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Constructing taut foliations

RACHEL ROBERTS

0. Introduction

In ([5]-[13]), David Gabai uses taut foliations to prove an impressive collection
of results. In this paper, we use a refinement of Gabai’s techniques to construct taut
foliations which permit a pleasingly simple description. For certain knots k, the
foliations constructed allow one to conclude that k has Property P: no nontrivial
Dehn surgery on k yields a simply-connected manifold. In particular, it follows that
a large class of alternating knots satisfies Property P. More precisely, we obtain the
following.

THEOREM 0.1. Let k be a knot in S* with alternating projection in which there
is nontrivial nesting among the Seifert cycles. Then any manifold obtained from S* by
nontrivial Dehn surgery along k contains a taut foliation. Hence, nontrivial Dehn
surgery along k yields a manifold with infinite fundamental group.

THEOREM 0.2. Let k be a nontrivial knot in S with alternating projection in which
there is no nesting among the Seifert cycles. Then either all half-twists are positive and
any manifold obtained from S* by Dehn surgery along k with nonnegative surgery
coefficient contains a taut foliation or else all half-twists are negative and any manifold
obtained by Dehn surgery with nonpositive surgery coefficient contains a taut foliation.

Motivated by the fact that any closed manifold can be realized by Dehn surgery
along some knot or link in S3, the construction proceeds by first yielding taut
foliations in certain knot exteriors. Each foliation possesses only noncompact leaves
and meets the boundary torus in parallel curves of some slope r; it therefore extends
to a foliation without compact leaves in the closed manifold obtained by Dehn
filling with coefficient r. In Section 1 we describe the construction for alternating
knots. In Section 2 we give a technical description of those knots for which the
construction may proceed.

Wanting to promote the theory of essential laminations (see [15]), we hasten to
add that the objects first recognized were the underlying laminations and it is on the
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level of laminations that most of the interesting behaviour occurs (see Theorem 2.3
and Example 2.4). The foliations were in fact discovered as we sought to generalize
the essential lamination constructions of Allen Hatcher [19] — an approach which
has proved useful on at least two other occasions (see [4, 22]).

This paper is a restatement of results found in [25]. The author would like to
extend warmest thanks to Allen Hatcher for his encouragement and guidance as her
thesis advisor.

Definitions and basic constructions

Let M be a compact orientable 3-manifold. If & is a transversely oriented
codimension-1 foliation of M meeting OM transversely, the & is said to be raut if
each leaf of & intersects a closed transversal to #. The foliations constructed in
this paper contain no compact leaves and hence are necessarily taut. (See [16], for
example.)

The taut foliations in this paper will be constructed using branched surfaces. A
branched surface B is a space modelled locally on the object of Figure 1. B intersects
OM transversely in a frain track 1, a space modelled locally on the object of Figure
2. When B lies in a 3-manifold M (respectively, t lies in a surface F), it possesses
a regular neighbourhood which is fibred as shown in Figure 3 (respectively, Figure
4). Given such a fibred neighbourhood N(B), we shall denote by J,N(B) that
portion of dN(B) which lies transverse to the fibres and by 0,N(B) that portion of

Figure 1. Branched surface model.
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Figure 2. Train track model.

Figure 3. Fibred regular neighbourhood of the branched surface of Figure 1.

Figure 4. Fibred regular neighbourhood of the train track of Figure 2.

ON(B) which contains subarcs of the fibres (see Figure 3). We say that a lamination A
is carried by the branched surface B (respectively, the train track t) if it can be isotoped
to lie in a fibred neighbourhood of B (respectively, of 1) transverse to all the fibres.

A measure on a train track is an assignment of weights o; > 0 to the branches
so that the a; satisfy the branching equations; i.e. if we have weights assigned as in
Figure S5, then a =b +c. Similarly, a measure on a branched surface is an
assignment of weights «; >0 to the branches so that the «; satisfy all branching
equations; i.e.: if we have weights assigned as in Figure 6, then d=05 + ¢,
e =c+f,f=a+b. A branched surface or a train track with an assigned measure
is said to be measured.
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Figure 5. Measured train track.

Figure 6. Measured branched surface.

We shall assume the well-known result that a measured branched surface in a
3-manifold M (respectively, a measured train track 7 in some surface F) defines a
codimension-1 lamination carried by B in M (respectively, by 7 in F). (See for
example, [1, 23, 21, 18]).

In this paper, we shall construct laminations using a slightly more general
object, the B-measured branched surface. A branched surface B is said to be
B-measured if for some finite set g ={f,, ..., B,} of simple arcs, pairwise disjoint
and disjoint from the branch loci, the branched surface B’ obtained by cutting B
open along the arcs of f§ is measured.

Similarly, a train track 7 is said to be S-measured if the train track 7’ obtained
by cutting t open along the set along the set f of points {p;, ..., p,} is measured.

Notation. Denote A\N(B) by 4 |B. In particular, if F is a compact surface
properly embedded in a compact 3-manifold M, then M | F will denote the compact
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manifold M\N(F). And if B is a compact 1-manifold properly embedded in F, then
F | B will denote the compact surface F\N(p).

CONSTRUCTION 0.3. p-measured branched surfaces (and B-measured train
tracks) generate laminations.

Let 7 be a f-measured train track with B={p,,p,,...,p,} and
tv=n|{p,...,p,}. Identify N(p,)=(p;,—1,p;+1) for each i, 1<i<n By
assigning a measure u’ to t’ we define a lamination A’ lying in a fibred neighbour-
hood of 7’ everywhere transverse to the fibres. In particular, A’ intersects trans-
versely the fibres 7-(p;) and I*(p;) containing p, —1 and p; + 1 respectively,
1 <i < n. By attaching the endpoints of leaves A’ 1~ (p;) to endpoints A'nI*(p;)
according to some monotonic bijection {f; : I=(p;) = I*(p;)} we define laminations
carried by 7. (See Figure 7.)

Similarly, if B is a f-measured branched surface with B'=B|(,uf,u- -
U B,) assigned a measure u’, then u’ determines a lamination fully carried by B’ and
by gluing products I? x I — I? x I across each cutting arc f,, we obtain a lamin-
ation carried by B (see Figure 7).

Sutured manifolds and disc decompositions
We now present those elements of Gabai’s theory of sutured manifolds neces-

sary for the construction given in this paper. For a more detailed exposition, see
Gabai’s trilogy [5, 11, 12].

 /

LS~

Figure 7. Gluing.
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A sutured manifold is a pair (M, y) consisting of a compact, oriented 3-manifold
M together with a set y = OM of pairwise disjoint annuli A(y) and tori T(y). The
interior of each component of A(y) contains a homologically nontrivial oriented
simple closed curve. Call such a simple closed curve a suture and denote the set of
sutures by s(y). The components of R(y) = dM\j can be oriented so that compo-
nents lying on opposite sides of a given suture s’ are oppositely oriented with
corresponding boundary components sharing the orientation of s'. (M, y) is said to
be taut if M is irreducible and R(y) is Thurston-norm minimizing in H,(M, y).

Let (M, y) be a sutured manifold and let S be an incompressible, d-incompress-
ible properly embedded surface in M. Suppose 0S5 intersects both y and s(y)
transversely with each arc of S N A(y) intersecting the corresponding suture exactly
once. Suppose further that no component of S bounds a disc D in M\j and that
no component of S is a disc D with dD contained in M\J. Then S defines a sutured
manifold decomposition

S

(M,y) ~(M',y)
where

M =M]|S,

V=@ M)UNES AR_()VUNE_AR, M\,
R, () =R, M) VS )H\V,
R_()=(R_-(n) nM)US)\J".

The sutured manifold decomposition is said to be well-groomed if both (M, y) and
(M', y’) are taut, no subset of toral components of S N R(y) is homologically trivial
in H,(M), and for every component V of R(y), either SNV is a union of parallel,
coherently oriented, nonseparating simple closed curves or SNV is a union of
parallel arcs such that for each component 6 of 3V, |6 N S| =|(d, S| (Definition
0.2, [11]).

A sutured manifold decomposition is called a disc decomposition if the cutting
surface S is a disc. A sutured manifold (M, y) is disc-decomposable if there exists a
sequence of disc decompositions

D,

D, D,
(M, y) = (Mla ’})l)'\’ Fes (Mm Yn)

where (M,,y,) is a disjoint union of copies of the sutured manifold
(D?x I,0D? x I).
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R

Figure 8. Constructing branched surfaces.

CONSTRUCTION 0.4. Constructing Branched Surfaces from Sutured Manifold
Decompositions.

Note that if B is a transversely oriented branched surface properly embedded in a
compact orientable 3-manifold M, then (M \N(B), 8,N(B)) is a sutured manifold.
Furthermore, given a sutured manifold decomposition

(M\N(B), 0,N(B)) ~ (M", ')

where B is a transversely oriented branched surface in an oriented 3-manifold M,
we can view S as intersecting B as modelled in Figure 8.

By choosing an orientation on S, we induce branching as shown in Figure 8.
The resulting object is again a transversely oriented branched surface B’ (denote it
also by (B, §)) with

(M',y") = (M\N(B'), 5,N(B")).

_We shall say that B is a branched surface of depth n if it can be constructed by
applying Construction 0.2 to a sequence of sutured manifold decompositions
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S, S S S,
(M, 0M) ~ (My, 75) ~ (M, y,)~ - -+ ~ (M, ,,)

for some manifold M with dM a (possibly empty) union of tori, where » is minimal
over all such sequences.

1. The construction for alternating knots

In [12], Gabai proves that any knot exterior contains taut foliations which
intersect the boundary torus in parallel curves of slope 0 and remain taut after
longitudinal Dehn filling. In this section we see that when & is an alternating knot,
this result generalizes to yield taut foliations in S*\ N(k) realizing an infinite interval
of boundary slopes and remaining taut after the corresponding Dehn fillings.

Let M = S*\N(k) where k is an alternating knot. For these knot exteriors, there
is a particularly simple construction of f-measured branched surfaces B with nice
boundary behaviour. One constructs B as a depth one branched surface
B = B, o B, where B, is the surface obtained by applying Seifert’s algorithm to a
regular alternating projection of k and B, is obtained from B, by adding one of the
discs properly embedded in M = S>\N(B,).

More precisely, we proceed as follows. Recall that given a regular projection of
a link k in the plane, Seifert’s algorithm yields a Seifert surface R for k as follows.
After choosing an orientation for k, a system of Seifert cycles is obtained by
removing crossing points according to orientation as shown in Figure 9. The Seifert
cycles bound disjoint discs which can be connected using half-twisted bands as
dictated by the original crossings. (See [26], p. 120).

CONVENTION. We call a right-handed half-twist positive and a left-handed
half-twist negative. (See Figure 10.)

As in [7, p. 393), it proves useful to divide the set of alternating links into two
classes. We shall say a link k is nonplanar if it possesses an alternating projection in

Figure 9. Removing the crossings.
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a b

Figure 10. a. Positive half-twist b. Negative half-twist.

which there is nontrivial nesting among the Seifert cycles, i.e., for some Seifert cycle
y, both complementary regions of y contain Seifert cycles. (By trivial nesting we
mean any nesting which may be removed by untwisting half-twisted bands which
separate R.) Otherwise, we say that k is planar.

THEOREM 1.1. Let k be a nonplanar alternating knot. Then M = S*\N(k)
contains a set & of foliations such that for any finite number r, there is an element of
F which intersects the boundary torus of M in parallel curves of slope r. The
foliations realizing the nonzero boundary slopes have no compact leaves.

COROLLARY 1.2. Let k be a nonplanar alternating knot. Then any manifold
obtained from S* by nontrivial Dehn surgery along k contains a taut foliation.

Proof. Let M be the manifold obtained from S* by Dehn surgery along k with
rational coefficient r #0. Theorem 1.1 guarantees the existence of a foliation in
S3\N(k) with only noncompact leaves and meeting N (k) in parallel simple closed
curves of slope r. F can therefore be completed to a foliation £ in M by capping off
the boundary components of the leaves of F with discs in M\M. Since F can have
no compact leaves, it is necessarily taut (see [2]). The corresponding result when
r =0 follows similarly and may be found in [12]. O

Recall that a knot k is said to satisfy Property P if no nontrivial surgery along
k yields a simply-connected manifold.

COROLLARY 1.3. Nonplanar alternating knots satisfy Property P.

Proof. Let M be a manifold obtained from S? by nontrivial Dehn surgery along
k. By Theorem 1.1, M contains a taut foliation; hence, by [24] or [15], M has
infinite fundamental group. O
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The corresponding results for k planar are less satisfying. We first note that if
k is planar, then it has an alternating projection in which no Seifert cycle separates
and hence all half-twists have the same sign. For ease of presentation, we shall say
that the alternating knot is positive planar if all half-twists are positive and negative
planar if all half-twists are negative.

THEOREM 1.4. Let k be a negative (respectively, positive) planar knot. Then
M = SA\N(k) contains a set F of foliations such that for any nonpositive (respec-
tively, nonnegative) finite number r, there is a foliation of F which intersects the
boundary torus of M in parallel curves of slope r. The foliations realizing the nonzero
boundary slopes have no compact leaves.

COROLLARY 1.5. Let k be a negative (respectively, positive) planar alternating
knot. Then any manifold obtained from S* by Dehn surgery along k with nonpositive
(respectively, nonnegative) surgery coefficient contains a taut foliation.

Proof (Theorems 1.1 and 1.4).
Case 1. Consider first the case that k is nonplanar. Choose a regular alternating
projection in which there is non-trivial nesting and let R be the surface generated

by Seifert’s construction. Since we can untwist trivial twists as necessary we may
assume that no half-twisted band separates R.

AT Q

NI
\ \\‘ \ s ‘
EDRY
X )

AVTVA LD

/4

Figure 11. Disc D and annular subsurface.
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Let vy be a Seifert cycle separating the plane into two regions 4 and A’, both of
which contain Seifert cycles.

Let G be the planar graph obtained by letting vertices correspond to the cycle
y and those Seifert cycles in A which are maximal (not nested within another Seifert
cycle of A) and letting edges correspond to the half-twisted bands connecting these
maximal cycles.

Since no half-twisted band separates R, no edge of G separates and hence G
contains a cycle a; choose g innermost. Note that since R is orientable, ¢ contains
an even number of edges. Furthermore, since k is alternating, the edges of G
correspond to consistently oriented half-twists. In particular, ¢ corresponds to an
annular subsurface X of R and a properly embedded disc D =« M = S*\N(k) as
shown in Figure 11.

Similarly, corresponding to A4’, define G', ¢’, X" and D".

Since k is alternating, the edges of G and those of G’ have opposite parity.
Without loss of generality, we may assume that the edges of G are negatively
twisted while those of G’ are positively twisted.

Case 2. If the knot k is negative planar, let G denote the planar graph obtained
by letting vertices correspond to the Seifert cycles and letting edges correspond to
the half-twisted bands. Then define 6, X and D as above. If k is positive planar,
then proceed similarly to construct G', ¢’, X’ and D’.

By choosing orientations on R, D and D’, we obtain depth 1 branched surfaces
B=(R,DY>By=R and B'= (R, D') > B,= R. (See Figure 12.)

LEMMA 1.6. B and B’ are B-measured and there are sets of laminations ¥ and
&', fully carried by B and B’ respectively, which intersect ON(k) in parallel curves.

The laminations in & realize boundary slopes (—,0) and those in &' realize
(0, 00).

D\
\'s

.........................................................................................

Figure 12. B.
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Figure 13. B is f-measured.
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Figure 14. Train track near knot crossings.
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Proof. By symmetry it suffices to prove the result for B. Let b6 denote the (even)
length of the cycle 0. As shown in Figure 13, one can choose b/2 fusing arcs #, and
assign weight x > 0 to the branch corresponding to D and weights 1, 1 + x to the
branches corresponding to R in the resulting cut-open branched surface.

So B is f-measured and by choosing gluing functions along the f; we define
laminations 4, fully carried by B.

Figure 14 depicts the behaviour of B at the crossing points and the correspond-
ing piece of the train track 1 = B ndN(k).

T = B n0ON(k) is obtained by piecing together b/2 copies of each of the tracks of
Figure 14, in the order dictated by k. Note that by choosing linear gluing functions
along the f;, we induce linear scalings in t over each subtrack of v bounded by
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Figure 15. After scaling.

endpoints of f;. After rescaling, the tracks of Figure 14 have measures as shown in
Figure 15.

So 7 is measured and for each p;, i odd (i even), there is a slope contribution of
x/(x + 1) (—x, respectively). Hence, the lamination A, intersects dN(k) in parallel
curves of slope

m—é —X + ad —é =
) x+1) 2\x+1/

As x ranges over (0, o), the boundary slopes ( — o0, 0) are realized. O

LEMMA 1.7. The laminations A, contain no compact leaves.

Proof. By symmetry it suffices to consider a lamination 4 fully carried by the
branched surface B. Suppose, by way of contradiction, that the lamination A
contained a compact leaf L. Since L is carried by B it induces a non-negative
measure on B. We show that no such measure exists.

Let the measure induced on the branch of B corresponding to D be n. Since the
slope of 0A is nonzero, necessarily n > 0. The b arcs of dD cut the annular
subsurface X into b regions with the branch conditions ensuring that for some
nonnegative number m these regions have weights m and m + »n as shown in Figure
16.

Let 0_X and 0, X denote the two boundary components of X. Since k is
connected, there is an arc of k lying outside X and joining 0_X to d, X. But this
means that there is a region weighted both m and m + n. Hence m =m + n and
necessarily n =0, contrary to assumption. O

-LEMMA 1.8. Let (M,, y,) be the sutured manifold generated by the decomposi-
tion
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0-X
| m
} m+n
0+X
Figure 16. B.

(S\N(R), AK)) = (M., 1)

where D, denotes either D or D’. Then (M,, y,) is taut.

Proof. The following is the argument of [7, p. 393], modified slightly to suit our
needs.

Case 1. Consider first the case that k is a planar alternating knot. Recall that if
we let G denote the planar graph obtained by letting vertices correspond to the
Seifert cycles and letting edges correspond to the half-twisted bands, then D, arises
in a natural way from an innermost cycle a of G. (See Figure 11.) Figure 17 depicts
the disc decomposition arising from one of the two possible choices of orientation
of D,.

We see that

(S\N(R), AK)) ~ (M, 1)
where

My, ) = (53\N(R1), Ay))
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Figure 17. A disc decomposition.

for some planar alternating link /; and corresponding Seifert surface R,. Since
$(ON(R,)) = y(ON(R)) + 2, x(R,) = 7(R) + 1. So an induction on the Euler charac-
teristic reveals that (M,, y,) is disc decomposable and hence taut.

Case 2. Proceed now to the case that k is nonplanar. Let C,,...,C, denote the
separating Seifert cycles. Focus attention on one such C;. C; separates the plane into
two regions 4, and A,, each of which contains Seifert cycles. Let R, denote the
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Figure 18. N(R) in a neighbourhood of C,.

surface generated by C; and any Seifert cycles contained in A4,, together with the
corresponding half-twisted bands. Similarly, define R, corresponding to A,.

Corresponding to C; there is a natural choice of disc decomposition, which we
describe as follows. Isotope R so that the disc B; bounded by C; is planar, lying in
some sphere S, with R,\B; lying above S and R,\B; lying below S; i.e., R is a
Murasugi sum of R, and R,. Then N(R) in a neighbourhood of C; is a tube with the
sutures describing ‘flaps’ hanging up or down (see Figure 18).

Choose B, = S*\B’, oriented so that dB; is oriented consistently with C,.

Performing the disc decomposition reveals that
o Bl o o,
(S*\N(R), A(k)) ~ (S*\N(R,), A(OR;) L1 (S*\N(R;), A(OR,))
Repeating the process for each i, 1 <i <m, we obtain the sequence
Y Bl ’ / BZ Bm ! 14
(SA\N(R), A(k)) ~ (M, vy) ~> -+~ (M}, 7,,)

where (M.,,v.) is a disjoint union of sutured manifolds of the form
(S3\N(F), A(])) for some planar alternating link / and corresponding planar surface
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F. In particular, included among the components are the complements of the
surfaces corresponding to the planar graphs G and G’ respectively. So we may
extend the above sequence by the decomposition

! ! Dl 7 !
(Mm’ ym) ks (Mm+19 ym+l)

and by Case 1, (M}, ,7,.,.+1) 1Is taut.
Finally, we notice that we may choose the discs D,, B,, ..., B,, to be pairwise
disjoint and hence we may rearrange the above sequence to get

o D, By B,
(S\N(R), A(K)) ~ (M, 91) ~ - > (M}, 1, V1)
Since (M, ., V.m+1) 1S taut, so is (M, y,). ]

We next think more carefully about the way in which 4, lies in N(B). In
particular, we are interested in the effect on B of splitting open along compact
subsurfaces of leaves of A.. We call P a compact surface of contact for the pair
(44, B) if B splits open along P, a compact subsurface of some leaf of 4., so that
the components (0P x I)\0N(k) bounding the P x I region created correspond
exactly to some subset § of 0. N(B). In the proof of Corollary 1.10 we shall see that
planar compact surfaces of contact provide a potential obstruction to extending the
laminations 4, to foliations with nice boundary behaviour. Happily we have the
following:

PROPOSITION 1.9. There are no compact surfaces of contact for (J,, B).

Proof. Suppose that there exists a compact surface P of contact for (4,, B). We
shall use P to decompose the knot k into multiple components, thereby arriving at
a contradiction.

We begin by partitioning the b pieces of X\N (D) into two sets. (See Figures
11 and 12 to recall notation. In particular, recall that ¢ is the core of X.) We do this
as follows.

Let 7, = B be the train track pictured in Figure 19. The cross section of 4, over
7, is a lamination 4, carried by t, consisting of parallel curves of ‘slope’ (b/2)x.

CLAIM 0. x is rational.

Proof. Since B has a compact surface of contact P, necessarily 7 splits open
along a closed interval J = P n N(z) such that the components 6J x I bounding the
J xI region created correspond exactly to some pair of components of J,N(t). But
if some pair of components of d,N(z) bounds an I x I region in this way, then by
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Figure 19. 1.

symmetry each component of d,N(t) pairs up to bound such an I x I region.
Therefore 4, is obtained from 7, by a finite amount of splitting; hence 4, is a
collection of parallel simple closed curves and x is necessarily rational. O

Let N(t,) denote a 2-dimensional fibred neighbourhood of 1, carrying 4,.
Choose an orientation for o and denote by 7;, 1 <i <m, (w;, 1 <j <n) those arcs
of 0,N(zy) N d for which splitting from the corresponding cusp leads one about ¢ in
the positive (respectively, negative) direction. Denote by a; (b;) the branch point of
1, corresponding to 7, (respectively w;) We shall sometimes refer to these branch
points as distinguished branch points. Notice that, after relabelling as necessary,
each n; pairs with w; to bound a rectangular component of (P x I) nN(z,). In
particular, n = m.

We now assign a somewhat artificial but useful pairing to the branch points
a;, b;. Start at one of the branch points a; and move into and along ¢ in the positive
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direction. Define a counter, initially set to 1 and updated each time a distinguished
branch point is passed: add +1 (—1) if the branch point corresponds to an g;
(respectively, b;). Let b; be the point corresponding to the first branch point for
which the counter is again zero and let [a;, b;] denote the interval of ¢ which has
been traversed.

We use this pairing to partition the components I of o\ {branch points of z,}
into two sets. We shall say that I is marked if it is contained within some [a;, b;]
interval. Otherwise, we shall say that I is unmarked. Note that when I is marked,
the set of branch points in [a,, b;] lying to the left of [ and corresponding to
points in {a,,} outnumber those corresponding to points in {b,}. So N(/) must
have nonempty intersection with P x I. We shall use this fact later, in the proof of
Claim 2. (Unmarked intervals may or may not have nonempty intersection with
P x1)

This partition of the components of o\ {branch points of 7,} induces a partition
of the b regions of X\dD. We shall say that a region Y of X\dD is marked if the
corresponding arc Y no is marked. Otherwise, we shall say that Y is unmarked.

Recalling that our goal is in fact to partition k into multiple components, we
establish the following two facts.

CLAIM 1. Suppose that an arc of k\0X passes between two regions Y, and Y, of
equal weight (either 1 or 1 + x). Then Y, and Y, are of the same type: either both are
marked or both are unmarked.

Proof. Imitating the construction of t,, we construct a train track 7, = B as
follows. Let n be an arc of R\ X connecting two regions Y, and Y, of equal weight.
Choose a subarc v of ¢ intersecting dD n X transversely in a minimal number of
points and connecting the endpoints of n and let u be the simple closed curve
obtained by concatenating n and v. Denote by 7, = B the train track obtained from
p by connecting branch points of D npu by disjoint arcs in D. 7, contains some
subset 7 U of the distinguished branch points a;, b, of 7,. Each element of = pairs
up with a unique element of @w to bound a rectangular component of
(P x I) nN(z,); so in particular |z| = |w|. But this is true only if Y, and Y, are of
the same type. For suppose Y, is marked. Then Y,nla;, b;] # & for some a,. So
either Y, [a;, b;] # & or else one of a;, b, lies in v. But if a; (b;) lies in v, || = |o]
implies that there is a b, (a;, respectively) in v such that Y,n[a;, b;] # . In either
case, Y, is also marked. By symmetry, it follows that Y, is marked if and only if Y,
is marked. Hence, Y, and Y, are necessarily of the same type. O

CLAIM 2. Suppose that an arc of k\0X passes between two regions Y, and Y,
weighted respectively 1 + x and 1. Then Y, and Y, are unmarked.
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Figure 20. 74 and 7,.

Proof. Let n be an arc in R\ X connecting the regions Y, and Y,. Choose an arc
v in X intersecting 0D nX transversely in a minimal number of points and
connecting the endpoints of n and let 4 be the simple closed curve obtained by
concatenating # and v. Denote by 1, = B the train track with end obtained from u
by letting the ‘end’ correspond to the branch point éD nv having nonempty
intersection with ¥, and by connecting the remaining branch points in pairs by
disjoint arcs in D (see (*) in Figure 20). 7, and 7, are related as shown in Figure 20.

As noted earlier, the compactness of P implies that x is necessarily rational. So
we may write x = p/q where p and ¢ are relatively prime positive integers. We shall
show that if at least one of Y, and Y, is marked then P contains a properly
embedded noncompact arc w.

Case 1. Suppose first that Y, is marked. Then, as previously noted, there is a
rectangular component of (P x I) nN(t,), corresponding to the pair (n;, @;) say,
passing through N(Y;). So we may let w initially denote a path in P x 0 starting at
m; V(P x 0) and following P x 0 into N(Y,). We next show that it is possible to
extend w so that it passes infinitely about N(r,) without encountering either an
earlier point of w or a point w, N (P x 0).

To do so we first introduce as bookkeeping device a notion of height of the
leaves of 4, in the branches of . Recall that associated with the measured track 1,
there is a singular foliation ¢, obtained by starting with fibred rectangles I x
[0, branch weight] corresponding to branches of 7, and identifying these rectangles
at branch points using the branch equations ([18], p. 74). Define the height of a
leaf of ¢, in the fibred rectangle 7 x [0, branch weight] to be the image of projec-
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tion onto the second factor. We define the height of a leaf in 4, carried by a branch
of 7, to be the image of the composition

4. - ¢, —[0, branch weight]

where the first map is the function given by pinching 4, down along the vertical
fibres to obtain ¢,.

Returning to the construction of w, note that t, can be split to simple closed
curve(s) of width 1/q. So the endpoint of @ in N(Y;) can lic only at one of the
heights 1/q, 2/q, ..., (p +q)/q in N(Y;). Hence w enters N(z,) at height n,/q for
some integer n,, 1 <n, <p +gq. If n, =p + ¢q, we may follow w along branch (*) of
1, (see Figure 20) and reenter (N(z,) at level g/q. So we may suppose 1 <n, <p +g4.

We next show that it is possible to extend w so that it passes infinitely often
about 7, without encountering a self-intersection or an endpoint @, N (P x 0). From
N(Y)), extend w to follow P x 0 about #. The path thus described exits N(n) at level

) Ox
1+.§ q pP+q

Continuing w about 7, until it again enters N(Y,), we see that w meets an
endpoint @; " (P x 0) or returns to the initial level only if

n_ _m
p+a ¢q

for some integer m. But this would imply

(p+a9|n

which is impossible since 1 <n, <p + ¢q. We may therefore extend w so that it
reenters n at height »n,/(p + q) + n3/q for some integer n5.
More generally, after r such passes through 7, the path w is at height

ng ! nq"~? n,
+ +- +
(p+9" (p+o9 ! p+q

So-w further extended through 7, to N(Y,) can meet an endpoint @w; N (P x 0) or
return to an earlier height only if
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r—2

ng ! n,1 n m,q’ 2
lq r+ 2q ,_‘+"'+ r — lq r.‘l+_..+mr—l __m_{
(p+q)" (p+gq p+q (p+9q p+q ¢

Again, elementary number theory reveals that this is possible only if (p + ¢q) | n,.
Since 1 <n; <p + ¢, equality never holds.

Hence, w may be extended infinitely often to yield a properly embedded
noncompact arc in P x 0. Since P is compact, this is impossible; so Y; must be
unmarked.

Case 2. Case 2 proceeds similarly. We suppose, by way of contradiction, that Y,
is marked. This implies that there is an arc w in P x 0 which enters Y, at some
height n,/q, 1 <n, <gq. Start at n, n(P x 0) and follow P x 0 into N(Y,). If n,=¢
then w may be extended to follow P x 0 about n and along branch (*) of t, (see
Figure 14), reentering Y, at height ¢/g. The argument for Case 1 therefore applies.
So suppose n; < q. The argument proceeds as in Case 1 except that we extend w to
follow P x 0 about 1, in the opposite direction; so the scaling factor is inverted and
P x 0 might lead infinitely often through branch (*) of 7,. O

In the proof of Lemma 1.7, we saw that there is a subarc of £\0X joining two
regions of X\dD of unequal weight. Hence, Claim 2 guarantees the existence of a
(1 + x)-weighted region Y which is unmarked.

In Figure 21 we see a subset of X containing the region Y and also the local
behaviour of s(y;). (Notice that we abuse notation and identify k with
A(k) = ON(k)\OR.)

Figure 21. A subset of X.
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Recall that 6 denotes the subset of d, N(B) = A(y,) bounding the compact region
P x I. Since Y is unmarked, the components of s(y,) labelled s’ in Figure 21 do not
belong to 4. So the subarc p < k shown in Figure 21 is disjoint from both é and
marked regions. Consider starting at a point of p and travelling along k. p leaves
X from an unmarked region. So, by Claim 1, the subarc of k\dX passing from p
back into X leads to an unmarked region. Examining Figure 21, we see that within
X, an arc of kK n X may pass from an unmarked region to a marked region only if
it begins as an arc coincident with §. Furthermore, an arc of k n X disjoint from &
may reach an arc coincident with 6 only from a marked region.

Hence, the component of k containing p is disjoint from 4. Since k is connected,
necessarily 6 = ¢&; so P = . O

COROLLARY 1.10. The laminations A, extend to foliations which meet ON(k) in
parallel curves and which possess only noncompact leaves.

Proof. We apply Gabai’s inductive construction (Description 2, [12]). Return to
the taut sutured manifold (M, y,). Since taut, it possesses a well-groomed sutured
manifold hierarchy (Theorem 4.2, [5]):

S5 S3 S,
My, 71) » (M3, 7;) ~ -~ (M,,7,)
Notice that we may assume that the S;,i > 2, intersect the sutures s(y;,_,) away

from k. For each i, 1 <i<n, let B; denote the branched surface obtained by
applying Construction 0.4 to this sequence. We construct the desired foliation by

inductively adding leaves corresponding to S,, ..., S,.
Consider S, M,. We first extend the surface S, to a surface S, properly
embedded in the complement of 4, and intersecting a finite collection L,, ..., L, of

leaves of 4, in properly embedded curves C which are pairwise disjoint and disjoint
from 04,.

By definition of well-groomed, we know that for each component ¥ of R(y,),
either S, NV is a union of parallel, coherently oriented nonseparating simple closed
curves or it is a union of arcs such that for each component 6 of
vV, |6 n0S,| =<4, 85,

Consider first an arc ¢ of 45, A(y,). Proposition 1.9 guarantees the existence
of an infinite strip extending S, at o, i.e., there exists V =][0, 1] x I properly
embedded in a piece of the complement of 4, cut off by 4(4,) and such that o is the
image of 0 x I.

Consider next a component y of 05, contained in A(y,). By definition of sutured
manifold decomposition, y and the corresponding suture are consistently oriented.
So.we extend S, by an annulus y x I where y x 0 =y and y, lies in a leaf parallel
to 0, m; for some j, 1 <j <m.
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Let S’ be the leaf obtained by the above extensions. let ¥ be the collection of
curves 055. To eliminate any intersections (C; x 0) n(C; x 1) « L, double the leaf L
(Operation 2.1.2, [14]). Thicken the resulting leaves L (Operation 2.1.1, [14]), cut
each leaf of L x I open along the corresponding curves of C, and reglue. We thus
obtain a lamination 4,, fully carried by B, and intersecting dN(k) in coherently
oriented curves of slope m;. It remains only to show that A, contains no compact
leaves. To see this, we note that simple closed curves dS, " A, are nonseparating and
hence give rise to infinite spiralling in the above construction. Similarly, the
remaining simple closed curves of 0S;n4, do not bound compact leaves by
Proposition 1.9. Arcs 05, R(y,) result in leaves containing properly embedded
copies of R. Hence, in all cases, there can be no compact leaves.

We now repeat the above construction n — 2 times to obtain 4,, fully carried by
the branched surface B,, intersecting N(k) in coherently oriented curves of slope
m,, and containing no compact leaves. This is possible since at any step of the
process, the sutures A(y;)\A(y;) cut off an infinite product (N x I, N x I) in the
complement of 4;; so infinite strip extension always exist.

Since the complementary regions of B, are products 4, extends to a foliation by
taking copies of its boundary leaves in the canonical way. O

Hence we have constructed a set # of foliations without compact leaves such
that for any nonzero number r in the interval R (for nonplanar &), (— o0, 0] (for
negative planar k), or [0, co) (for positive planar k), there is an element of & which
intersects the boundary torus of M in parallel curves of slope r. Since there are no
compact leaves, these foliations remain taut after Dehn filling with coefficient r. As
mentioned in the introduction to this section, Gabai ([12]) has constructed taut
foliations which intersect the boundary torus in parallel curves of slope 0 and
remain taut after longitudinal Dehn filling. O

2. Generalizations

In this section we give a technical description of those knots for which the
construction of Section 1 can proceed. We also describe a generalization of this
construction which is more widely applicable (see Example 2.4) but which yields
essential laminations rather than taut foliations.

The proofs of Section 1 generalize in a straightforward way to give us the

following:

THEOREM 2.1. Let k be a knot for which there exists a sequence

(SP\N(K), ON(K)) ~ (M', 7) ~ (M", ")
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@, -’

A

Figure 22.

of sutured manifold decompositions satisfying:

(1) (M',y’) and (M",y") are taut,

(i) B =<{R, S) contains no planar surfaces of contact,
(iii) R is a Seifert surface for k, and
(iv) SN R () and 0S " R_(y’) form a set of pairwise disjoint arcs.
The arcs of intersection 0S N A(y’) may be modelled on one of the four crossings of
Figure 22. Let p,, p,, n,, n, denote the number of crossings of the type of Figure
22a,b,c,d, respectively. Then M = S*\N(k) contains a set F of foliations such that for
any number r in

. X
I={(P1“n1)x+1

+(p2—n2)x(x_>_0>



Constructing taut foliations 541

there is a foliation of & which meets the boundary torus of M transversely in parallel
curves of slope r. The foliations realizing the nonzero boundary slopes have no
compact leaves.

COROLLARY 2.2. Let k, I be as described in Theorem 2.1. Then any manifold
obtained from S> by performing Dehn surgery along k with coefficient in I contains a
taut foliation.

We note that the disc-decomposable knots of Gabai ([7, 10]) provide an obvious
source of examples and many yield to this construction. However, an explicit listing
of those knots amenable to this method of attack seems difficult to realize.

By relaxing the requirement that (M, y") and (M”, y") be taut, we obtain a more
general construction. We shall abuse the terminology of Delman [(3)] as follows:
Let 4 be an essential lamination in a knot exterior M such that 1 meets oM
transversely in simple closed curves of slope r. Call 4 persistent if it caps off to yield
an essential lamination / in the closed manifold M obtained from M by performing
Dehn filling along k& with coefficient r.

THEOREM 2.3. Let k be a knot for which there exists a sequence
. R s
(SA\N(k), ON(k)) ~ (M',7") ~ (M",y")

of sutured manifold decompositions such that:

(i) the branched surface B = (R, S) obtained by applying Construction 0.4 is
essential and contains no planar surfaces of contact,

(ii) R is a spanning surface for k, and

(ili) SR, (") and S "R_(y') form a set of pairwise disjoint arcs. The arcs of
intersection S N A(y") may be modelled on one of the four crossings of Figure
22. Let p,, p,, n,,h, denote the number of crossings of the type of Figure
22a,b,c,d, respectively. Let r denote the slope of 0R. Then M = S*\N(k) contains
a set & of persistent laminations such that for any number m in

x
x+1

1={r+(p1—n1) +(Pz—nz)x|x20}

there is a lamination in & which meets the boundary torus of M transversely in
parallel curves of slope m.

Proof. The proofs of Section 1 generalize in an obvious way to yield a set & of
laminations which meet ON(k) in parallel curves. Since the branched surface (R, S)
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is essential, so are the laminations of .#. Therefore we need merely show that if A
is an element of ¥ meeting dN(k) in simple closed curves of slope r, then the
lamination 4 obtained from A by capping off with discs is still essential.

We do so by describing a branched surface B (see [18]) which fully carries 1. Let
T denote the solid torus in M bounded by dN(k). Choose a tubular neighbourhood
N=F x(—1,1) for 0T with F x 0 =0T. Note that the complementary regions of
0T N B are digons. Therefore, by choosing N small enough, we may assume that
(F x (—1, 0))\B consists of product regions of the form digon x (—1,0). For each
such region digon x (—1,0), add a branch to B by inserting a leaf corresponding to
digon x {—1/2} and pinching according to some choice of local transverse orienta-
tion. Call the resulting branched surface B’. Next extend B’ into F x (0, 1) by first
adjoining (BN JdT) x (0, 1) and then splitting B’ near B'n(F x 1) along the train
track (BN 0T) x 1 so that one gets a branched surface B” such that B"n(F x 1)
consists of simple closed curves of slope r and B” coincides with B’ outside T.
finally, extend B” to B by capping off the simple closed curves B” N (F x 1) with
disjoing discs in T\(F x (0, 1]).

We note that the only compact leaf carried by B is the spanning surface R. So
if m #r, then B can carry no compact leaves. And if m =r but genus R >2 then
B carries no torus or sphere leaves. Finally, if m = r and R caps off to give a torus
leaf carried by B then necessarily R is a minimal genus Seifert surface and Gabai’s
construction ([12]) applies. Furthermore, each complementary region of B con-
tained in T'is a D? x I and the remaining complementary regions of B are isotopic
to complementary regions of B. Hence, B satisfies all conditions of the definition of
essential branched surface (see Definition 2.1, [15]) except possibly the condition
that it contain no disc of contact.

We may therefore conclude that [ is essential if we can show that there are no
discs of contact for (£, B). Suppose, by way of contradiction, that D were such a
disc of contact. If dD is contained in the vertical boundary of one of the D? x I
complementary components contained in 7 then it caps off to reveal a sphere
carried by B. We have already noted that no such compact leaf exists. And if 6D
is contained in the vertical boundary of one of the remainder complementary
regions then it corresponds to a planar surface of contact for (4, B). But, by
hypothesis, no such surface of contact exists. Hence there are no discs of contact for
(4, B). So 1 is essential. O

Again, many examples of knots for which there exists an appealing collection of
such persistent laminations may be generated but an explicit listing has thus far
proved unrealizable.

We close with an example which demonstrates that the construction of Theorem
2.3- may succeed in situations for which the original construction of Theorem 2.1
fails.
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FFigure 23. K.

EXAMPLE 2.4. Let k be the 2-bridge knot shown n Figure 23.

By Proposition 1 of [20] we know that there is a unique Seifert surface for A. Since
this surface (see Figurce 23a) contains only positive half-twists, the construction of
Theorem 2.1 yields only taut foliations realizing the nonnegative boundary slopes.

However, the construction of Theorem 2.3 gives persistent laminations realizing
all finite boundary slopes as follows. The isotopy of k indicated in Figure 23b yields

Figure 24. K.
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Figure 25. B,.

the planar projection of Figure 24. Let R denote the spanning surface shown and
let » denote the slope of CR.

Corresponding to this projection arc branched surfaces B, and B, generating
laminations realizing boundary slopes [r, ) and ( — =, r] respectively (sec Figures

Figure 26. B,.
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25a and 26a). Regarded as a sutured manifold, N(B) ) is homeomorphic to a
regular neighbourhood of the incompressible and 0-incompressible surface of
Figure 25b; so B, is essential. Furthermore, the proof of Proposition 1.9 guarantees
that if A, is one of the laminations generated by B, then (4,, B;) contains no planar
surface of contact. Hence, the laminations generated by B, are persistent. Similarly,
B, is essential and the laminations generated by B, are persistent. O
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