo x [1 - ô} x [0, e]9 H^ est nul. On complète la construction

de ^|^ i-ô,o&lt;u&lt;e} en prenant // 0 le long des autres caractéristiques; alors
(14) est satisfaite.

La condition (15) revient à du • H — 0, ce qui est facile à satisfaire à partir

H\\y= \-ô,o&lt;u&lt;e) puisque du est transversal à {y 1 - &lt;5, 0 &lt; u &lt; e}. cqfd

Remarque. Si les conditions (9)-(15) sont satisfaites, elles le sont encore si on
diminue e, sans toucher ni à ô ni à H. Compte tenu de cette remarque une dernière
condition de petitesse sera imposée à e en 3.10 (21). Son énoncé nécessite d&apos;autres

préliminaires.

3.3 Un champ de vecteurs Z

On fixe une fois pour toutes un champ de vecteurs Z sur un voisinage de

{j &lt; 1 — ô} égal au champ de Liouville X (donné par 3.2) au voisinage de

[u 0} u {y 1 — ô, 0 &lt; u &lt; s} et vérifiant les hypothèses additionnelles suivantes:

Z est tangent à {y 1 - ô} et Z • u 1 au voisinage de {y 1 - ô}; (16)

Z ôu près de dS x [0, H- oo) dans {0 &lt; y &lt; 1 - ô} et au
voisinage de l&apos;infini. (17)

On note Ç&apos; le flot de Z et on rappelle que V est le flot de dn. On va utiliser Ç&apos;

pour obtenir une &quot;solution naïve&quot; du problème de prolongement pour 0 &lt; t &lt; e.

Cette &quot;solution&quot; présente une discontinuité le long de {y 1 - ô} qui sera résorbée

par une technique de chirurgie (coupure et recollement). On verra ensuite sous

quelle condition la même procédure peut être appliquée pour s &lt; t &lt; 2e, etc..

3.4 Un prolongement naïf

Pour 0 &lt; t &lt; e, on pose

œl(t)=etÇt*a) sur{0&lt;j &lt;l-&lt;5}, (18)

sur {1 - &lt;5 &lt;&gt;&gt;&lt;!, w &lt;e}. (19)
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La formule (18) définit bien œx{t) sur Ç%{0 &lt;y &lt; 1 — &lt;5}). Mais comme Z est un
champ de Liouville au voisinage de {u 0}, (b^{t) se prolonge canoniquement sur la

partie manquante (voir (4)). La même remarque doit être faite pour la formule 19).

Par ces formules on a ûx{f) co à&gt;2(0 au voisinage de {y 1 — ô, 0 &lt; u &lt; e};
cependant, les formules (18) et (19) ne se recollent pas le long de {y 1 — &lt;5, u &gt; s},
excepté à l&apos;infini.

On va résorber cette discontinuité seulement pour t =s; cela pourrait être fait de

la même façon pour 0 &lt; / &lt; s. On observe d&apos;abord que les formes induites sur
{y l — S, u&gt; e} par co}(s) et a}2(e) sont conjuguées: la seconde est l&apos;image directe
de la première par

qui d&apos;après (15) et (16) est bien un difféomorphisme de cette hypersurface. De plus
la restriction $ de &lt;P à {y 1 — ô, u e} est l&apos;extrémité d&apos;une isotopie partant de

Videntité,

0&apos; 7*of-&apos;, 0&lt;t&lt;e,

qui est hamiltonienne pour la forme symplectique induite par œ. D&apos;ailleurs on peut
vérifier, ce qui ne servira pas dans la suite, que le hamiltonien correspondant est la

fonction -e7/° T~\ négative on nulle.
On préférera utiliser une isotopie hamiltonienne légèrement différente; on prendra

(f&gt;1 allant de Id à &lt;f&gt; et stationnaire pour t voisin de 0 et de e. Par exemple si

a: [0, e] -»[0, e] est une fonction croissante telle que a(r) 0 près de 0 et a(0 e

près de s, on prendra

Son hamiltonien Kt — &lt;x&apos;(0e&apos;#° T, (&lt;0), vu comme une fonction définie sur D,
est nul pour t voisin de 0 et de e et aussi pour x e Uo d&apos;après (14).

3.5 Graphe d&apos;un hamiltonien

On considère le cylindre de Darboux B donné par (11). Son image Tl(B) est un

cylindre de Darboux pour la forme c52(e). Soit (x\ t, t;) un système de coordonnées
de Darboux sur T\B) £ À x [0, e] x [0, +oo) (noter que le t-intervalle peut être

choisi arbitrairement). Sa base {v =0} est contenue dans {u =s} et l&apos;espace réduit
A est muni d&apos;une forme symplectique que l&apos;on peut identifier (en suivant les
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caractéristiques de {u s}) à la forme œe0 induite par c52(e) sur {y 1 — ô9 u e}.
Le vecteur ôv dirige les caractéristiques de {t const) et, le long de {v 0}, il pointe
vers {u &gt; e}. On choisit dx de sorte que le long de (t; 0} il oriente les caractéristiques

de {u e} dans le même sens que du. A priori c52(£)(dy, dx) ± 1. Comme
ô&gt;2(£)(dM&gt; du) — 1, on déduit que œ2(e)(dv9 ôx) -1 et donc sur 7X2?) on a

c32(£) co* + dx a c/t?.

On note I le graphe du hamilîonien, c&apos;est-à-dire l&apos;hypersurface de

{l —ô &lt;y &lt;l,u&gt;e} définie par l&apos;équation

v -Kx{x&apos;)

dans T\B) et par u s en dehors.

Remarque. Si on ne connaît pas le signe du hamiltonien, on considère le cylindre
doublement infini TE(B)° ^ A x [0, s] x R et I est alors une hypersurface de

LEMME. Le difféomorphisme d&apos;holonomie A x {0} x {0}-*J x {e} x {0} obtenu

en suivant les caractéristiques de I est donné par (j)\ si on identifie la source et le but
à la même boule de l&apos;espace réduit.

Preuve. On rappelle que le générateur infinitésimal de &lt;j)x est dKx. Il s&apos;agit de voir
que les caractéristiques de E se projettent (dans les coordonnées de Darboux) sur les

graphes dans A x [0, s] des solutions de l&apos;équation différentielle x&apos; dKx(x&apos;)9 ou
encore que dKx + dx dirige le noyau de coE0 — dT a dKx dans A x [0, e]. Or

i(dKx + dx)(œE0 - dx a dKr) i(dKx)œ€0 - dKx 0. cqfd

3.6 Chirurgie

On prolonge le difféomorphisme de conjugaison # de {y 1 — ô, u &gt; e} en un
difféomorphisme, noté encore #, de {1 - ô &lt;y &lt; 1, u e} sur E avec les propriétés
suivantes:

(i) &lt;P envoie les caractéristiques de {u e} sur celles de E pour la forme d&gt;2(e);

(ii) 0 est l&apos;identité au voisinage de {y 1};

(iii) 0 T* ° C~e au voisinage de {y 1 — ô}.
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D&apos;après (15), la dernière formule opère bien de {w=g} dans lui-même au
voisinage de {y 1 — ô}. Ce difféomorphisme se prolonge en un germe de symplec-
tomorphisme pour la forme cb2(£) d&apos;un voisinage de {1— ô &lt;y &lt;l,u =s} sur un
voisinage de I. On peut pour cela invoquer un argument général de Givental (voir
[Be]) ou vérifier que, dans les coordonnées de Darboux,

est un difféomorphisme symplectique.
On pose Mfg {0 &lt; j &lt; 1 — ô} que l&apos;on munit de la forme symplectique œ^e).

On pose M&apos;d {1— &lt;5&lt;j&lt;l,0&lt;w&lt;e} que l&apos;on munit de la forme ô32(e). Au
voisinage de M&apos;gnM&apos;d, on a œx(e) =w =c52(e). Donc M&apos; MgvM&apos;d est muni
d&apos;une forme symplectique. Enfin on note M&quot; la partie de {1 — ô&lt;y&lt;

1, u ^e}uT%B)° au-dessus de I, que l&apos;on munit de la forme c52(e).

La chirurgie consiste à couper M le long de {y l— ô, w&gt;e}u{l— ô &lt;y &lt;

1, w e} et à recoller M&apos; à M&quot; par le difféomorphisme (P. On pose

M(&lt;P) M&apos; u* M&quot;.

Les propriétés de &lt;P et de son prolongement comme germe impliquent l&apos;énoncé

suivant (Figure 2).

LEMME. De façon naturelle, il existe sur M(&lt;P) une structure différentiable et

une forme symplectique â&gt;(s) telles que:
(a) M(&lt;P) soit dijféomorphe à M par un difféomorphisme qui est Videntité au

voisinage du bord et de Vinfini \

m:

M&quot;

y=0 y=l-ô

Figure 2

y=l
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(b) par la projection FuM%M($), la forme œ(s) induise œ^e) sur Mfg et
c52(e) sur M&apos;d\jM&quot;.

Si on identifie M et M(&lt;P) par ce difféomorphisme, on obtient la forme cherchée

cb(e) sur M qui coïncide avec eeT%a) près de ôMn{u&gt;0} et avec œ près de

{u 0, +00}. La chirurgie a résorbé la discontinuité du prolongement naïf.

3.7 Peut-on faire la seconde étape e &lt;t &lt; 2e?

Sur la partie gauche {y&lt;\ — ô}, on continue avec la formule (18)
g&gt;i(0 e%%iû. Vu au voisinage de {y 1 — &lt;5} dans M&quot;, le champ utilisé pour ce

prolongement est &lt;P*Z T%Z. Il est de Liouville au voisinage de

{y 1 — &lt;5, s &lt; u &lt; 2s} pour la forme d)2(e). Le champ ôu a aussi cette propriété. De

plus les champs #*Z et du coïncident au voisinage de Uo x {1 — ô} x [g, 2e] d&apos;après

(14).
D&apos;autre part, (M&quot;, co2(e)) contient un cylindre de Darboux propre dont la base

recontrent toutes les caractéristiques de E qui ne sont pas contenues dans

Uo x [1 — ô, 1] x {e}, à savoir la partie de T£(B)° au-dessus de E. Tout est donc

comme dans la figure initiale, sauf que l&apos;on ne sait pas s&apos;il existe un champ qui
jouerait sur M&quot; le rôle joué par du sur {1 — ô &lt; y &lt; 1, u &gt; 0}. Ou encore, on ne sait

pas s&apos;il existe un champ de Liouville pour c52(e) transverse à E et coïncidant avec
du au voisinage de Uo x [1 - ô, 1] x {s} et de {y 1 - ô ou 1, u s}. On va
contourner cette difficulté en se fondant sur la remarque suivante.

Remarque. A priori la classe d&apos;isotopie de œ(s) dépend du choix qui a été fait

pour l&apos;isotopie hamiltonienne de l&apos;identité à (j) à travers les difféomorphismes
symplectiques de (D, œE0) coïncidant avec l&apos;identité au voisinage de Uo. Par un

argument à la Moser, cette question dépend de savoir si l&apos;espace de ces difféomorphismes

symplectiques est simplement connexe; cette question est ouverte. Devant
cette ignorance, on part à la recherche d&apos;une isotopie hamiltonienne qui nous
convienne. Pour cela on tire profit du lemme de fragmentation de Banyaga

[Ba, III.2] (voir aussi l&apos;appendice).

3.8 Enoncé de lemme de fragmentation

On considère la boule standard (D, œ0) dans (R2n~2, standard) et son voisinage

collier Uo. Soit G le groupe des difféomorphismes symplectiques de (D, coo)9

coïncidant avec l&apos;identité au voisinage de UQ. On se donne des domaines
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Ao,.. ^2«-2» dits domaines de fragmentation, dont les intérieurs forment un
recouvrement de D — Uo. Alors il existe un C*-voisinage de F identité dans G dans

lequel tout élément cj) peut être fragmenté, c&apos;est-à-dire être écrit comme le produit de

2n — 1 diffeomorphismes symplectiques

(f) =(j)0o • • • o 02w_2,

où chaque (j)k est le temps 1 d&apos;une isotopie hamiltonienne à support dans

int(Akn(D-D0)).
Il ne faut pas penser que les Ak sont connexes. Au contraire un procédé

classique pour se donner les Ak consiste à partir d&apos;une triangulation &amp;~ d&apos;un

voisinage de D — Uo dans int D. A chaque &amp;-simplexe at on associe une anse Akl
d&apos;indice k qui recouvre la partie de at non couverte par les anses d&apos;indice inférieur;
la construction des anses se fait par récurrence sur k et, pour / ^j\ AklnAkj 0
(voir [Ba, p. 200]). On prend alors pour Ak la réunion des anses d&apos;indice k. Par ce

procédé, si la triangulation 3&quot; est assez fine on peut rendre le diamètre (euclidien)
des composantes connexes Akl de Ak arbitrairement petit.

3.9 Choix des domaines de fragmentation

DEFINITION. Soit (A,à) une (In— 2)-boule symplectique pointée dans

{1—&lt;5&lt;&gt;&gt;&lt;l,w=0} dont la projection par la réduction est un domaine (A, a) de

D, étoile par rapport à a. Soit kj la forme de Liouville induite par k sur A et soit
Xx le champ de Liouville dual pour la structure symplectique de A. On dira que

(A, a) est k-standard si k^ se projette sur le champ de Liouville linéaire radial de

{A, a), ^(jc, —at)ôXi9 où (xt) (resp. (at)) sont les coordonnées euclidiennes de x (resp.
de a) dans R2&quot;-2.

Le lemme suivant montre qu&apos;il existe beaucoup de boules A-standard. Pour
l&apos;énoncer sous la forme qui sera utile, il convient d&apos;introduire une nouvelle

constante géométrique de la figure.

On définit 60 &gt; 0 comme la borne inférieure des longueurs, mesurées

par |A|, des caractéristiques complètes de {1— &lt;5&lt;&gt;&gt;&lt;1,m=0}. (20)

Notant 0 le flot de — du et sachant que k( — du) -f 1, on voit que S est bien

défini sur {y 1 — &lt;5, u 0} x [0, 0O], à valeurs dans {u 0}; son image est munie
de coordonnées (x, 6) eD x [0, 0O], où 0 est le temps du flot et où {y 1 — &lt;5, u 0}
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est identifié à l&apos;espace réduit D. On va fractionner la longueur 60 en 4n(2n — 1)

parties égales; la raison pour cet entier apparaîtra plus loin.

LEMME. Il existe r &gt; 0 tel que, pour toute boule euclidienne {A, a) centrée en un

point a de D — Uo et de rayon &lt;r, il existe un relèvement X-standard

(À, a) a \u 0, 0 &lt; 9 &lt;

4n(2n - 1)

Preuve. Soit Ào la forme de contact induite par À sur {u 0,0 &lt; 6 &lt;

60/4n(2n — 1)}. Comme — du est le champ de Reeb de XQ on peut écrire

Comme tfM,0 I tfh^ +1 A dx2jjr2i pour tout a e D — Uo il existe une fonction ha,

unique à une constante additive près, vérifiant l&apos;identité

X act(x) dxt + dha(x) - £ [(x2j+] - a2j+x)dx2j + 2- (x2j + 2 - a2j + 2) dx2j+]].

Soit C une constante de Lipschitz uniforme pour ha9 a e D — Uo. On prend

Y
%n(2n - \)C

On définit alors A par: 6 ha(x), x e A. Si on choisit ha{a) 0ol&amp;n(2n — 1), A est

bien dans la région prescrite. cqfd

Remarques. (1) La 0-translation laisse aux boules leur caractère A-standard.
Donc on peut également prendre

&lt;J ke° ^^(* + 1)MA \4n(2n-\)&lt;U &lt;4n{2n-\)]&apos;

(2) Le lemme vaut aussi lorsque {A, a) est seulement un domaine étoile de

rayon &lt;r.

On note Ao la projection de A dans l&apos;espace réduit, où, rappelons-le, A est la
base de la bande caractéristique donnée par (11). On choisit une triangulation 3~
d&apos;un voisinage de D — Uo dans int Jo, où le diamètre de chaque simplexe est &lt;2r.
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Pour chaque simplexe g de F, de barycentre a(a), on associe une anse A{a)
étoilée par rapport à a(a). Si a et a&apos; sont de même dimension, A{a) c\A{af) — 0.
Enfin la réunion des anses A{o) associées aux cellules de dimension &lt;k recouvre le

A:-squelette de ZT. Soit Ak la réunion des A{a) avec dim a k. Les Ak sont les

domaines de fragmentation cherchés.

On note (A(g), â(a)) le relèvement k -standard de (A(a), a(a)) dans {u 0}, où la
0 -coordonnée de â(p) ne dépend que de la dimension k de a et est donnée par

On note Ak la réunion des A(a) où o parcourt l&apos;ensemble des simplexes de

dimension k (Figure 3).

3.10 Utilisation des domaines de fragmentation pour la première étape

LEMME. Les Ak sont les bases de bandes caractéristiques propres Bk dans

({y &gt; 1 — &lt;5}, co), mutuellement disjointes et disjointes de B, et tangentes à du au

voisinage de la base.

Preuve. Soit (x\ t, v) des coordonnées de Darboux pour le cylindre B donné par
(11). Le lemme est évident si on remplace Ak par un relèvement A&apos;k de Ak dans

{t — r(k)}9 où x(k) est une constante ne dépendant que de k, avec

t(0) &gt; t(1) &gt; • • • &gt; t(2« — 2), l&apos;axe des t étant orienté dans le même sens que du.

Or uAk se déduit de uA&apos;k par glissement le long des caractéristiques de {u =0},

B Bo B1

{y =1-8} —
A Âo

Figure 3
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c&apos;est-à-dire par une isotopie (hamiltonienne) qui déplace chaque point sur sa propre
caractéristique. La base étant fixée, le germe de la bande caractéristique au
voisinage de la base peut être choisi arbitrairement, à condition d&apos;être transversal à

{u 0}; cela permet de satisfaire la dernière condition. cqfd

On considère de nouveau le difféomorphisme 0e re o £~fc de [y 1 — &lt;5, u =e}.
Le difféomorphisme T~h(f)fT* peut être vu comme un difféomorphisme symplectique
de l&apos;espace réduit de {w=0} à support dans D — Uo. Voici enfin la dernière
condition de petitesse imposée à e. D&apos;après le lemme de Banyaga, pour e assez petit:

T&apos;^&apos;V est fragmentable relativement à la famille des domaines Ak. (21)

On fixe définitivement un tel e et on écrit

où (j)k est isotope à l&apos;identité avec un hamiltonien hk : Ak x [0, 1] -*R à support dans
l&apos;intérieur de (Akn(D - Uo)) x [0, 1].

Soit Bk un cylindre de Darboux pour co d&apos;âme Bk et de base dans {u 0}; les Bk

sont choisis mutuellement disjoints. On obtient Bk à partir de Bk en l&apos;épaississant au

moyen d&apos;un champ hamiltonien qui lui est transversal. Pour la suite, on impose
qu&apos;au voisinage de la base,

Bk s&apos;obtienne en appliquant le flot de pdu9 où p est une constante assez

petite pour que le flot existe sur l&apos;intervalle de temps [-1, 4-1]. (22)

Sur l&apos;image Tr(Bk) on a des coordonnées de Darboux (x, f, v) g Ak x [ — 1, 1] x
[0, -h oo) qui s&apos;étendent au cylindre doublement infini TE(Bk)°9 dont la partie {v &lt; 0}
est extérieure à {u&gt;e}. On convient aussi que &lt;9f dirige les caractéristiques de

{u s} dans le même sens que du, que l&apos;âme {f 0} est T\Bk) et qu&apos;au voisinage
de la base on a

v=p(u-s). (23)

Comme en 3.5, on a dans chacun des cylindres de Darboux

a&gt;2(e) =œEQ + dT a dv.

On définit l&apos;hypersurface rde{l-&lt;5&lt;j&gt;&lt;l,w&gt;e}u TE(B0)ow - ¦ u Te(B2n_2)°
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par l&apos;équation

v -hk (24)

dans le fc-ième cylindre de Darboux et, en dehors de ces cylindres, I coïncide avec
{u =e}. L&apos;holonomie globale de I est bien le difféomorphisme 0e. On peut donc
procéder à la chirurgie comme en 3.6. Cela achève la première étape et va permettre
la poursuite du prolongement sans toucher à s.

3.11 En vue de la seconde étape s &lt;t &lt;2e

On rapelle que (M, d&gt;(e)) est présentée en deux morceaux M&apos; et M&quot; et que l&apos;on

a I adM&quot;. Par 3.10, T\B) est contenu dans M&quot;; c&apos;est une bande caractéristique

pour cb(s) dont la base coupe toutes les caractéristiques de I non contenues dans

Uo x [1 — (5, 1] x {s} (comme ici, les coordonnées (x, y, u) ne seront utilisées dans la
suite que là où elles ont un sens canonique).

LEMME. // existe dans M&quot; une hypersurface Z&apos; munie d&apos;un germe de forme de

Liouville À&apos; pour co(g) vérifiant les conditions suivantes:

(i) I&apos; se déduit de I par une isotopie dans M&quot; laissant fixe un voisinage de dl;
(ii) toute caractéristique de I&apos; va de {y 1} à {y 1 — ô};
(iii) A&apos; est transverse à I&apos; et coïncide avec ôu au voisinage de dZ&apos; — dl;
(iv) rintégrale de X&apos; sur toute caractéristique complète de I&apos; est &gt;ee60(\ — l/4«),

où 60 est défini en (20).

Remarque. On pourrait être tenté de prendre 1&apos; I et À&apos; e£T%À. Mais la
condition (iii) (première partie) n&apos;a pas de raison d&apos;être satisfaite.

Preuve. En dehors des cylindres T%Bk), I&apos; coïncide avec I et donc avec {u s}.
Dans le &amp;-ième cylindre, I&apos; est défini par l&apos;équation

v mk(x, f),ie4, f g [ -1, H-1]

où la fonction mk &gt; 0 est choisie comme suit:

(a) mk&gt; —hk9 ce qui garantit I&apos; a M&quot;\

(b) mk est nulle si x est proche de dAk ou si f est proche de ± 1;

(c) fdfm*&lt;0;
(d) (décroissance radiale à f fixé) pour toute composante A{&amp;) de Ak, de

barycentre a(a)9

&lt; 0.
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II n&apos;y a pas de difficulté à trouver une telle fonction. Les conditions (i) et (ii) sont
alors satisfaites.

SOUS-LEMME. Sous la condition (23), au voisinage de {v 0}, le champ du

(qui est de Liouville pour co2(e)) est sous forme normale:

du=-(x- a(a)) -dx + î d{ + p de.

Preuve. D&apos;après (23), du a(x, f, v) d^ + /?(i, f, v) d{ -f p d6. Dualement, il vient
eeT%X a&apos; dx + j6 dv — p dz, où a&apos; se déduit de a par la dualité symplectique.

Ecrivons que d(eeT%X) co2(e) est la forme symplectique canonique dans les

coordonnées de Darboux. On obtient que a&apos; ne dépend pas de f et que
/? f + P&apos;(x, v). Comme du est tangent à {f 0} au voisinage de v 0 (lemme 3.10),

on a fi&apos; - 0. On déduit alors que a&apos; est aussi indépendant de v.

Dualement, il en est de même de a. L&apos;écriture de a est alors déterminée par
l&apos;hypothèse que {f 0, v 0} est standard vis-à-vis de e&apos;T^L Cela termine la preuve
du sous-lemme.

La forme de Liouville X&apos; au voisinage de I&apos; est définie hors des cylindres par
l&apos; eBT%À. (dans ce cas X&apos; — du) et dans les cylindres par

X&apos; - (x - a(a)) - d± + idi + pdc. (25)

Les conditions (c) et (d) impliquent la transversalité requise en (iii).
Le point (iv) est une estimation grossière qui sera affinée ci-dessous. Notons 9&apos;

la fonction définie sur {1 — ô &lt;y &lt;\,u =s} comma la distance à {y 1 — ô}
mesurée le long de ses caractéristiques avec la forme e&quot;T%X. Par définition de 90, toutes

ces caractéristiques sont de longueur &gt;ee60, et la base T%Bk) est contenue dans

[ ke% (k + 1) e%
[4n(2n - 1)

&lt; &lt;

4n(2n - 1)

pour k 0, 1,..., 2« — 2. Alors toute caractéristique de I&apos; court dans {u s} de

3.12 Analyse de la longueur des caractéristiques de I&quot;

On précise le choix des fonctions mk et donc le choix de I&apos;. Pour cela on note
A&apos;£ le domaine de R2n~2 obtenu en retirant à Ak un petit collier du bord de sorte
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que \JkAk contienne D — Uo en son intérieur. La fonction mk est alors notée mk et

on impose:

pour x e Ak9 mk(x, f) est indépendante de x. (26)

On note ^X un anneau fermé de int Ak, collier extérieur de A&apos;k£ et contenant tous
les points où dxm% # 0. On note %&gt;B (Jfc #£. On note UeQ la composante connexe
du complémentaire de &lt;ë£ dans D contenant ôD.

L&apos;espace réduit de ({1 — ô &lt;y &lt; 1, u e}, cb2(s)) est (Z&gt;, e£ standard) que l&apos;on

identifie à ({y 1 — ô9 u s}, œe0) (voir 3.5). On repère une caractéristique y de I&apos;

pour â)2(£) Par son extrémité e(y) dans {j 1 — ô, u — s}, c&apos;est-à-dire par un point
de D; l(y) désigne la longueur de y mesurée par X&apos;.

LEMME. Sie(y) e &lt;€\ on a l{y) &gt; e%{\ - l/4w). Sinon, on a l(y) &gt; e%.

Preuve. Si e(y) e &lt;€\ on applique le (iv) du lemme 3.11. Si e(y)eU80,y est

contenue dans {1— ô &lt;y &lt;l,u =s}; elle est alors mesurée par e£T*À et la conclusion

est claire. Sinon, e(y) appartient à au moins l&apos;un des A&apos;k\ Dans ce cas y est

contenu dans {u =e}, excepté lors de la traversée des T%Bk); chacune de celles-ci

se fait en restant dans x const. et on a:

I |A&apos;|= I pdz+ \ m%dî.
JynT&gt;(Bk) J-l J-l

Le premier terme est la longueur d&apos;un arc caractéristique de la base de T(Bk)
formant avec y n T%Bk) un lacet et le second terme est l&apos;aire entourée par ce lacet

mesurée par co2(e). On a l&apos;inégalité voulue. cqfd

3.13 La seconde étape

La variété M&quot; n&apos;a pas une structure produit canonique. En revanche, d&apos;après

3.11, si on note N&quot; la partie de M&quot; au-dessus de I\ il existe sur
N&quot; £ D x [1 — S, 1] x [0, -h oo) des coordonnées (x\ y\ u&apos;) avec les propriétés
suivantes:

(i) du du au voisinage de dM&quot;\I ôN&quot;\E&apos; et en particulier le long de

(ii) ôu a&apos; au voisinage de I&quot;; ôu. est donc un champ de Liouville pour œ(e) au

voisinage de I&apos; (Figure 4).
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u 0

y=0 y=l-ô
Figure 4

y=l

Notons N&apos; Ç£({0 &lt;y &lt; 1 — ô}). Le champ Z (voir 3.3) est un champ de

Liouville pour d3(e) au voisinage du bord inférieur de TV&apos;, à savoir
C%{0 &lt;y &lt; 1 — ô, u 0}). A la seconde étape (e &lt; t &lt; 2e) le prolongement naïf
consiste à prendre sur N&apos; (et même au voisinage)

a&gt;i(t) =et~%*œ(e), (27)

avec la même convention qu&apos;en (4) pour définir cbx(t) sur 7V&apos;\£&apos;({0 &lt;y &lt; 1 — ô}), et

à prendre sur N&quot;

(28)

où T est le flot de ôu. En dessous de N&apos;v N&quot;, on garde œ(s).

Regardons t 2e. Comme Z (resp. du) est de Liouville pour œ(e) au voisinage
de {y — 1 — ô, e &lt; u &lt; 2e} (voir 3.7), les deux formes â&gt;i(2e) et d&gt;2(2e) coïncident

avec cb(e) sur ce voisinage. En revanche, on a une discontinuité de la structure

symplectique le long de {y 1 — ô, u &gt; 2e}. Vu au voisinage de {y 1 — &lt;5, u &gt; e)

dans (la carte) TV&quot;, le champ Z, générateur de Ç&gt; se lit T%Z. Donc au voisinage de

{y 1 _ S9 u &gt; 2e) dans N\ on a:

c5,(2fi)

â&gt;2(2e) eeT%ay(e)\

les formes col(2e) et c52(2e) sont donc conjuguées par T%(&lt;P).= Te&lt;PT~e. En
particulier sur {y 1 — ô, u 2e} on a c52(2e) 0je(d},(2e)), où par définition
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&lt;^2e T%{(t&gt;z). En suivant les caractéristiques, l&apos;espace réduit de Z&apos; s&apos;identifie à

{y l — &lt;5, u s} muni de la forme c5(e) donc à (D, e£ standard). Le difféomor-
phisme &lt;t&gt;s vérifie &lt;£E T~e^2eTe et, dans le réduit (D, eE standard), 0e se lit T~E&lt;$&gt;ETE

(voir (21)); il est donc fragmentable dans les domaines Ak.

LEMME. Les Ak admettent des relèvements X&apos;-standards Ak dans Z&apos; mutuellement

disjoints. Plus précisément Âk prend place dans une bande caractéristique de Z&apos;

de base {y 1 — ô, u s} dont les caractéristiques sont toutes de À&apos;-longueur égale à

eE0Q/4n(2n - 1).

Preuve. Comme dans le lemme 3.9, ce résultat dépend d&apos;une part de la A&apos;-

longueur des caractéristiques de Z&apos; et d&apos;autre part d&apos;une constante de Lipschitz
uniforme pour une primitive de

A \{y \ - à,u e} ~~^Lae l\X2j +1 ~~ a2j + 1 dX2j + 2~ \X2j + 2 ~~ a2j + 2) dx2j + i ]

lorsque a (at) parcourt D — Uo. Or cette primitive, à une constante près, est echa,

de constante de Lipschitz uniforme e£C (voir 3.9). D&apos;autre part la A&apos;-longueur des

caractéristiques de Z&apos; est &gt;eE90(\ — l/4n) (lemme 3.11); c&apos;est &gt;eeQ0{\jAn), qui est

la longueur suffisante pour faire ces relèvements. cqfd

La bande caractéristique T\B) pour â&gt;(e) est contenue dans N&quot;. Donc les ÂEk

sont les bases de bandes caractéristiques mutuellement disjointes Bk9 disjointes de

T(B) et tangentes à du au voisinage de la base (comparer avec 3.10). La fragmentation

du difféomorphisme 0 e donne lieu à la construction de graphes de hamil-
toniens dans des cylindres de Darboux qui ont pour âme les translatés &quot;verticaux&quot;

T&apos;f(Bk). L&apos;hypersurface Z2e ainsi obtenue (son bord est dans {u 2e}) intervient
dans la chirurgie de la seconde étape qui résorbe la discontinuité existant entre les

formules (27) et (28). Ceci termine la construction de â&gt;(2e).

3.14 Fin a\ la démonstration du théorème 1.1 {sans paramètres)

En vue de la troisième étape on met en place une hypersurface I&quot;2e, au-dessus de
Z2e et de même bord dans {u 2s}, et une forme de Liouville A2£ pour œ2(2s) avec
des propriétés analogues à celles du lemme 3.11. En particulier au voisinage du bord
de Zf2e on a: A*£ e2&lt;T|fA. L&apos;hypersurface Z&apos;2e est faite avec des graphes de

fonctions &gt;0
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tracés dans des cylindres de Darboux Pour contrôler les longueurs des caractéristiques

de Z&apos;2£ mesurées par À2\ on choisit judicieusement les supports de ces

fonctions

l&apos;ensemble des points où dxm2k ^ 0 est contenu dans un anneau ^\e disjoint de &lt;#%

et l&apos;entourant

On note A&apos;kB la reunion des composantes du complémentaire de %&gt;2k dans Ak ne

rencontrant pas 8Ak Comme en 3 12 on forme la réunion

et on note U2? la composante connexe du complémentaire de ^2e dans D contenant
ÔD

Concernant les longueurs des caractéristiques y tracées sur Z&quot;2e et mesurées par
À2e on a les résultats suivants

LEMME
(1) Si e(y) n&apos;appartient ni a Ve ni à #2e, on a l(y) &gt; e2%
(2) Si e(y) appartient exactement a un des colliers %&gt;\ (€2\ on a /(y) &gt;

e2%{\-\lAn)
(3) Si e{y) e &lt;#2en&lt;£\ on a /(y) &gt; e2%{\ - 2/4n)

Preuve Pour une extrémité fixée dans le réduit, on a trois caractéristiques y0

dans ({m 0}, co), yx dans (I&quot;e X&quot;, c52(e)), et y2 y dans (If2% c52(2e)), elles sont
mesurées respectivement par X9 Xe =à\ À2e Dans le cas 1), on a /(y2) &gt;e%yx) &gt;

e2el(y0) &gt; e2% Dans le cas 2), on a /(y2) &gt; e%yx) - e2%l4n et /(y,) &gt; eBl(y0) Dans
le cas 3), on a l(y2) &gt; e%yx) - e2%/4n et l(yx) &gt; e%y0) - e%j4n cqfd

Ces minorations permettent de trouver des relèvements A2t-standards pour les Ak9

mutuellement disjoints
Si on itère la construction, en prenant les colliers ^f à chaque fois à l&apos;extérieur

du précédent, on observe que, pour toute suite de 2n + 1 entiers qo&lt; &lt;qin,

on a

^°£ n ^£ n n ^q^E 0 (29)

Cela implique que si l&apos;on estime en fonction de q les longueurs des caractéristiques

yq tracées sur les Tqt ayant une extrémité fixée dans l&apos;espace réduit, on ne peut
trouver plus de 2n raccourcissements On trouve donc pour tout q &lt; 1/e,

2n\ 0n
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Cette estimation a priori assure que la construction peut effectivement être
poursuivie jusqu&apos;à # ~ 1/e, puisque, pour tout q, l&apos;inégalité l(yq) &gt; ec/l 90l4n permet
d&apos;avoir des relèvements /^&apos;-standards de Ak dans Zqi, mutuellement disjoints. Ceci
achève la démonstration du théorème 1.1 sans paramètres.

§4. Preuve du théorème 1.1 avec paramètres

Soit / le cube unité d&apos;un espace euclidien. On considère une famille
a)d dÀdi 9 e /, de formes symplectiques satisfaisant les hypothèses du théorème 1.1.

On note (oe(t)9 0 &lt; t &lt; 1, la déformation de a&gt;0 donnée au voisinage de dS x R+ par
la formule (4)

On veut construire une famille &lt;ûo(t) de formes symplectiques sur M satisfaisant

(i)-(iii) du théorème 1.1

La difficulté principale tient au fait que la géométrie des caractéristiques de

S x {0} peut changer avec 9. Pour éviter un problème de bifurcation similaire, A.
Hatcher [Ha] a utilisé une technique de partition de l&apos;unité, dont on va s&apos;inspirer ici.

4.1 Construction de bandes caractéristiques dans le cas à paramètres

Étant donné une bande caractéristique B de (o0q9 de base J, et un voisinage Jf
de A dans {u 0}, la proposition 5 de [La] énonce ce qui suit: si la forme induite par
œ9 sur A est assez proche de celle induite par œ9o, il existe des bandes caractéristiques
normales Bx{0),.. BN(6) pour cod, mutuellement disjointes et C00 en 9, dont les

bases dans {u =0} rencontrent toutes les caractéristiques de Jf qui coupent A.

Noter que la condition de proximité ne porte que sur les bases.

4.2 Un recouvrement de Vespace des paramètres

On recouvre / par des cubes Ik9 1 &lt;k &lt;p. Si le recouvrement est assez fin, il
existe des ensembles finis Jk et des (2n — 2)-disques Akj a S x {0},/ g Jk, munis de

voisinages JfkyJ avec les propriétés suivantes:

- les Akj détruisent la récurrence du feuilletage caractéristique de ({u 0}, œd)

hors d&apos;un voisinage du bord (voir 2.3), pour tout 9 e Ik;

- les formes induites sur Akj par coe,9 g Ik9 satisfont la condition de proximité
de 4.1;
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- les Akj sont les bases de bandes caractéristiques normales pour œ6k, où 9k est
le centre de Ik.

Par hypothèse, le champ ôu est un champ de Liouville pour tous les o)0i 6 e /,
dans un voisinage fixe de dS x {0}. Comme en 2.4, on peut étendre ce champ de

Liouville en un champ Y$9 9 e Ik, le long de S x {0}, C°° en 0, qui est de Liouville

pour o)e et qui pointe vers {u &gt;0} excepté au voisinage des Akj.
En effet, comme dans la preuve de 2.4, on doit construire une fonction avec une

certaine propriété de croissance le long des caractéristiques. Pour chaque 9 e Ik9 le

rôle de À est joué par À0. En fait, si on travaille dans S x Ik, la construction est

exactement la même qu&apos;en 2.4.

4.3 Fin de la preuve

Comme dans le célèbre livre de Steenrod, on choisit une partition de l&apos;unité &lt;xk

subordonnée au recouvrement (4). On peut supposer ctk(Ok) l. On pose
Ak{8) olx{9) + + ak(9). On construit la famille (co0(t))Q&lt;t^Aki0) par récurrence

sur k. Observer que Ak(6) &gt; Ak_l(6) implique 9 e Ik.
Pour 6 g4, on pose Qe cbd(Ak_{(9)). Cette forme coïncide avec œ0 près de

{u 0} et avec œ près de l&apos;infini; en particulier elle satisfait la condition de

proximité 4.1. Comme Ak_l(6k) 0, on a Q0k œBk sur M tout entier. Alors, par
4.2, le disque Akj est la base d&apos;une bande caractéristique Bkj pour QBk.

On applique 4.1 à Q9,6elk9 avec B — Bkj et Jr Jrkj. Il existe donc un
nombre fini de bandes caractéristiques normales Bkji(0)91 e Lkj, pour la forme

symplectique Qd, Cx en 9 e lk\ leurs bases Akjl{9), l e Lkj, sont dans JfKj et leur
union sur / recontre toute caractéristique de ^Vkj qui coupe Akj. Le long de

l&apos;intérieur de ^kj, on peut modifier Y0 en un champ de Liouville pour Qo œ0 et

qui pointe vers {u &gt; 0} excepté le long des Akji(9); de nouveau cela peut se faire

exactement comme en 2.4.

Pour 9 e Ik, la procédure de prolongement décrite au paragraphe 3 s&apos;applique en

prenant Qe comme condition initiale au lieu de a&gt;0. Elle fournit une famille de

formes symplectiques Q0(t). 0 &lt; t &lt; 1, Cf en 9 e Ik, qui coïncident aveceT&apos;*^

près de dS x R+, avec Qe œ0 près de S x {0} et avec co près de l&apos;infini. On peut
définir alors ëe(t) pour Ak_](0) &lt;t &lt; Ak(9) par

W9[) \ œB{Ak_x{9)) pour

Ces deux formules se recollent car Ak{9) Ak^x{9) près du bord de lk. Les formes

&lt;àe(t) ont les propriétés requises au voisinage du bord de M car T* est un groupe à

un paramètre.
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4.4 Compléments sur les primitives

Concernant les formes symplectiques œ(f) données par le théorème 1.1, on sait
qu&apos;elles sont toutes exactes puisqu&apos;à l&apos;infini elles coïncident toutes avec une même
forme exacte. De façon plus précise on a la proposition suivante.

PROPOSITION. Soit (œ9) (dke) une famille de formes symplectiques exactes
satisfaisant les hypothèses du théorème 1.1, c&apos;est-à-dire que:

- kd k est indépendant de 6 hors d&apos;un compact fixe sur lequel du est le dk-dual
de À;

- du est le dke-dual de k9 dans un voisinage fixe de dS x {0}.
Dans ces conditions on peut choisir les formes c5(0 avec des primitives k(i) ayant les

propriétés suivantes:

(i) 1,(0) k9;

(ii) kd(t) k en dehors d&apos;un compact fixe;

(iii) ke(t) kd au voisinage de S x {0}
(iv) ke(t) eXTt)^k9 au voisinage de ôS x [0, H-oo).

Preuve. Le seul problème, qui n&apos;existe pas lorsque S est simplement connexe, est

de satisfaire la condition (iii).
Considérons d&apos;abord le cas simple où il existe un champ de vecteurs Ze, rentrant

dans M le long de {u 0}, C00 en 0, qui coïncide avec du au voisinage de ôS x {0}
et de l&apos;infini et qui au voisinage de {m 0} est le co^-dual d&apos;une forme de Liouville
que l&apos;on peut écrire globalement k&apos;e ke + dHe, où He est une fonction à support
compact dans M. On considère

où Ce est le flot de Ze (comparer avec la remarque 1.2): cette formule est bien définie
au-dessus de Ce({u =0}) et se prolonge canoniquement en-dessous de Ç&apos;d({u =0})
en utilisant le fait que Ze est un champ de Liouville au voisinage de {u 0} (voir
(4)); ce prolongement vaut k&apos;e(t) k&apos;B au voisinage de {u 0}. Une solution du
problème dans ce premier cas est alors donnée par

ke(t)=k&apos;e(t)-dHe.

Dans le complémentaire de cylindres bien choisis, on est dans cette situation,
d&apos;après 2.4 et 2.7. Les primitives choisies en dehors des cylindres se prolongent en

primitives dans ces cylindres en vertu du lemme de Poincaré. Près de la base des

cylindres, les primitives ainsi trouvées ne coïncident peut-être pas avec kd, mais

comme ces bases sont simplement connexes on récupère la bonne restriction à

{u 0} en corrigeant les primitives par des différentielles de fonctions. cqfd
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Appendice: démonstration du lemme de fragmentation

On donne ici une démonstration du lemme de fragmentation de Banyaga énoncé

en 3.8.

Au départ on a des domaines Ak, k 0,...,/?, formant un recouvrement de

D — Uo. Chaque Ak est une réunion finie de boules disjointes, mais cela ne servira

pas. On se donne un rétrécissement A&apos;k cinty^ tel que les A&apos;k recouvrent encore
D — Uo. On choisit une fois pour toutes une fonction cloche indépendante du

temps, a: D -»[0, 1], à support dans int Ao et valant 1 sur un voisinage de A&apos;o.

Soit h: D x [0, 1] -»R+ un hamiltonien dépendant du temps à support dans

(D — Uo) x [0, 1] et soit &lt;£&apos;, t e [0, 1], l&apos;isotopie hamiltonienne correspondante. Si h

est assez petit (en topologie C1), ^(A&apos;q) czint cc~l(l) pour tout t e [0, 1].

On pose h0 ah et on note &lt;/&gt;o l&apos;isotopie hamiltonienne correspondante. Si x est

proche de A&apos;o, on a pour tout t e [0, 1]

&lt;f&gt;&lt;0(x) ÏXx) et h((t&gt;t0(xlt)=h0{(t)t0(xlt).

D&apos;autre part le support de h0 est contenu dans (D — Uo) x [0, 1].

On considère le difféomorphisme i// =(&lt;/&gt;o)~1 ° &lt;t&gt;x- Son support est dans

D — (Uo\jA&apos;o). La différence &quot;tordue&quot; de h et de h0 est un hamiltonien pour une

isotopie hamiltonienne de l&apos;identité à \jj, à support dans D — (UouAfo). La
différence &quot;tordue&quot; est définie par la formule:

H(x, t) *(M(*), /) - /&gt;o«&gt;o(*), 0.

Par récurrence sur le nombre de domaines de fragmentation, on sait que si H est

assez petit, i// peut être fragmenté comme produit

où chaque i//k est le temps 1 d&apos;une isotopie hamiltonienne dont le hamiltonien est à

support dans

[(D -(UouA&apos;o))nintAk] x[0,l].

Comme la petitesse de H en topologie C°° ne dépend que de celle de A, on a le

résultat cherché:
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Remarque. La démonstration montre aussi que si on part d&apos;une isotopie hamil-
tonienne dont le hamiltonien est positif, on peut imposer aux &quot;fragments&quot; d&apos;être

donnés par des hamiltoniens positifs. D&apos;autre part, le nombre de dérivées consommées

est le nombre de domaines de fragmentation, à une unité près. Comme ce

nombre est arbitraire, on doit utiliser la topologie C00.

Chapitre II
ENGOUFFREMENT DE CYLINDRES DE LIOUVILLE

Le problème qui est résolu dans ce chapitre est totalement trivial du point de

vue de la topologie différentielle alors qu&apos;en topologie symplectique il nécessite des

hypothèses très fortes à l&apos;infini. Le théorème de flexibilité établi au chapitre I en est

la cheville ouvrière, il sera réénoncé sous la forme où il sera utilisé.

§1. Enoncés des résultats

1.1. On considère une variété symplectique exacte de dimension 2n

(M2n, co dX), avec un bord S XM compact. Le champ de vecteurs A, qui est le

co-dual de la forme de Liouville X, est supposé positivement complet; en particulier,
le champ de Liouville X rentre dans la variété le long du bord S, qui est alors

concave (au sens de [EG]) pour son orientation comme bord. Si cpt est le flot d&apos;un

champ de Liouville pour œ et si cpu désigne l&apos;opérateur image directe sur les formes

différentielles, on a l&apos;identité caractéristique

œ e^t^a).

Tous les champs de Liouville de (M, œ) considérés dans ce chapitre rentrent dans M
le long du bord et ne diffèrent de X que par un hamiltonien à support compact; en

revanche, ils peuvent différer le long du bord. On fait l&apos;hypothèse de convexité à

l&apos;infini [EG]:

(Hl) // existe une hypersurface compacte sans bord Z, transverse à À, limitant avec
S une variété compacte, et dont le saturé positifpar X est complet et constitue

un voisinage de l&apos;infini de M.

1.2 Engouffrement d&apos;un cylindre de Liouville

Soit A un domaine de S et C s A x [0,1] un cylindre dans M de base A; on
suppose que C est un cylindre de Liouville, c&apos;est-à-dire qu&apos;il existe un champ de

Liouville F défini seulement au voisinage de Cet tangent aux lignes a x [0, l],aeA
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(on ne demande pas que Y se prolonge en un champ de Liouville rentrant dans M
le long de tout le bord). Enfin on note Uo le saturé positif de S par À.

THÉORÈME A. Sous l&apos;hypothèse (Hl) le cylindre C peut être engouffré par Uo:

il existe une isotopie hamiltonienne ambiante à support compact dans int M poussant
Uo jusqu&apos;à contenir C.

On déduit ce théorème d&apos;un théorème d&apos;engouffrement plus technique.

1.3. Soit Yx et Y2 deux champs de Liouville rentrant dans M le long de S; pour
/ 1, 2, Ut désigne le saturé positif de S par le champ Y,.

Soit alors Ax et A2 deux domaines compacts dans S; on note A AxnA2. On
considère d&apos;une part le cylindre Rx (resp. R), difféomorphe à Ax x [0, 1] (resp.
A x [0, 1]), qui est le saturé de Ax (resp. A) par le champ Yx jusqu&apos;au temps 1. On
considère d&apos;autre part un cylindre R2 A2 x [0, 1] de base A2, contenu dans U2

(il n&apos;est pas demandé que Y2 soit tangent à R2). On suppose:

(H2) R RxnR2 et, au voisinage de cette intersection, YX Y2.

Enfin on fait l&apos;hypothèse topologique suivante:

(H3) Ax — A se rétracte par déformation sur un polyèdre de dimension k pour un

entier k tel que le cobordisme compact W entre S et I ait une décomposition en

anses à partir de S sans anses d&apos;indice &gt;2n — k.

Par exemple, l&apos;hypothèse (H3) est satisfaite si Ax —A est une réunion de boules

disjointes. En effet, à cause du champ de Liouville rentrant le long de S, toute
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composante connexe de W touche I et admet donc une décomposition en anses

sans anses d&apos;indice 2n. Dans la situation décrite ci-dessus on a cet autre théorème
d&apos;engouffrement de cylindres:

THÉORÈME B. // existe une isotopie hamiltonienne de plongement de R2 dans

M — (Rl — R), stationnaire au voisinage de R vA2, partant de Vinclusion et aboutissant

dans Ul (Figure 5).

Pour la démonstration, on pourra se limiter au cas où Rl et R2 sont disjoints.
En effet soit M&apos; la variété obtenue en retirant à M un petit voisinage régulier de

SuR qui s&apos;y rétracte en suivant les lignes de champ de Yx. Soit S&apos; le bord de M&apos;.

Les champs de Liouville Yx et Y2 pointent tous les deux vers l&apos;intérieur de M&apos; le

long de Sr. Soit A\ RtnS\ R\ =RtnM&apos; pour / 1, 2. Par construction
R\nR2 0 et l&apos;engouffrement dans M&apos; donne ce que l&apos;on veut dans M.

1.4 Déformation de formes symplectiques

On rappelle le théorème de prolongement de formes symplectiques établi au
chapitre I (th. 1.1 et prop. 4.4). On considère une variété F, compacte à bord de

dimension 2n — 1, et le produit F x [0, -h oo). Notant u la dernière coordonnée, on
considère sur F x [0, + oo) le semi-flot t eR+ \-+ Tt engendré par d/ôu. On se donne

une famille de formes symplectiques exactes cos dks dépendant d&apos;un paramètre
s € [0, 1]\ On fait les hypothèses suivantes:

a) hors d&apos;un compact fixe {u &gt; w0}, Xs est indépendant de s;
b) d/ôu est le champ de Liouville œs-dual de À.s dans {u &gt;u0} et au voisinage de

ôVx {0}.

On considère, pour / € [0, 1], le chemin œs(t) de germes de formes symplectiques
le long du bord de F x [0, H- oc) défini par les deux formules suivantes:

o)s(t) e&apos;(Tt)^a)s au voisinage de dV x [0, + oo) (1)

œs(t) cos au voisinage de F x {0}. (2)

Pour donner complètement un sens à la formule (1), on observe que d/du étant un
champ de Liouville au voisinage de 3Fx{0}, la structure symplectique œs se

prolonge canoniquement comme germe le long de 2F x — oo, 0], en imposant que
ôldu y soit un champ de Liouville; la formule (1) est alors bien définie et produit
une déformation de a&gt;s stationnaire au voisinage de dV x {0}.

THÉORÈM DE PROLONGEMENT. Dans les conditions ci-dessus, il existe
des formes symplectiques exactes a&gt;s(t) et des primitives ks(t) dépendant continûment
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des deux paramètres et vérifiant:
(a) hors d&apos;un compact fixe {u &gt; ux), Às(t) est indépendant de s et de t;
(b) au voisinage du bord, œs(t) est donné par les formules (1) et (2);
(c) au voisinage de {u 0}, Xs(t) Xs;

(d) au voisinage de dV x [0, +oo), Xs(t) e&apos;(Tt\As;

(e) pourt=0js(0)=Xs.

1.5 NOTATION. Revenant à la variété M de 1.1, pour un ouvert U de M
contenant S, on note Jt(U) l&apos;ensemble des formes symplectiques exactes de M dont
une primitive coïncide avec X au voisinage de S et hors d&apos;un compact de U. On ne
considère pas Jf(£/) comme un espace topologique mais comme un ensemble

simplicial; les &amp;-simplexes sont les familles à k paramètres de formes symplectiques
exactes se relevant en une famille de primitives qui coïncident avec l au voisinage
de S et hors d&apos;un compact fixe de U. D&apos;après le lemme de Moser [Mo], dans un
A&gt;simplexe de Jf(U) tous les éléments se déduisent les uns des autres par une isotopie
ambiante à support dans le compact indiqué.

§2. Démonstration du théorème B

Comme on l&apos;a dit, on peut se limiter au cas où Rx et R2 sont disjoints.
Voici le plan de la démonstration: on pousse R2 dans Ux par une isotopie

hamiltonienne du type &quot;Alexander&quot;; on crée ainsi des intersections de R2 avec jR,

On fait fuir ces intersections par le bord libre de Ru ce qui détruit la structure
symplectique. Le théorème de prolongement rappelé précédemment, joint au lemme
de Moser, permet le redressement de la structure symplectique tout en laissant Rx

disjoint de R2. On établit enfin que cette construction est le résultat d&apos;une isotopie
hamiltonienne.

Voici les détails. On note rç,(0 le semi-flot de Yt et St l&apos;hypersurface

LEMME 1. Uhypersurface S2 est isotope à Sx par une isotopie hamiltonienne

ambiante fixe près du bord.

Preuve (à la Alexander). La formule rji(O)ti2(O)~l\S2 est une isotopie hamiltonienne

que l&apos;on prolonge à support compact dans int M et qui convient. cqfd

Quitte à remplacer le temps 1 du flot y\2 par un temps plus grand, on peut supposer

que R2 est dans la composante compacte limitée par S et S2. On récolte ainsi une

isotopie hamiltonienne 4&gt;t: R2-+M, t e [0, 1], où &lt;j)Q est l&apos;inclusion de R2 dans M où

^1(^2)^^/1- Mais &lt;t&gt;i(R2) n&apos;a aucune raison d&apos;être disjoint de JR,. Soit

Xu : M -&gt; M, u e [0,1], une isotopie (non hamiltonienne), fixe près du bord, à support
compact dans Ux—R2 et déplaçant chaque point sur son Yx-orbite dans le
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sens du champ. On demande que X\ X(R\\ qui est contenu dans Rx, soit disjoint de

^(^2) pour tout t g[0, 1]. L&apos;isotopie t H-&gt;fe(/&gt;,: R2^&gt;M -Rx) est hamiltonienne

pour co&apos;:=xuœ et non pour co.

La forme symplectique co&apos; coïncide avec co près de S. Ceci permet de considérer
la formule suivante qui donne une déformation de co&apos; jusqu&apos;à co le long de Rx:

(3)

Pour s 0, on a co&apos;0 co&apos; et, pour s proche de 1, on a co^ co le long de i£, à cause
de l&apos;identité caractéristique des champs de Liouville. On applique alors le théorème
de prolongement à cette déformation de formes symplectiques. Voici comment on
le fait (Figure 6).

On considère un champ F, (de flot rjx(s)), coïncidant avec Yx près de SuRx et

hors d&apos;un compact de £/,. On demande que le saturé de Ax par Yx évite Xi^ii^)
et que Ul soit encore le saturé de S par ce nouveau champ; ceci est facile à assurer

car, topologiquement, Xi0i(^2) se rétracte sur A2.
Si dans la formule (3), on remplace r\x par rjx, on obtient une déformation de œ&apos;

définie par (4) sur l&apos;adhérence de U\ dans Ul9 où U\ est le y,-saturé d&apos;un voisinage
de R{:

œ&apos;(s) =e%fjl(s)\cof. (4)

On considère U&quot;, obtenu à partir de Ux — U\ en retirant l&apos;intérieur d&apos;un voisinage
régulier ouvert de Xi ^1(^2)- Cette variété est de la forme V x [0, +00), où V est

une variété compacte à bord. La déformation, donnée par (4) le long de

dV x [0, -f 00), et stationnaire égale à co&apos; le long de F x {0}, s&apos;étend à U&quot; d&apos;après

(U&quot; est en pointillés)

Figure 6
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le théorème de prolongement. Finalement, la déformation (4) de œ&apos; à co le long de

Rx se prolonge en une famille de formes symplectiques définies sur M tout entier et
notées œXs. La déformation est à support compact dans Ux et est stationnaire sur

Xi0iC#2); de plus les formes a&gt;Xs sont exactes et ont chacune une primitive kXs qui
coïncide avec k hors d&apos;un compact fixe de Ux. Par le c) du théorème de prolongement,

on peut choisir les primitives de sorte que kUs X\+k sur un voisinage de

On pose œxx : Qx. Le plongement X\&lt;t&gt;\ est symplectique d&apos;un voisinage de R2

muni de œ vers Ux — Rx muni de Qx.

LEMME 2. Qx est isotope à œ par une isotopie à support compact dans Ux et

stationnaire au voisinage de Rx. De plus le lacet formé des chemins décrits de œ à eu&apos;

(u i-&gt; (Xu)*™) Puis de œ&apos; à Qx (s \-+ œXs)9 complété par Visotopie rel Rx, de Qx à œ, est

contractile dans

Preuve. D&apos;après le lemme de Moser [Mo], pour établir la première partie du

lemme, il suffit de trouver un chemin dans tf{Ux) joignant Qx à œ constitué de

formes symplectiques qui coïncident avec œ au voisinage de Rx. En effet, comme ce

cylindre se rétracte par déformation sur sa base, on peut trouver des primitives qui
coïncident avec k sur Rx u S et hors d&apos;un compact fixe; le générateur infinitésimal de

l&apos;isotopie de Moser est alors nul sur ces deux domaines.

On obtient ce chemin dans C^(UX) en appliquant le théorème de prolongement
avec un paramètre. Précisément, considérons la famille de formes symplectiques

o)u Xu+œ&gt; u e [0, 1], et sa déformation le long de l&apos;adhérence de U\ donnée par

«„, =es(fjx(s)),œu,se[0, 1].

Comme plus haut, par le théorème de prolongement elle s&apos;étend à

U&apos;[ — V x [0, H- oo) et donc à Ux en prenant cous cou sur Ux — (U\ u U&apos;{) pour tout
s. C&apos;est un 2-simplexe dans Jf(Ux). Pour u 1, le chemin œXs est celui décrit

précédemment de œ&apos; à Qx. Pour s 1 et tout u g [0, 1], on a œuX œ au voisinage
de Rx (Figure 7).

On peut faire mieux car, en même temps que l&apos;on change la condition initiale cor

en œu, on peut changer le plongement de F x [0, + oo), sans changer celui de

dV x [0, -h oo), de sorte que, pour u 0, V x {0} soit contenu dans 5: la rétraction
de R2 sur A2 fournit une isotopie de U&quot; jusqu&apos;à Ux — U\. Dans ce cas, comme Yx

est un champ de Liouville le long de S tout entier, la déformation de formes

symplectiques pour m =0 peut être globalement donnée par co0s =es(fjx(s))4ico.

Cependant ce dernier chemin n&apos;est pas encore stationnaire, car Yx n&apos;est pas un

champ de Liouville pour œ sur tout Ux. Pour y parvenir, on choisit, pour
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u g [ -1,0], une famille de champs de vecteurs ZM, de flots (M, joignant Zo F, à

Z_, F, parmi les champs de vecteurs qui coïncident avec F, au voisinage de

SuRx et hors d&apos;un compact de Ux et dont les orbites sont propres dans Ux (donc
le saturé de S est toujours Ux). On applique alors la formule globale

&lt;»u*=ea(Zu(s))m&lt;o9 m €[-1,0], s e [0,1].

Pour m — 1, co_M co pour tout s. Finalement coM, pour w variant de — 1 à 4-1

joint co à Oj, avec les propriétés requises.

Enfin, la contractibilité du lacet décrit dans l&apos;énoncé résulte de la construction
même du chemin de Qx à co. cqfd

L&apos;isotopie de Moser à support dans £/, - Rx qui ramène Qx sur co modifie le

plongement Xi $i | ^2 en un plongement *F, : (R2, co) -&gt;(Ux — Rx, œ). Il reste à voir
que ce plongement symplectique est isotope, de façon hamiltonienne dans

(M — Rl9 co), à l&apos;injection de R2.

Dit brièvement, le chemin de R2 à ^,(^2) est &quot;hamiltonien vis-à-vis de formes
variables&quot;. On applique à ce chemin de formes une procédure de redressement de

la structure symplectique analogue à la précédente; mais cette fois-ci, elle est

appliquée à M et non à Ux et c&apos;est là que l&apos;on utilise les hypothèses à l&apos;infini.

Notons Vn t e [0, 1], la famille de plongements R2-+M — Rx obtenue en mettant

bout à bout le chemin Xi 4&gt;t | ^2 Puis l&apos;isotopie de Moser; Wo est l&apos;inclusion et

Wi est co-symplectique à valeurs dans Ux— Rx.

LEMME 3. // existe un lacet {(o(t)} contractile dans Jf(M) tel que

Wt: (iÊ2, œ)-+(M — Rt9 œ(t)) soit symplectique.
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Preuve. Essentiellement le lacet {œ(t)} est donné par le bord du rectangle de la
figure 7. En changeant le paramétrage, on peut supposer que Wt ^o sur un
intervalle de temps au cours duquel on déforme œ en œ&apos; par (%u)m; cette déformation

est stationnaire sur R2. Ensuite *Ft varie comme X\&lt;Pi et est symplectique de

(R2, co) vers (M — Rx, co&apos;). Puis on déforme co&apos; en Qj selon le chemin de la figure 7;

cette déformation est constante sur Zi(/&gt;i(^2)- On finit en déformant xxcpx et G, par
l&apos;isotopie de Moser. (cqfd)

Pour la fin, on peut oublier comment Wt et œ{i), t e [0, 1], ont été fabriqués et

partir simplement du lemme 3. Par commodité, on suppose que l&apos;un et l&apos;autre sont
indépendants de t pour t voisin de 0 et de 1. Le lemme suivant permettra de

conclure grâce à Moser.

LEMME 4.

(1) // existe une famille de formes symplectiques cos(t) g Jf(M), s, t e [0, 1]

vérifiant:
(i) œs(t) a*/) le long de Wt(Rs)9

(ii) œo(t) œ(t),

(iii) œx{f) —œ le long de Rx,

(iv) pour tout s, œs(0) œs(l) co.

(2) Le lacet t h-&gt; co,(0 est contractile dans le sous-espace Jf(M modiÊj) des

formes symplectiques qui coïncident avec œ voisinage de Rx.

Preuve. 1) Comme les anses de la paire (M, S) peuvent s&apos;attacher sur S sans

toucher Ax (hypothèse H2), il est facile de trouver un champ de vecteurs Zo,
coïncidant avec 7, sur un voisinage V(RX) de Rx et hors d&apos;un compact, tel que le

saturé de V{RX) par Zo évite R2 et soit proprement plongé dans M. Soit *?t une

isotopie ambiante prolongeant Wt à support compact dans M — Rx; on pose

Z, ^Zq et on note s t—? Çt(s) son flot. Le Z,-saturé de F(jR,) est proprement
plongé, évite ^(J^) et est indépendant de t hors d&apos;un compact; dans ce domaine,

on considère la formule:

cDs,=esiUs))Mt\ (5)

Soit Mt la variété obtenue à partir de M en retirant le Z,-saturé de V{RX), un
voisinage de *F,(/*2) et un voisinage des anses de la paire (M, Sv*Ft(R2). Cette

variété est de la forme V x [0, -h oc) où F est une variété compacte à bord.
La formule s i—? œst donne une déformation de co(t) le long de dV x [0, + oo),

que l&apos;on étend de façon stationnaire égale à œ(t) le long de F x {0}. Son prolongement

à V x [0, +oo) donne le œs(t) cherché, vérifiant (i)-(iii). La propriété (iv)
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co(t)

0 1

Figure 8

s&apos;obtient en jouant sur l&apos;intervalle où varie s (voir Figure 8). En effet, pout t 0,

1, le champ Z,, qui coïncide avec Yx au voisinage de Rl9 est un champ de Liouville

pour œ sur Rx et la formule (5) donne une forme symplectique indépendante de s

sur Rx; donc si on tronque l&apos;intervalle de variation de s pour t voisin de 0 et 1, on
ne perd pas la propriété (iii) et on gagne la propriété (iv).

2) Le lacet {co(t)} est contractile dans J^(M); il en est donc de même du lacet

homotope {(ox(t)}. Mais ce dernier se trouve dans JT(M mod Rx). On considère la
contraction de {o&gt;i(0} dans Jf(M) et on lui applique la formule habituelle (voir
(3)) pour redresser les formes le long de Ru puis le théorème de prolongement avec
deux paramètres pour obtenir une contraction dans X(M mod Rx cqfd

On achève la démonstration du théorème comme suit: d&apos;après le (i) du lemme
4, *F, est un plongement symplectique de (R2, co) dans (M — Rx, œx (t)). Le lemme de

Moser (à paramètre) permet de redresser co,(0 en œ par une isotopie à support
compact dans M — Ru dépendant continûment de t et valant l&apos;identité pour t 0,
1. En modifiant *F, par cette isotopie on obtient l&apos;engouffrement cherché, ce qui
termine la démonstration du théorème B.

§3. Démonstration du théorème A

3,1 En remplaçant A par un voisinage dans S, on peut supposer que A est un
polyèdre.

LEMME. Si la triangulation est assez fine, on a la propriété de prolongement
suivante:

(H4) Pour tout (2n — X)-simplexe a de A, le germe de Y au voisinage de a se

prolonge en germe de champ de Liouville Ya le long de S rentrant dans M.
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Preuve Au départ Y est le champ dual d&apos;une forme de Liouville fi k + df Soit
u une fonction sans point critique au voisinage de S telle que S u~l(Q) et

que du(X) 1 le long de A Les caractéristiques de S sont dirigées par du, le champ
hamiltonien dual de du La question de prolonger Y en un champ de Liouville le

long de S rentrant dans M, c&apos;est-à-dire vérifiant du(Y) &gt; 0 ou encore co(du9 Y) &gt;0,

revient à prolonger a S la fonction / de sorte que

œ(df, du) + œ(ï9 du) &lt; 0, (6)

ou encore df(du) &lt; 1

En gênerai l&apos;application de l&apos;inégalité des accroissements finis sur un segment

caractéristique de S ayant ses deux extrémités dans A interdit l&apos;existence d&apos;un

prolongement En revanche si a est assez petit, il n&apos;y a pas d&apos;obstruction à trouver
un prolongement de/[ff satisfaisant (6) en tout point de S Précisément l&apos;obstruction

est nulle s&apos;il existe T &gt; 0 vérifiant

^^ &lt; T,

- o est contenu dans une boîte B du flot de du telle que le temps de retour de

B dans lui-même soit &gt; T (voir chap I, 2 4)

Cette condition est satisfaite si le diamètre de a est assez petit cqfd

3 2 La démonstration du théorème A se fait maintenant par récurrence sur le

nombre de (2n — l)-simplexes de A dans une triangulation vérifiant (H4)
Soit g un (In — l)-simplexe de A On écrit A =avA&apos; avec a r\A&apos; t c de; x

est un sous-polyedre de A&apos; Par hypothèse de récurrence, l&apos;ouvert Uo saturé positif
de S par À contient le cylindre de Liouville Cr A&apos;x[09 1] après une isotopie
hamiltomenne convenable à support compact dans int M Soit Yx Ya le champ de

Liouville donne au voisinage de S par le lemme 3 1 et globalisé par partition de
l&apos;unité de sorte que Yx Fie long de a x [0, 1] Notons U} le sature positif de S par
Yx En vertu du lemme 1 du §2, Ux peut engouffrer C&quot; par une isotopie hamiltomenne

a support compact dans intM Notons U2 le résultat sur Ux de cette isotopie
U2 =&gt; C Cet ouvert est muni naturellement d&apos;un champ de Liouville F2, transporté
de Yx par l&apos;isotopie Considérons les polyèdres Px et P2 respectivement saturé positif
de t jusqu&apos;au temps 1 par les champs F, et Y&apos;2 On a Px a C car Yx Y au

voisinage de t x [0, 1] Donc Px et P2 sont tous les deux dans U2

LEMME // existe une isotopie hamiltomenne à support compact dans U2 — S

transportant P2 sur Px avec leurs champs de Liouville respectifs

Preuve La structure symplectique au voisinage d&apos;un cylindre de Liouville est
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conjuguée à celle d&apos;un modèle Q déterminé par la structure symplectique et le

champ de Liouville au voisinage de la base du cylindre. Comme 7, Y2 au
voisinage de t, Px et P2 ont des voisinages symplectomorphes. L&apos;isotopie va être
donnée par une interpolation. A l&apos;aide d&apos;une partition de l&apos;unité, on choisit un
champ de Liouville Y\ coïncidant avec Yx au voisinage de SuPx et avec Y&apos;2 hors
d&apos;un compact de U2. Cette dernière condition assure que le saturé positif de S par
Y\ est contenu dans U2. Soit Y\ (/ - X)Y&apos;2 -h (2 - i)Y\ ,t e [1, 2]; c&apos;est un champ
de Liouville coïncidant avec Y2 hors d&apos;un compact de U2 — S. Soit Pt le saturé

positif de t par Y\ jusqu&apos;au temps 1; Pt est l&apos;image d&apos;un plongement canonique
(j)t\ t x [0, 1] -? U2 et t 6 [1, 2] i—? &lt;t&gt;t est une isotopie d&apos;un plongement canonique
&lt;/&gt;t:r x [0, 1] -? U2 et r e [1, 2] h» &lt;/&gt;, est une isotopie hamiltonienne de plongements.
L&apos;isotopie cherchée s&apos;obtient par extension des isotopies. cqfd

On note alors Y2 le transporté de Y2 par cette isotopie. L&apos;ouvert U2 est le saturé

positif de S par Y2 et contient C&quot;. Par construction Y2 F, au voisinage de

t x [0, 1]. Les hypothèses du théorème B sont satisfaites, avec Rx a x
[0, 1], jR2 C A&apos; x [0, 1], ce qui achève la démonstration du théorème A.

Chapitre III
ENGOUFFREMENT DE SOUS-VARIÉTÉS LAGRANGIENNES

On revient à la situation décrite dans l&apos;introduction et en se fondant sur le

théorème d&apos;engouffrement des cylindres de Liouville on va établir le théorème

d&apos;engouffrement des sous-variétés lagrangiennes qui y a été annoncé.

On rappelle que:

- (M2n, œ dX) est une variété symplectique exacte convexe à l&apos;infini de dimension

&gt;6,

- L est une sous-variété lagrangienne exacte compacte connexe,

- U(L) est un ouvert de M isomorphe à T*L,
- 7r1(M,L)=0,7r2(M,L)=0,
- {Lt} est un chemin de sous-variétés lagrangiennes compactes A-exactes avec

LoczU(L).

THÉORÈME D&apos;ENGOUFFREMENT GÉNÉRIQUE. L&apos;ouvert cotangent
U(L) peut engouffrer rel. L une ^-approximation de {Lt}.

Tous les champs de Liouville considérés dans ce chapitre sont équivalentes à X

au sens où ils ne diffèrent de À que par un hamiltonien à support compact.
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§1 Préliminaires

1.1 Stratification associée à L.

Considérons l&apos;espace &lt;£ des sous-variétés lagrangiennes A-exactes difféomorphes
à Lo, muni de la topologie C00. Le type de contact d&apos;un élément Le $£ avec L
permet de stratifier 5£ comme suit:

- if° est formé des sous-variétés transverses à L; c&apos;est un ouvert dense;

- if &apos;

est formé des sous-variétés ayant exactement un point de contact avec L,
lequel est quadratique; if1 est une &quot;sous-variété de codimension 1&quot;;

- if2: if -(i^uif1); c&apos;est un fermé de codimension &gt; 1.

Le théorème de transversalité de Thom énonce que génériquement un chemin {L,}
dans if est transversal à if1 et évite if2.

Dans ce cas l&apos;isotopie est formée d&apos;un nombre fini de chemins des types suivants:

- chemin où Lt reste transverse à L;
- chemin conjugué à un chemin élémentaire d&apos;élimination ou de naissance d&apos;une

paire de points d&apos;intersection avec L.

Cette dernière définition sera précisée ultérieurement. Pour le théorème d&apos;engouffrement

générique, il suffit de considérer successivement ces deux types de chemins.

Dans les deux cas, l&apos;ingrédient essentiel est le théorème suivant, établi au chapitre
IL

1.2 Le théorème d&apos;engouffrement des cylindres de Liouville

On considère une hypersurface S compacte connexe, bordant un domaine

compact. La composante non compacte du complémentaire est notée Ext S (extérieur
de S) et la composante compacte est notée Int S (intérieur de S).

On suppose que S est transverse à un champ de Liouville X (qui pointe
nécessairement vers Ext S); on note Ux le saturé positif de S par X. On se donne

un cylindre C A x [0, 1] dans Ext 5, dont la base A A x {0} est contenue dans
S. On suppose que C est un cylindre de Liouville, c&apos;est-à-dire qu&apos;il existe au voisinage
de C un champ de Liouville F, transverse à S et tangent aux lignes {a} x [0, 1], a e A.

THÉORÈME. // existe une isotopie hamiltonienne de Ext 5, stationnaire sur S, à

support compact et poussant Ux jusqu&apos;à contenir C.
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1.3 Première réduction, chemin de type constant

Deux chemins {L,} et {!/,} sont dits conjugués s&apos;il existe une isotopie hamiltoni-
enne préservant L, \j/t : (M, L) -? (M, L), telle que, pour tout t e [0, 1], L\ il/t(Lt). Si
l&apos;ouvert f/(L) peut engouffrer le chemin {Lt} rel. L, il peut aussi engouffrer tout autre
chemin qui lui est conjugué.

LEMME. Un chemin dans if° est conjugué à un chemin, dit de type constant, où

Ltr\L est fixe et où {Lt} est stationnaire au voisinage de V intersection avec L.

En effet, d&apos;une part il existe une isotopie de L en lui-même qui ramène Lt nL
à sa position initiale. Comme L est lagrangienne cette isotopie s&apos;étend en isotopie
hamiltonienne ambiante. D&apos;autre part l&apos;espace des germes de disques lagrangiens
transverses à L en un point donné est contractile. Une seconde isotopie hamiltonienne

permet donc de redresser Lt au voisinage de Lt n L. cqfd

1.4 Seconde réduction, chemin linéaire

Soit U(L0) £ T*L0 un ouvert cotangent muni de sa structure fibrée. Soit/: Lo -» R

une fonction Cx. Le graphe de df dans T*L0 donne une sous-variété lagrangienne
A-exacte. Réciproquement tout élément de if assez proche de Lo est un tel graphe
car la A-exactitude équivaut à l&apos;exactitude dans le cotangent.

Le chemin {Lt} formé des graphes des différentielles tdf9te[0,\], est le

prototype d&apos;un chemin linéaire dans if et la fonction / est sa fonction génératrice.
On obtient un chemin linéaire par morceaux en mettant bout à bout un nombre fini
de chemins linéaires (à reparamétrage près).

Si Lo est transverse à L et si df est assez petite, le chemin linéaire associé est dans
JS?°. Si de plus / est constante au voisinage de chaque point d&apos;intersection avec L,
le chemin linéaire est de type constant.

Grâce à la compacité de l&apos;intervalle [0, 1] et sachant que tout élément de if donne
lieu à un ouvert cotangent, on établit immédiatement:

LEMME. Pour tout chemin de type constant {Lt} et tout e &gt; 0, // existe un chemin
linéaire par morceaux {L&apos;t} ayant les mêmes extrémités et tel que, pour tout
t e [0, 1], L&apos;t soit s-proche de Lt.

Au §2 on établira que le théorème d&apos;engouffrement vaut pour les chemins linéaires
de type constant. Comme conséquence on aura l&apos;engouffrement des chemins de type
constant linéaires par morceaux et donc l&apos;engouffrement des isotopies génériques

{Lt} où Lt reste transverse à L. L&apos;engouffrement des chemins élémentaires de
naissance ou d&apos;élimination d&apos;une paire de points d&apos;intersection avec L sera traité au
§3, achevant ainsi la démonstration du théorème d&apos;engouffrement générique.
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Pour finir ce paragraphe de préliminaires, on dégage une idée d&apos;équivalence très
utile pour l&apos;engouffrement.

1.5 Principe d&apos;équivalence

Si S est une hypersurface transverse à un champ de Liouville Y et borde un
domaine compact, on note W(S9 Y) la réunion de ce domaine et du saturé positif
de S.

LEMME. Soit (Sn F,), t e [0, 1], une famille à un paramètre d&apos;hypersurfaces et de

champs de Liouville transverses {où Yt diffère de Yo par un champ hamiltonien). Alors
W(S0, Yo) et W(SX, Yx) engouffrent les mêmes compacts\ autrement dit9 tout compact
du premier ouvert peut être poussé dans l&apos;autre par une isotopie hamiltonienne.

Preuve. Observant que St+Ôt est encore transverse à Yt pour ôt assez petit, par
une discrétisation du paramètre il suffit de considérer le cas où St So pour tout t.

Soit K un compact de W(S0, Yo) et soit S&apos;o l&apos;image de So par le flot de Yo au temps
T choisi assez grand pour que S&apos;o soit au-delà de K (Ext S&apos;onK &amp;). Soit S\ l&apos;image

de Sx So par le flot de Yx au même temps T. On sait qu&apos;il existe une isotopie
hamiltonienne rel. So poussant S\ sur S&apos;o (truc d&apos;Alexander, lemme 1 §2 Chap. II)
et donc W{SX, Yl jusqu&apos;à contenir K. cqfd

Le principe d&apos;équivalence s&apos;applique évidemment

(1) à des hypersurfaces isotopes en restant transverses à un même champ de

Liouville;
(2) à une hypersurface munie de deux champs de Liouville transverses;

(3) à deux hypersurfaces se déduisant l&apos;une de l&apos;autre par isotopie hamiltonienne.

Avec l&apos;hypothèse du lemme ci-dessus, on dira que So et S, sont des hypersurfaces

équivalentes. Si toutes les St sont au-delà d&apos;un compact K on les dira équivalentes
rel. K. On donne ci-dessous un critère d&apos;équivalence.

1.6 Critère d&apos;équivalence

Soit (S, X) une hypersurface munie d&apos;un champ de Liouville transverse. Soit A

une sous-variété compacte de S et C s A x [0, 1] un cylindre de Liouville engendré

par un champ de Liouville Y (défini seulement au voisinage de C); Y est transverse
à S le long de A et CnS A x {0}. Soit Sf une hypersurface obtenue à partir de

S par un glissement le long des orbites de Y.
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LEMME. Si dim A &lt; n — 2 et quitte à remplacer S par une hypersurface voisine,
S&apos; est équivalente à S.

Remarque. S est bien équivalente à toutes ses approximations; cela ne prouve pas
qu&apos;après glissement elles restent équivalentes.

Preuve. D&apos;après 1.5 il suffit de prouver que Y se prolonge en un champ de Liouville
transverse à S. Au voisinage de C on a Y X + df où df est un champ hamiltonien.
Si u est une fonction, telle qu&apos;en tout point de S on ait u 0 et du{X) &gt; 0, et si du

est le champ hamiltonien correspondant, la transversalité de Y à S s&apos;écrit:

df(du) &lt; du{X).

Disons que du(X) &gt; 1. Soit r max/^ — min/j^. Génériquement sur S, le flot de

du ne va pas de A sur lui-même en temps &lt; T; en effet l&apos;espace des orbites de du est
de dimension 2n — 2 &gt; 2 dim A. Le prolongement de la fonction/vérifiant l&apos;inégalité

ci-dessus se fait sans difficulté (voir chap. I, 2.4). cqfd

Si dim A n — 1, il y a un nombre fini de retours en temps &lt; T. Si de tels retours
n&apos;existent pas, S&apos; est équivalente à S.

§2. Rideau d&apos;un chemin linéaire

2.1 DÉFINITION. Etant donné un chemin linéaire de type constant de fonction
génératrice/: L0-»R, le rideau associé est la réunion R(f) des graphes des différentielles

t df, t e [0,1] dans U(L0) £ T*L0.
Le rideau R(f) est une sous-variété singulière de dimension n + 1, difféomorphe

à Lo x [0, 1], chaque segment au-dessus d&apos;un point critique de/étant écrasé sur un
point.

L&apos;engouffrement d&apos;un chemin linéaire de type constant est réalisé par l&apos;engouffrement

du rideau associé.

2.2 PROPOSITION (Engouffrement d&apos;un rideau). // existe une isotopie hamilto-
nienne cpt : M -? M, t e [0, 1], à support compact, stationnaire sur LuL0 et telle que
hx{U{L)) contienne R(f).

2.3 Réduction à l&apos;engouffrement d9un rideau régulier

Via la projection R(f)-&gt;L0 induite par la projection T*L0-+L0, on étend

/: L0-*R en une fonction/: R(f) -?R. Une sous-variété de dimension n contenue
dans un niveau de/est lagrangienne.
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Remarque. Comme toute isotopie interne à une sous-variété lagrangienne s&apos;étend

en une isotopie hamiltonienne ambiante préservant celle-ci, on peut supposer au
départ que U(L) contient la préimage par/des valeurs critiques de/. Ainsi il reste
à réaliser l&apos;engouffrement d&apos;un rideau régulier (définition ci-dessous) disjoint de L.

DÉFINITION. Un rideau régulier R est une sous-variété (non singulière) de

dimension n + 1, munie d&apos;une submersion n: R -*[a, b] x [0, 1], avec les deux

propriétés suivantes:

(i) la forme induite par co sur R est n*(ds a du), où (s, u) désigne les coordon¬
nées du but;

(ii) les fibres de n sont des sous-variétés compactes sans bord A-exactes.

EXEMPLE. Si i? c: R(f) est la préimage par/d&apos;intervalles de valeurs régulières
de / alors R est un rideau régulier. Sur chaque composante connexe de R on a

s o n =f et u o n l — t (la raison de ce retournement de la verticale apparaît plus
loin).

Le bord principal du carré [a, b] x [0, 1] est la réunion Fp des trois côtés

{a} x[0, 1], [a,b] x {1}, {b} x [0, 1]. Le bord libre F, est le quatrième côté

[a,b] x {0} (Figure 9).

Le bord principal du rideau R est dpR n~](Fp) et le bord libre du rideau est

d,R n-\Ft).
D&apos;après la remarque ci-dessus l&apos;engouffrement d&apos;un rideau se réduit à la

proposition suivante.

PROPOSITION (Engouffrement d&apos;un rideau régulier). Soit R un rideau

régulier. Soit K un compact de U(L) tel que KndpR et qui se rétracte sur un polyèdre
de codimension &gt;3. Alors, sous Vhypothèse de convexité à Vinfini, il existe une

isotopie hamiltonienne &lt;pt: M -&gt;M, t e [0, 1], à support compact, stationnaire sur K et

telle que hx(U(L)) contienne R.

u

Fe
Figure 9
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Pour déduire 2.2, on prend R comme dans l&apos;exemple ci-dessus et K
LuLou(R(f)-R).

La stratégie est la suivante: on considère une hypersurface S dans U(L) au-delà
de K et un champ de Liouville X, transverse à S, tel que Ext S n U(L) soit le saturé

positif de S. On prend S transverse à R. Supposons provisoirement qu&apos;il existe un
champ de Liouville Y transverse à S et tangent à R. L&apos;image de S en un temps F

assez grand du flot de Y est au-delà de R. Le principe d&apos;équivalence 1.5 donne
l&apos;engouffrement cherché.

En fait, cette méthode se heurte à des obstructions mais on peut au moins

simplifier SnR jusqu&apos;à pouvoir appliquer le théorème d&apos;engouffrement des cylindres

de Liouville (1.2) qui a une hypothèse moins restrictive concernant le champ
Y.

2.4 Champ de Liouville sur un rideau régulier

Les deux remarques suivantes sont élémentaires:

(1) Tout champ de vecteurs sur [a,b] x [0, 1] dont les orbites vont du bord
principal au bord libre peut être rendu de Liouville pour ds a du (resp. anti-
Liouville l&apos;opposé d&apos;un champ de Liouville) en le multipliant par une fonction
positive convenable, de sorte que son flot dilate (resp. contracte) les aires exponen-
tiellement.

(2) Tout champ tangent à R relevant un champ de Liouville de [a, b] x [0, 1] est

la restriction d&apos;un champ de Liouville pour œ, équivalent à k car les cycles de

dimension 1 de R sont dans les fibres de n sur lesquelles k est exacte. Bien entendu,
ce champ global ne peut pas généralement être transverse à S; dans ce qui suit cette

question est étudiée de plus près.

2.5 Contour apparent

Si S est une hypersurface transverse à R, S nR est une variété de dimension n

dont le rang symplectique est non constant. Elle est de rang 2, sauf le long du

contour apparent à la source de n \SnR, lieu qui génériquement est une courbe F
et en chaque point duquel le plan tangent à S n R est lagrangien.

Pour s g [a, b] tel que S soit transversal à n~l({s} x [0, 1]) on note hs la fonction
hauteur u © n\Snn~l({a} x [0,1]). Les points critiques de hs sont les points de F
d&apos;abscisse s. Génériquement F est l&apos;adhérence de \JS cv&apos;\ihs.

On a une autre caractérisation de F:
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LEMME F est le heu des points où R est tangent aux caractéristiques de S.

Preuve Si z g F, le plan tangent à S n R en z est lagrangien donc il doit contenir
la direction caractéristique de TZS Si z$F, il existe un vecteur v tangent à la fibre
de n contentant z et transverse à S, si t est un vecteur tangent à R, œ(v, t) 0 ce

qui interdit que t soit dans la direction caractéristique de S cqfd

Le contour apparent au but n(F) est une courbe qui génénquement ne présente

pas de points triples et un nombre fini de points remarquables

- points doubles à croisement normaux,
- points de rebroussement,

- points à tangente verticale (parallèle à d/du)

Pour chaque arc a c F tel que n(&lt;x) ne contienne aucun point à tangente verticale
et aucun point de rebroussement sauf éventuellement aux extrémités, on peut associer

un indice, l&apos;indice de Morse de la fonction hateur hs au point de a d&apos;abscisse s (qui
est indépendant de s) On peut associer aussi la variété instable Wu(&lt;x) pour un champ
descendant tangent aux feuilles Snn~l({s} x [0, 1]) et qui sur chaque feuille est de

gradient pour hs au sens d&apos;une métrique auxiliaire

2 6 LEMME Soit A une bande verticale dans [a, b] x [0, 1]. On suppose que

n(F)nA n(ot) où a est un arc de F dont la projection n&apos;a pas de tangente verticale.

Alors il existe un champ de Liouville Z tangent à n;-1^) avec les propriétés suivantes:

(a) Z relevé un champ de Liouville vertical sur A

(b) Z est transverse à S le long de Snn~l(A) et pointe vers Ext S

Preuve En un point de a, un vecteur tangent au rideau et pointant vers l&apos;extérieur

de S a une composante sur djdu dont le signe + ou — est indépendant du point sur

a, car 7c(a) n&apos;a pas de tangente verticale Connaissant ce signe on détermine sur A

un champ de Liouville £ vertical dirigé dans le même sens On choisit des relèvements

locaux de £ que l&apos;on recolle par partition de l&apos;unité En un point de S n R qui n&apos;est

pas sur le contour apparent, on est libre de choisir le relèvement pointant vers
l&apos;extérieur ou l&apos;intérieur de 5, on fait le premier choix. cqfd

21 Un lemme de la théorie de Morse

Le lemme suivant est bien connu en théorie de Morse. La situation est la même

que dans le lemme précédent

LEMME Soit {n(u)x}, t g [0, 1], un glissement descendant de l&apos;arc n(oc) le long des

verticales, fixe près du bord Alors il existe un glissement de Snn~l(A) le long de
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Z, à bord fixe, tel que pour tout x e [0, 1], n(a)x soit le contour apparent de

[S nn~l(A)]x. De plus le glissement est fixe hors d&apos;un voisinage de Wu(ot).

Commentaire. Tout se passe dans un voisinage du Z-saturé descendant de

Wu(a), noté Wuz(&lt;x). C&apos;est une sous-variété (à bord et coins) et chaque orbite de Z
qui lui est tangente descend jusqu&apos;au niveau u 0.

2.8 Descente d&apos;un point

LEMME. Soit A un sous-rectangle [a\ b&apos;] x [0, 1] de [a, b] x [0, 1]. On suppose
que n(F) r\A est connexe et ne contient qu&apos;un point remarquable n(z0). Alors:

(1) il existe une isotopie hamiltonienne de A à support dans iniA descendant n(zQ)
jusqu&apos;à un niveau inférieur {u =ux) donné à l&apos;avance. De plus, au cours de

Visotopie l&apos;image de tout segment vertical descendant d&apos;un point de n(F) reste
verticale au-dessus du niveau ux.

(2) Le relèvement à R est la restriction d&apos;une isotopie hamiltonienne ambiante

préservant R. L&apos;allure du contour apparent au but est préservée {même nombre
de points remarquables).

(3) Les mêmes conclusions valent encore si n(F) nA 0 et si z0 est un point
quelconque de n~l(A)nS.

Preuve. (1) II existe une isotopie de plongements de n(F) nA-^A, déplaçant
n(z0) comme on le veut, déplaçant chaque point de n{F) sur sa verticale et préservant
l&apos;aire de chaque composante du complémentaire. Elle n&apos;introduit aucun point
remarquable. La figure 10 représente le cas d&apos;un point de croisement. Cette isotopie
se prolonge en isotopie de A préservant l&apos;aire. Si on prend soin des deux conditions
suivantes, on peut avoir le résultat complémentaire demandé sur les verticales:

- l&apos;aire balayée par tout arc de n(F) nA est plus petite que l&apos;aire en-dessous du
niveau {u ux}\

- le déplacement vertical des points qui montent est inférieur à ux (Figure 10).

(2) Soit (pt un relèvement à R de cette isotopie. C&apos;est une isotopie hamiltonienne

pour co\R qui donc se prolonge en isotopie hamiltonienne ambiante par prolongement

de fonctions. Enfin le contour apparent de cpt(SnR) est l&apos;image par cpt du
contour apparent de SnR. Le point (3) est évident. cqfd

2.9 Démonstration de l&apos;engouffrement du rideau

Sans le répéter, il est entendu que toutes les isotopies sont stationnaires sur le

compact K donné dans la proposition 2.3.
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Figure 10

LEMME 1. // existe une isotopie hamiltonienne de M poussant S en S&apos; de sorte

que le contour apparent au but de S&apos;nR n&apos;ait aucun point remarquable.

Preuve. On considère le point remarquable z0 le plus bas, puis sur la même

verticale le point n(zx) le plus bas de 7r(T). On applique le lemme 2.8 à ce point et
ainsi de suite jusqu&apos;à l&apos;appliquer à n(z0). A chaque fois on utilise une bande verticale

qui descend un peu en-dessous de {u 0}. On fait ainsi fuir n(z0) vers le bas du rideau
et on diminue d&apos;une unité le nombre de points remarquables. cqfd

Après ce lemme, le contour apparent au but se présente comme suit (on appelle
de nouveau S l&apos;hypersurface). Chaque branche du contour apparent porte un indice

compris entre 0 et n — 1.

LEMME 2. // existe une hypersurface S&apos; équivalente à S (rel. K) telle que le

contour apparent au but de S&apos;nR ne présente aucun point remarquable et que des

branches d&apos;indice n — 1 (Figure 11).

Figure 11
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Preuve. Soit a une branche du contour apparent d&apos;indice k &lt; n — 1, minimal; on
prend la branche la plus basse parmi celles d&apos;indice minimal. Alors, pour un champ
de gradient générique, Wu(ol) descend jusqu&apos;au niveau {u 0} et pour chaque z e a
d&apos;abscisse s on a une membrane ms, disque (à coins) de dimension k + 1, contenue
dans n~l({s} x [0, 1]), s&apos;appuyant sur Wu(z) et descendant jusqu&apos;au niveau {u 0};
l&apos;intérieur de ms évite SnR. La collection des membranes forme un cylindre de

Liouville C dont une des extrémités est la variété Wu{ol) de dimension k + 1 &lt; n et

dont le champ de Liouville générateur Y est tangent aux membranes.
1er cas: k &lt; n — 2. Les hypothèses du lemme 1.6 sont satisfaites. Par glissement

on fait fuir cette branche du contour apparent par le bas du rideau.
2ème cas: k n — 2. On est en présence d&apos;une obstruction. Précisément si dH est

un champ hamiltonien tangent à S, il existe un temps T (dépendant de C et du
choix de dH) tel que les retours du flot de dH de Wu(oc) sur lui-même en temps &gt; 0

et &lt; T soient une obstruction à trouver un champ de Liouville transverse à S et

tangent à C. Or génériquement il n&apos;y a qu&apos;un nombre fini de points de Wu(a) ayant
un tel retour. De plus si s est l&apos;abscisse d&apos;un tel point z0, génériquement le retour
n&apos;a pas la même abscisse. On fait fuir z0 vers le bas du rideau par application du
lemme 2.8.

Après cette isotopie le temps T à considérer est le même qu&apos;initialement car
S, dH et le champ de Liouville Y tangent à C le long de Wu(oc) sont transportés par
la même isotopie en vertu du complément au 1 du lemme 2.8. Une fois qu&apos;on a fait
fuir ces obstructions, le champ Y se globalise en un champ de Liouville transverse
à S et le glissement de S au voisinage de C donne des hypersurfaces équivalentes.

cqfd

Le contour apparent au but se présente maintenant de la même façon, mais

toutes les branches ont l&apos;indice maximum n — 1. Chaque composante de S n R est

un disque Dn bordant, avec un w-disque de {u =0}, une (n + l)-boule anguleuse.
L&apos;ensemble de ces disques est muni d&apos;un ordre partiel (un disque est au-dessus
d&apos;un autre); supposons pour simplifier qu&apos;il n&apos;existe qu&apos;un disque maximal. On peut
alors réaliser les sommes connexes au bord de certaines composantes de SnR.
Précisément:

LEMME 3. // existe S&apos; hypersurface équivalente à S (rel. K) telle que S&apos;nR ne

soit formé que de disques maximaux et que le contour apparent au but de chacun
d&apos;eux ait l&apos;allure ci-dessous (Figure 12).

Preuve. Il suffit en fait de savoir faire la somme connexe du disque maximal

avec un disque immédiatement inférieur dont le contour apparent au but est lui
aussi immédiatement inférieur à celui du disque maximal; puis on poursuivra en
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Figure 12

traitant séparément les disques maximaux ainsi obtenus. En topologie différentielle
ordinaire, on sait modifier l&apos;intersection d&apos;une hypersurface séparante, ici S, et d&apos;une

sous-variété, ici Lx (le bas du rideau), par une isotopie de S pour réaliser la somme
connexe de deux composantes de S nL, joignables par un arc de Lx qui ne retraverse

pas S.

Il y a deux conditions homotopiques et une condition de dimension. Les condi-
toins homotopiques sont

S)=Q et 7i,(IntS, S)=0.

Elles sont vérifiées car S est isotope au bord d&apos;un voisinage tubulaire de L dans

M avec nx(M, L) 0, ce qui garantit la première condition, et codim L &gt; 2 ce qui
garantit la seconde. La condition dimensionnelle est codim L, &gt;2. Dans ce cas il
existe un 2-disque de Whitney A avec la moitié du bord dans S et l&apos;autre dans Lx.
L&apos;isotopie est donnée par un modèle au voisinage de A.

Comme K se rétracte sur un polyèdre de codimension &gt; 3, A peut être pris disjoint
de K et l&apos;isotopie se fait loin de K.

Pour modifier l&apos;intersection S nR par somme connexe au bord, sachant que Lx

est dans le bord de R, on choisit A tangent à 8/du le long de L, nA, du côté de la

tangente sortante de R; le modèle de Whitney fait le travail demandé.

Pour contrôler le contour apparent de la projection n: S nR -&gt;R2 et le réaliser
tel qu&apos;il est demandé il suffit de choisir l&apos;arc Lx n A avec les deux propriétés suivantes:

(1) une extrémité de Lxc\A est sur le contour apparent de la composante
&quot;inférieure&quot;;

(2) s o n\Lx nA est une fonction sans point critique.
(3) s o n(LxnA) ne recoupe pas le contour apparent au but.

En présence d&apos;une structure symplectique, le disque A peut être symplectique. En
effet on commence par le rendre symplectique au voisinage du bord, ce qui est
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facile dès que la condition générique, que A nS soit non tangent aux caractéristiques
de S, est satisfaite; on peut aussi supposer que l&apos;intégrale de œ sur A est non nulle.
Puis par le h -principe de Gromov, on déforme À rel. un voisinage du bord en un
disque symplectique immergé, et donc plongé en position générale.

Lorsque À est symplectique, il peut être muni d&apos;une structure de cylindre de

Liouville. Comme son bord dans S est un arc, on peut appliquer 1.6 et conclure que
l&apos;hypersurface S&apos; donnée par le modèle de Whitney est équivalente à S. cqfd

LEMME 4. Dans la situation donnée par le lemme 3, il existe un champ de

Liouville Ç sur le rectangle image de te, transversal à chaque branche du contour

apparent, pointant dans le sens indiqué par Ext 5 et dont toutes les orbites coupent

{«=0}.

Remarque. Le sens en question ne se lit pas sur le contour apparent au but car,
s&apos;il est vrai que deux disques ordonnés de S nR (avant la somme connexe) donnent
des branches ordonnées du contour apparent au but, deux disques non comparables

peuvent aussi donner des branches ordonnées.

Preuve. On la fait par récurrence sur le nombre de branches de n(F). D&apos;après 2.4

1), la question est purement topologique. Soit £0 une solution pour k — 1 branches.

On considère une bande A d&apos;orbites de £0 aboutissant dans {u 0} et on y insère

une courbe y avec un point de rebroussement, munie d&apos;un champ transverse. Dans
les deux cas de figures, on peut modifier £0 sur A pour le rendre compatible avec cette

donnée (Figure 13). cqfd

On peut maintenant conclure. Dans la situation donnée par le lemme 3, S nR
est un disque D bordant avec un disque D&apos; de {u 0} un domaine C dans Ext S.

Le champ de Liouville £ donné par le lemme 4 se relève dans C en un champ de Liouville

dont les orbites vont de D à D&apos;. Donc C est contenu dans un cylindre de Liouville.

Le théorème 1.2 est applicable et finit l&apos;engouffrement du rideau. cqfd

Figure 13
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§3. Engrouffrement des chemins élémentaires de naissance ou d&apos;élimination

On rappelle que if1 est l&apos;ensemble des L&apos; e &amp; ayant exactement un contact
quadratique avec L.

3.1 Modèle du contact quadratique

Soit L&apos; e&lt;£x et soit a le point de contact de L&apos; avec L. D&apos;après Darboux, il
existe un voisinage de a isomorphe à un polydisque D x Z&gt;*, muni de la forme

symplectique standard de T*Mn, où D x {0} est un voisinage de a dans L et où les

fibres {pt} xD* coupent L&apos; en un seul point et transversalement. Dans ces

coordonnées, L&apos; est le graphe de df pour une certaine fonction /: D -» R ayant à

l&apos;origine une singularité de codimension 1. Donc quitte à rétrécir D autour de a et

à y choisir des coordonnées convenables (xl9 xn), on a la forme normale:

/(*!, ...,xn)=x\ + q(x2, ...,*„)

où q est une forme quadratique non dégénérée. Par conséquent ce qui est connu sur
cette singularité et sur son déploiement universel établit que JS?1 est une sous-variété

de codimension 1 et que tout germe de chemin y: (R, 0) -?(JS?, i?1), C00 et transverse

à -S?1 en U est conjugué (au sens 2.3) à un chemin dit &quot;élémentaire&quot; ou
chemin de Cerf-Smale (voir Cerf [Ce]).

Le germe de chemin y en L&apos; — y(0) est élémentaire si, pour t voisin de 0, la

sous-variété y(t) passe dans le polydisque D x D* selon le graphe de la différentielle
de la fonction

(xl9. xn) i-&gt; x\ ± txx -h q(x29. xn).

Avec le signe +, le chemin est dit élémentaire d&apos;élimination parce que deux points
d&apos;intersection avec L disparaissent lorsque t croît de 0_ à 0+. Avec le signe —, le

chemin est dit élémentaire de naissance.

3.2 Un autre modèle de chemin élémentaire

A partir des formules précédentes, on effectue un changement d&apos;axes qui fait

disparaître la notion d&apos;indice pour q. Voici donc une nouvelle description du

chemin élémentaire typique.
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Le modèle est un polydisque B, voisinage du point de contact a de L&apos; avec L.
Il a des coordonnées

{(*, t,y, n) | (x, 0 e[~ô, ô2l (y, n) e R&quot; l x (R&quot;&quot;1)*, \\y\\ &lt; R, \\fl\\ &lt; R}

et, sur B, œ dx a d£ + dy a J^.
L&apos;intersection L ni5 est définie par &lt;^ 0, rj 0, section nulle de T*Mn. L&apos;intersection

L&apos;nB est définie par y =0, £, —x1. La situation de produit cartésien est

résumée sur la figure, où il faut penser ô &lt; 1 (Figure 14).

Le chemin élémentaire d&apos;élimination, vu dans B, consiste en une translation
parallèle à l&apos;axe £. Précisément, pour / g [0, 1],

Hors de B, Lt est seulement assujetti à rester transverse à L. Pour un chemin de

naissance, on change t en 1 — t.

Remarque. On peut modifier le modèle précédent pour que le chemin d&apos;élimination

soit à support dans le polydisque. Cela suppose que jR soit assez grand devant
ô. Nous n&apos;avons pas besoin d&apos;utiliser ce modèle.

Avec le modèle ci-dessus, on pose les deux définitions suivantes.

(a) Pour Lo, dont deux points d&apos;intersection avec L sont en position de

s&apos;éliminer, on appelle disque de Whitney le disque défini par

i2
4

Figure 14
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On dit que A0 {y 0, rj 0, x2 - 62/4 &lt;Ç&lt;x2 + ô2/4} est le disque de Whitney
étendu

(b) Pour L,, qui ne rencontre pas L nB, on appelle arc de naissance le segment

3 3 Engouffrement d&apos;un chemin élémentaire

PROPOSITION Le principe d&apos;engouffrement est valide pour tout chemin

élémentaire de naissance ou d&apos;élimination

Preuve Disons que {Lnt e [0,1]} est un chemin élémentaire d&apos;élimination,

Lo a U(L) La première étape consiste à engouffrer le disque de Whitney A Comme
7i2(M, U(L)) 0 et que dim A &lt; \ dim M, on peut le faire en vertu du A-principe
[G2] Donc on peut supposer A c U(L) Comme le disque de Whitney étendu a la

propriété que LuLouA° se rétracte sur LvLovA, le même argument permet de

supposer que A ° c U(L)
Ensuite, par les mêmes réductions qu&apos;au §2, on peut supposer qu&apos;en dehors du

polydisque B, Lt est stationnaire au voisinage de son intersection avec L et que le

chemin Lt est linéaire On est ramené a l&apos;engouffrement d&apos;un rideau régulier R
contenant B

La projection n R -&gt;[a, b] x [0, 1] induit un plongement du disque de Whitney
étendu A °, allant du niveau u 0 au niveau u 1 Donc les mouvements de

l&apos;hypersurface S effectués en 2 9 pour simplifier le contour apparent ont tous heu

dans le complémentaire de J°, donc dans le complémentaire de L, ce qui achève

l&apos;engouffrement du chemin d&apos;élimination

Pour un chemin de naissance (le même chemin {Lt} parcouru de / 1 à t 0),

on réalise d&apos;abord l&apos;engouffrement de l&apos;arc de naissance en utilisant
7i,(M, U(L)) =0, puis l&apos;engouffrement de A0 car LxkjLkjA° se rétracte sur

LxkjLkjJ La fin de la preuve est la même que ci-dessus cqfd
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