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Flat exterior Tor algebras and cotangent complexes’

ANTONIO G. RODICIO

Introduction

Let A be a ring, B and C A-algebras (commutative with unit) and D =B ® , C.
It is well known [M, Theorem 2.2, p. 225] that Tor* (B, C) is a strictly anticommu-
tative graded D-algebra. So we have a homomorphism of graded D-algebras

y: Ap Torf (B, C) » Tor“ (B, C).

In [A,], M. André has introduced for » >0 and W a D-module, homology
modules H,(A4, B, C, W) generalizing in some way the classical homology functors
of André—Quillen H,(R, S, -) (see [A,], [Q,], [Qs]).

The purpose of this paper is to relate properties of y and the vanishing of the
functors H,(A4, B, C, -), n > 3. More precisely, our main result is the following

THEOREM 1. Let A be a ring, B and C A-algebras and D =B® , C. The
following conditions are equivalent:
(1) The D-module Tor{ (B, C) is flat and the canonical homomorphism

v : A p Tori (B, C) - Tor (B, C)

is an isomorphism.
(2) H(4,B,C,-)=0  for j=3.

This theorem has as a consequence two important results, the first one is already
known but the second isn’t.

COROLLARY 2. Let A be a ring, I an ideal of A and B = A|I. The following
conditions are equivalent:

! Partially supported by Xunta de Galicia, XUGA 20701A92.
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Flat exterior Tor algebras and cotangent complexes 547
(1) The B-module I/I” is flat and the canonical homomorphism
A gI|/I? — Tor* (B, B)

is an isomorphism.
(2) H(A,B,-)=0  forj=>2.

This result is due to Quillen [Q,, Theorem 10.3], [Q,, Theorem 6.13].

COROLLARY 3. Let A be a ring, I an ideal of A, B = A|I, and E the Koszul
complex associated to an arbitrary set of generators of I. The following conditions are
equivalent:

(1) The B-module H\,(E) is flat and the canonical homomorphism of graded

algebras

A gH\(E) — H(E)

is an isomorphism.

(2) H(A,B,-)=0  forj>3.

Moreover, the following conditions are equivalent:

(V') The B-module H,(E) is projective and the canonical homomorphism of graded
algebras

A pH\(E) — H(E)

is an isomorphism.
(2) H(A,B,-)=0  forj=>3.

The proof of Theorem 1 is divided in two parts. In the first one we use an
analogue to the fundamental spectral sequence of Quillen [Q,, Theorem 6.8] to
relate the vanishing of H,(4, B, C, -) Zvith the structure of the homology algebra of

a certain derived tensor product D ® , D. In the second part we use a spectral
sequence

L
E?, =Tor"" (D, D), = H(D ®y D)

L
to compare Tor? (B, C) with H(D ® y D).

Proofs. First recall the definition of H,(4, B, C, W). Let 4 be a ring, B and C
two A-algebras, D =B ® , C and W a D-module. Let X be a cofibrant simplicial
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A-algebra resolution of B, let Y=X ®_, C, and let Z be a cofibrant simplicial
Y-algebra resolution of D. Then

LB—CIA ‘=Qz| y ®zD

is a cofibrant simplicial D-module, whose normalization is a chain complex of
projective D-modules independent up to homotopy equivalence of the choice of X
and Z, and which therefore represents an object unique up to isomorphism of the
derived category of the category of D-modules. For a D-module W

Hn(A, B, C, W) = Hn(LB—-C| A ®D W).

Notice that if J is the simplicial ideal kernel of the surjective canonical
homomorphism Z ® y D - D, then Ly_ ¢, =J/J%

The resolution Z can be obtained by the ““step by step” construction [A,, Chap.
IX]. So we can assume Y, =Z, for n =0, 1 and so

H/(A,B,C,W)=0 forn=0,]1.

For each p, J, is the ideal generated by the variables of the polynomial
D-algebra (Z ® y D),. In particular J,=0 and J, is a regular ideal. Quillen’s
convergence theorem [Q;, Theorem 6.12] implies H,(J") =0 for p <n.

Therefore the spectral sequence resulting from filtering Z ® , D by the powers
of J, is a convergent spectral sequence located in the first quadrant

L
E127,q = Hp+q(37)LB—c|A) = H(D ®y D). (D

since H(Z ® yD) = H(D (I;()Y D) as follows from [Q,, Theorem 6-(a), p.I1.6.8],
because the Y,-algebra Z, is free for all n.

This spectral sequence is an analogue to Quillen’s fundamental spectral se-
quence.

With the shuffle product ® [Q,, p.11.6.6] Z ® y D with the differential induced
by the face operators, is a strictly anticommutative differential graded D-algebra
with a system of divided powers. Moreover Z ® , D o J o J? > - - - is a filtration of
Z ® y D by differential graded ideals. So the spectral sequence is a spectral sequence
of bigraded algebras with divided powers.

Since Hy(Lg_c4) =H(Lg_cj4) =0 we have [Q,, Corollary 7.30] H,
(SHLg_c|4) = 0if j < 2n, iL.e., EZ, =0 for p <g, and there exists a canonical map

0:I'pHy(Lg_c4) = H(D ®y D) which is the unique homomorphism of graded
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D-algebras with divided powers extending the edge isomorphism H,(Ly_(|,4) =
L

E%,l = H,(D ®y D).

Recall now some notation from [Q,]. For a D-module T, K(T, n) will be the
simplicial D-module whose normalization is the complex with 7 in dimension # and
zero in the remaining ones. We have a canonical morphism

LB—-C]A - K(H2(LB—-C[A), 2)
which is a 2-equivalence (i.e., it induces isomorphisms in homology in dimensions
<2).

For an object X, cX will be the constant simplicial object with (cX), = X, and

whose faces and degeneracies are the identity map of X.
Finally, 2 is the suspension functor, so that

H,, \(£X) = H(X).

The proof of the following proposition is analogous to that of Theorem 10.3 of
[Q,]. We give the details for convenience of the reader.

PROPOSITION 4. The following conditions are equivalent
(i) H;(A,B,C,-) =0 for j >3
L
(ii) The D-module H,(D ® y D) is flat and the canonical homomorphism

L L
¢:I'pH,(D ®yD)->HD ®yD)

is an isomorphism

Proof. From the universal coefficient spectral sequence
E;,=Tor) (H,(Lg_c(4),-) = H(4, B, C, -)

we deduce that condition (i) is equivalent to: H,(D (1;9 y D) is D-flat and
LB—C]A “" K(HZ(LB-CM)’ 2)

is an n-equivalence for all n.
Note that K(H,(Lg_c|4), 2) is homotopically equivalent to ZX(c(H,(Lg - ¢ 4)))-
Therefore, using [Q,, 7.21] we obtain
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H,, (SHK(Hy(Ls_c|4),2) = H, (SHZZ(c(Hy(Lg_c(4))))
= H,( Ap2Z(c(Hy(Ls_ ¢ 4)))
=H,_,(I'be(Hy(Lg_c4))

_ {0 ifp—q#0
IyH,(Lg_¢4) ifp—q=0.

So, assuming that Lz_ ¢, = K(H>(Ls_ ¢ 4), 2) is an n-equivalence, n > 2, then
by [Q,, 7.3] so are the induced maps of symmetric powers, hence we have

Erg=H, (ShLs_cj4) =H,, (SHKH(Ls_c|4),2))

_{O ifp+qg<np#gq
IF'pH,(Lg_cj4) ifp+q<np=q.

If (i) holds we can take n = o0 and so

2 {0 if p#gqg
P r?)Hz(LB—CM) ifp=gq.

So the spectral sequence (/) degenerates showing that the edge homomorphism
0:T'pHy(Lg_c|4) > H(DD éYD) is an isomorphism. Therefore ¢ : ', H,(D (>L§ v
- H(D (f<) yD) is an isomorphism.

Now assume that (ii) holds. We will prove by induction on n that
Lp_cj4— K(Hy(Lg_ | 4), 2) is an n-equivalence for all n. Assuming 7 > 2 and that
it is an n-equivalence, to see that it is an (n + 1)-equivalence we have to prove that
Ei,l =H,, l(LB—C|A) =0.

Since
3 _{0 ifp+qg<np#gq
P \FpHy(Lp_cj4) ifp+q<np=gq

the only possible non zero differential coming from E7, is

P
E2,=FEh, — Ef,=E., withn=2p.

nl =

As the edge homomorphism is an isomorphism we have d”=0. So EZ, =

E,Z:,=O.

~ Since H(Y) = Tor” (B, C), Theorem 1 is a consequence of Proposition 4 and the
following general result.
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PROPOSITION 5. Let Y be a simplicial ring and D = H,(Y). Then the follow-
ing conditions are equivalent:
(i) The D-module H,(D ® y D) is flat and the canonical homomorphism

L
¢ :ThHy,(D ®y D) — H(D ®, D)

is an isomorphism.
(ii1) The D-module H,(Y) is flat and the canonical homomorphism

y: ApH(Y)— H(Y)
is an isomorphism.
Before proceeding to the proof of Proposition 5 we will need some remarks.
Remark 6. By [Q,, Theorem 6-b), p.I1.6.8] there exists a spectral sequence
E2, =Tor™ (D, D), = H(D ® D). (II)

Since Y is a simplicial ring and D is a simplicial Y-algebra, this spectral
sequence is of bigraded algebras with divided powers.

In fact we have the following. Let Y be a simplicial ring and D a simplicial
Y-algebra. Then, on the lines of the construction of [Q,, pp.I1.6.13-6.14], it is
possible to generalize the “step by step” method to obtain a bisimplicial Y-algebra
P and a morphism P — D such that:

(1) For each j, P, is a free simplicial Y;-algebra resolution of D;.
(2) For each i, the graded H(Y)-algebra H(P,,) is free as an H(Y)-module and
the induced sequence

T H(Pz,*) - H(Pl,*) - H(Po,*)

is a resolution of H(D).
The details of the construction of P are in [B]. ,
Now, if E is another simplicial Y-algebra and ¥ — Q — E is a factorization of
the canonical morphism Y — E with i cofibration and p trivial fibration, then we

have a bisimplicial Y-algebra

Mi,j =Pi,j ®y} Qj'
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From the two spectral sequences of a double complex, we obtain
L
E}, =Tor[™ (H(D), H(E)), = HD ®E).

This spectral sequence is of bigraded algebras with divided powers since it comes
from a bisimplicial algebra.

Remark 7. Let L be a flat D-module and consider on the bigraded algebra
ApL ®,T'pL the wunique D-derivation of bidegree (1, —1) such that
diy®1)=0,d(1®7,x) =x®7y,_1X, x,y e L. Then (A p,L ®pT'}L,d,) is a flat
resolution of the A ,L-module D: by Lazard’s Theorem, we can assume that L is
a free D-module of finite type and then by Kiinneth formula we can take L = D. In
this case it is clear.

This flat resolution M, = AL ®, '5L is graded in the following way:
M,,= A5 *L ®, ') L. Using this resolution we deduce

0 ifp#
Tor,»*(D, D), = {F%L ifﬁ = Z

Now we come to the proof of Proposition 5. Consider the spectral sequence of
Remark 6

L
E:, =Tor" (D,D), = H,, (D ®yD).
For it, the following hold:
E;,=Tor,*"(D,D)=0 ifp>0

0 ifg>0

11
D ifg=0 (D)

E(z),q = (D ®H(Y) D)q = {

El, =H(Y) ®ue) D), = (H (Y)/H (Y)?),.

In particular we get an edge isomorphism o, : H,(D (IQ)YD) —»FE%, and an
isomorphism E?%, = H,(Y), which show that the flatness assumptions in (ii) and
(iii) are equivalent.

Let A = ApH,(Y) and consider the homomorphism of bigraded D-algebras
with divided powers

I'pE2, =Tor" (D, D) = Tor"") (D, D)
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where the equality is due to Remark 7 and v, , is induced by 7. Since y is bijective
in degrees <n, then y, , is bijective for g < n, hence in the spectral sequence (II) we
have
0 ifp#q,q<n
E2 = ) ’
= {rsms, e av

When (iii) holds we can take n =o0 and get an isomorphism of graded
D-algebras with divided powers §:I'pE}, = H(D (§<ij), hence ¢ =foIpa, is
bijective.

Conversely, let (ii) hold. Since y, is an isomorphism for n =0, 1, assume by
induction that v, is bijective for j <n and some n > 1. We have for p <n a diagram

L 0121, 5
H2p(D ®YD) — Ep,p
¢2p] T l1’2[7

L [’%az
I'yHy(D ® y D) — F%E%,l

which is commutative because a,, is an edge homomorphism in a spectral sequence
(II) of D-algebras with divided powers. Note that ¢,, is an isomorphism by
condition (ii), and ,, is an isomorphism by (IV). So a,, is an isomorphism and
therefore all differentials of the spectral sequence are zero on E; , when p <n and
r > 2. In particular, no differential lands in Ef,, Ef,,,, or E},., for n >2 and
r > 2. Any differential leaving one of these modules lands into some E,, with
p <0, which is trivial. Thus E3,=Ey,, E},, 1 =Ef,., and E3,,  , =E%,,, for
n>2. We have E;, =0 if p + ¢ is odd, and the diagram implies E;}, =0 when
p #q and p +q is even <2n. Therefore EZ,=E3,,  ,=E3,,,=0forn>2.

By (III) we have Coker (y,.,) =E3, ., hence y,., is surjective. In order to
determine Ker (y,, ) we consider an exact sequence of D-modules

n Yn +1
!
n+1 EAn-i-l ? n+l(Y) O

FII

n+1
in which F,_, and F,,, are free. It produces a complex of graded A-modules
A®pn Y
AQpF, \——AQpF,,,—A— H(Y)—0
which is exact in degrees <n + 1. Thus, by using appropriate graded free 4-mod-

ules G, G', G” with G; = G; =G} =0 for j <n +1 we can modify it to obtain the
beginning of a graded free resolution of the graded A-module H(Y) in the form
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A®pF 1))®GC" (A ®pF,. ) )®G —ADG— H(Y) —0.
With its help we see that

0 if j<n

1 (D, H(Y)), =
Tor{ (D, H(Y)), {Coker(r])=K€r(Vn+|) ifj=n+1

Since 7y 1is surjective in degrees <n +1, the projection Q = H(Y)/
H(Y)H(Y)->H(Y)/H _(Y) =D is bijective in these degrees and thus induces
isomorphisms

Torf™ (D, Q), = Tort¥" (D, D), =E}, for2<j<n+]1.

These observations and Remark 7 show that the standard change of rings exact
sequence

Tor; (D, D) — Tor"" (D, Q) — (D ® y(y, Tor! (D, H(Y)))
—> Tor{ (D, D) — Tor{" ¥ (D, Q) — 0

reduces in degree n + 1 to an exact sequence

2.1 +1

Tory (D, D), s —— E3 ., — Tor{ (D, H(Y)), ;1 — 0.

For n =1 the map y,, is bijective, and for n > 1 the module E3,_, is trivial,
hence

Ker (y,.,) = Torf (D, H(Y)),,, =0 for n > 1.

Thus y, ., is injective, so the induction step is complete and the Proposition is
proved.

Corollary 2 follows from Theorem 1 taking C=B and so D =B and
H,(A,B,C,-)=H,_,(A, B, -) [A,, Example 5].

For Corollary 3, let 7 be the set of generators 7,, to which the Koszul complex
E is associated. Let R be the free A-algebra with variables ¢, and consider the
A-algebra homomorphisms f: R — A4, o : R — A, such that p(¢,,) =0, w(t,,) = 1,,.
Denote by 4; and A4, the corresponding R-algebra structures on A. Then there
exists an isomorphism of graded B-algebras H,(E) = Tory (4;, A,). Moreover [A,,
Example 6], H,(R, 44, A, -) = H,(A, B, -) for n >3, and the first part of Corol-
lary 3 follows from Theorem 1.
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In order to prove the second part of Corollary 3, we will need some facts about
the cotangent complex Lg|,. Let X be a simplicial resolution of the A-algebra B
obtained by the “step by step” construction [A,, Chap. IX], [A,, p. 327]. In
particular consider the first three steps. We begin by choosing a system of
generators ¢, of the ideal 1. The first step is a simplicial 4-algebra K with K, = 4, K|
the polynomial A4-algebra on the variables T, and K, ,,, h >0, is the polynomial
A-algebra on the variables

onoioy ol (T),  0<i < - <h<i<h,
where ¢ denotes the degeneration operators. The face operators are determined by
e8(T,) =0, &ey(T,)=t,.

In order to construct the second step, we choose representants s, € K; of a set
of generators of the B-module

MnN

n(K) = MN

where M is the ideal of K, generated by the elements 7, and N the ideal of K
generated by the elements T, — ¢,. The second step is a simplicial K-algebra F with
F,=K,, F,=K,,F, is the polynomial K,-algebra on the variables S,, and
F,.,,h >0, is the polynomial K, ,-algebra on the variables

014408 03(S,),  0<ip < <h<i<1+h
The face operators are determined by

£3(5,) =0,  £3(S,) =0, £3(S,) =s,.

Similarly the third step is constructed by choosing representants z,, € F, of a set
of generators of the B-module 7,(F) to obtain a simplicial F-algebra G with
G,=F,, G, =F,, G, =F,, G, is the polynomial F;-algebra on the variables Z, and
G5, », h > 0, is the polynomial F;, ,-algebra on the variables

O'g+,,0'l;2+h0'23"'0'i3h(zw), OSih<<i2<i]S2+h.

The face operators are determined by

3(Z,) =0, €YZ,)=0, £(Z,)=0, &(Z,)=2z,.
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We have Lg),=J /J? where J is the augmentation ideal of the simplicial
B-algebra X ® , B. Denote by N the normalization functor from simplicial B-mod-
ules. We have

(NUIT?); = @ BZ,, (NUIJ?),=© BS,

and the image of the differential d; of N(J/J?) coincides with the image of the
canonical homomorphism [A,, Remarque 23]

n,(F) - @ BS,.
Therefore [4,, Proposition 24]
Coker d, = n, (K).
Moreover
(NUI); = @ BT,
and the differential d; places in a commutative diagram

d-
® BS, — @ BT,

N A

1 (K)

where 7 is the homomorphism sending S, on the generator represented by s, and ¢
the canonical homomorphism [A,, Remarque 23].
On the other hand

MnN
MN

m (K) = = Tor{" (4, 4)

where in the first variable in Tor is the structure given by ¢¢ and in the second the
one given by ¢}. If E denotes the Koszul complex associated to the elements ¢,, then
this Tor is isomorphic to H,(E). Moreover, through this isomorphism
n,(K) = H,(E), the homomorphism ¢ : n,(K) - @ BT, corresponds to the canoni-
cal homomorphism *

H(E) — E ®,B= @ BT,
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induced by the inclusions of cycles and boundaries Z,(E) c E,, B,(E) < IE,. Thus
we have the following proposition:

PROPOSITION 8. Let A be a ring, I an ideal of A, B = A|I and E the Koszul
complex associated to an arbitrary set of generators of 1. Then we can choose Ly, 4
satisfying:

(i) The cokernel of the differential ds of Ly , is a B-module isomorphic to H,(E).

(i1) There exists a morphism of complexes

¢
LB|A — (H\(E) — E, ® 4 B)

where the second complex is concentrated in degrees 2 and 1. This morphism
induces isomorphisms in homology in dimensions <?2.

Now the cohomological part of Corollary 3 follows from the homological part
and Proposition 8.

Remark 9. From Theorem 1 it follows that H;(4, B, C, -) =0 for all j > 2 if and
only if Tor;! (B, C) =0 for all p > 1. This result is due to André [A,, Remarque 39].
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