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Comportement asymptotique des fonctions harmoniques en courbure
négative

FrREDERIC MOUTON

Résumé. Soit M une variété riemannienne compléte, simplement connexe et de courbure négative pincée.
On montre que, pour une fonction harmonique sur M, les notions non-tangentielles de convergence, de
bornitude et de finitude de I’énergie sont équivalentes en presque tout point du bord géométrique. Ce
résultat est un analogue «géométrique» d’un théoréme de A. P. Calderon et E. M. Stein dans le
demi-espace euclidien. La démonstration, inspirée de la méthode de J. Brossard dans le cas euclidien,
utilise le mouvement brownien.

Abstract. Let M be a complete simply connected Riemannian manifold whose sectional curvatures are
bounded between two negative constants. It is shown that, for a given harmonic function on M,
non-tangential properties of convergence, boundedness and finiteness of energy are equivalent for almost
every point of the geometric boundary. This is a “geometric” analogue of Calderon-Stein theorem in
the euclidean half-space. The proof is using Brownian motion, like J. Brossard’s one for the euclidean
case.

Introduction

L’étude de la convergence non-tangentielle des fonctions harmoniques a com-
mencé au début du siécle avec le célébre théoréme de Fatou ([Fat06]): une fonction
harmonique positive sur le disque unité admet en presque tout point du bord une
limite non-tangentielle.

Elle s’est poursuivie, dans le disque puis le demi-espace euclidien, par la
recherche de critéres (presque) ponctuels lorsque les fonctions considérées ne sont
plus positives. Nous nous intéressons ici au critére de bornitude non-tangentielle
([Pril6, Cal50b]) et a celui de l'intégrale d’aire ([MZ38, Spe43, Cal50a, Ste61]).

Plus précisément, les résultats de A. P. Calderén (1950) et E. M. Stein (1961)
prouvent que, pour une fonction harmonique dans le demi-espace euclidien, la
convergence non-tangentielle, la bornitude non-tangentielle et la finitude de I'inté-
grale d’aire coincident en presque tout point du bord. Ce résultat a été redémontre
ultérieurement a 'aide du mouvement brownien par J. Brossard ([Bro77, Bro78]).

Comme I’avait déja remarqué A. Koranyi, les notions euclidiennes de cone
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476 FREDERIC MOUTON

non-tangentiel:
I ={(xy) eR xRt ||x — 0| <ay <a}

et d’intégrale d’aire:
J |VPu(x, y)|>y' = dx dy
Ty

ont une expression plus simple si on munit le demi-espace de la métrique hyperbolique
standard. Les cones non-tangentiels deviennent des voisinages tubulaires de demi-
géodésiques et I'intégrale d’aire devient une énergie:

J‘ ‘Vhypu ‘lzryp dvhyp'
Iy

Le point de vue de la courbure négative semble donc plus naturel pour étudier
ces notions, ce que nous nous proposons de voir en démontrant un analogue
«géométrique» du théoréme de Calderén et Stein, en courbure négative pincée.
Remarquons que des résultats existent déja dans ce sens, notamment un théoréme
de A. Koranyi et R. B. Putz ([KP76]) qui traite le cas des espaces symétriques de
rang un. Plus récemment, M. T. Anderson et R. Schoen ont démontré¢ un théoréme
de Fatou en courbure négative pincée ([ AS85]), comme conséquence de I'identification
du bord de Martin et du bord géométrique. Il existe par ailleurs quelques résultats
dans des cas particuliers d’espaces symétriques de rang supérieur ((MM77, KP81]).

A Tlinverse de A. Koranyi et R. B. Putz, qui utilisent fortement la structure
algébrique du groupe d’isométries, nous utilisons des méthodes browniennes, beau-
coup plus souples. Remarquons que ce type de méthodes probabilistes a récemment
permis & A. Koranyi de démontrer des résultats sur les espaces de Hardy en courbure
négative ([Kor91)).

Notre démonstration est inspirée de celle de J. Brossard dans la structure, mais
il a fallu remplacer toutes les formules et calculs explicites par des estimées
géométriques, ce qui a été possible par des utilisations nombreuses et parfois fines
des différents principes de Harnack et des théorémes géométriques de comparaison.

Il devrait étre clair a la lecture de ce qui suit que la souplesse des arguments
employés permettra d’adapter la démonstration & des cadres voisins ou moins
restrictifs.

En particulier, quitte a remplacer les comparaisons aux modeles de courbure
constante, dans un sens par 'utilisation de I’hyperbolicité au sens de Gromov et dans
P’autre par une minoration de la courbure de Ricci, on obtiendrait le résultat dans
un cadre plus général (qui pourrait englober certains cas discrets). Cette extension
pourra faire 'objet d’un travail ultérieur.
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D’autre part, 'opérateur laplacien peut étre remplacé sans réel changement par
un opérateur au comportement suffisament voisin. Nous traitons briévement a la fin
de cet article le cas des opérateurs elliptiques faiblement ccercifs au sens
d’A. Ancona (v. [Anc87]), ce qui permet au passage de retrouver le cas euclidien.

Cet article est organisé¢ de la mani€re suivante: aprés une premiére section fixant
cadre et notations, la deuxiéme rappelle les différentes propriétés de Harnack. La
troisiéme introduit la notion de convergence brownienne. La quatriéme rappelle
quelques résultats essentiels. Nous énongons ensuite précisément le théoréme dans
la cinquiéme section et le démontrons dans les sixiéme et septiéme. Enfin, la
derniére section traite le cas d’opérateurs plus généraux.

1. Un cadre géométrique

On se place désormais dans une variété riemannienne M (de classe C* et de
dimension d > 2), compléte, simplement connexe et dont la courbure sectionnelle
est pincée entre deux constantes négatives: 0> —a?> K > —b?. Remarquons
qu’elle est diffeomorphe a la boule ouverte B¢ d’aprés le théoréme de Cartan—
Hadamard.

L’opérateur de Laplace—Beltrami étant donné en fonction de la métrique par la
formule

1 "0 .0
4=\~ = | ({/det g)g”~—-),
( ,/detg) i,jz=l 0x; (( 0x;

une fonction f est harmonique si 4f = 0.

Pour étudier le comportement asymptotique de ces fonctions, il nous faut choisir
un bord, c’est-a-dire une compactification de M.

Les objects géomeétriques correspondant aux cOnes non-tangentiels du demi-
espace euclidien sont, on I’a vu plus haut et cela est précisé plus bas, définis a partir
de demi-géodésiques. C’est pourquoi le bord adapté aux notions non-tangentielles
est le bord géométrique. Il est défini comme I’ensemble des demi-géodésiques
quotienté par la relation d’asymptoticité ((EO73]). On obtient une compactification
grice a la topologie des cones. La courbure étant négative ou nulle, on sait que le
bord géométrique de M est homéomorphe a la sphére S9-'.

D’autre part, le bord permettant de «représenter» les fonctions harmoniques
positives est le bord de Martin, défini a partir des noyaux de Green ([AS85)]. Le
résultat de M. T. Anderson et R. Schoen ([AS85]) affirme que sous les hypothéses
précédentes (en particulier le pincement de la courbure), ce bord coincide avec le
précédent. Ce résultat s’étend a des opérateurs plus généraux, comme le montrent
les résultats théoriques d’A. Ancona ([Anc87]).
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On note alors M cette unique notion de bord et M = M L 0M la compactifica-
tion obtenue. Sur ce bord nous avons besoin d’une notion de mesure, puisque les
critéres que nous recherchons, a I'instar du théoréme de Fatou (qui est obtenu dans
ce cadre par M. T. Anderson et R. Schoen comme une conséquence de I’identifica-
tion des bords), ne sont vrais que «presque partout».

Il y a une famille de mesures naturellement associée aux fonctions harmoniques
et au mouvement brownien: la famille des mesures harmoniques. La mesure
harmonique partant de x, u,., est définic comme la loi de sortie du mouvement
brownien partant de x ([Sul83], v. aussi [Kif86, Led90]), ou par la résolution du
probléme de Dirichlet ([Sul83, And83]): pour une fonction f continue sur le bord,
I'unique prolongement harmonique f est donné par la formule

fx) = j £(6) du(6).
oM

On obtient ainsi une famille de mesures équivalentes u = (1, ), 5, qui définit donc
une notion de partie pu-négligeable du bord (seule notion qui nous intéresse).
S’étant fixé un point base o sur M, on définit le noyau de Poisson py(x) =
du, |du, (6), dérivée de Radon—Nykodim des mesures harmoniques. On peut aussi
le définir a P’aide des fonctions de Green (v. noyau de Martin dans [AS85, Anc87]).
Suite aux remarques de I'introduction, nous appellerons tube non-tangentiel (ou
simplement tube) en 0 de rayon ¢ ’ensemble

I‘={xeM|d(x,y,) <c},

ou c¢ est un réel strictement positif et y, est 'unique demi-géodésique joignant o a
0 € 0M. Nous dirons d’une suite (x,) de points de M qu’elle tend non-tangentielle-
ment vers 0 si les x, tendent vers 6 en restant dans un certain tube I'.

Nous dirons qu’une fonction u converge non-tangentiellement vers [ en 0 si pour
tout ¢ > 0, u(z) tend vers / quand z tend vers 6 en restant dans I'Y. Cela équivaut
au fait que pour toute suite (x,) qui tend non-tangentiellement vers 6, la suite
(u(x,)) converge vers /.

Nous dirons que la fonction u est bornée non-tangentiellement en 0 si les
restrictions de u aux tubes I'? sont bornées.

Nous appellerons énergie non-tangentielle de la fonction u sur le tube I'? la
quantité

7o) = f PP dons = |V 2ac,
ré

qui correspond a l'intégrale d’aire du cas euclidien.
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2. Inégalités de Harnack

On rappelle ici différents critéres de comparaison de type «Harnack», qui
permettent de contrdler la croissance des fonctions harmoniques positives.

Le premier est 'inégalité de Harnack usuelle, mais dans le cas des boules, ce qui
permet d’avoir une constante uniforme. C’est une conséquence de la version
infinitésimale de Cheng-Yau ([CY75]) de I'inégalité de Harnack.

PROPOSITION 2.1 (Inégalité de Harnack sur les boules.). Soient deux rayons
r et R vérifiant 0 <r < R. Il existe alors une constante C, ne dépendant de M que par
la dimension et la minoration de la courbure, telle que, pour tout point x € M et toute
fonction harmonique positive u sur B(x, R) on ait

sup u(z) <C- inf u(z).

ze B(x,r) ze B(x, r)

Hormis cette inégalité classique nous nous servirons d’une inégalité (ou plutot
d’un principe de comparaison) de Harnack «a I'infini». Pour la décrire, nous avons
besoin d’introduire quelques notations.

Si x est un point de M, £ un vecteur tangent a M au point x et « un angle, on
note A(x, &, a) le cone ouvert (usuel) de sommet x, de direction ¢ et d’angle «,
c’est-a-dire la réunion des demi-géodésiques (ouvertes) partant de x dans des
directions faisant un angle avec ¢ inférieur strictement 4 «. On note A(x, &, a) le
cone fermé correspondant. Enfin, on note T(x, ¢, o) = A(x, &, «)\B(x, 1) le cone
(fermé) tronqué de sommet x, direction ¢ et angle a.

THEOREME 2.1 (Principe de Harnack a l'infini.). Soit un angle « €10, n/2[. Il
existe alors une constante C, ne dépendant de M que par la dimension et les bornes
de la courbure, telle que, pour tout point x € M et toute direction £ en x, on ait la
propriété suivante:

Si u et v sont deux fonctions harmoniques positives (strictement) sur A(x, &, a)
tendant vers 0 a linfini (pour la topologie de M), alors

u(2)

ouT=T(x, ¢, af2).

Ce principe est I’étape clé de la démonstration de P'identification du bord
géométrique et du bord de Martin ([AS85, Anc87]).



480 FREDERIC MOUTON

En vue d’étudier le comportement asymptotique des fonctions de Green, nous
aurons besoin d’une autre formulation du principe de Harnack a I'infini, due a
A. Ancona ([Anc87]). qui est une sorte d’inégalité triangulaire.

THEOREME 2.2 (Sous-multiplicativité des fonctions de Green.). Pour tout
angle a €0, n/2[, il existe une constante C telle que, quels que soient les points x, y
et z tels qu’on puisse trouver une direction & vérifiant x ¢ A(z, &, ) et y € T(z, &, a[2),
on ait (G étant le noyau de Green de M)

G(x,y) < C- G(x, 2)G(z, y).

En outre, la constante C ne dépend de la variété M que par les bornes de la
courbure et la dimension.

Remarque. Le rayon utilis¢ pour tronquer les cones, qu’on a pris égal a 1, est
bien entendu arbitraire et les deux théorémes précédents sont vrais avec un rayon
plus petit (on peut par exemple se ramener au cas de rayon 1 en multipliant la
métrique par une constante).

3. Le conditionnement et la convergence brownienne

On explique ici comment conditionner le mouvement brownien a sortir en un
point donné du bord. Cela permet de définir les notions de convergence et de
bornitude browniennes et de finitude d I’énergie brownienne. Le théoréme de
convergence des martingales permet alors de prouver que ces trois notions
coincident.

3.1 Rappels

Rappelons qu’on peut définir un mouvement brownien sur les variétés riemanni-
ennes, comme processus de diffusion associé a I'opérateur de Laplace—Beltrami
(IMcK69], v. aussi [Pin78]). Lorsque M est compléte, simplement connexe, de
courbure négative pincée, le mouvement brownien est défini sur R, entier (v. par
exemple [Kif86]), on dit qu’il n’y a pas d’«explosion». Sous les mémes hypothéses,
un résultat fondamental de J.-J. Prat ([Pra75]) assure que les trajectoires browni-
ennes convergent presque siirement vers des points du bord oM.

Précisons un peu les notations. Le mouvement brownien étant défini pour tout
temps ¢, on le note (X,),.r, . Les X, sont des variables aléatoires sur un espace
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probabilis¢ Q, a valeurs dans la variété M, et si ’'on fixe un événement élémentaire
w € Q, les applications [t — X, (w)] sont continues, c¢’est-a-dire sont des chemins sur
M. On peut choisir comme espace probabilis¢ Q = €(R,, M), ’espace des chemins
de M définis sur R, . Ainsi X,(w) = o(?), et la donnée du mouvement brownien est
celle d’'une probabilite sur 'espace des chemins. Si on considére le mouvement
brownien partant d’un point z fixé, on obtient une probabilité P. sur Q (elle ne
«voit» que les chemins partant de z). On peut done voir le mouvement brownien
comme la donnée d’une famille de probabilités (P.). . ,, sur I’espace des chemins. Le
résultat de J.-J. Prat est alors le suivant: pour P_-presque tout chemin w, il existe un
point 6 € OM tel que

lim a)(t)(z lim X,(a)))zﬂ.

t— + 00 t— 400

Si on note X (w) cette limite, la «loi de sortie» du mouvement brownien partant de
z est alors loi image de P, par la variable X,. On sait qu’on retrouve ainsi la mesure
harmonique partant de z: pour tout borélien 4 de oM,

p(A) = P.[“sortir dans A”] = P_{w | X, (w) € 4}.

La propriété fondamentale du mouvement brownien est la propriété de martin-
gale: pour une fonction f de classe C?, ’expression

1 t
f(x) +5L Af (X,) ds

est une martingale locale (en ¢) par rapport aux probabilités P,. Cette propriété est
une conséquence de la théorie de I'intégration stochastique et de la formule d’It6
(pour des définitions du cas réel jusqu’a celui des variétés, voir [Dur84, McK69,
Pin78]). Cest cette propriété de martingale qui permet I’utilisation des méthodes
browniennes en théorie du potentiel. En particulier, si # est une fonction har-
monique sur M, alors (u(X,)), g, est une martingale locale par rapport aux P,.

3.2 Le conditionnement

Pour conditionner le mouvement brownien a «sortir» de M en un point 6 € M
on utilise le méthode des A-processus de Doob ([Doo57]). Cette derniére s’applique
bien car tous les éléments du bord de Martin sont minimaux ([AS85, Anc87]) au
sens des fonctions harmoniques. '
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Soient 7, le temps de sortie de la boule B(z, n), de centre z et de rayon n € N,
et #. la tribu associee. En posant

1
Po(2)

Pg(A) = E,[1, 'Pe(Xr,,)]a

on obtient une probabilité sur &, . Ces probabilités sont compatibles: si 4 € #

E [l py(X,, ) =E[l, E[py(X,, )IF ] =E][l, py(X,)]

Par le théoreme de Kolmogorov sur les limites projectives de probabilités, on
obtient une probabilité P¢ sur & ., tribu engendrée par les # .,» 1 € N, qui coincide
avec les précédentes sur les #, . Un calcul simple donne, pour F % _-mesurable, la
formule de conditionnement suivante:

E.[F] =j EZ[F]dp.(0).
oM

Ces probabilités vérifient la propriété forte de Markov (de méme que dans
[Bro78]): soient T un temps d’arrét p.s. fini et F une variable aléatoire positive
& -mesurable, alors

EZ[F" Or|F 1]l =up(Xr),

ol up(z') =E%[F]l et O: w+— o(T + -) est Popérateur de translation sur Q.

Un événement 4 de F ,, est dit asymptotique si 1, - @, =1, pour tout n. Pour
ces événements (comme dans [Dur84]), on a une loi 0-1: si A est asymptotique,
’application [z — P?[A]] est constante et vaut 0 ou 1. (Le fait que p, soit minimal
joue ici un role.)

Remarquons que P%-p.s., X, =0 et aussi que si F est & -mesurable pour un
temps d’arréte 7T p.s. fini,

1

E°[F] =
wAF] Pe(2)

E[F - po(X7)].

3.3 La convergence brownienne

Soit u une fonction quelconque sur M. Intéressons-nous & son comportement
sur les trajectoires browniennes, c’est-a-dire au comportement asymptotique de la
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quantit¢ u (X,). Pour cela, on considére N* =sup,.q, |u(X,)|. On introduit aussi
I’énergie brownienne de u:

+ 0
J* = J Pu(X,) dt.
0

(Ces deux quantités sont des variables aléatoires sur Q.)
On définit alors trois événements de Q:

,?**r-{weﬂ

lim u(X,(w)) existe et est ﬁnie},

t— +o
N** ={weQ|N*¥w) < +0}; I ={weQ|J*w) < + w0}

Le premier est 'ensemble des trajectoires sur lesquelles la fonction u converge, le
second est I’ensemble des trajectoires sur lesquelles la fonction u est bornée et le
troisicme est I’ensemble des trajectoires sur lesquelles I’énergie de la fonction u est
finie.

Ces evenements sont clairement asymptotiques: une «translation» de la trajec-
toire ne change pas son appartenance a £**, A/ ™** ou #** En appliquant la loi
0-1 asymptotique, on obtient que les quantités PS(L**), PY( N **) et P( #**)
prennent les valeurs 0 ou 1, cela ne dépendant pas du point z. On peut alors définir
L*={0 € OM | P{(ZL**) =1}, et /* et #* de la méme maniére. Suivant ’appar-
tenance d’un point 8 du bord a ces ensembles, on dira respectivement qu’il y a
convergence brownienne de u en 0, bornitude brownienne de u en 6 ou que /’énergie
brownienne de u est finie en 6.

Remarquons que de plus, si 0 € £*, lim,_, ., u(X,) est PS-p.s. constante, la
constante ne dépendant pas de z, car les événements {w |1im,_,+00 u(X,(w)) < R}
(R € R) sont asymptotiques. Cette valeur est appelée la limite brownienne de la
fonction u en 6.

Pour ces notions probabilistes, on montre un résultat similaire au théoréme
non-tangentiel qu’on veut prouver.

LEMME 3.1 (Analogue probabiliste.) Si la fonction u est harmonique, on a
P rx N*x #* (ie. ces ensembles sont égaux p-p.p.)

D> 11 suffit d’avoir F** ; N 2 F** le résultat en découlant en condition-
nant.
D’aprés le théoréme de convergence des martingales locales, pour une martin-
gale locale fixée, les deux événements ‘“‘la martingale locale est majorée” et “la
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martingale locale est convergente” coincident presque sirement. (On a évidemment
le méme résultat avec la minoration.) Ce théoréme, avec la propriété de martingale,
assure que F** x N,

Pour l'autre égalité, appliquons la propriété de martingale a la fonction uZ.
Sachant que la fonction u est harmonique, on a A4u®> = —2|Vu|?, et donc ’expression

u’(X) — J" |Pu(X,)|? ds
o

est une martingale locale différence de deux termes positifs ou nuls. La convergence
de I'un ou lautre de ces termes donne une majoration ou une minoration de la
martingale et donc P,-p.s. la convergence de l'autre terme, ce qui prouve (la

Py
fonction [f > u(X,)] étant continue) que FL** ~ F** O

I1 découle de la démonstration du théoréme principal 5.1 que, pour une fonction
harmonique, ces notions probabilistes sont entrainées (p.p.) par les notions non-
tangentielles correspondantes. On peut d’autre part remonter ponctuellement aux
propriétés non-tangentielles sous une hypothése d’uniforme continuité, comme le
montre le corollaire 4.5.

4. Trois ingrédients essentiels

On présente ici trois résultats intervenant de maniére fondamentale dans la
démonstration du théoréme principal 5.1.

4.1 Les fonctions harmoniques bornées

Lorsque la fonction harmonique considérée est bornée, des résultats précédents
([Sul83, AS85]) assurent qu’elle admet p.p. des limites non-tangentielles et browni-
ennes. Plus précisément, on a le résultat suivant:

THEOREME 4.1 (Représentation bornée). Les fonctions harmoniques bornées u
sont représentées de maniére unique par les fonctions f de L*(u) par la formule

u(x) = LMf (0) du.(60) = E.[ f(X,)].

-

De plus, il y a convergence non-tangentielle et convergence brownienne de u en
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Figure 1. Un lemme clé.

p-presque tout point 0 € OM, et les limites sont données u-p.p. par les valeurs de la
fonction f.

4.2 Un lemme clé

Le lemme suivant et ses corollaires interviennent 4 des points cruciaux de la
démonstration. On peut en voir une preuve concise dans le cours d’A. Ancona a
Saint-Flour ([Anc90], v. aussi [Mou94)).

Si E est un borélien de dM, on note I'.(E) = Vgl % la réunion des tubes
s’appuyant sur E (v. figure 1).

LEMME 4.1. Il existe une constante n > 0 telle que, pour tout borélien E de OM,
on ait

Vx ¢ [ (E), PJIX, ¢E]l=n.
On déduit de ce lemme un corollaire intéressant:
COROLLAIRE 4.1. Soient E un borélien de OM et z un point de M.

Pour p-presque tout 0 € E, P%-p.s., le mouvement brownien «passe les derniers
instants de sa vie» dans I',(E) (i.e. pour t assez grand, X, € I AE)).



486 FREDERIC MOUTON

> Soit fz(x) = P.[X, € E] = E,[15(X,)]. D’aprés le théoréme 4.1 sur les fonctions
harmoniques bornées, pour p-presque tout 6,

Pi’[ lim fe(X,) = 15(9)] =1

-+

Or, d’apres le lemme 4.1, il existe un # > 0 tel que pour x ¢ I' .(E), fz(x) <1 —n.
Donc pour p-presque tout 6 de E, P’-ps., X, est dans I'.(E) pour ¢ assez
grand. O

On peut déduire un autre corollaire du lemme 4.1. Si on appelle pointes d’un
tube I'? les ensembles I'’\B(o, R) (R € R,), on a le résultat suivant:

COROLLAIRE 4.2. Pour E borélien de 0M, on note encore fg(x) = P.[X, € E].

Alors, pout tout 0 € OM tel que limy 1 fe(x) =1, I'.(E) contient des pointes de
tout tube de sommet 0. 0

Cela est vrai pour u-presque tout 0 de E d’aprés le théoréme 4.1 sur les fonctions
harmoniques bornées.

> Soit 8 un point de M tel que limy 1 fg(x) = 1. Soit I'? un tube de sommet 6.
x—0

Raisonnons par I’absurde en supposant que I'.(E) ne contienne aucune pointe de ce
tube. Alors, pour tout R e R, , il existe un x € I''\I'.(E) tel que d(o, x) > R. En
prenant n € N pour R, on obtient ainsi une suite (x,), .y d’éléments de I'’\I' (E)
telle que d(o,x,) >n. Le fait que d(x,,y,) soit bornée par e et que
lim, , , . d(x,, 0) = + o implique que (x,) tend non-tangentiellement vers 6. Donc
lim, , , ., fz(x,) =1 par hypothése. Comme d’autre part les x, ne sont pas dans
I'.(E), en appliquant le lemme 4.1, fz(x,) <1 —n. Cette contradiction achéve le
démonstration. m

4.3 Une propriété fondamentale

La propriété décrite ici a plusieurs corollaires importants pour la suite. Elle
figure, en version «théorie du potentiel», dans le cours d’A. Ancona a Saint-Flour
([Anc90], v. [Mou94] pour une autre démonstration).

PROPOSITION 4.1. Soit une suite de boules fermées de rayon fixé dont les
centres tendent non-tangentiellement vers un point 0 du bord, et soit z € M (v. figure
2).

Alors le mouvement brownien rencontre P%-p.s. une infinité de ces boules.



Comportement asymptotique des fonctions harmoniques en courbure négative 487

B, .

Bn

\ /

6

Figure 2. Une propriété fondamentale.

De cette proposition, on déduit trois corollaires trés importants.

COROLLAIRE 4.3. Soit I'® un tube non-tangentiel. Alors PS-p.s., le mouvement
brownien rentre et sort de ce tube a des instants arbitrairement proches de + .

> 11 suffit de prendre deux suites de boules, I'une a 'intérieur du tube et I'autre a
Pextérieur, qui tendent toutes les deux non-tangentiellement vers 6, et d’appliquer la
proposition. En effet, (X,),,, rencontre seulement un nombre fini de boules, par
compaciteé. O

Le corollaire suivant est trés réconfortant pour I'intuition.

COROLLAIRE 4.4. Si pour une fonction quelconque u, il y a convergence
brownienne et convergence non-tangentielle en 0, alors les limites sont les mémes.

D> Cela découle de maniére évidente de la proposition. O

Le prochain corollaire permettra de remonter de la convergence brownienne a la
convergence non-tangentielle:
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COROLLAIRE 4.5. Si une fonction quelconque u admet une limite brownienne [
en 0 et est uniformément continue sur le tube I'®, alors u(z) converge vers [ lorsque z
tend vers 0 en restant dans I'S, cela pour tout sous-tube T'Y, e < c.

D> Raisonnons par I’absurde. Si la conclusion n’est pas vérifiée, il existe ¢ > 0 et des
points x, € I'? tendant vers 6 tels que |u(x,) —I|>e Or u est uniformément
continue sur I'%, donc

Ju >0, Vx,yel?, d(x,y)ga:lu(x)—u(y)lgg.

~ Quitte 4 réduire a, on peut supposer que « < ¢ —e. Les boules B, = B(x,, @) sont
alors incluses dans I'?, par inégalité triangulaire. Comme les x, tendent non-tangen-
tiellement vers 0, d’aprés la proposition, P?-p.s. le mouvement brownien rencontre
une infinité de B,. Soit alors une trajectoire brownienne «générique» X,(w). On a
lim, , , , u(X,(w)) =1 et X,(w) rencontre une infinité de B,. On choisit alors ¢, tel
que

t> 1o = [u(X, (@) — | s%.

La trajectoire tronquée (X,(w)),.,, rencontre par compacité seulement un nombre
fini de B,, donc (X,(w)), ,, €n rencontre au moins une: B, . Soit alors #; > 7, tel que
X, (w)eB, .Ona

0<e <fulx,,) — 1| < ulx,,) — uX;, (@) + X, (@) ~ 1] <5

ce qui fournit la contradiction recherchée. O

5. Résultat principal

Nous énongons maintenant de maniére précise le résultat que nous voulons
démontrer.

THEOREME 5.1. Soit M une variété riemannienne compléte, simplement con-
nexe; de courbure négative pincée: 0 > —a’>> K > — b?.
Si u est une fonction harmonique sur M alors pour p-presque tout point 0 du bord
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OM, les propriétés suivantes sont équivalentes:

(1) Pour tout ¢ >0, la fonction u(z) a une limite lorsque z tend vers 0 en restant
dans le tube T'?;
(i) Il existe un ¢ > 0 tel que la fonction u(z) ait une limite lorsque z tend vers
0 en restant dans le tube I'?;
(ii) Pour tout ¢ >0, la fonction u est bornée sur le tube I'?;
(ii") 1l existe un ¢ >0 tel que la fonction u soit bornée sur le tube I'¢;
(iii) Pour tout ¢ >0, I’énergie non-tangentielle de u sur le tube I'? est finie;
(iii") 1/ existe un ¢ > 0 tel que I’énergie non-tangentielle de u sur le tube I'° soit

finie.

Introduisons ici quelques notations qui nous serviront par la suite. La fonction
u est une fonction harmonique pour laquelle on veut démontrer le théoréme.
On note Ni(u) =sup,.r¢ |u(z)|. On définit alors, pour ¢ >0, les trois ensembles
suivants:

$C={968M

limo u(z) existe et est ﬁnie},
zel}

z—0

N.={0€dM|Nou) < +o0}, F.={0€dM|J(y) <+w},

qui correspondent aux propriétés primées du théoreme. Puis on définit les ensem-
bles =000, N=Noso N0t F=0N.,0Fc qui correspondent aux propri-
étés non primées. L’énoncé du théoréme se traduit alors par les relations:

b aNxN . 2 fxf,,

ou la relation = signifie que les deux ensembles différent d’un ensemble u-négligeable.
On a de maniére évidente l'inclusion ., < A",.. Il sera montré 4 la section
suivante que 4, & ¢, pour tout e <c et a la section d’aprés que ¢, & &, pour
tout e < c. En prenant les intersections (sur un nombre dénombrable d’indices), on
obtient &£ ~ A" ~ #. Les autres «égalités» sont obtenues par le résultat suivant:

PROPOSITION 5.1. &', = A

D> L’ensemble 4", est réunion dénombrable des A”={0 € dM |N(u) <n}.
Comme A4 < ./, il suffit de montrer que A7 & .A". Par définition de 47, la
fonction |u| est bornée par n sur I'.(47). En appliquant le corollaire 4.2, on obtient
que pour presque tout point 6 de 47, I'.(47) contient des pointes de tout tube de
sommet 6. Sur ces pointes, la fonction u est bornée, et par compacité, elle est donc
bornée sur les tubes en entier, ce qui signifie que 0 € A" O
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6. La bornitude n.-t. implique p.p. la finitude de I’énergie n.-t.

Nous montrons ici que A . & #, pout tout e < c. Comme dans la proposition
précédente, il suffit de prouver que chaque ensemble A7 = {6 € 6M | N%u) <n}
(n € N) est presque inclus dans £, (e <c). Sur I' =T (A7) = Uy 4, I'?, la fonction
|u| est bornée par n.

On note alors 7 le temps de sortie de I' et 7,, le temps de sortie de la boule
B(o, m). Comme la fonction u est harmonique, du”>= —2|Vu|* et la propriété de
martingale nous dit que

M, =u¥X,) — f t Pu(X,)|? ds

est une martingale locale. En la considérant au temps d’arrét © A 7,, (qui est p.s.
fini) et en prenant I’espérance partant de o, on obtient

TA T,

IVU(XS)Iz ds:| = EO[MT A rm] = EO[MO] = u2(0)°
0

Ea[uz(Xt A rm)] - Eo [J

Comme u? est positive et majorée par n? sur I', on obtient

Eo[j ” |Vu(X,)|? ds] <n?

0

Faisant tendre m vers + oo (convergence monotone), puis conditionnant, on
obtient, pour pu-presque tout 0,

E"U IPu(X,)? ds] < +o0.
0

Pour passer des probabilités a ’analyse, on rappelle un résultat bien connu de
théorie du potentiel:

LEMME 6.1. Soient ¢ une fonction positive sur un ouvert U de M et z un point
de U. On a, en notant 1 le temps de sortie de U et G (x, y) (=G(x, y) — E [G(X,, y)])
le noyau de Green de U,

E, U o(X,) ds] = L 0(1)Gu(z, ) dy.

~

On en déduit aisément une version conditionnée:
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LEMME 6.2. Soient ¢ une fonction positive sur un ouvert U de M et z un point
de U. On a, en notant t le temps de sortie de U,

Eg[ft¢(Xs)dS] f o(1)Gy(z, y)”"((y))
0 ()

En appliquant ce résultat a la majoration précédente, on obtient, pour u-
presque tout 6,

L |Vu(y) PG (o, )po(y) dy < + 0.

En vue de se ramener a une énergie, nous allons minorer le terme G (o, y)p,(»).
Pour cela on montre d’abord deux lemmes qui ont aussi un intérét par eux-mémes.
Le premier permet de minorer un terme analogue, mais avec la fonction de Green
globale. (Notons que ce résultat a été précédemment remarqué par A. Ancona
([Anc90)).)

LEMME 6.3. Il existe une constante C ne dépendant que des bornes de la
courbure, de la dimension de M et du réel ¢ >0 telle que, pour tout 0, on ait

Vy € Ff., G(Os y)pﬂ(y) = C > 0

(Si on se limite aux y € I'’\B(o, ¢), alors on peut trouver une constante indépen-
dante de c.)

> Commengons par rappeler que le noyau de Poisson s’écrit aussi comme limite de
noyaux de Green normalisés (v. par exemple [AS85]). On a en effet p,(y) =
lim,_, G(y, x)/G(o, x). (Remarquons que la limite est relative a la topologie
usuelle de M, puisque le bord de Martin et le bord géométrique coincident.) Ainsi
on a

G(o, y)G(y, x)
G(o,x) ’

G(o, y)po(y) = iigr})

ce qui fait immédiatement penser a la propriété d’A. Ancona de sous-multiplicativé
des fonctions de Green (théoréme 2.2). Pour appliquer cette propriété, on choisit
n/4 (par exemple) comme angle du cOne, pour avoir une constante uniforme. Si
y € °\B(o, ¢), quitte & prendre x assez proche de 0, on peut trouver un cone
vérifiant les hypothéses de la propriété en question, le point a I'extérieur du cone
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étant alors 0. On obtient ainsi une constante C > 0, ne dépendant que des bornes
de la courbure et de la dimension, telle que, pour yeI'?\B(o, c) et x assez proche
de 0, on ait

G(o, y)G(y, x)
Gon =©

Par passage a la limite, on obtient le résultat entre parenthéses. Pour avoir le
lemme, il suffit alors d’appliquer I'inégalité de Harnack sur les boules (B(o, c) et M)
a la fonction p, et une minoration de la fonction G(o, - ) ((Anc87]) sur cette méme
boule. m

Le deuxiéme lemme permet de comparer la fonction de Green de I' a la fonction
de Green globale:

LEMME 6.4. Soit U un ouvert de M contenant un céne T'’. Si on note t le temps
de sortie de U, on a, pour e < c,

. Gylo, x)
Im, G

x—0

= P%[t = + o0].

> On a

Gyl(o, x) = G(o, x) — E,[G(X,, X)] = G(o, x)<1 _E [G(XT, x)D

G(o, x)
_ L [6x)
- G(Oa X)<1 EO[G(O, x) l{f< +7&}]>’

car la fonction G( -, x) est nulle a Pinfini.
Cependant, en voyant le noyau de Poisson comme limite de noyaux de Green,
comme dans le lemme précédent, on obtient, pour T < + o0,

. G(X,x) .. GX.,x
m ———— = |im = X .
xherg G0, %)  xob G(o, %) Po(X:)
x-0

Sous réserve de pouvoir intervertir la limite et I’espérance, on a

[G(th X)

G(o, x) I{KM}] = E,[po(X) 11 < 4 o3] = Polr < + 0],
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donc

im E;U(O’ X)
xelf G(O, X)

x~0

=1—Pi[t < +00] = P%[t = + 0],

ce qui prouve le lemme.

Il ne reste plus qu’a justifier I'interversion entre la limite et ’espérance, ce qu’on
va faire avec le théoréme de convergence dominée de Lebesgue. Soit o’ le point situé
sur la demi-géodésique 7y, a distance ¢ du point 0. On note y' la demi-géodésique
(0'0) et I'"={x e M |d(x,y’) <e}. Nous allons montrer qu’il existe une constante
C telle que

G(z, x)
Go. %) < C- py(2),

Vxel', Vz¢rI?,
ce qui fournit la domination voulue.

Si y ey’, les points z ¢ I'? et 0 ne sont pas dans B(y, ¢). D’aprés I'inégalité de
Harnack sur les boules appliquée aux fonctions G(z, ) et G(o, ), il existe une
constante C, telle que

5 G(z, x) G(z, )

Vz ¢ I'? v /, Vx € B(y,e), <C .

Comme I'"= v, ., B(y,e), il suffit de montrer qu’il existe une constante C, telle
que

G(z, y)
Vz ¢F§, Vy €9/,
YEV G, y)

< Gy po(2).

Pour montrer cela, on va utiliser plusieurs fois la propriété de Harnack a I'infini.
Les cones tronqués seront ici tronqués non pas par des boules de rayon 1, mais par
des boules de rayon c, ce qui est possible d’aprés la remarque située a la fin de la
section 2.

On va, dans un premier temps, se ramener au cas ou z est proche de la
géodésique passant par o et 6, qu'on note 0. Pour cela, on définit pour chaque
z ¢ I'? un point z’ de la maniére suivante. Si d(z, 06) < ¢, on pose z’ = z. Sinon, on
considére le segment réalisant la projection orthogonale de z sur 06 et on prend
pour z’ le point de ce segment situé a distance ¢ de la géodésique 0f. Remarquons
que ce point z’ est encore hors de I'’. Dans ce deuxiéme cas, on note z” la
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projection de z sur la géodésique o0 et - on considere le cone A, de sommet z”,
d’angle n/4, pointant vers z. Comme zz”"0 =m/2, A, ne contient pas 0 et les
fonctions G(-,y) (y €y’) et p, vérifient les hypothéses du principe de Harnack a
Pinfini sur le cone A,. Comme z et z’' sont dans le cone tronqué correspondant
(rappelons qu’on tronque ici les cones a distance c¢), on obtient une constante
C;(=1), indépendante de z et de y, telle que

6y _ . GG\
po(2) T 7 puz)

Cette inégalité est encore vérifiée pour les points z et z’ du premier cas (puisque
C; > 1). 11 nous suffit donc de montrer qu’il existe une constante C, telle que

G(z', y) o
G0, ) < Gy po(2).

Vz' ¢ I'? |d(z',00) <c, Vyey,

On sépare alors I’étude en deux cas, suivant que la projection z” de z sur of est
ou n’est pas sur 7,. Py

Si z” ¢ yy, alors, pour tout y€y’, on a d(y,z") >c. Comme yz"z' =n/2 et
d(z",z') < ¢, par comparaison avec M, espace modéle de courbure constante —a?
(Ll\\dou94]), on trouve un angle f <n/4 (ne dépendant que de c et a) tel que

NN
oyz' =z"yz’ < B. En considérant alors le cone de sommet y, d’angle 28, pointant
vers o et les fonctions G( -, y) et p, aux points z’ et o, le principe de Harnack a
I'infini fournit alors une constante Cs, indépendante de z’ et y, telle que

GEz.Y) 60 s dire GE2Y)

Pe(z) = 7 pelo) G(o, y)

< Cs - po(2").

Soit maintenant z’ tel que z” €y, (on a alors d(z’, 06) =c). Dans le cas ou
oyz' < B, le raisonnemen}gt le majoration précédents sont encore valables. Il reste
donc a traiter le cas ou oyz’ > . Remarquons d’abord qu’il existe deux constantes
C, et C; (ne dépendant que de ¢ et des bornes de la courbure), 'une par un résultat
d’A. Ancona ([Anc87]) car d(z',y) = ¢ et 'autre par le lemme 6.3, telles que
G(z',y) < Cg et G(o, y)ps(y) = C,. Ainsi

G(z',y)
G(o, y)

<Gy po(y)

et il suffit de majorer p,(y)/po(z’). Séparons encore I’étude en deux cas.
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Supposons d’abord que y €(z"0). Par comparaison avec I’espace modéle M,
(Ll\\/[\ou94]), on obtient un angle « € ]0, n/2[ (ne dépendant que de c et de b), tel que

yz'0 > a. Le cone de sommet z’, d’angle « et pointant vers y ne contient pas 6 dans
son adhérence et le cone tronqué «correspondant» contient y. La propriété de
sous-multiplicativité¢ des fonctions de Green (théoréme 2.2) donne, pour y’ assez
proche de 6,

G(y',y) < G- G(y', 2)G(Z, y).
Or

po(y) .. G(y,y)
——===lim ————,
Po(Z")  y-0G(Yy',2")

donc

S
Il reste alors a traiter le cas ou oyz’ > f et y ¢ (z"0). Nous montrons alors que
la distance d(z’, y) est majorée. En comparant le triangle z’z"y au triangle de M,
ayant deux cOtés de longueurs ¢ et d(z”, y) faisant un angle droit, on obtient

P
z"yz' < B,, ou B, est 'angle correspondant du triangle modeéle ([Mou94]). Comme
A~ AN

z"yz' =oyz' > B, on a B, = . Par une variation de triangles en courbure constante,
on obtient alors d(z”, y) <1,, ou /, est telle que le triangle de M, ayant deux cotés
orthogonaux de longueurs c et /, ait f comme angle opposé au coté de longueur c.
La longueur /, ne dépend que de c et de la borne supérieure de la courbure.

On compare alors le triangle z'z”y au triangle du modéle M, ayant deux cotes
orthogonaux de longueurs ¢ et d(z”,y). On a d(z', y) <h,, ou h, est la longueur
correspondante, c’est-a-dire I’hypothénuse. Cette longueur 4, est elle-méme in-
férieure ou égale a ’hypothénuse 4), d’un triangle rectangle de M, de cotés c et /,
(car d(z”,y) <1,). On a donc d(z', y) < h}, ou la longueur 4, ne dépend que de ¢
et des bornes de la courbure. Cette majoration de d(z’, y) permet de trouver, d’aprés
I'inégalité de Harnack sur les boules, une constante C,, telle que ) Po(¥) < Cio ' po(2).

Regroupons maintenant les deux cas: on a montré, pour oyz’ > f, I'existence de
deux constantes C; et Cy,, telles que

G(z, y)
G(o, y)

< GCg-po(y) et py(y) <Gy po(2)).
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En combinant ces deux inégalités, on achéve la preuve de la domination et par la
celle du lemme. 0

Revenons a notre ensembles I' dont 7 est maintenant le temps de sortie. Pour
obtenir notre minoration, nous allons montrer que, pour presque tout 6 € A7,
P%[t = + 0] > 0. Pour cela, 0 étant fixé, on considére la fonction h définie par
h(z) = py(z) - P%[tr = + o). Cette fonction est harmonique sur I” et elle est positive
ou nulle. D’aprés le principe du maximum, elle est soit identiquement nulle, soit
strictement positive en tout point.

D’autre part, d’aprés le corollaire 4.1 du lemme cl¢, on sait que, pour presque
tout 6 € A7, le mouvement brownien passe P’-presque slirement les derniers
instants de sa vie dans I'. Si on fixe un tel point 6, alors

1 = P%[“X, finit sa vie dans I'”’] = lim PY[“X, reste dans I" aprés 1,,”],

m-— + oo

ou t,, désigne encore le temps de sortie de B(o, m). On choisit alors m assez grand
pour que

P8[“X, reste dans I aprés 1,,”’] > 0.

D’aprés la propriété forte de Markov,

P3[“X, reste dans I aprés 7,,” | 1,,] = (X, ),
ol ¢(z) = P%[“X, reste dans I'”’]. On a donc ¢(z) = P/[t = + w]size et p(z) =0
sinon. En prenant les espérances, on a

P)[“X, reste dans I aprés 1,,”] = E[o(X, )],

donc E f,[q)(X,m)] > 0, ce qui prouve que ¢ n’est pas identiquement nulle. Donc la
fonction A ne l'est pas non plus et elle est strictement positive. On a donc
Pl[t = + 0] >0.

On a donc montré que, pour presque tout 6 € 4", P°[t = + 0] >0, ce qui
implique par le lemme précédent que, pour un tel 0 et e <c,

GI'(O’ y)
G,y

-0

Soit un tel 6 et soit e < c. Il existe une constante C; > 0 et R assez grand tels que
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Vy e T'{\B(o, R),  Gr(o,y) 2 C, - G(o, ).
En appliquant alors le lemme 6.3, on a
Vy e Ie\B(o, R),  Gr(0, y)pe(y) 2 C,>0.

En reportant cela dans les résultats trouvés précédemment, on obtient

+ 00 > L [Pu(y)Gr(o, y)po(¥) dy = J |Vu( y) PG (o, y)ps(y) dy

rf\B(o, R)
>C, J~ [Vu(y) dy.
l"e‘?\B(o, R)

L’autre partie du tube, I'’ nB(o, R), étant relativement compacte dans M, on en
déduit que I’énergie non-tangentielle, J%(u) est finie.

Ainsi pour presque tout 6 € A7 et pour tout e <c, on a 0 € #,, ce qu’il fallait
démontrer.

7. La finitude de I’énergie n.-t. implique p.p. la convergence n.-t.

Nous montrons ici ¢, & %, pour tout e <c. Cela en deux étapes: dans un
premier temps, nous montrons que ¢, & ¥* (ensemble des points de convergence
brownienne de ). Ensuite nous montrons que si ’énergie non-tangentielle J%(u) est
finie, alors la fonction |Fu| est bornée sur tout sous-tube I'}, e <c. La fonction u
étant alors uniformément continue sur ces tubes, il suffit d’appliquer le corollaire
4.5 de la propriété fondamentale pour conclure (quitte 4 prendre un sous-tube
«intermédiaire»).

7.1 Une énergie n.-t. finie implique p.p. la convergence brownienne

Pour montrer que ¢, & ¥*, comme ¥* ~ ¢#* d’apres I'analogue probabiliste
(lemme 3.1), il suffit de montrer le résultat suivant:

PROPOSITION 7.1. ¢, & #*.

Comme précédemment, il suffit de montrer que les F" = {6 € OM | J2(u) <n}
(n e N) sont presque inclus dans #*. On fixe alors un n et on note v(z) =
p.(F?) = P,[X,, € F?] le prolongement harmonique de 1,
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L’idée de la démonstration, comme dans celle de J. Brossard ([Bro77]), est de
s’intéresser, pour « € ]0, 1, a la quantité

+
Ia =Eo [J‘ |Vu(Xt)|21{vza}(Xt) dt]
0
On a en effet le résultat suivant:
LEMME 7.1. S’il existe un o €0, 1] tel que I, < + 00, alors F? & ¢*.

> Si I, < + 00, on obtient alors par conditionnement que pour presque tout 6,
Pl-ps.,

+ o0
f [Pu(X,) P15 o (X,) dt < + 0.
0

D’autre part, pour presque tout 6 € F?, P’-p.s., lim,_, , , v(X,) = 1 (par le théoréme
4.1., v étant une fonction harmonique bornée), donc v(X,) > o a partir d’un certain
rang. Ainsi, pour presque tout 6 € F?, Pé-p.s.,

+ 00
J |Pu(X)? dt < + o0,
0

ce qui prouve le lemme. O

Il reste donc & montrer qu’on peut trouver a € ]0, 1 tel que I, < + 0.
En appliquant le lemme 6.1, on obtient

Ia = J’M lvu(y)lzl{vZa}(y)G(o, y) dy =j

{v=

} [Vu(»)[*G(o, y) dy. (1)
D’autre part,

f Jow) dp,(0) <n - p,(F2) < + 0.
Fg

En notant I' =TI .(F?) et, pour ye M, H(y) ={0 e oM |y e}, ona

»

f JAu) dp,(0) = i dpo(6) L |Vu(y)|* dy =j [Vu(y)? dyj . du,(0)
Fn n T, r H (y)nFZ

c L4

.
= | vu(»)Pu,(H.(y) "F?) dy. (2)
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L’idée est maintenant de relier les deux expressions (1) et (2). Pour cela, on va
commencer par montrer qu’on peut choisir « tel que {v > a} = I', puis on montrera
que sur un ensemble {v>a}\B(o,c’), on a une inégalit¢ du type G(o,y) <
C- u,(H.(y)nF?), ce qui permettra de conclure.

En appliquant le lemme clé¢ 4.1 a4 I'ensemble (H,.(y))° = dM, on obtient une
constante 1 > 0 ne dépendant ni de ¢, ni de y, telle que

VX ¢ L((H(p)),  PlX, ¢ (H(p)]zn.

La mesure harmonique étant le loi de sortie du mouvement brownien, en appli-
quant cette minoration au point x =y qui, par définition, n’est pas dans

I'.((H.(»))), on obtient u,(H.(y)) = 1.
On choisit alors « > 1 —#. Si y ¢ I, alors H.(y)nF? = ¢, donc

() =u,(F7) <1 —p,(H(y) <1—1n<a.

On a donc {v >a}cT.
Montrons alors I'inégalité qui va permettre de conclure:

LEMME 7.2. I existe une constante C telle que, en notant ¢’ = sup{c, 1},

o (H (y) NF?)

Vy € {v > a}\B(o, ¢’), o)

>C>0.

> Soit y € {v > a}\B(o, ¢’). Pour 0 € H.(y), ona y € I'’\B(o, ¢) (car ¢ < ¢’), donc
I’angle yf)\(? est aigu. En comparant le triangle oy a un triangle de M, (mod¢le de
courbure constante —5b2) de cotés d( y, 0) et + oo et dont le sommet commun a une
hauteur égale a la distance entre y et 00 ([Mou94)]), puis ce dernier a un triangle
rectangle idéal de M, de c6té ¢, on montre qu’il existe f > 0 (ne dépendant que de

¢ et de la borne inférieure de la courbure) tel que 090 > f. On fait alors correspon-
dre 4 y le point y, situé sur le segment géodésique (yo) a distance 1 de y. Par
application du principe de Harnack a l'infini (théoréme 2.1) sur le cone de sommet
y, d’«axe» yo (orienté vers o) et d’angle # (v. figure 3), on obtient une constante C,
indépendante de y telle qu'en appliquant ce principe aux fonctions
[x > u (H.(y)nF™M)] et [x — G(x, y)] entre les points o et y,, on ait

po(H.(y)NF?) > C by, (H.(y)NF?7)
Go,y) ~ ' G,y

Comme d(y,y,) =1, il existe une constante C, indépendante de y telle que
G(y,y,) <C, ([Anc87)). Et linégalité de Harnack sur les boules donne une
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Figure 3. Figure pour le lemme 7.2.

constante C; ne dépendant pas de y telle que
On obtient donc une constante C, indépendante de y telle que

ko (H (y)NF?)
G(o,y)

Mais on a aussi v(y) >a. Or

o(y) = u,(F2) = u,(FEnH () + p,(FA\H (),

donc

w(FOH(y) 2 o — p, (H(3))) 22 — (1 =) = C5>0,

et C=C,- C; est la constante recherchée.
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Nous pouvons maintenant montrer la finitude de 7,. Par la formule (1),

I, =f |Vu( y)[?G(o, y) dy
{v>a}

B(o, )

< J |Vu(y) G (o, y) dy +J [Vu(y)Go, y) dy.
{v=af\B(o, ¢)

La deuxiéme intégrale est finie car la fonction |Vul* est bornée sur B(o, ¢’), et la
fonction G(o, -) est localement intégrable. La premiére est finic en appliquant les
résultats précédents:

1
J (Vu(y)|*G(o, y) dy < r f V() |Pp, (H(y) "F7) dy
{v = a}\B(o, ¢) o> a}\B(o, ¢)

1

et on a vu précédemment (formule (2)) que cette derniére intégrale est finie.
On a donc trouveé un o tel que 7, soit finie, ce qui achéve la démonstration de la
proposition.

7.2 L’énergie n.-t. contréle uniformément les variations

Nous prouvons ici un résultat qui permet de remonter de la convergence
brownienne a la convergence non-tangentielle en utilisant le corollaire 4.5, ce qui
acheve la preuve du théoréme 5.1.

PROPOSITION 7.2. Si u est une fonction harmonique dont I’énergie non-tangen-
tielle J%(u) est finie, alors la fonction |Vu| est bornée sur tout sous-tube I'}, e < c.

La démonstration de cette proposition repose sur le lemme analytique suivant:

LEMME 7.3. Soit M une variété compléte, de courbure sectionnelle bornée et de
rayon d’injectivité non nul o.

Pour tout réel 1. > 0 et tout reyon R €10, 6 /2|, il existe une constante C telle que:

Si f est une fonction positive ou nulle, localement bornée et de gradient localement
borné, vérifiant Af < Af au sens des distributions, alors

VxeM, || f||§(x’ R < C” f||23(x, 2R)
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D> Ce lemme se démontre par le méthode d’itération de De Giorgi—Nash—Moser
(IMos60]) en utilisant le plongement de Sobolev de H!(M) dans L“4~D(M)
([Mou94])). O

Nous pouvons maintenant démontrer la proposition.

La variété que nous considérons vérifie bien les hypothéses du lemme. Nous
allons I'appliquer a la fonction f = |V'u|. Elle est bien positive ou nulle, localement
bornée et de gradient localement borné. Il reste a montrer qu’elle vérifie une
inégalite du type ci-dessus.

D’aprés la formule de Bochner ((GHLS87]),

g(4 du, du) = |D du|* + % Aldul? + Ric (Vu, Vu).

Comme la courbure est minorée, Ric (Vu, Vu) > —C|Vul?, ou € > 0 (elle vaut
b*(dim M — 1)). Comme u est harmonique, 4 du = d Au = 0.
En un point non critique (du #0), on a

3 Alduf? = \dul ] — |7 |

et, d’autre part, la dérivation du produit du = |du|- (du/|du|) donne («un vecteur
normé €tant orthogonal a sa dérivée»)

du
D —

i

En rassemblant tous ces €léments dans la formule de Bochner, on obtient, pour
un point non critique,

du
o(j5)
Comme |du| = |V'u|, on a, en un point non critique, 4|Vu| < C|Vu|, c’est-a-dire, en
posant A =C,

2

|Ddul* = |V |du |* + |du|?

2

0> |dul? + |du|d|du| — C|Vul.

Af < M.

Aux points critiques, comme f admet un minimum (qui est 0), 4/ <0 au sens
des distributions et I'inégalité est encore vérifiée. On peut donc appliquer le lemme
analytique a la fonction f = |Vu| et au réel 1.
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On fixe maintenant e <c et on pose R =(c —e)/2. Pour x € I'?, par inégalité
triangulaire, on a B(x, 2R) = I'? et donc

(A7 2R < J2(w).

Le nombre R étant fixé, on trouve, en appliquant le lemme, une constante €
indépendante de y telle que

I7]2® < C||f|22R < C\/To(u).

En particulier, |[Vu(x)| < C./J%(u), et comme I’énergie J%(u) est finie, la fonction
|Pu| est bornée sur I'f, ce qu’il fallait démontrer.

Remarque. A. Ancona nous a signalé une preuve plus directe de cette derniére
proposition dont voici les grandes lignes: «Si on utilise 1'inégalité de Poincaré, la
théorie de Moser donne une borne uniforme de la variation de u sur toute boule
B(x, R') © B(x, R) < I'? et I'uniforme continuité voulue. La borne plus fine sur |Vu|
résulte d’un théoréme de Yau.»

8. Extension aux opérateurs faiblement cercifs

La travail précédent, s’il traite le cas du laplacien, objet géométrique naturel,
n’utilise cependant pas de propriétés spécifiques a cet opérateur. Une relecture
permet d’isoler les propriétés requises pour la démonstration et d’étendre ainsi le
résultat a d’autres opérateurs.

Tout d’abord, on a besoin de l’identification du bord de Martin au bord
géométrique et des notions naturellement associées: fonction de Green, noyau de
Poisson, mesures harmoniques. Tout cela est encore valable dans le cas d’un
opérateur elliptique L supposé adapté et faiblement ceercif au sens d’A. Ancona (v.
[Anc87]). Les différentes propriétés de Harnack sont elles aussi valables dans ce
cadre puisqu’elles sont a la base du résultat ci-dessus.

La partie probabiliste, quant-a-elle, nécessite un bon comportement a I’infini de
la diffusion associée a I'opérateur L. Pour cela, on suppose que les constantes sont
harmoniques et que la fonction de Green tend vers zéro a I'infini. Le comportement
est alors similaire a celui du mouvement brownien. Quitte & multiplier 'opérateur
L par une fonction, on peut de plus supposer que la diffusion est définie sur R,
entier. Le conditionnement de Doob est applicable car tous les éléments du bord de
Martin sont minimaux. Les propriétés de la section 4, basées sur les résultats
d’A. Ancona, sont encore valables.
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Pour le théoréme proprement dit, il faut introduire I’énergie comme 3 | L(u?)
(avec, cette fois, le signe des analystes: L = — A pour le laplacien). Les arguments
restent encore valables, la sous-section 7.2 se traitant a ’aide de la remarque finale.
On a donc le résultat suivant:

THEOREME 8.1. Soit L un opérateur elliptique adapté et faiblement cercif sur
M, tel que L - 1 =0 et que la fonction de Green tende vers 0 a Iinfini.

Alors le théoréme 5.1 s’étend aux fonctions L-harmoniques (avec la notion
d’énergie adéquate).

Ce théoreme permet de retrouver le cas euclidien. Considérons le demi-espace
R’ x R* avec son laplacien usuel A.,. Si on le munit de la métrique ds>=
¥y ~%(dx? + dy?), on obtient I'espace hyperbolique standard sur lequel 1’opérateur
L =y? A,,4 (different du laplacien hyperbolique dés la dimension 3) vérifie les
hypothéses du théoréme précédent (v. [Anc87]). Les deux opérateurs ayant les
mémes fonctions harmoniques, on retrouve ainsi le résultat euclidien avec la for-
mule de 'intégrale d’aire.
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