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Comportement asymptotique des fonctions harmoniques en courbure
négative

Frédéric Mouton

Résume Soit M une variété nemannienne complète, simplement connexe et de courbure négative pincée
On montre que, pour une fonction harmonique sur M, les notions non-tangentielles de convergence, de

bornitude et de finitude de l&apos;énergie sont équivalentes en presque tout point du bord géométrique Ce
résultat est un analogue «géométrique» d&apos;un théorème de A P Calderôn et E M Stein dans le

demi-espace euclidien La démonstration, inspirée de la méthode de J Brossard dans le cas euclidien,
utilise le mouvement brownien

Abstract Let M be a complète simply connected Riemannian manifold whose sectional curvatures are
bounded between two négative constants It îs shown that, for a given harmonie function on M,
non-tangential properties of convergence, boundedness and fîniteness of energy are équivalent for almost

every point of the géométrie boundary This îs a &quot;géométrie&quot; analogue of Calderôn-Stein theorem in
the euclidean half-space The proof îs using Brownian motion, hke J Brossard&apos;s one for the euchdean
case

Introduction

L&apos;étude de la convergence non-tangentielle des fonctions harmoniques a
commencé au début du siècle avec le célèbre théorème de Fatou ([FatO6]): une fonction
harmonique positive sur le disque unité admet en presque tout point du bord une
limite non-tangentielle.

Elle s&apos;est poursuivie, dans le disque puis le demi-espace euclidien, par la
recherche de critères (presque) ponctuels lorsque les fonctions considérées ne sont
plus positives. Nous nous intéressons ici au critère de bornitude non-tangentielle
([Pril6, Cal50b]) et à celui de l&apos;intégrale d&apos;aire ([MZ38, Spe43, Cal50a, Ste61]).

Plus précisément, les résultats de A. P. Calderôn (1950) et E. M. Stein (1961)

prouvent que, pour une fonction harmonique dans le demi-espace euclidien, la

convergence non-tangentielle, la bornitude non-tangentielle et la finitude de l&apos;intégrale

d&apos;aire coïncident en presque tout point du bord. Ce résultat a été redémontré
ultérieurement à l&apos;aide du mouvement brownien par J. Brossard ([Bro77, Bro78]).

Comme l&apos;avait déjà remarqué A. Korânyi, les notions euclidiennes de cône
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non-tangentiel:

rea {(je, y) e Uv x R* | \x - 8\ &lt; ay &lt; a}

et d&apos;intégrale d&apos;aire:

JlVu(x, y) \2yl~v dx dy

ont une expression plus simple si on munit le demi-espace de la métrique hyperbolique
standard. Les cônes non-tangentiels deviennent des voisinages tubulaires de demi-
géodésiques et l&apos;intégrale d&apos;aire devient une énergie:

Jr0

Le point de vue de la courbure négative semble donc plus naturel pour étudier
ces notions, ce que nous nous proposons de voir en démontrant un analogue
«géométrique» du théorème de Calderôn et Stein, en courbure négative pincée.

Remarquons que des résultats existent déjà dans ce sens, notamment un théorème
de A. Korânyi et R. B. Putz ([KP76]) qui traite le cas des espaces symétriques de

rang un. Plus récemment, M. T. Anderson et R. Schoen ont démontré un théorème
de Fatou en courbure négative pincée ([AS85]), comme conséquence de l&apos;identification

du bord de Martin et du bord géométrique. Il existe par ailleurs quelques résultats
dans des cas particuliers d&apos;espaces symétriques de rang supérieur ([MM77, KP81]).

À l&apos;inverse de A. Korânyi et R. B. Putz, qui utilisent fortement la structure
algébrique du groupe d&apos;isométries, nous utilisons des méthodes browniennes, beaucoup

plus souples. Remarquons que ce type de méthodes probabilistes a récemment

permis à A. Korânyi de démontrer des résultats sur les espaces de Hardy en courbure
négative ([Kor91]).

Notre démonstration est inspirée de celle de J. Brossard dans la structure, mais

il a fallu remplacer toutes les formules et calculs explicites par des estimées

géométriques, ce qui a été possible par des utilisations nombreuses et parfois fines
des différents principes de Harnack et des théorèmes géométriques de comparaison.

Il devrait être clair à la lecture de ce qui suit que la souplesse des arguments
employés permettra d&apos;adapter la démonstration à des cadres voisins ou moins
restrictifs.

En particulier, quitte à remplacer les comparaisons aux modèles de courbure

constante, dans un sens par l&apos;utilisation de l&apos;hyperbolicité au sens de Gromov et dans
l&apos;autre par une minoration de la courbure de Ricci, on obtiendrait le résultat dans

un cadre plus général (qui pourrait englober certains cas discrets). Cette extension

pourra faire l&apos;objet d&apos;un travail ultérieur.
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D&apos;autre part, l&apos;opérateur laplacien peut être remplacé sans réel changement par
un opérateur au comportement suffisament voisin. Nous traitons brièvement à la fin
de cet article le cas des opérateurs elliptiques faiblement cœrcifs au sens
d&apos;A. Ancona (v. [Anc87]), ce qui permet au passage de retrouver le cas euclidien.

Cet article est organisé de la manière suivante: après une première section fixant
cadre et notations, la deuxième rappelle les différentes propriétés de Harnack. La
troisième introduit la notion de convergence brownienne. La quatrième rappelle
quelques résultats essentiels. Nous énonçons ensuite précisément le théorème dans

la cinquième section et le démontrons dans les sixième et septième. Enfin, la
dernière section traite le cas d&apos;opérateurs plus généraux.

1. Un cadre géométrique

On se place désormais dans une variété riemannienne M (de classe C00 et de

dimension d &gt; 2), complète, simplement connexe et dont la courbure sectionnelle
est pincée entre deux constantes négatives: 0 &gt; — a2&gt; K&gt; —b2. Remarquons
qu&apos;elle est difféomorphe à la boule ouverte Bd d&apos;après le théorème de Cartan-
Hadamard.

L&apos;opérateur de Laplace-Beltrami étant donné en fonction de la métrique par la
formule

une fonction / est harmonique si Af 0.

Pour étudier le comportement asymptotique de ces fonctions, il nous faut choisir

un bord, c&apos;est-à-dire une compactification de M.
Les objects géométriques correspondant aux cônes non-tangentiels du demi-

espace euclidien sont, on l&apos;a vu plus haut et cela est précisé plus bas, définis à partir
de demi-géodésiques. C&apos;est pourquoi le bord adapté aux notions non-tangentielles
est le bord géométrique. Il est défini comme l&apos;ensemble des demi-géodésiques

quotienté par la relation d&apos;asymptoticité ([EO73]). On obtient une compactification
grâce à la topologie des cônes. La courbure étant négative ou nulle, on sait que le

bord géométrique de M est homéomorphe à la sphère Sd~\
D&apos;autre part, le bord permettant de «représenter» les fonctions harmoniques

positives est le bord de Martin, défini à partir des noyaux de Green ([AS85)]. Le

résultat de M. T. Anderson et R. Schoen ([AS85]) affirme que sous les hypothèses

précédentes (en particulier le pincement de la courbure), ce bord coïncide avec le

précédent. Ce résultat s&apos;étend à des opérateurs plus généraux, comme le montrent
les résultats théoriques d&apos;A. Ancona ([Anc87]).
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On note alors dM cette unique notion de bord et M M u dM la compactifica-
tion obtenue. Sur ce bord nous avons besoin d&apos;une notion de mesure, puisque les

critères que nous recherchons, à l&apos;instar du théorème de Fatou (qui est obtenu dans

ce cadre par M. T. Anderson et R. Schoen comme une conséquence de l&apos;identification

des bords), ne sont vrais que «presque partout».
Il y a une famille de mesures naturellement associée aux fonctions harmoniques

et au mouvement brownien: la famille des mesures harmoniques. La mesure
harmonique partant de x, fiX9 est définie comme la loi de sortie du mouvement
brownien partant de x ([Sul83], v. aussi [Kif86, Led90]), ou par la résolution du
problème de Dirichlet ([Sul83, And83]): pour une fonction / continue sur le bord,
l&apos;unique prolongement harmonique / est donné par la formule

JôAJdM

On obtient ainsi une famille de mesures équivalentes /* (fix)x e M qui définit donc
une notion de partie fi-négligeable du bord (seule notion qui nous intéresse).

S&apos;étant fixé un point base o sur M, on définit le noyau de Poisson pe(x)
d\xx\d[io (0), dérivée de Radon-Nykodim des mesures harmoniques. On peut aussi

le définir à l&apos;aide des fonctions de Green (v. noyau de Martin dans [AS85, Anc87]).
Suite aux remarques de l&apos;introduction, nous appellerons tube non-tangentiel (ou

simplement tube) en 9 de rayon c l&apos;ensemble

Fec {xeM\d(x,y0)&lt;c}9

où c est un réel strictement positif et ye est l&apos;unique demi-géodésique joignant o à

9 € dM. Nous dirons d&apos;une suite (xn) de points de M qu&apos;elle tend non-tangentielle-
ment vers 9 si les xn tendent vers 9 en restant dans un certain tube Fec.

Nous dirons qu&apos;une fonction u converge non-tangentiellement vers / en 9 si pour
tout c &gt; 0, u(z) tend vers / quand z tend vers 9 en restant dans Fec. Cela équivaut
au fait que pour toute suite (xn) qui tend non-tangentiellement vers 9, la suite

(u(xn)) converge vers /.

Nous dirons que la fonction u est bornée non-tangentiellement en 9 si les

restrictions de u aux tubes Fec sont bornées.

Nous appellerons énergie non-tangentielle de la fonction u sur le tube Fec la

quantité

Jrce

qui correspond à l&apos;intégrale d&apos;aire du cas euclidien.

Jec(u)
Jrce
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2. Inégalités de Harnack

On rappelle ici différents critères de comparaison de type «Harnack», qui
permettent de contrôler la croissance des fonctions harmoniques positives.

Le premier est l&apos;inégalité de Harnack usuelle, mais dans le cas des boules, ce qui
permet d&apos;avoir une constante uniforme. C&apos;est une conséquence de la version
infinitésimale de Cheng-Yau ([CY75]) de l&apos;inégalité de Harnack.

PROPOSITION 2.1 (Inégalité de Harnack sur les boules.). Soient deux rayons
r et R vérifiant 0&lt;r &lt;R. Il existe alors une constante C, ne dépendant de M que par
la dimension et la minoration de la courbure, telle que, pour tout point x e M et toute

fonction harmonique positive u sur B{x, R) on ait

sup u{z) &lt; C • inf u{z).
z e B(x, r) ze S(x, r)

Hormis cette inégalité classique nous nous servirons d&apos;une inégalité (ou plutôt
d&apos;un principe de comparaison) de Harnack «à l&apos;infini». Pour la décrire, nous avons
besoin d&apos;introduire quelques notations.

Si x est un point de M, Ç un vecteur tangent à M au point x et a un angle, on
note A{x, £, a) le cône ouvert (usuel) de sommet x, de direction ci; et d&apos;angle a,
c&apos;est-à-dire la réunion des demi-géodésiques (ouvertes) partant de x dans des

directions faisant un angle avec Ç inférieur strictement à a. On note Â{x, Ç, ce) le

cône fermé correspondant. Enfin, on note T(x, £,, a) Â{x, &lt;!;, a)\B(x, 1) le cône

(fermé) tronqué de sommet x, direction Ç et angle a.

THÉORÈME 2.1 (Principe de Harnack à l&apos;infini.). Soit un angle a e ]0, rc/2[. //
existe alors une constante C, ne dépendant de M que par la dimension et les bornes

de la courbure, telle que, pour tout point x e M et toute direction Ç en x, on ait la

propriété suivante:
Si u et v sont deux fonctions harmoniques positives {strictement) sur A(x, £, a)

tendant vers 0 à Vinfini {pour la topologie de M), alors

pf^&lt;C mfyf
T V{Z) zeT V{z)

Ce principe est l&apos;étape clé de la démonstration de l&apos;identification du bord
géométrique et du bord de Martin ([AS85, Anc87]).
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En vue d&apos;étudier le comportement asymptotique des fonctions de Green, nous
aurons besoin d&apos;une autre formulation du principe de Harnack à l&apos;infini, due à

A. Ancona ([Anc87]), qui est une sorte d&apos;inégalité triangulaire.

THÉORÈME 2.2 (Sous-multiplicativité des fonctions de Green.). Pour tout
angle a e ]0, ti/2[, // existe une constante C telle que, quels que soient les points x, y
et z tels qu&apos;on puisse trouver une direction Ç vérifiant x $ A(z, Ç, a) et y € T(z, Ç, a/2),
on ait (G étant le noyau de Green de M)

G(x,y)&lt;CG(x,z)G(z,y).

En outre, la constante C ne dépend de la variété M que par les bornes de la
courbure et la dimension.

Remarque. Le rayon utilisé pour tronquer les cônes, qu&apos;on a pris égal à 1, est

bien entendu arbitraire et les deux théorèmes précédents sont vrais avec un rayon
plus petit (on peut par exemple se ramener au cas de rayon 1 en multipliant la

métrique par une constante).

3. Le conditionnement et la convergence brownienne

On explique ici comment conditionner le mouvement brownien à sortir en un
point donné du bord. Cela permet de définir les notions de convergence et de

bornitude browniennes et de finitude d l&apos;énergie brownienne. Le théorème de

convergence des martingales permet alors de prouver que ces trois notions
coïncident.

3.1 Rappels

Rappelons qu&apos;on peut définir un mouvement brownien sur les variétés riemanni-

ennes, comme processus de diffusion associé à l&apos;opérateur de Laplace-Beltrami
([McK69], v. aussi [Pin78]). Lorsque M est complète, simplement connexe, de

courbure négative pincée, le mouvement brownien est défini sur U+ entier (v. par
exemple [Kif86]), on dit qu&apos;il n&apos;y a pas d&apos;«explosion». Sous les mêmes hypothèses,

un résultat fondamental de J.-J. Prat ([Pra75]) assure que les trajectoires browniennes

convergent presque sûrement vers des points du bord ôM.
Précisons un peu les notations. Le mouvement brownien étant défini pour tout

temps t, on le note (Xt)teR+. Les Xt sont des variables aléatoires sur un espace
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probabilisé Q, à valeurs dans la variété M, et si Ton fixe un événement élémentaire

ai eQ9 les applications [t i-&gt; Xt(œ)] sont continues, c&apos;est-à-dire sont des chemins sur
M. On peut choisir comme espace probabilisé Q #(R+, M), l&apos;espace des chemins
de M définis sur R+. Ainsi Xt(&lt;jj) co(0, et la donnée du mouvement brownien est
celle d&apos;une probabilité sur l&apos;espace des chemins. Si on considère le mouvement
brownien partant d&apos;un point z fixé, on obtient une probabilité P= sur Q (elle ne
«voit» que les chemins partant de z). On peut donc voir le mouvement brownien
comme la donnée d&apos;une famille de probabilités (Pz)zeM sur l&apos;espace des chemins. Le
résultat de J.-J. Prat est alors le suivant: pour Pz-presque tout chemin co, il existe un
point 9 e ôM tel que

lim œ(t)[ lim Xt{œ) 0.
/-» +oo y f-&gt; +00 J

Si on note X^co) cette limite, la «loi de sortie» du mouvement brownien partant de

z est alors loi image de Pz par la variable X^. On sait qu&apos;on retrouve ainsi la mesure

harmonique partant de z: pour tout borélien A de &lt;3M,

lxz(A) ^[&quot;sortir dans A&quot;] P2{œ | X^(œ) eA).

La propriété fondamentale du mouvement brownien est la propriété de martingale:

pour une fonction/de classe C2, l&apos;expression

est une martingale locale (en t) par rapport aux probabilités Pz. Cette propriété est

une conséquence de la théorie de l&apos;intégration stochastique et de la formule d&apos;Itô

(pour des définitions du cas réel jusqu&apos;à celui des variétés, voir [Dur84, McK69,
Pin78]). C&apos;est cette propriété de martingale qui permet l&apos;utilisation des méthodes

browniennes en théorie du potentiel. En particulier, si u est une fonction
harmonique sur M, alors (u(Xt))teU+ est une martingale locale par rapport aux P2.

3.2 Le conditionnement

Pour conditionner le mouvement brownien à «sortir» de M en un point 6 e ôM
on utilise le méthode des h -processus de Doob ([Doo57]). Cette dernière s&apos;applique

bien car tous les éléments du bord de Martin sont minimaux ([AS85, Anc87]) au
sens des fonctions harmoniques.



482 FRÉDÉRIC MOUTON

Soient xn le temps de sortie de la boule B(z, «), de centre z et de rayon «eN,
et IFXn la tribu associée. En posant

Pz(A)Ez[lA
Pe\z)

on obtient une probabilité sur 3F
Xn.

Ces probabilités sont compatibles: si A e 3P&apos;Xn,

Par le théorème de Kolmogorov sur les limites projectives de probabilités, on
obtient une probabilité Pz sur ^aû, tribu engendrée par les !FW n eN, qui coïncide

avec les précédentes sur les 3F
Xn. Un calcul simple donne, pour F J^-mesurable, la

formule de conditionnement suivante:

EZ[F]=\ Eez[F]dfiz(6).
ôM

Ces probabilités vérifient la propriété forte de Markov (de même que dans

[Bro78]): soient T un temps d&apos;arrêt p.s. fini et F une variable aléatoire positive
«^-mesurable, alors

où Kf(z&apos;) Eez[F] et 0T: œ h-&gt;œ(T + • est l&apos;opérateur de translation sur Q.

Un événement A de ^x est dit asymptotique si 1A ° ^n ^ Pour tout n- Pour
ces événements (comme dans [Dur84]), on a une loi 0-1: si A est asymptotique,
l&apos;application [z &gt;—? Pf^]] est constante et vaut 0 ou 1. (Le fait que pe soit minimal
joue ici un rôle.)

Remarquons que P^-p.s., X^ 0 et aussi que si F est «^-mesurable pour un
temps d&apos;arrêté T p.s. fini,

3.3 La convergence brownienne

Soit u une fonction quelconque sur M. Intéressons-nous à son comportement
sur les trajectoires browniennes, c&apos;est-à-dire au comportement asymptotique de la
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quantité u (Xt). Pour cela, on considère JV* sup,eR+ |w(X?)|. On introduit aussi
Yénergie brownienne de u:

(Ces deux quantités sont des variables aléatoires sur Q.)
On définit alors trois événements de Q:

lim u(Xt(co)) existe et est finie&gt;,
/-&gt; +00 J

Jr** {œ g Q 17V*(co) &lt; + oo}, /** {œ g Q \ J*(œ) &lt; +00}.

Le premier est l&apos;ensemble des trajectoires sur lesquelles la fonction u converge, le

second est l&apos;ensemble des trajectoires sur lesquelles la fonction u est bornée et le

troisième est l&apos;ensemble des trajectoires sur lesquelles l&apos;énergie de la fonction u est

finie.
Ces événements sont clairement asymptotiques: une «translation» de la trajectoire

ne change pas son appartenance à if**, ^V**9 ou ,/**. En appliquant la loi
0-1 asymptotique, on obtient que les quantités Pdz(&amp;*% P\(JT**) et P°(/**)
prennent les valeurs 0 ou 1, cela ne dépendant pas du point z. On peut alors définir
&amp;* {9 edM\ Pz(&amp;**) 1}, et «yT* et /* de la même manière. Suivant l&apos;appartenance

d&apos;un point 9 du bord à ces ensembles, on dira respectivement qu&apos;il y a

convergence brownienne de u en 9, bornitude brownienne de u en 9 ou que Vénergie
brownienne de u est finie en 9.

Remarquons que de plus, si 9 g if*, lim,^+00 u(Xt) est P^-p.s. constante, la
constante ne dépendant pas de z, car les événements {œ \ lim,_+00 u(Xt(œ)) &lt;R}

(R g R) sont asymptotiques. Cette valeur est appelée la limite brownienne de la
fonction u en 9.

Pour ces notions probabilistes, on montre un résultat similaire au théorème

non-tangentiel qu&apos;on veut prouver.

LEMME 3.1 (Analogue probabiliste.) Si la fonction u est harmonique, on a
££* « Jf* « y* (Le. ces ensembles sont égaux 11-p.p.)

t&gt; II suffit d&apos;avoir if** « «yT** « /**, le résultat en découlant en condition¬

nant.
D&apos;après le théorème de convergence des martingales locales, pour une martingale

locale fixée, les deux événements &quot;la martingale locale est majorée&quot; et &quot;la
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martingale locale est convergente&quot; coïncident presque sûrement. (On a évidemment
le même résultat avec la minoration.) Ce théorème, avec la propriété de martingale,

assure que &amp;** S JT**.
Pour l&apos;autre égalité, appliquons la propriété de martingale à la fonction u2.

Sachant que la fonction u est harmonique, on a Au2 — 2|Pw|2, et donc l&apos;expression

u\Xt)-^\Vu(Xs)\2ds

est une martingale locale différence de deux termes positifs ou nuls. La convergence
de l&apos;un ou l&apos;autre de ces termes donne une majoration ou une minoration de la
martingale et donc Pz-p.s. la convergence de l&apos;autre terme, ce qui prouve (la
fonction [t\-*u{Xt)] étant continue) que J^** « /**.

II découle de la démonstration du théorème principal 5.1 que, pour une fonction
harmonique, ces notions probabilistes sont entraînées (p.p.) par les notions non-
tangentielles correspondantes. On peut d&apos;autre part remonter ponctuellement aux
propriétés non-tangentielles sous une hypothèse d&apos;uniforme continuité, comme le

montre le corollaire 4.5.

4. Trois ingrédients essentiels

On présente ici trois résultats intervenant de manière fondamentale dans la
démonstration du théorème principal 5.1.

4.1 Les fonctions harmoniques bornées

Lorsque la fonction harmonique considérée est bornée, des résultats précédents

([Sul83, AS85]) assurent qu&apos;elle admet p.p. des limites non-tangentielles et browni-
ennes. Plus précisément, on a le résultat suivant:

THÉORÈME 4.1 (Représentation bornée). Les fonctions harmoniques bornées u

sont représentées de manière unique par les fonctionsf de £°°0i) par la formule

«(*)

De plus, il y a convergence non-tangentielle et convergence brownienne de u en
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Figure 1 Un lemme cle

fi-presque tout point 9 e dM, et les limites sont données \i-p p par les valeurs de la

fonction f

A 2 Un lemme cle

Le lemme suivant et ses corollaires interviennent à des points cruciaux de la

démonstration On peut en voir une preuve concise dans le cours d&apos;A Ancona à

Samt-Flour ([Anc90], v aussi [Mou94])
Si E est un borehen de dM, on note rc(E) u0eEr* la réunion des tubes

s&apos;appuyant sur E (v figure 1)

LEMME 4 1 // existe une constante r\ &gt; 0 telle que, pour tout borehen E de dM,

on ait

On déduit de ce lemme un corollaire intéressant

COROLLAIRE 4 1 Soient E un borehen de dM et z un point de M
Pour ^-presque tout 6 e E, P\-p s, le mouvement brownien «passe les derniers

instants de sa vie» dans rc(E) (i e pour t assez grand, Xt e FC(E))
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t&gt; Soit/E(;c) Px[Xoo eE]= ExllsiX^)]. D&apos;après le théorème 4.1 sur les fonctions
harmoniques bornées, pour \i -presque tout 0,

timfE(Xt) lE(0) =1.
J

Or, d&apos;après le lemme 4.1, il existe un n &gt; 0 tel que pour x $ FC(E), fE(x) &lt; 1 — n.

Donc pour /*-presque tout 9 de E, Pf-p.s., Xt est dans FC(E) pour t assez

grand. D

On peut déduire un autre corollaire du lemme 4.1. Si on appelle pointes d&apos;un

tube ree les ensembles Fde\B(o, R) (R e R+), on a le résultat suivant:

COROLLAIRE 4.2. Pour E borélien de dM, on note encore fE{x) Px[Xoo e E].
Alors, pout tout 6 e dM tel que limNT fE{x) 1, FC(E) contient des pointes de

tout tube de sommet 6.

Cela est vrai pour \x-presque tout d de E diaprés le théorème 4.1 sur les fonctions
harmoniques bornées.

\&gt; Soit 0 un point de dM tel que limNT fE(x) 1. Soit F°e un tube de sommet 6.
x-+0

Raisonnons par l&apos;absurde en supposant que FC(E) ne contienne aucune pointe de ce

tube. Alors, pour tout ReU+, il existe un x e ree\Fc(E) tel que d(o, x) &gt; R. En

prenant n e N pour R, on obtient ainsi une suite (.*„)„e^ d&apos;éléments de F°e\Fc(E)
telle que d(o,xn)&gt;n. Le fait que d(xn,ye) soit bornée par e et que
limw^+0O d(xn, o) -hoo implique que (xn) tend non-tangentiellement vers 6. Donc
lim^+^/^Cx,,) 1 par hypothèse. Comme d&apos;autre part les xn ne sont pas dans

FC(E)9 en appliquant le lemme 4.1, fE{xn) &lt; 1 — ^7- Cette contradiction achève le

démonstration.

4.3 Une propriété fondamentale

La propriété décrite ici a plusieurs corollaires importants pour la suite. Elle

figure, en version «théorie du potentiel», dans le cours d&apos;A. Ancona à Saint-Flour
([Anc90], v. [Mou94] pour une autre démonstration).

PROPOSITION 4.1. Soit une suite de boules fermées de rayon fixé dont les

centres tendent non-tangentiellement vers un point 6 du bord, et soit z e M (v. figure
2).

^

Alors le mouvement brownien rencontre Pdz-p.s. une infinité de ces boules.
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0

Figure 2 Une propriété fondamentale

De cette proposition, on déduit trois corollaires très importants

COROLLAIRE 4 3 Soit F6C un tube non-tangentiel Alors Pez-p s le mouvement
brownien rentre et sort de ce tube a des instants arbitrairement proches de -h oo

ï&gt; II suffit de prendre deux suites de boules, l&apos;une à l&apos;intérieur du tube et l&apos;autre à

l&apos;extérieur, qui tendent toutes les deux non-tangentiellement vers 0, et d&apos;appliquer la

proposition En effet, (Xt)t&lt;tQ rencontre seulement un nombre fini de boules, par
compacité

Le corollaire suivant est très reconfortant pour l&apos;intuition

COROLLAIRE 4 4 S* pour une fonction quelconque u, il y a convergence
brownienne et convergence non-tangentielle en 0, alors les limites sont les mêmes

&gt; Cela découle de manière évidente de la proposition

Le prochain corollaire permettra de remonter de la convergence brownienne à la

convergence non-tangentielle
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COROLLAIRE 4.5. Si une fonction quelconque u admet une limite brownienne l
en 9 et est uniformément continue sur le tube FeC9 alors u(z) converge vers l lorsque z
tend vers 9 en restant dans F6e, cela pour tout sous-tube Fee9 e &lt; c.

&gt; Raisonnons par l&apos;absurde. Si la conclusion n&apos;est pas vérifiée, il existe s &gt; 0 et des

points xn g F6e tendant vers 9 tels que \u(xn) —l\&gt;s. Or u est uniformément
continue sur FeC9 donc

3a &gt; 0, Vjc, y e FeC9 d(x9 y)&lt;&lt;x=&gt; \u(x) - u(y)| &lt; |.

Quitte à réduire a, on peut supposer que a &lt; c — e. Les boules Bn B(xn9 a) sont
alors incluses dans Fec, par inégalité triangulaire. Comme les xn tendent non-tangen-
tiellement vers 9, d&apos;après la proposition, P^-p.s. le mouvement brownien rencontre

une infinité de Bn. Soit alors une trajectoire brownienne «générique» Xt{œ). On a

lim,_*+00 u(Xt(œ)) / et Xt(co) rencontre une infinité de Bn. On choisit alors t0 tel

que

La trajectoire tronquée (Xt(a)))t&lt;tQ rencontre par compacité seulement un nombre
fini de Bn9 donc (Xt(œ))t&gt;tQ en rencontre au moins une: Bnx. Soit alors tx &gt; t0 tel que

Xtl(œ)eBni.On*

0 &lt; e &lt; \u(xnï) -1\ &lt; \u(xni) - u(Xtl(œ))\ + \u(Xtl(œ)) -1\ &lt; |,
ce qui fournit la contradiction recherchée.

5. Résultat principal

Nous énonçons maintenant de manière précise le résultat que nous voulons

démontrer.

THÉORÈME 5.1. Soit M une variété riemannienne complète, simplement

connexe, de courbure négative pincée: 0 &gt; —a2 &gt;K&gt; —b2.

Si u est une fonction harmonique sur M alors pour fi-presque tout point 9 du bord
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&lt;9M, les propriétés suivantes sont équivalentes

(1) Pour tout c &gt; 0, la fonction u(z) a une limite lorsque z tend vers 9 en restant
dans le tube Fec,

(Y) // existe un c &gt; 0 tel que la fonction u(z) ait une limite lorsque z tend vers
6 en restant dans le tube F6C,

(n) Pour tout c &gt; 0, la fonction u est bornée sur le tube Fec,

(n&apos;) // existe un c &gt; 0 tel que la fonction u soit bornée sur le tube F6C,

(m) Pour tout c &gt;0, Vénergie non-tangentielle de u sur le tube F°c est finie,
(m&apos;) // existe un c &gt; 0 tel que l&apos;énergie non-tangentielle de u sur le tube Fec soit

finie

Introduisons ici quelques notations qui nous serviront par la suite La fonction
u est une fonction harmonique pour laquelle on veut démontrer le théorème
On note N6c(u) =supzero \u(z)\ On définit alors, pour c &gt;0, les trois ensembles

suivants

lim u(z) existe et est finieC {B eôM

\ NQc(u) &lt; + oo}, fc {0edM\ J9c(y) &lt; + oo},

qui correspondent aux propriétés primées du théorème Puis on définit les ensembles

&amp; nc&gt;0 j£?c, jV nc&gt;Q Jfc et / nc&gt;0 /c, qui correspondent aux propriétés

non primées L&apos;énoncé du théorème se traduit alors par les relations

où la relation « signifie que les deux ensembles diffèrent d&apos;un ensemble fi -négligeable
On a de manière évidente l&apos;inclusion &lt;£c c Jfc II sera montré à la section

suivante que Jfc c fe pour tout e &lt; c et à la section d&apos;après que fc cz &lt;£e pour
tout e &lt; c En prenant les intersections (sur un nombre dénombrable d&apos;indices), on
obtient !£ » Jf « # Les autres «égalités» sont obtenues par le résultat suivant

PROPOSITION 5 1 Jfe*ùJT

t&gt; L&apos;ensemble Jfc est réunion dénombrable des Anc {6 edM | N9c(u) &lt;n}.

Comme /c/c, il suffit de montrer que AncczJf Par définition de Anc, la
fonction \u\ est bornée par n sur Fc(Anc) En appliquant le corollaire 4 2, on obtient

que pour presque tout point 0 de Anc, FC(A&quot;) contient des pointes de tout tube de

sommet 6 Sur ces pointes, la fonction u est bornée, et par compacité, elle est donc
bornée sur les tubes en entier, ce qui signifie que 6 e Jf
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6. La bornitude n.-t. implique p.p. la finitude de l&apos;énergie n.-t.

Nous montrons ici que Jfc
&lt;= #e pout tout e &lt;c. Comme dans la proposition

précédente, il suffit de prouver que chaque ensemble Anc {6 e ôM \ Ndc(u) &lt;n)

(n g N) est presque inclus dans /e (e &lt; c). Sur F FC(A&quot;) vdeAn Fec, la fonction
\u\ est bornée par n.

On note alors x le temps de sortie de F et xm le temps de sortie de la boule

B(o,m). Comme la fonction u est harmonique, Au2 —2\Vu\2 et la propriété de

martingale nous dit que

Mt=u\Xt)- [ \Vu(Xs)\2 ds
Jo

est une martingale locale. En la considérant au temps d&apos;arrêt t a xm (qui est p.s.
fini) et en prenant l&apos;espérance partant de o, on obtient

E0[u\Xz A J] - Eo^ V^l2 &lt;fej EO[MT A tJ Eo[M0] u2(o).

Comme u2 est positive et majorée par n2 sur T, on obtient

Faisant tendre m vers +oo (convergence monotone), puis conditionnant, on
obtient, pour //-presque tout 6,

&lt; +00.

Pour passer des probabilités à l&apos;analyse, on rappelle un résultat bien connu de

théorie du potentiel:

LEMME 6.1. Soient &lt;p une fonction positive sur un ouvert U de M et z un point
de U. On a, en notant x le temps de sortie de U et Gv{x, y)(= G(x9 y) — EX[G(XX9 y)])
le noyau de Green de U,

Ex\ (p(Xs)ds &lt;p(y)Gu(z,y)dy.
LJo J Ju

On en déduit aisément une version conditionnée:
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LEMME 6.2. Soient cp une fonction positive sur un ouvert U de M et z un point
de U. On a, en notant x le temps de sortie de £/,

F*1®

Po(z)

En appliquant ce résultat à la majoration précédente, on obtient, pour fi-
presque tout 6,

| \Vu(y)\2Gr(o, y)p9(y)dy&lt;+K.

En vue de se ramener à une énergie, nous allons minorer le terme Gr(o, y)Po(y).
Pour cela on montre d&apos;abord deux lemmes qui ont aussi un intérêt par eux-mêmes.
Le premier permet de minorer un terme analogue, mais avec la fonction de Green

globale. (Notons que ce résultat a été précédemment remarqué par A. Ancona
([Anc90]).)

LEMME 6.3. // existe une constante C ne dépendant que des bornes de la

courbure, de la dimension de M et du réel c &gt; 0 telle que, pour tout 0, on ait

VjeT*, G(o,y)Po(y) &gt;C&gt;0.

(Si on se limite aux y e F6c\B(o, c), alors on peut trouver une constante indépendante

de c.)

t&gt; Commençons par rappeler que le noyau de Poisson s&apos;écrit aussi comme limite de

noyaux de Green normalisés (v. par exemple [AS85]). On a en effet po(y) —

\imx_+eG(y,x)/G(o,x). (Remarquons que la limite est relative à la topologie
usuelle de M, puisque le bord de Martin et le bord géométrique coïncident.) Ainsi
on a

ce qui fait immédiatement penser à la propriété d&apos;A. Ancona de sous-multiplicativé
des fonctions de Green (théorème 2.2). Pour appliquer cette propriété, on choisit
n/4 (par exemple) comme angle du cône, pour avoir une constante uniforme. Si

y g Fdc\B(o9 c), quitte à prendre x assez proche de 6, on peut trouver un cône

vérifiant les hypothèses de la propriété en question, le point à l&apos;extérieur du cône
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étant alors o. On obtient ainsi une constante C &gt; 0, ne dépendant que des bornes
de la courbure et de la dimension, telle que, pour yeFec\B(o, c) et x assez proche
de 0, on ait

G(o,y)G(y,x)
G(o9x) -C*

Par passage à la limite, on obtient le résultat entre parenthèses. Pour avoir le

lemme, il suffit alors d&apos;appliquer l&apos;inégalité de Harnack sur les boules (B(o, c) et M)
à la fonction pQ et une minoration de la fonction G{o, • ([Anc87]) sur cette même
boule.

Le deuxième lemme permet de comparer la fonction de Green de F à la fonction
de Green globale:

LEMME 6.4. Soit U un ouvert de M contenant un cône Fec. Si on note x le temps
de sortie de U, on a, pour e &lt;c,

^f =/&gt;»[. +oo].
G(O,X)

&gt; On a

Gv(o% x) G(o9 x) - EO[G(XX9 x)] G(o, x)(l - Eo

car la fonction G( x) est nulle à l&apos;infini.

Cependant, en voyant le noyau de Poisson comme limite de noyaux de Green,
comme dans le lemme précédent, on obtient, pour x &lt; +oo,

Xereo G(o,x) x^e G(o, x) yeK x)

Sous réserve de pouvoir intervertir la limite et l&apos;espérance, on a

lim Eo\^^ I{t&lt;+.»1 £.[/»,(*;)l{t&lt;+XJ] =/&gt;«[t &lt; +oo],
x 6 r2 L ^0 x) J
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donc

ce qui prouve le lemme
II ne reste plus qu&apos;à justifier l&apos;interversion entre la limite et l&apos;espérance, ce qu&apos;on

va faire avec le théorème de convergence dominée de Lebesgue Soit o&apos; le point situé
sur la demi-géodésique y09 a distance c du point o On note y&apos; la demi-géodésique
(o&apos;6) et F&apos; — {x e M | d(x, y&apos;) &lt;e) Nous allons montrer qu&apos;il existe une constante
C telle que

ce qui fournit la domination voulue
Si y e y\ les points z £ Fec et o ne sont pas dans B(y, c) D&apos;après l&apos;inégalité de

Harnack sur les boules appliquée aux fonctions G(z, et G(o9 il existe une
constante Cx telle que

Vztri. Sfyey&apos;, *XeB(y,e), ^ &lt; C,^G(o, x) G(o, y)

Comme F&apos; vyey B(y,e), il suffit de montrer qu&apos;il existe une constante C2 telle

que

Pour montrer cela, on va utiliser plusieurs fois la propriété de Harnack à l&apos;infini

Les cônes tronqués seront ici tronqués non pas par des boules de rayon 1, mais par
des boules de rayon c, ce qui est possible d&apos;après la remarque située à la fin de la
section 2

On va, dans un premier temps, se ramener au cas où z est proche de la

géodésique passant par o et 6, qu&apos;on note oO Pour cela, on définit pour chaque
z $ r°c un point z&apos; de la manière suivante Si d(z, 06) &lt; c, on pose z&apos; z. Sinon, on
considère le segment réalisant la projection orthogonale de z sur oO et on prend
pour z&apos; le point de ce segment situé à distance c de la géodésique 00 Remarquons
que ce point z&apos; est encore hors de Fdc Dans ce deuxième cas, on note z&quot; la
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projection de z sur la géodésique oO et on considère le cône Az de sommet z&quot;,

d&apos;angle tt/4, pointant vers z. Comme zz&quot;0 7c/2, Âz ne contient pas 9 et les

fonctions G( * ,y) (y ey&apos;) et /?0 vérifient les hypothèses du principe de Harnack à
l&apos;infini sur le cône Az. Comme z et z&apos; sont dans le cône tronqué correspondant
(rappelons qu&apos;on tronque ici les cônes à distance c), on obtient une constante

C3( &gt; 1), indépendante de z et de y, telle que

G(z,y) G(z\y)
pd(z) - 3

pe(z&apos;)
&apos;

Cette inégalité est encore vérifiée pour les points z et z&apos; du premier cas (puisque
C3 &gt; 1). Il nous suffit donc de montrer qu&apos;il existe une constante C4 telle que

Vz&apos; i rGc | d(z\ oB) &lt; c, Vy g y&apos;, ^-^ &lt; C4 • pe(z&apos;).

On sépare alors l&apos;étude en deux cas, suivant que la projection z&quot; de z sur oO est

ou n&apos;est pas sur ye.

Si z&quot; $ye, alors, pour tout yey&apos;, on a d(j&gt;, z&quot;) &gt;c. Comme yz&quot;z&apos; —n\2 et
&lt;/(z&quot;, z&apos;) &lt; c, par comparaison avec Ma espace modèle de courbure constante —a2

([Mou94]), on trouve un angle /? &lt; n/4 (ne dépendant que de c et a) tel que
oyz&apos; =z&quot;yzf &lt; fi. En considérant alors le cône de sommet y, d&apos;angle 2/?, pointant
vers o et les fonctions G( • ,y) et pB aux points z&apos; et o, le principe de Harnack à

l&apos;infini fournit alors une constante C5, indépendante de z&apos; et y, telle que

Soit maintenant z1 tel que z&quot; e ye (on a alors d(z\ oO) c). Dans le cas où
oyz&apos; &lt; j?, le raisonnement et le majoration précédents sont encore valables. Il reste

donc à traiter le cas où oyz&apos; &gt; /?. Remarquons d&apos;abord qu&apos;il existe deux constantes

C6 et C7 (ne dépendant que de c et des bornes de la courbure), l&apos;une par un résultat
d&apos;A. Ancona ([Anc87]) car d(z\y)&gt;c et l&apos;autre par le lemme 6.3, telles que
G(z\y) &lt; C6 et G(o,y)pê(y) &gt; C7. Ainsi

et il suffit de majorer Pg(y)lp$(zf)- Séparons encore l&apos;étude en deux cas.
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Supposons d&apos;abord que y e (z&quot;o) Par comparaison avec l&apos;espace modèle Mb
([Mou94]), on obtient un angle a e ]0, n/2[ (ne dépendant que de c et de b), tel que
yz&apos;9 &gt; a Le cône de sommet z&apos;, d&apos;angle a et pointant vers y ne contient pas 6 dans

son adhérence et le cône tronqué «correspondant» contient y La propriété de

sous-multiphcativité des fonctions de Green (théorème 2 2) donne, pour y&apos; assez

proche de 6,

G(y\y)&lt;C9 G(y&apos;,z&apos;)G(z\y)

Or

Pe(y)
hm G(y\y)

p9(zf) y-+dG(y\z&apos;Y

donc

Pe(y) ^ n r
/W

II reste alors à traiter le cas où oyz&apos; &gt; fi et y $ (z&quot;6) Nous montrons alors que
la distance d(z\ y) est majorée En comparant le triangle z&apos;z&quot;y au triangle de Ma

ayant deux côtés de longueurs c et d(z&quot;, y) faisant un angle droit, on obtient
z&quot;yz&apos; &lt; fia, où pa est l&apos;angle correspondant du triangle modèle ([Mou94]) Comme

z&quot;yz&apos; — oyz&apos; &gt; /?, on a pa &gt; fi Par une variation de triangles en courbure constante,
on obtient alors d(z&apos;\ y) &lt;la, ou la est telle que le triangle de Ma ayant deux côtés

orthogonaux de longueurs c et la ait /? comme angle opposé au côté de longueur c

La longueur la ne dépend que de c et de la borne supérieure de la courbure
On compare alors le triangle z&apos;z&quot;y au triangle du modèle Mb ayant deux côtés

orthogonaux de longueurs c et d(z&quot;,y) On a d(z\y) &lt;hb, où hb est la longueur
correspondante, c&apos;est-à-dire l&apos;hypothénuse Cette longueur hb est elle-même

inférieure ou égale à l&apos;hypothénuse h&apos;b d&apos;un triangle rectangle de Mb de côtés c et la

(car d(z&apos;\ y) &lt; la) On a donc d(z\ y) &lt; hb, où la longueur hb ne dépend que de c

et des bornes de la courbure Cette majoration de d(z\ y) permet de trouver, d&apos;après

l&apos;inégalité de Harnack sur les boules, une constante C10 telle quepe(y) &lt; Cl0 pe{z&apos;)

Regroupons maintenant les deux cas on a montré, pour oyz&apos; &gt; /?, l&apos;existence de

deux constantes C8 et Cu, telles que

&lt;Q pe(y) et pd(y) &lt; Cn pe{z&apos;)
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En combinant ces deux inégalités, on achève la preuve de la domination et par là
celle du lemme.

Revenons à notre ensembles F dont t est maintenant le temps de sortie. Pour
obtenir notre minoration, nous allons montrer que, pour presque tout 9 e A&quot;,

Pi[T +00] &gt;0. Pour cela, 6 étant fixé, on considère la fonction h définie par
h(z) =Po(z) • Pdz[x 4-oo]. Cette fonction est harmonique sur F et elle est positive
ou nulle. D&apos;après le principe du maximum, elle est soit identiquement nulle, soit
strictement positive en tout point.

D&apos;autre part, d&apos;après le corollaire 4.1 du lemme clé, on sait que, pour presque
tout 6 e A&quot;, le mouvement brownien passe /^-presque sûrement les derniers
instants de sa vie dans F. Si on fixe un tel point 0, alors

1 Pdo[&quot;Xt finit sa vie dans F99] lim Peo[&quot;Xt reste dans F après im&quot;],

m-&gt; +qo

où tm désigne encore le temps de sortie de B(o, m). On choisit alors m assez grand

pour que

Peo[&quot;Xt reste dans F après im&quot;] &gt; 0.

D&apos;après la propriété forte de Markov,

Peo[&quot;Xt reste dans F après im&quot; | tJ (p(XTJ,

où &lt;p(z) P9z[&quot;Xt reste dans F99]. On a donc &lt;p(z) P°z[t + 00] si z e F et &lt;p(z) 0

sinon. En prenant les espérances, on a

P°o[&quot;Xt reste dans F après rm&quot;] E°[&lt;p(XxJ\9

donc Edo[(p{XXm)] &gt; 0, ce qui prouve que cp n&apos;est pas identiquement nulle. Donc la
fonction h ne l&apos;est pas non plus et elle est strictement positive. On a donc

p;[t +oo]&gt;0.
On a donc montré que, pour presque tout 6 e Anci Pdo[z +00] &gt;0, ce qui

implique par le lemme précédent que, pour un tel 9 et e &lt; c,

Soit un tel 9 et soit e &lt; c. Il existe une constante C, &gt; 0 et R assez grand tels que
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Vy e ri \B(o, R), Gr(o, y)&gt;Cr G(o, y).

En appliquant alors le lemme 6.3, on a

Vy e r» \B(o, R), Gr(o, y)pe(y) &gt; C2 &gt; 0.

En reportant cela dans les résultats trouvés précédemment, on obtient

oo I \?u(y)\2Gr(o,y)Pe(y)dy&gt; \ \Vu(y)\2Gr(o,y)pe(y)dy
Jr Jro\B(o, R)

&gt;C2 f \Vu(y)\2dy.
JrO\B(o, R)

L&apos;autre partie du tube, Fee nB(o, R), étant relativement compacte dans M, on en
déduit que l&apos;énergie non-tangentielle, J9e(u) est finie.

Ainsi pour presque tout 9 e Anc et pour tout e &lt; c, on a 9 e /e, ce qu&apos;il fallait
démontrer.

7. La finitude de l&apos;énergie n.-t. implique p.p. la convergence n.-t.

Nous montrons ici /c c: £fe pour tout e &lt; c. Cela en deux étapes: dans un
premier temps, nous montrons que fc c if* (ensemble des points de convergence
brownienne de u). Ensuite nous montrons que si l&apos;énergie non-tangentielle Jec{u) est

finie, alors la fonction \Vu\ est bornée sur tout sous-tube Tf, e &lt;c. La fonction u

étant alors uniformément continue sur ces tubes, il suffit d&apos;appliquer le corollaire
4.5 de la propriété fondamentale pour conclure (quitte à prendre un sous-tube

«intermédiaire»).

7.1 Une énergie n.-t. finie implique p.p. la convergence brownienne

Pour montrer que fcci&amp;*, comme if* « /* d&apos;après l&apos;analogue probabiliste
(lemme 3.1), il suffit de montrer le résultat suivant:

PROPOSITION 7.1. /c c/*.
Comme précédemment, il suffit de montrer que les Fnc {9 e dM \ Jdc(u) &lt;n)

(n e N) sont presque inclus dans /*. On fixe alors un n et on note v(z)

liz(Fnc) PZ[X^ e Fnc] le prolongement harmonique de 1F/,
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L&apos;idée de la démonstration, comme dans celle de J. Brossard ([Bro77]), est de

s&apos;intéresser, pour a e ]0, 1[, à la quantité

On a en effet le résultat suivant:

LEMME 7.1. S&apos;il existe un a e ]0, 1[ tel que 7a &lt; +oo, alors Fnc cz /*.
ï&gt; Si 7a &lt; -f oo, on obtient alors par conditionnement que pour presque tout 0,

pi-?*.,

fJo

+ 00

&apos;0

D&apos;autre part, pour presque tout 6 e F&quot;, P^-p.s., lim,^+00 v{Xt) 1 (par le théorème

4.1., v étant une fonction harmonique bornée), donc v(Xt) &gt; a à partir d&apos;un certain

rang. Ainsi, pour presque tout 6 e F&quot;, P^-p.s.,

r \Vu(Xt)\2dt&lt; -foo,

ce qui prouve le lemme.

II reste donc à montrer qu&apos;on peut trouver a e ]0,1[ tel que Ia &lt; + oo.

En appliquant le lemme 6.1, on obtient

\Vu(y)\2G(o,y)dy. (1)

D&apos;autre part,

f

En notant T =*= rc(K) et, pour y € M, Hc(y) {0 e dM | y e T^}, on a

f f f f f
J0c(u) dj^o(6) dfio(6) \Vu(y)\2 dy |Pw(j&gt;)|2rfy diio{0)

JF« Jf» Jr^ Jr jHc(y)nFp

Jr
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L&apos;idée est maintenant de relier les deux expressions (1) et (2) Pour cela, on va
commencer par montrer qu&apos;on peut choisir a tel que {t)&gt;a}cf, puis on montrera
que sur un ensemble {v &gt; a}\B(o, c&apos;), on a une inégalité du type G(o, y) &lt;

C iio{Hc{y)c\Fnc), ce qui permettra de conclure
En appliquant le lemme clé 4 1 a l&apos;ensemble (Hc(y))c adM, on obtient une

constante rj &gt; 0 ne dépendant m de c, ni de y9 telle que

V* * rc((Hc(y)n PX[X^ $ (Hc(y)y) &gt; rj

La mesure harmonique étant le loi de sortie du mouvement brownien, en
appliquant cette minoration au point x —y qui, par définition, n&apos;est pas dans

rc((Hc(y)Yl on obtient fiy(Hc(y)) &gt;rj

On choisit alors a &gt; 1 - r\ Si y $ f, alors Hc(y)nF^ 0, donc

v(y) iiy{Fï) &lt; 1 - iiy(Hc{y)) &lt;\-t]&lt;*

On a donc {v &gt; a} c F
Montrons alors l&apos;inégalité qui va permettre de conclure

LEMME 7 2 II existe une constante C telle que, en notant c&apos; sup{c, 1},

^^pï &gt; C &gt; 0

D&gt; Soit y e{v&gt; a}\B(o, c&apos;) Pour 6 e Hc(y\ on a y e F°c\B(o, c) (car c &lt; c% donc

l&apos;angle yod est aigu En comparant le triangle oyO à un triangle de Mh (modèle de

courbure constante — b1) de côtés d( y, o) et + oo et dont le sommet commun a une
hauteur égale à la distance entre y et 00 ([Mou94]), puis ce dernier à un triangle
rectangle idéal de Mb de côté c, on montre qu&apos;il existe j8 &gt; 0 (ne dépendant que de

c et de la borne inférieure de la courbure) tel que oyO &gt; p On fait alors correspondre

à y le point yx situé sur le segment géodésique (yo) à distance 1 de y Par

application du principe de Harnack à l&apos;infini (théorème 2 1) sur le cône de sommet

y, d&apos;«axe» yo (orienté vers o) et d&apos;angle j8 (v figure 3), on obtient une constante Cx

indépendante de y telle qu&apos;en appliquant ce principe aux fonctions

[x &gt;-? iix(Hc(y)nF%)] et [x \-&gt; G(x, y)] entre les points o et yx, on ait

-
fiy](Hc(y)nF&quot;c)

G(o,y) - l G(yuy)

Comme d(y9yx)*=l, il existe une constante C2 indépendante de y telle que
G(y9yx) &lt;C2 ([Anc87]) Et l&apos;inégalité de Harnack sur les boules donne une
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Hc(y)

Figure 3 Figure pour le lemme 7 2

constante C3 ne dépendant pas de y telle que

liyi(Hc(y)nF&quot;c)&gt;C3 fiy(Hc(y)nF»c).

On obtient donc une constante C4 indépendante de y telle que

Mais on a aussi v(y) &gt; a. Or

v(y) iiy(F»c) ny{FncnHc{y)) + tiy(F»c\Hc(y))9

donc

tiy(F»cnHc(y)) &gt; a -^((i/c(j))0 &gt; a - 1 - rç) C5 &gt; 0,

et C C4 C5 est la constante recherchée. D
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Nous pouvons maintenant montrer la finitude de /a. Par la formule (1),

/«= I \Vu(y)\2G(o,y)dy
J{v&gt;oi}

&lt; I \Vu(y)\2G(o,y)dy + f |Vu{y)\2G(o, y) dy.
J{v&gt;a}\B(o,c) jB(o,c&apos;)

La deuxième intégrale est finie car la fonction \Vu\2 est bornée sur B(o,c&apos;), et la
fonction G(o, •) est localement intégrable. La première est finie en appliquant les

résultats précédents:

f \Vu(y)\2G(o,y)dy&lt;^ f \Vu(y)\2^o(Hc{y)nF:) dy
J{v&gt;oi}\B(o, c) ^ J{v&gt;ct}\B(o, c&apos;)

et on a vu précédemment (formule (2)) que cette dernière intégrale est finie.
On a donc trouvé un a tel que /a soit finie, ce qui achève la démonstration de la

proposition.

7.2 L&apos;énergie n.-t. contrôle uniformément les variations

Nous prouvons ici un résultat qui permet de remonter de la convergence
brownienne à la convergence non-tangentielle en utilisant le corollaire 4.5, ce qui
achève la preuve du théorème 5.1.

PROPOSITION 7.2. Si u est une fonction harmonique dont Vénergie non-tangen-
tielle Jec(u) est finie, alors la fonction \Vu\ est bornée sur tout sous-tube F°e, e &lt; c.

La démonstration de cette proposition repose sur le lemme analytique suivant:

LEMME 7.3. Soit M une variété complète, de courbure sectionnelle bornée et de

rayon d*injectivité non nul à.

Pour tout réel X &gt; 0 et tout reyon R e ]0, &lt;5/2[, // existe une constante C telle que:
Sif est une fonction positive ou nulle, localement bornée et de gradient localement

borné, vérifiant Af&lt; If au sens des distributions, alors

VxeM, |/||^*&gt;



502 FRÉDÉRIC MOUTON

D&gt; Ce lemme se démontre par le méthode d&apos;itération de De Giorgi-Nash-Moser
([Mos60]) en utilisant le plongement de Sobolev de H\(M) dans L(d/d~l)(M)
([Mou94]). D

Nous pouvons maintenant démontrer la proposition.
La variété que nous considérons vérifie bien les hypothèses du lemme. Nous

allons l&apos;appliquer à la fonction/= \Vu\. Elle est bien positive ou nulle, localement
bornée et de gradient localement borné. Il reste à montrer qu&apos;elle vérifie une
inégalité du type ci-dessus.

D&apos;après la formule de Bochner ([GHL87]),

g(A du, du) \Ddu\2 + -A \du\2 -f Rie (Vu, Vu).

Comme la courbure est minorée, Rie (Vu, Vu) &gt; —C\Vu\2, où € &gt; 0 (elle vaut
b2(dim M — 1)). Comme u est harmonique, A du d Au 0.

En un point non critique (du # 0), on a

^A\du\2 \du\A\du\~\V\du\\2

et, d&apos;autre part, la dérivation du produit du \du\ • (du/\du\) donne («un vecteur
norme étant orthogonal à sa dérivée»)

du\

En rassemblant tous ces éléments dans la formule de Bochner, on obtient, pour
un point non critique,

0&gt;\duf

Comme \du\ \Vu\, on a, en un point non critique, A\Vu\ &lt; C\Vu\, c&apos;est-à-dire, en

posant k~£,

Aux points critiques, comme/admet un minimum (qui est 0), Af&lt;0 au sens

des distributions et l&apos;inégalité est encore vérifiée. On peut donc appliquer le lemme

analytique à la fonction/= \Vu\ et au réel A.
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On fixe maintenant e &lt; c et on pose R (c — e)/2. Pour x e F9e, par inégalité
triangulaire, on a B(x, 2R) c rec et donc

Le nombre R étant fixé, on trouve, en appliquant le lemme, une constante C
indépendante de y telle que

En particulier, |Fw(x)| &lt; C^/jec{u), et comme l&apos;énergie J6c(u) est finie, la fonction
\Vu\ est bornée sur F0e9 ce qu&apos;il fallait démontrer.

Remarque. A. Ancona nous a signalé une preuve plus directe de cette dernière

proposition dont voici les grandes lignes: «Si on utilise l&apos;inégalité de Poincaré, la
théorie de Moser donne une borne uniforme de la variation de u sur toute boule

B(x, R&apos;) a B(x, R) c Fdc et l&apos;uniforme continuité voulue. La borne plus fine sur \Fu\
résulte d&apos;un théorème de Yau.»

8. Extension aux opérateurs faiblement cœrcifs

La travail précédent, s&apos;il traite le cas du laplacien, objet géométrique naturel,
n&apos;utilise cependant pas de propriétés spécifiques à cet opérateur. Une relecture

permet d&apos;isoler les propriétés requises pour la démonstration et d&apos;étendre ainsi le

résultat à d&apos;autres opérateurs.
Tout d&apos;abord, on a besoin de l&apos;identification du bord de Martin au bord

géométrique et des notions naturellement associées: fonction de Green, noyau de

Poisson, mesures harmoniques. Tout cela est encore valable dans le cas d&apos;un

opérateur elliptique L supposé adapté et faiblement cœrcif au sens d&apos;A. Ancona (v.
[Anc87]). Les différentes propriétés de Harnack sont elles aussi valables dans ce

cadre puisqu&apos;elles sont à la base du résultat ci-dessus.

La partie probabiliste, quant-à-elle, nécessite un bon comportement à l&apos;infini de

la diffusion associée à l&apos;opérateur L. Pour cela, on suppose que les constantes sont

harmoniques et que la fonction de Green tend vers zéro à l&apos;infini. Le comportement
est alors similaire à celui du mouvement brownien. Quitte à multiplier l&apos;opérateur

L par une fonction, on peut de plus supposer que la diffusion est définie sur !R+

entier. Le conditionnement de Doob est applicable car tous les éléments du bord de

Martin sont minimaux. Les propriétés de la section 4, basées sur les résultats
d&apos;A. Ancona, sont encore valables.
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Pour le théorème proprement dit, il faut introduire l&apos;énergie comme \\ L(u2)
(avec, cette fois, le signe des analystes: L— —A pour le laplacien). Les arguments
restent encore valables, la sous-section 7.2 se traitant à l&apos;aide de la remarque finale.
On a donc le résultat suivant:

THÉORÈME 8.1. Soit L un opérateur elliptique adapté et faiblement cœrcif sur
M, tel que L 1 =0 et que la fonction de Green tende vers 0 à Vinfini.

Alors le théorème 5.1 s&apos;étend aux fonctions L-harmoniques {avec la notion
d&apos;énergie adéquate).

Ce théorème permet de retrouver le cas euclidien. Considérons le demi-espace
Rv x R* avec son laplacien usuel AeucX. Si on le munit de la métrique ds2

y~\dx2 + dy2), on obtient l&apos;espace hyperbolique standard sur lequel l&apos;opérateur

L=y2Aeucl (différent du laplacien hyperbolique dès la dimension 3) vérifie les

hypothèses du théorème précédent (v. [Anc87]). Les deux opérateurs ayant les

mêmes fonctions harmoniques, on retrouve ainsi le résultat euclidien avec la
formule de l&apos;intégrale d&apos;aire.
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