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Local constant of Ind%1

TAKESHI SAITO

Abstract. Henniart has computed the local constant ¢ (Ind%1) for an extension L over K of local fields
of odd degree in [H]. In this paper, we show that his formula is a consequence of results of Serre [S4]
and of Deligne [D2]. Further we compute the local constant for an extension of even degree, assuming
the residual characteristic is not equal to 2.

1. Local constant of Ind}1

Let K be a local field. Namely K is a complete discrete valuation field with finite
residue field F of order gq. We assume that the characteristic of F is not equal to 2.
For a separable extension L of degree n over K, let V' =V, =Ind;1 be the
induced representation of the absolute Galois gorup Gx = Gal (K*?/K) from the
unit representation 1 of G,. Let d =d,,x € K*/K*? be the discriminant of L over
K and 6 =, =det V x be the character Gy — Z/2 corresponding to d;;x € K*/
K*?= HY(K, Z/2). We consider the local constant ([D1])

eV, 0, 1) - €0, Y, w)™" n odd

A= {a(V, Yo - e(L g, )~V &6, ¥, )" neven

for the virtual representation

o _ V—-no n odd
V—((n—-114+8) neven.

Since dim V°=0 and det V°=1, the local constant &V°) is independent of an
additive character y or a Haar measure u and we drop them in the notation. Since
V is an orthogonal representaion, the Artin conductor

_Ja(V) —na(d) n odd
= {a( V) —((n - Da(l) +a(®)  neven

is an even integer by [S3] Théoréme 1. We put
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508 TAKESHI SAITO
B(V°) = o(V0)q .

It is known to be +1. As usual (z) : F*/F**—{+1} denotes the Legendre symbol
and (,)x: K*/K** x K*/[K*?*— {41} denotes the Hilbert symbol.

THEOREM. Let L be a separable extension of degree n of a local field K with
residual characteristic #2.
I. ((H] Proposition 2) If n is odd, for the virtual representation V9, =
Vi —ndr g, we have

5( Vg/l() = (dL/Ks 2)K-

II. Assume n is even. Let V9, be the virtual representation Vi —
((n —1)1406,x). Let D;;x be the different of L over K and put D =
ord; Dy k.

1. If D is even, we have

é_( V(l),/K) = 1.

2. Assume D is odd. Let e be the ramification index, f = n|e be the residual degree
and ny be an arbitrary prime element of K.
2A. If e is odd, then f is even and we have

&( V(l),/K) e (‘—;F!)(Z) X (dL/K’ Tg k.

2B. Assume e is even. Let K, be the maximum unramified extension of K in
L and E be the residue field of L. Let ©; be a prime element of L and g be the
minimal polynomial of m; over K,. The class o =g'(n,)[n? € EX|E*? is
independent of n, and we put d' = Ng (o) - dgp € F*|F*2. Then

(-Gl (:Fl)’ @y Dk fodd

- Vo —
Ve F (o T )k feven.
Before starting the proof we briefly recall [D2] and [S4]. For a continuous

orthogonal representation ¥ of the absolute Galois group Gx of a field K, its
Stiefel-Whitney class w;(V) € H(K, Z/2) is defined [D2] (1.3). The first one
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w, (V) e H'(K, Z[2) is the determinant character regarded as an element in
Hom (G, Z/2) = H'(K, Z/2). The total Stiefel-Whitney class w(V) =1 4+ w, (V) +
w,(V)+---el+H'(K, Z]2) + H¥(K, Z[2) + - - - satisfies the multiplicativity
w(V) =w(V,) - w(V,) for the orthogonal direct sum V' =V, @ V,. Hence the
Stiefel -Whitney class is defined for a virtual orthogonal representation V =
V,—V, by w(V) =w(V,)w(V,)~'. When K is a local field of characteristic # 2, the
second Stiefel-Whitney class is related to the local constant as follows. We identify
H*(K, Z/2) with {+} by the isomorphism inv.

THEOREM D. ([D2] Théoreme (1.5), [S3] Théoréme 1) Let K be a local field
of characteristic # 2 with residue field of order q and let V° be a virtual orthogonal
representation of the absolute Galois group Gy. Assume that dim V°=0 and
det V° = 1. Then the Artin conductor a(V°) is an even integer and the local constant

VO =gV g~V js +1 and
&§V°) = w, (V).

For a field K of characteristic # 2, we call a quadratic K-module a K-vector
space of finite dimension with a non-degenerate quadratic form. For a quadratic
K-module W, its Stiefel-Whitney class w,(W) € H(K, Z/2) is defined ([S3] 1.2).
The first one w,(W) € H'(K, Z/2) is the discriminant regarded as an elelment in
K*|K*?* = HY(K, Z[2). The total Stiefel-Whitney class w(W) =1+ w (W) +
wy,(W) +---el+HYK, Z]2) + H(K, Z/2) +- - - satisfies the multiplicativity
w(W) =w(W,) - w(W,) for the orthogonal direct sum W = W, @ W,. Hence the
Stiefel-Whitney class is defined for a virtual orthogonal representation W =
W, — W, by w(W) = w(W,)w(W,)~'. For elements a, b € K*, let {a} denote the
class of a in H'(K, Z/2) =K*/K*? and let {a,b} = {a} U {b} € H¥(K, Z/2) denote
the cup-product. For a quadratic K-module (W, Q) with an orthogonal basis (e;);,
its total Stiefel-Whitney class is w(W) =1I,(1+{Q(e;)}) by definition. The
Stiefel -Whitney class of the representation V is related to the Stiefel-Whitney
class of a quadratic form as follows.

THEOREM 8. ([S4] Théoréme 1) Let L be a finite separable extension of a field
K of characteristic #2. Let V = Indg~ 1 be the induced orthogonal representation and
W be the quadratic K-module (L,Tr,(x%). Then by putting d=d;x =
w (W) e H\(K, Z/2), we have

wy (V) =wy (W) + {d, 2}

in HXK, Z)2).
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In the rest of this section, we deduce Theorem for odd » from Theorems D and
S. The proof for even n is more complicated and will be given at the end of the next
section.

We prepare some terminology for quadratic K-modules. For ¢ € K*, let (c)
denote the quadratic K-module (K, cx?). The dimension of a maximal totally
isotropic subspace of a quadratic K-module W is called the index of W. If
dim W =2 index W, the quadratic module W is called hyperbolic.

Proof of Theorem for odd n. We assume n is odd. By Theorem D, we have
&V°) =w,(V°) in H(K, Z[2) = {+1}. Since (a, b)x =invg {a, b}, it is sufficient to
show that w,(V°) = {d, 2} € H*(K, Z/2). Let W° be the virtual quadratic K-module
W — n(d). We show Theorem S implies w,(V°) = w,(W?°) + {d, 2}. In fact w(V°) =
w(V)w(n 6) = = w(W) + {d, 2})w(n(d)) ' = w(W°) + {d, 2}. Note H(K, Z[2) =0
for i >2. Therefore it is sufficient to prove that w(W) = w(n(d)). By {d,d} =
{d, =1}, {—1, —1} =0 and n =1, we have

win(d)) = (1 + {d)" = 1 + {d) +f—“2-‘—’ (d, -1}
= (14 {= 1)@= D3] 4 {(= 1)~ D2 g}),

Namely we have w(n(d)) =w(W’) where W’'=(hyperbolic of dimension
n—1) @ (—1)*"-D24) is the orthogonal direct sum. Hence it is sufficient to show
that W~ W’. Since the discriminants are equal, it is sufficient to show that the
index of W is also (n — 1)/2. Let W, be the quadratic K-module (L, Tr x (ax?)) for
a € L*. The isomorphism class of W, depends only on the class of @ in L*/L*2,
If a € K*, it is isomorphic to (a) ® W. Since K*/K*?— L*/L*? is an injection of
finite groups of the same order, it is an isomorphism. Hence for any a € L*, there
is some b € K™ such that W, ~(b) ® W and the index of W, is independent of
a € L*. Therefore it is sufficient to show that the index of W, is (n — 1)/2 for single
a. It follows from

LEMMA 1. Let L be a separable extension of a field K of degree n, t be a
primitive element of L and g be the minimal polynomial of t. Put a = g'(t) ~". Then the
index of the quadratic K-module W, = (L, Tr; x (ax?)) is equal to the integral part of
half of n

. n
index W, = [—j]
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Proof. We know Tr,x(t'/g'(t)) =0for0<i<n—2and =1fori=n—1[Sl]
Chap. III Lemme 2. Hence the subspace spaned by (1) < ;<22 is isotropic and
is of dimension [r/2]. Since dim >2 index, Lemma is proved.

Thus the proof of Theorem for odd n is completed.

Remark. By [S2] Chap. IV Théoréme 7, w(W) = w(n(d)) implies W ~ n(d).

In this section, let K be a complete discrete valuation field with residue filed F.
We do not assume that F is finite but keep the assumption that characteristic of F
is not equal to 2. First we consider a totally ramified extension L of K and compute
the quadratic K-module W, = (L, Tr; x (ax?) for a e L*.

PROPOSITION 1. Let L be a separable totally ramified extension of degree e of
K and aeL*. Let W, be the quadratic K-module (L, Tr,x(ax?) and d, =
Ny(a) - dpx € K*|K*? be its discriminant.

A. Assume e =2m + 1 is odd. Then there is an orthogonal decomposition

W,~({(-1)"d,) @ (hyperbolic).

B. Assume e = 2m is even and let D be the valuation of the different D .
B1. If ord, a = D mod 2, then W, is hyperbolic.
B2. Assume ord; a =D + 1 mod 2. Let n be a prime element of L and g be
the minimal polynomial of n over K. Then the class o, =a - g'(m)n~' € L*|L *?
is independent of m and is in F*[F*2. Let o, also denote a unit of K whose class
in K*/K*? is a,. Then there is an orthogonal decomposition

W,~(,) @ (—=1)m"'d,/a,) @ (hyperbolic).

Proof.

A. Assume e is odd. Then K*/K*?— L*[L*? is an isomorphism. Therefore by
the same argument as in the proof of Theorem for odd » above, we see that the
index is m. By comparing the discriminant, we obtain the result.

B. Assume e is even. Let © be a prime element of L and g be its minimal
polynomial. First we prove the assertion for a,=g'(n) ~' and @, == - g'(n) . Note
that D = —ord; a, and the class of @, in L*/L*? is independent of choice of z. In
fact, it is the image of the refined different Z(L/K) € L*/1 + m, [K] Section 2 by
the equality 1.16 p. 322 loc. cit.. By Lemma 1, the quadratic module W, is
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hyperbolic. We show W, ~(1) @ (—1)"""d,,) @ (hyperbolic). By the formula
in the proof of Lemma 1, the subspace spanned by n” ~! is isomorphic to (1) and
the subspace spanned by (n')y.;.._» is totally isotropic and perpendicular to
n™~!. Hence we have W, =~ (1) @ (hyperbolic) @ (dimension 1). By comparing the
discriminant, it is proved.

We consider general a € L*. The image of K*/K**— L*|/L*?is F*/F*? and is
of index 2. Hence the condition ord, a = D (resp. D + 1) is equivalent to that the
class of a/a, (resp. a/a,) in L*/L*? is in the image of K*/K>2. It further implies
W,~0b) @ W,, (resp. W, ~(b) ® W, ) for some b € K*. Therefore ord, a =D
implies W, is hyperbolic. Assume ord, a =D + 1. Since a = a, - a, in L*/L*? and
o, € K*, we have W,~(,) ® W,,. Hence W, ~(a,) @ (hyper-
bolic) @ (dimension 1) and comparing the discriminant, we obtain the assertion.

For a general extension, we compute the image of w,(Tr,« (ax?)) € HX(K, Z/2)
by the boundary map d: H¥K, Z/2) - H'(F,Z/2). The spectral sequence
H'(F, H/(K™, Z|2)) = H'*/(K, Z/2) induces an exact sequence

0—s H(F, 2/2) — H{(K, Z|2) — H'~\(F, ZJ2) — 0

for an integer i. The pairing with {n} for a prime element 7 gives a section of . For
i =2, we have a commutative diagram

K" » sz tame symbol F"
{3 | O
HXK, Z/2) H\(F, Z/2).

For an element ¢ € K* of even valuation, the class {¢} € K*/K** = H'(K, Z/2) is in
the subgroup F*/F*?= H\(F, Z/2).

PROPOSITION 2. Let L be a separable extension of K of degree n. We assume
the extension of the residue field E over F is separable of degree [ and the
characteristic of F is>2. Let aeL” and W, be the quadratic K-module (L,
Trpx (ax %).

1. If ord, a = D mod 2, the boundary of the total Stiefel— Whitney class ow(W,)

is 0.
2. Assume ord,a =D + 1 mod 2. Let d, = Ny x(a) - dyx € K*|K*? be the dis-
criminant of W,.
2A. If the ramification index e is odd, we have

0 dd
owa(Wa) = (};){_1} * {{d } ;:ven.
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2B. Assume e is even. Let K, be the maximum unramified subextension of K
in L, a, € EX[E*? be as in Proposition 1 for the totally ramified extension L
over K, and d,, = Ng,(2,) - dgjr € F*[F*2. Then we have

S N IR

Proof. To show ow(W,) is 0, it is enough to find a non-degenerate @ -lattice. In
fact, then for an orthogonal basis over (), the value of the quadratic form at each
element of the basis is a unit. Let K, be the maximum unramified subextension of
K in L. For a quadratic K;-module (W, Q), let Trg, x W denote the quadratic
K-module (W, Trg, x o Q). Since Ok, is a non-degenerate O-lattice of Trg /x ()
for a unit u of K, a non-degenerate O -lattice of quadratic K,-module W is a
non-degenerate Og-lattice of Tr, x W.

1. Assume ord; @ = D. By the argument above, it is enough to find a non-
degenerate (-lattice of W, by assuming K = K,. Namely we may assume
L is totally ramified. If e is even, W, is hyperbolic by Proposition 1 Bl, and
has a non-degenrate O,-lattice. Assume e is odd. By Proposition 1 A, we
have W, ~((—1)"d,) @ (hyperbolic). Since the valuation ordgd, =ordg
(Npx(a) - dp k) =ord; (a) + D is even, the quadratic K-module W, has a non-de-
generate (O, -lattice. Therefore we have ow(W,) = 0.

2. We prove the case ord, a =D + 1 mod 2, by using the following Lemma
proved later.

LEMMA 2. Let W=W, @ W, be the orthogonal direct sum of quadratic
K-modules W, and W,. Assume W, and (nr) ® W, have non-degenerate O-lattices
for a prime element n. Let d and d; be the discriminants of W and W, and r, be the
dimension of W,. Then we have

o (W) = {d} + (;2){_1} ; {0 r2 0dd

{d}  ryeven.

We complete the proof using Lemma. Assume first that e is odd. By Proposition
1A, we have W, ~Trg i (hyperbolic) ®Trg x(—1)¢~"?d}) for d}=
Nyx,(@) - dpx,. Here W, = Trg x (hyperbolic) is also hyperbolic and has a non-de-
generate (y-lattice. Since the valuation ordg d)=ord,a+ D, is odd, the
quadratic K,-module (7) ® ((—1)“~"2 d}) has a non-degenerate U -lattice. Hence
the quadratic K,-module () ® W, has a non-degenerate (x-lattice for W, =
Trg,x ((—1)“~Y2d}). Therefore by applying Lemma 2 and using d,=
(=DE-D2f r = fand d =d,, we have
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—~1 0 dd
w0t =G+ ()4l o

Since e is odd, we have

€= (f\_(=0F (f\ foa—1)_(n
2 +(2>= 2 +“’(2)‘ 2 (2)

mod 2 and Proposition 2 is proved in this case.

Finally assume e is even. By Proposition 1 B2, we have an orthogonal decompo-
sition  W,=W,®@W, where W,=Trg ((2,) @ hyperbolic) and W,=
Trg,x (= 1)~ 'd,/a,). Similarly as above, it is easily checked to satisfy the
assumption of Lemma 2. The discriminant d, € F*/F*?> < K*[|K*? is (— 1)/ -1/
x disc (Trg, x (o)) and disc (Trg, /x («,)) = disc (Trg(2,)) = d,,. Hence Lemma 2
gives us

wirr=(5- (vl 18

Thus Proposition 2 is proved.

i

Proof of Lemma 2. By the assumption that W, has a non-degenerate lattice,
w(W,) e H¥(K, Z/2) is in H*(F, Z|2) =« H*(K, Z/2). We have ow(W) = w(W,) - ow
(W,) e H*(F, Z/2). We have w(W,)=1+ {d,} mod (degree>1). Let W)=
(n~') ® W,. It has a non-degenerate O -lattice and w(W5) € H*(F, Z/2). We have

W) = w((m) ® W3) =Y w,(W3)(1+{n})=~/ =Y (’2 - )w_,(W'z){n}".

ij
Since {n,n} ={n, —1} and {—1, —1} =0, we have {n}’ =0 and

r2“"k +2

M TARUAE

oW (Wy) = (r; =k + Dwi_((W3) +(

Hence we obtain

r,

2){ — 1})(mod degree > 1)

ow(W) =(1+ {4, })<r2 +(ry — Dw (W3) + (

=ry+{d} +(r;— D({d; } + w;(W3)) + (';){"1}
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By

0 r, odd

(r = D{dy } + w (W) ={{d1}+{dz}={d} r,even

Lemma 2 is proved.

Proof of Theorem for even n. Assume n is even. By Theorem D, we have
V% =wy(V°.  Further by  w(V° =w(¥)w(d) " '(w(d) + w,(V))w(d) ' =
1+wy,(V), we have w,(F°) =w,(¥V). Hence by Theorem S, we have
V) =wy,(V) =wy(W) + (d, 2)k. Since invg =(p)od: HX(K, Z[2) ~{+1}, it is
enough to compute the boundary dw,(W) € H'(F, Z/2). We check that Theorem is
now a special case of Proposition 2 where F is finite and @ = 1. In fact if for D is
even, the valuation of d is even and (d, 2)x =1 and ({d}/F) = (d, nx )k for a prime
element n, of K. Thus the proof of Theorem is completed.

REFERENCES

[D1] DELIGNE, P., Les constantes des équations fonctionelles des fonctions L, in Modular functions of
one variable II, Lect. Notes in Math 349 (1972), 501-597, Springer-Verlag, Berlin—-Heidelberg—
New York.

[D2] DELIGNE, P., Les constantes locales de I’équation fonctionelle de la fonction L d’Artin d’une
représentation orthogonale, Inventiones Math. 35 (1976), 299-316,

[H] HeNNIART, G., Galois e-factors modulo roots of unity, Inventiones Math. 78 (1984), 117-126.

[K] KAto, K., Swan conductors with differential values, Adv. Studies in Pure Math. 12 (1987),
Kinokuniya, Tokyo, 315-342.

[S1] SERRE, J.-P., Corps Locaux, Hermann, Paris, 1968.

[S2] SERRE, J.-P., Cours d’arithmétique, Presses Universitaire de France, Paris, 1970.

[S2] SERRE, J.-P., Conducteurs d’ Artin des caractéres réels, Inventiones Math. 14 (1971), 173-183.

[S4] SERRE, J.-P., L’invariant de Witt de la forme Tr, ,(x?), Comm. Math. Helv. 59 (1984), 651-675.

Department of Mathematcal Sciences
University of Tokyo

Tokyo, 113

Japan

Received September 21, 1993; November 15, 1994



	Local constant of Ind...1.

