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Local constant of lndlK\

Takeshi Saito

Abstract Henniart has computed the local constant e (Ind^l) for an extension L over K of local fields
of odd degree in [H] In this paper, we show that his formula îs a conséquence of results of Serre [S4]
and of Dehgne [D2] Further we compute the local constant for an extension of even degree, assummg
the residual charactenstic îs not equal to 2

1. Local constant of lndLK\

Let K be a local field. Namely K is a complète discrète valuation field with finite
residue field F of order q. We assume that the characteristic of F is not equal to 2.

For a separable extension L of degree n over K, let V VL!K Ind^ 1 be the

induced représentation of the absolute Galois gorup GK Gai (KsepjK) from the

unit représentation 1 of GL. Let d dLjK e K*/Kx2 be the discriminant of L over
K and ô — ôLjK det VL/K be the character GK -? Z/2 corresponding to dLlK e K*l
Kx2 H\K, Z/2). We consider the local constant ([Dl])

F, \j/, ii) e(l, \j/, fx) (n 1} s(b, if/, /â) n even

for the virtual représentation

V — n b n odd

V — ((« — 1) 1 -h b) n even.

Since dim F° 0 and det V° 1, the local constant e(F°) is independent of an

additive character ^ or a Haar measure pi and we drop them in the notation. Since

F is an orthogonal representaion, the Artin conductor

\a(V) - ((n - l)a(l) + a(ô)) «even

is an even integer by fS3] Théorème 1. We put
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508 TAKESHI SAITO

It is known to be ± 1. As usual (F) : Fx/Fx2-&gt; {± 1} dénotes the Legendre symbol
and (,)K : Kx/Kx2 x Kx/Kx2-+ {±1} dénotes the Hilbert symbol.

THEOREM. Let L be a separable extension of degree n of a local field K with
residual characteristic ^2.

I. ([H] Proposition 2) If n is odd, for the virtual représentation V%/K

Vlik ~ n ^L,K, we hâve

IL Assume n is even. Let V°L!K be the virtual représentation VL/K —

((n - 1)1 +ôL/K). Let DL/K be the différent of L over K and put D
ord£ DLIK.

1. If D is even, we hâve

2. Assume D is odd. Let e be the ramification index, f nje be the residual degree
and nK be an arbitrary prime élément of K.

2A. If e is odd, then f is even and we hâve

2B. Assume e is even. Let Kx be the maximum unramified extension of K in

L and E be the residue field of L. Let nL be a prime élément of L and g be the

minimal polynomial of nL over Kx. The class a =gf(nL)lnft e Ex/Ex2 is

independent of nL and we put d&apos; NEjF{oi) • dEfF e Fx/Fx2. Then

\ F [{dLIK,nK)K

K,2)K /odd
KVlik) \ ^ / x (^ „ ^ /even.

Before starting the proof we briefly recall [D2] and [S4]. For a continuous

orthogonal représentation V of the absolute Galois group GK of a field K, its

Stiefel-Whitney class wt(V) € Hl(K, Z/2) is defined [D2] (1.3). The first one
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wx(V) e H\K, Z/2) is the déterminant character regardée as an élément in
Hom (GK, Z/2) H\K, Z/2). The total Stiefel-Whitney class w(F) l + w,(F) +
w2(V) + • • • e 1 + H\K, Z/2) + H2(K, Z/2) + • • • satisfies the multiplicativity
W(V) w(Vx) - w(V2) for the orthogonal direct sum V= Vx © V2. Hence the

Stiefel-Whitney class is defined for a virtual orthogonal représentation V
Vx - V2 by w(V) wC^M^)&quot;1. When Kis a local field of characteristic #2, the
second Stiefel-Whitney class is related to the local constant as follows. We identify
H2(K9 Z/2) with {±} by the isomorphism inv^.

THEOREM D. ([D2] Théorème (1.5), [S3] Théorème 1) Let K be a local field
of characteristic ^ 2 with residue field of order q and let V° be a virtual orthogonal
représentation of the absolute Galois group GK. Assume that dim V° 0 and
det V° 1. Then the Artin conductor a(V°) is an even integer and the local constant
ê(F°) e(V°) -q-^l2 is ± 1 and

ë(V°) w2(V°).

For a field K of characteristic # 2, we call a quadratic /^-module a ÂT-vector

space of finite dimension with a non-degenerate quadratic form. For a quadratic
^-module W, its Stiefel-Whitney class wt( W) e H1(K, Z/2) is defined ([S3] 1.2).

The first one wx(W) e H\K, Z/2) is the discriminant regarded as an elelment in
Kx/Kx2 Hl(K, Z/2). The total Stiefel-Whitney class w(W) l+w{(W) +
w2(W)+&gt;el+H](K, Z/2) + H2(K, Z/2) + • • • satisfies the multiplicativity
W(W) =w(Wx)- w(W2) for the orthogonal direct sum W=WX © W2. Hence the

Stiefel-Whitney class is defined for a virtual orthogonal représentation W
Wx - W2 by w(W) =w{Wx)w(W2)-\ For éléments a, b e K\ let {a} dénote the

class of a in /f &gt;(*, Z/2) Kx/Kx2 and let {a, b} {a} u {6} e H2(K, Z/2) dénote

the cup-product. For a quadratic À&apos;-module (W7, Q) with an orthogonal basis (e,)n
its total Stiefel-Whitney class is w(W) 11,(1 + {Q(et)}) by définition. The

Stiefel-Whitney class of the représentation VLjK is related to the Stiefel-Whitney
class of a quadratic form as follows.

THEOREM S. ([S4] Théorème 1) Let L be a finite separable extension of a field
K of characteristic ^ 2. Let V lnd%LK 1 be the induced orthogonal représentation and

W be the quadratic K-module (L, TrL/A: (x2)). Then by putting d dL/K

wx(W)e H\K, Z/2), we hâve

in H2(K, Z/2).
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In the rest of this section, we deduce Theorem for odd n from Theorems D and
S. The proof for even n is more complicated and will be given at the end of the next
section.

We prépare some terminology for quadratic /^-modules. For ceKx, let (c)
dénote the quadratic A^-module (K, ex2). The dimension of a maximal totally
isotropic subspace of a quadratic Â&apos;-module W is called the index of W. If
dim W 2 index W, the quadratic module W is called hyperbolic.

Proof of Theorem for odd n. We assume n is odd. By Theorem D, we hâve

ë(F°) w2(V°) in H2(K, Z/2) {± 1}. Since (a, b)K invK{a, b}9 it is sufficient to
show that w2(V°) {d, 2} e H2(K, Z/2). Let W° be the virtual quadratic ÀT-module

W - n(d). We show Theorem S implies w2(V°) w2(W°) + {d, 2}. In fact w(V°)
w(V)w(n ô)~l= (w( W) + {d, 2})w(n(d)) &apos;l

w( W°) + {rf, 2}. Note Hl(K, Z/2) 0

for i&gt;2. Therefore it is sufficient to prove that w(W) w(n(d)). By {d,d}
{d, -1}, { — 1, — 1} 0 and n 1, we hâve

{d}Y 1 + {d}

Namely we hâve w(n(rf)) w( W) where W^&apos; (hyperbolic of dimension
n — \) ® — l)(w~1)/2 rf) is the orthogonal direct sum. Hence it is sufficient to show
that W ~ W. Since the discriminants are equal, it is sufficient to show that the
index of Wis also {n — l)/2. Let Wa be the quadratic A^-module (L, TrL!K(ax2)) for
a e Lx. The isomorphism class of FFa dépends only on the class of a in Lx/Lx2.
If a eKx, it is isomorphic to (a) ® JF. Since Kx/Kx2-+LxILx2 is an injection of
finite groups of the same order, it is an isomorphism. Hence for any a e Lx, there
is some b g Kx such that Wa ~(b) ® W and the index of Wa is independent of
a e Lx. Therefore it is sufficient to show that the index of Wa is (n — l)/2 for single
#. It follows from

LEMMA 1. Let L be a separable extension of a field K of degree n, t be a

primitive élément ofL and g be the minimal polynomial oft. Put a g\t)~x. Then the

index ofthe quadratic K-module Wa (L, TrL/K(ax2)) is equal to the intégral part of
half of n

index W,--[il
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Proof We know TxLjK (tllg&apos;(t)) 0 for 0 &lt; i &lt; n - 2 and 1 for i n - 1 [SI]
Chap III Lemme 2 Hence the subspace spaned by (f0o&lt;:*&lt;[(w-2)/2j1S isotropic and
îs of dimension [h/2] Since dim &gt;2 index, Lemma îs proved

Thus the proof of Theorem for odd n îs completed

Remark By [S2] Chap IV Théorème 7, w(W) w(n(d)) implies W^n(d)

2. TrL/K(*x2)

In this section, let K be a complète discrète valuation field with residue filed F
We do not assume that F îs finite but keep the assumption that charactenstic of F
îs not equal to 2 First we consider a totally ramified extension L of K and compute
the quadratic A^-module Wa (L, Tr^ (ax2)) for a e Lx

PROPOSITION 1 Let L be a separable totally ramified extension ofdegree e of
K and aeLx Let Wa be the quadratic K-module (L9TrL/K(ax2)) and da

NLiK{a) dL/K e Kx/Kx2 be its discriminant
A Assume e 2m H- 1 is odd Then there is an orthogonal décomposition

Wa^((-\rda) © (hyperbohc)

B Assume e 2m is even and let D be the valuation of the différent DL/K
B1 If ord^ a D mod 2, then Wa is hyperbohc
B2 Assume ordL a D -f-1 mod 2 Let n be a prime élément of L and g be

the minimalpolynomialofn over K Then the class aa a g&apos;(n)n~x e Lx/L*2
is independent ofn and is in Fx jFx2 Let oca also dénote a unit ofK whose class

in KxjKxl is cna Then there is an orthogonal décomposition

Wa * (O 0 -1)m -l da /aj 0 (hyperbohc)

Proof
A Assume e is odd Then Kx\Kxl-+Lx\Lxl is an isomorphism Therefore by

the same argument as in the proof of Theorem for odd n above, we see that the

index is m By companng the discriminant, we obtain the resuit
B Assume e is even Let n be a prime élément of L and g be its minimal

polynomial First we prove the assertion for a0 g&apos;(n)~l and ai n gf(n)~l Note
that D -ord£ a0 and the class of ax m L X\Lx2 is independent of choice of % In
fact, ît is the image of the refined différent 9{L)K) eLx/l+mL [K] Section 2 by
the equahty 1 16 p 322 loc cit By Lemma 1, the quadratic module Waç&gt; is
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hyperbolic. We show Wax~{\) ® ((-l)m~l da]) © (hyperbolic). By the formula
in the proof of Lemma 1, the subspace spanned by nm~l is isomorphic to (1) and
the subspace spanned by (7r&apos;)o&lt;i&lt;w-2 is totally isotropic and perpendicular to
nm~l. Hence we hâve Wa] ^(1) ©(hyperbolic) ©(dimension 1). By comparing the

discriminant, it is proved.
We consider gênerai a e L\ The image of Kx/Kx2-&gt;LxILx2 is FxjFxl and is

of index 2. Hence the condition ordL a D (resp. D + 1) is équivalent to that the
class of a/a0 (resp. a\ax) in Lx\Lxl is in the image of KxjKx2. It further implies
Wa ~ (b) &lt;g&gt; Wao (resp. Wa ^(b) ® Wax) for some beKx. Therefore ordL a D
implies Wa is hyperbolic. Assume ordLa D -h 1. Since a =(xa- a, in Lx/Lx2 and

(xaeKx, we hâve Wa ~(&lt;x.a) ® Wax. Hence ^ ^(aa) © (hyperbolic)

© (dimension 1) and comparing the discriminant, we obtain the assertion.

For a gênerai extension, we compute the image of w2(TrL/K(ax2)) e H2(K, Z/2)
by the boundary map 3: H2{K, Z/2) -*Hl(F, Z/2). The spectral séquence
H&apos;(F, H\Kn\ Z/2)) =&gt; #&apos;+;(à:, Z/2) induces an exact séquence

0 —&gt; Hl(F, Z/2) —&gt; Hl{K, Z/2) -^ F&apos;&quot; !(F, Z/2) —-&gt; 0

for an integer i. The pairing with {n} for a prime élément n gives a section of d. For
i 2, we hâve a commutative diagram

tame symbol
Kx xKx2 &gt;FX

In
H\K, Z/2) &gt; H\F, Z/2).

d

For an élément c g Kx of even valuation, the class {c} e KxjKx2 Hl(K, Z/2) is in
the subgroup FxjFxl H\F, Z/2).

PROPOSITION 2. Let L be a separable extension of K of degree n. We assume
the extension of the residue field E over F is separable of degree f and the

characteristic of F is &gt; 2. Let a e Lx and Wa be the quadratic K-module (L,
TrLIK(ax2)).

1. If ordL a D mod 2, the boundary of the total Stiefel- Whitney class ôw( Wa)

isO.
2. Assume ordL a D -h 1 mod 2. Let da NL/K(a) • (4/* g KxjKx2 be the dis¬

criminant of Wa.

2A. If the ramification index e is odd9 we hâve

ia) /even.
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2B. Assume e is even. Let Kx be the maximum unramified subextension of K
in L, aa e Ex/Ex2 be as in Proposition 1 for the totally ramified extension L
over Kx and d&apos;a NE/F((xa) • dEIF eFx/Fx2. Then we hâve

/odd
/even.

Proof. To show dw( Wa) is 0, it is enough to find a non-degenerate (P^-lattice. In
fact, then for an orthogonal basis over (9Ki the value of the quadratic form at each

élément of the basis is a unit. Let Kx be the maximum unramified subextension of
K in L. For a quadratic Â^-module {W, 0, let Tr#l/A: W dénote the quadratic
^-module {W, Tr^/^o Q). Since (9Kx is a non-degenerate 0^-lattice of TrK](K((u))
for a unit u of Kï9 a non-degenerate ^-lattice of quadratic AT,-module W is a

non-degenerate (P^-lattice of TrL/^ W.

1. Assume ordL a =D. By the argument above, it is enough to find a non-
degenerate 0^-lattice of Wa by assuming K Kx. Namely we may assume

L is totally ramified. If e is even, Wa is hyperbolic by Proposition 1 Bl, and
has a non-degenrate ^-lattice. Assume e is odd. By Proposition 1 A, we
hâve Wa ~{{ — \)mda) © (hyperbolic). Since the valuation ovàKda=otdK
(NLiK{a) - dL/K) ordL (a) + D is even, the quadratic Af-module FFfl has a

non-degenerate 0^-lattice. Therefore we hâve dw(Wa) =0.
2. We prove the case ordL a D + 1 mod 2, by using the foliowing Lemma

proved later.

LEMMA 2. Let W— Wx © W2 be the orthogonal direct sum of quadratic
K-modules Wx and W2. Assume Wx and (n) ® W2 hâve non-degenerate (9K4attices

for a prime élément n. Let d and dt be the discriminants of W and Wl and r2 be the

dimension of W2. Then we hâve

We complète the proof using Lemma. Assume first that e is odd. By Proposition
1A, we hâve Wa ^TrKxlK(hyperbolic) ©Tr^CC-l)^-1^) for d\
Nl\kx (a) &apos; dLjKx. Hère Wx Tr^^ (hyperbolic) is also hyperbolic and has a

non-degenerate dVlattice. Since the valuation ord^ d\ ordL a-h D, is odd, the

quadratic ^-module (7i) ® — l)(e&quot;1)/2 dla) has a non-degenerate ^^j-lattice. Hence

the quadratic À^-module (n) ® W2 has a non-degenerate ^-lattice for W2

TrKi/K((-iye-l)/2dla). Therefore by applying Lemma 2 and using dx

2 =f and d ^ we have
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Since e is odd, we hâve

mod 2 and Proposition 2 is proved in this case.

Finally assume e is even. By Proposition 1 B2, we hâve an orthogonal décomposition

Wa=W{® W2 where Wx Tr^ |/ie((aa) © hyperbolic) and W2

TtKjiK(( — \)m~x dla/(xa). Similarly as above, it is easily checked to satisfy the

assumption of Lemma 2. The discriminant dx e Fx/Fx2 c KA/Kx2 is -1)«^2&gt;- ¦&gt;&apos;

x dise (TïK]/k (aa)) and dise (Tr^,/^ (aa)) dise (TvE/F((xa)) d&apos;a. Hence Lemma 2

gives us

Thus Proposition 2 is proved.

Proof of Lemma 2. By the assumption that W, has a non-degenerate lattice,
e H*(K, Z/2) is in ^T*(F, Z/2) c Z/*^, Z/2). We hâve Sw(^) w(^,) • dw

(W2)eH*(F, Z/2). We hâve wW) 1+ {&lt;/,} mod (degreol). Let H^&apos;2

(7T&quot;1) ® PF2. It has a non-degenerate (P^-lattice and w(PF2) e H*(F, Z/2). We hâve

Since {tt, n} {jt, — 1} and {— 1, — 1} 0, we hâve {n}3 0 and

^(PF2) »(r2-fc + 1K_,(^) + (r2~2 +2)k_2(^2), -1}.

Hence we obtain

Ôw(W) (1 + {rf, }/r2 + (r2 - l)w,(PF2) + fc\- l}Vmod degree

r2 + {rfi} + te &quot; IXW} + h-,(W2)) + Q{-1}.
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By

r2odd
ri} + {di} {d} r2 even,

Lemma 2 is proved.

Proof of Theorem for even n. Assume n is even. By Theorem D, we hâve

w2( V°). Further by w( F0) w( V)w(ô) &apos; l(w(ô) + w2(V))w(ô) ~l

¦^2(^0» we ^ave w2(V°) w2(V). Hence by Theorem S, we hâve
Since înv* (P) ° d: H2{K, Z/2) =* {± 1}, it is

enough to compute the boundary dw2(W) e H\F, Z/2). We check that Theorem is

now a spécial case of Proposition 2 where F is finite and a 1. In fact if/or D is

even, the valuation of d is even and {d, 2)K 1 and ({d}/F) (d9 nK)K for a prime
élément nK of K. Thus the proof of Theorem is completed.
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