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Quadrilaterals and extremal quasiconformal extensions

J. M. ANDERSON AND A. HINKKANEN

Abstract. We show that the smallest maximal dilatation for a quasiconformal extension of a quasisym-
metric function of the unit circle may be larger than indicated by the change in the module of the
quadrilaterals with vertices on the circle.

§1. Introduction

Let D denote the unit disk in the complex plane C and let f be a sense-preserv-
ing quasisymmetric homeomorphism of the unit circle 0D onto itself. Consider
quadrilaterals Q = D(z,, z,, z5,2z4) whose domain is D and whose vertices
Z,, 25, Z3, Z4 follow each other in the positive (anticlockwise) direction on dD. We
denote the conformal module of Q by M(Q) (for definitions, see [7, pp. 14-15]).
The function f maps z,, z,, z3, z, onto f(z,), f(2,), f(z3), f(z,) and the corresponding
quadrilateral with domain D is denoted by f(Q). If the number K > 1 is such that
/f has a K-quasiconformal extension to a self-map of D then [7, p. 16]

L _MUQ) _

— : 1.1

k<"mo =F b
We now set

K, =K,(f) =sup {—A%({%Q—Q)B : 0 has domain D}, (1.2)

so that K, is the smallest number K for which (1.1) holds for all quadrilaterals Q.
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456 J. M. ANDERSON AND A. HINKKANEN
We also set
K,(f) =inf {K : f has a K-quasiconformal extension to a self-map of D}.

Then, as is well-known [6, p. 16]

Ko(f) <K\ (f) <MK (NP2

where A(?) is the function determined by the Teichmiiller ring [7, (6.4), p. 81]. The
right hand quantity behaves asymptotically like (1/64) exp (3nKy(f)/2) as
Ky(f)— o [7, (6.10), p. 82]. However, it has been conjectured [14, Conjecture 3.21]
that K,(f) = K, (f) for all quasisymmetric f'and it is the object of this note to show
that this is not so (unless K,(f) =1, in which case it is easily seen that f is the
restriction of a Mobius transformation and hence K,(f) =1).

THEOREM 1. For each K > 1, there exists a sense-preserving quasisymmetric
homeomorphism f of 0D onto itself such that

Ko(f) <Ki(f) =K

This theorem is in contrast to a theorem of Jenkins [4, Theorem 1, p. 931] where
general polygons are considered instead of quadrilaterals and a condition similar to
(1.1) is given which is necessary and sufficient for f to have a K-quasiconformal
extension to a map of D onto itself. Thus Theorem 1 shows that, in general, it is
not sufficient to consider the moduli of quadrilaterals alone to determine K,( f),
though in [14], several examples are given where Ky(f) = K,(f). Hence, further-
more, any attempt to construct an extremal quasiconformal extension of f — an
extension of f whose maximal dilatation is equal to K;(f) — by considering only the
action of f on modules of quadrilaterals must necessarily fail.

Ever since Beurling and Ahlfors gave the necessary and sufficient condition for
a homeomorphism of the unit circle to have a quasiconformal extension to the disk
[2], the problem of characterizing such homeomorphisms, called quasisymmetric by
Kelingos [5], and considering various relationships between the boundary map and
its extensions, have been studied in the literature. A simple characterization of
quasisymmetric maps of the extended real line onto itself fixing infinity was given
in [2]. It is based on considering M( f(Q))/M(Q) when M(Q) =1 and one vertex of
Q is at infinity. Agard and Kelingos [1, p. 448] considered a definition for
quasisymmetric maps based on the requirement that 1/K < M(f(Q))/M(Q) <K for
all Q with one vertex at infinity. They [1, p. 449] also mentioned the possibility of
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using the condition 1/K < M(f(Q))/M(Q) < K for all Q, particularly when fis not
assumed to fix the point at infinity. This lead them to the quantity K,(f) defined
above. The extremal quasiconformal extensions of a given quasisymmetric function
f have been studied in great detail, particularly by Reich and by Strebel in their
many papers, some of them joint, for example, [10], [11], [12]. The inequality
Ky(f) <K,(f) being obvious from the definitions of these quantities and the
geometric definition of quasiconformal mappings [7, p. 16], the question arises as to
the exact nature of the relationship between K,(f) and K,(f). The paper by
Jenkins [4] provides interesting insight into this problem in terms of the change of
a suitable conformal module for polygons more general than quadrilaterals, and the
connection between K,(f) and K,(f) is briefly discussed. The question of whether
Ky(f) =K, (f) for all f, has probably been informally around since the 1960’s, but
we have not been able to find it in print except in [14].

§2. Parallelograms

We denote by V the closed parallelogram with vertices {, =0, {,=1,
{3=a+1+ip, and {,=a + iff, where o >0 and f > 0. These vertices will also be
called the geometrical vertices of V, to distinguish them from the vertices of some
quadrilateral. Let F (V) be the image of V under the horizontal affine stretch Fg
that takes x +iy onto Kx + iy, where K > 1, so that the vertices of Fx(V) are
Cl =@, C2 =K, C3 = K(a + 1) 4+ ip, and C4 = Ko + if. The function Fy is a K-quasi-
conformal mapping of V onto Fx(V) with complex dilatation u(Fyg,z) =
(K — 1)/(K + 1). Moreover, Fy is uniquely extremal for its boundary values (see,
e.g., [12]) so that K,(Fx|dV)=K. Let &, for j=1,2, map V and Fg(V),
respectively, one-to-one conforma]ly onto the unit disk D. By conformal invariance
the mapping F w=@,0 Fxo®7' of D onto itself is umquely extremal for its
boundary values and K,(Fx | D) = K, and, of course, Fy | 0D is quasisymmetric.
We shall show that K, (Fy |0D) < K. If zy, z,, z3, z, are four distinct points on oV
following each other in the positive direction, then we temporarily set Z; = ®,(z;),
w; = Fy(z;), and W, =®,(w;) for 1<j<4. However, M(D(Z,, Z,, Z;,Z,)) =
M(V(zy, 25, 23, z4)) and M(D(W,, W,, W;, W,)) = M(Fx(V)(w,, wa, w3, ,)), and
so we consider only moduli of quadrilaterals in V' and Fg(V).

We denote the (internal) angle of V (Fg(V), respectively) with vertex at the
origin by sz (1,7, respectively), so that 0 <5, <y <1/2 and

tan yn = K tan n, 7. (2.1)

Hence two opposite angles of V are equal to nm and the two others are equal to



458 J. M. ANDERSON AND A. HINKKANEN

(1 —n)n. The corresponding angles of Fy(V) are n;n and (1 —#n,)n. If K >1 and
n € (0, 1/2) are given and n, € (0, ) is defined by (2.1) then

1

K<11<1<K’ (2.2)
1 1-—711

K<1<1——n<K' (2.3)

For if x =nn and h(x) = (K, —n)n = K arctan (K~! tan x) — x then A(0) =0 and
h'(x) = (K*+tan? x) "}(K* — 1) tan® x >0 so that A(x) >0 for 0 <x < /2. This
gives (2.2). Further, (2.2) implies (2.3) whenever , 1, € (0, 1/2).

The proof of Theorem 1 falls into two cases:

(1) when the supremum in (1.2) is attained for some quadrilateral Q; and
(ii)) when

r M K\Xn
Ky(Fx | 0D) = Ko(Fi | 0V) = lim 8o, (24)

where the quadrilaterals Q, with domain ¥V and their images degenerate in
some way. We consider the cases separately.

§3. The attained supremum

Suppose that for some non-degenerate quadrilateral Q with domain ¥ we have

M(Fx(Q)

M©Q) (3.1

Ko(Fx) = Ko(Fic | 0V) =

We show then that K,(Fx) <K =K,(Fx). Suppose, on the contrary, that
Ky(Fx) =K and let y, and ¥, map Q and Fx(Q) onto their respective canonical
rectangles (for definitions, see [7, p. 15]). Thus y,(Q) can be taken to have vertices
0, M(Q), M(Q) +1i, i, and y, takes the vertices of the quadrilateral Q onto the
geometrical vertices of ¥, (Q). Similarly, for y,(Fx(Q)). But M(Fx(Q)) = KM(Q)
and hence both the functions F and ¥, o Fx o ! are K-quasiconformal mappings
of ¥,(Q) onto ¥,(Fx(Q)) taking vertices onto vertices. But by [3, Beispiel 1] or [13,
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p. 18], Fx is the unique K-quasiconformal mapping having this property. We
conclude that Fx =y, 0 Fxo ! or

Froy, =y, Fg. (3.2)

If we decompose ¥, and ¥, into their real and imaginary parts as ¥, = u, + iv; and
W, =u + iv, then (3.2) becomes

Ku,(x +iy) + iv,(x + iy) = w(Kx + iy) + iv(Kx + iy).

Thus u(Kx + iy) is a harmonic function of x + iy for x + iy € V and, of course,
u(x + iy) is a harmonic function of x + iy for x + iy € Fx (V). This implies that

0’u  0°u 0’u  0%u
T WY " R Tl
5x2+6y2 (3x2+ oy?

all functions evaluated at any x + iy € Fx(V). This yields 0%u/0x? = 0%u/dy?=0.
We deduce that the non-constant function y, = u + iv is a polynomial in w € Fx(V)
of degree 1 or 2. Since Fx (V) is a parallelogram which is not a rectangle — here for
the first time is this essential fact used - in either case i/, cannot map Fy (V) onto
a rectangle since the angles at the geometrical vertices of Fx (V) would have to be
preserved, with at most one exceptional vertex when i, is a polynomial of degree
2. This contradiction shows that (3.1) cannot hold.

§4. The degenerate case; two-point degeneracy

Suppose that {Q, } is a sequence of quadrilaterals with domain ¥ such that (2.4)
holds. By passing to subsequences, if necessary, we may assume that the vertices z;,
for 1 <j <4 of Q, tend to limit points z; € 0V for 1 <j <4 as n— co and that at
least two of the points z; coincide. Otherwise we have an attained supremum, in
which case we have already shown that K,(Fx) < K.

There are four possibilities, up to permutations.

Case 1. z, =z, while z,, z;, and z, are distinct;
Case Il. z, =2, # 23 =24,

Case IIl. z, =2z, =2z; # z,;

Case IV. z,=2,=2;=2,.
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To deal with possible permutations we may have to pass to conjugate quadrilater-
als, obtained by replacing the ordering z,, z,, z5, z, by 25, z3, 24, z,. These permuta-
tions, in effect, replace M(Q) by 1/M(Q). Thus we must exclude also the possibility
that

M(Fg(Q,)/M(Q,) > 1/K  asn—oo.
It will be evident below that our argument achieves this.

CASE 1. Let ¢, map V conformally onto the upper half plane H taking
Zins Zans 23,05 Z4,, ONILO a,, 00, 0, and 1, respectively. Thus 1 <a, < oo and a, = oo as
n — 0. Similarly we set w;,, = Fi(z;,) for 1 <j <4, and let ¢, map Fx (V') confor-
mally onto H, taking w,,, w,,, Wi ,, w4, onto b,, oo, 0, and 1, respectively. As
before, 1 <b,, < o0 and b, - 00 as n — oo.

If 1/m(a) denotes the module of the quadrilateral H(a, o0, 0, 1) when 1 <a < o0,
then M(Q,) = 1/m(a,) and M(F(Q,)) = 1/m(b,). We estimate m(b,)/m(a,) by
using the explicit formula for m(a) and then obtaining an asymptotic estimate for
b, in terms of a, and K. By [7, pp. 59-60] we have, for 1 <a < oo, that

K(./1—r?
m(a) = M(H(o0, 0, 1, a)) = M(H(0, 0, 1//a, /@) =—(——-————VK(r)’) ,

where K(#) denotes the complete elliptic integral

K(t) =

j‘ dx
o /(1 —x3)(1—12%x?)

and r? = 1/a. Since K(0) = n/2 and
K(?) : 1 ——————1 as t -1
~ - sad | e
2 11
(see, e.g., [8, Problem 90, p. 21]) we have
1
m(a) ~;loga as a — . (4.1)

Let G, and G, be fixed conformal mappings of V and of Fx(V) onto the upper
half plane H taking the points z; and w;, respectively, for 1 <j <4, onto some finite
points. Let L, and I, be Mobius transformations taking the points Z,=G\(z,)



Quadrilaterals and extremal quasiconformal extensions 461

and W,, = G,(w;,) for 1 <j <4 onto a,, o, 0, 1 and b,, o, 0, 1, respectively.
Then ¢,=L,-G, and ¢, = Z,, o(G,. We may assume throughout that
—0<Z,<2,,<Z;,<Z,,<o and —co<W,, <W,, <W,, <W,, <ow.
We have

Z — Z3,n Z4,n - ZZ.n

L(Z)= 4.2
"( ) Z - ZZ,n Z4,n - Z3,n ( )
so that
Z, —2Z. Z, —Z
a, = 0,(z21,,) = L,(Z,,) =222 4n 2 (4.3)

Zl,n - ZZ,n Z4,n - Z3,n'
There are distinct real numbers Z,, Z,, and Z, so that

Iim Z,,=Z for j=1,3.4,

J
n— o0

while Z,, — Z,. Thus, as n — oo,
a, ~ CI/(Zl,n - Z2,n)’
where

(Z,-Z,)Z2, - Z))

C =
: Z4_Z3

is a non-zero real number. Now if z, is not a geometrical vertex of V' we have
Gi'(Z)=2,+C,(Z—-2Z) +0(Z — Z))?

as Z - Z, in H where C, =(G;')'(Z,) is a non-zero complex number. But
Gi'(Ziw) =210  G7'(Zoy) =220,

and hence

G

% = lan | - lzl,n —ZZ,nl

as n — oo, where C; > 0. Similarly
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as n — oo, where C, > 0. Now C; and C, are independent of n, depending, in fact,
only on the auxiliary transformations G, and G, and the distinct points z;, z;, and
z4. Moreover, since w,, = Fg(z;,), we have

_1__ wl,n - w2,n
K

<K

<

Zl,n - ZZ,n

for all n. We conclude that

b
0<Q<i<Q<w,

n

for suitable constants Cs and Cg independent of n. By (4.1),

M(FK(Qn)) ~ lOg a, N 1
M(Q,)  logb,

as n — 0.

Since K > 1 we have K;(Fx) < K as required.

Suppose now that z, is a geometrical vertex of ¥ and that V" has the angle nn
at z,, so that Fx (V) has the angle n,n at w,. Suppose that W,, = G,(w;,) - W, for
1<j<4 as n—»>o. To make notation easier we suppose that Z, =W, =
z;=w; =0. Now G{(Z) ~ C,Z" as Z— Z, =0 in H, where C, # 0. By passing to
a subsequence, if necessary, we may assume that Z, ,/Z,, - Aand W, /W, , - 1 as
n — oo, where —o0 <A <00 and —o0 < < 0. Since w;,, = Fi(z;,) we have A=0
if and only if 1 =0, and |1| = co if and only if |4| = co.

If |A| = || = oo then, as n — oo,

Zin—2,, =21 [Cy)'" — (22, /C7)”" ~ Cs(zl,n)”",
Win— Wau ~ Co(w; )",
Passing, if necessary, to a further subsequence, we may assume that

w 1
Lnl ok where = <k <K
Zl,n K

as n—o0. Thus as n = ©

" 1 1
I/M(Qn) = ; log a, ~ —;;1—[ log IZl,n 'a
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1
M(Q,)

1 1 1 1 n
—  —"logh, ~ —— log|w,,| ~ —— log |z, | ~
MFL(Q,) = °° o 08 Wl ~ = logfza ~ o

Since 1 <n/n, < K by (2.2), we again see that K,(Fx) < K, as required. The case
when 1 and 1 are finite, possibly zero, are similar and so are omitted.

If, instead, V has the angle (1 — #)n at z,, so that Fx (V) has the angle (1 —n;)n
at w;, the analysis is similar to the above and now

1 dl-n 1
M(Fg(Q,) 1—n M(Q,)

Thus

l—n 1-—n, 1 —n,
K (Fy) = , - K
oFx) max{l—m 1~n} I—n =

from (2.3). Hence, in all subcases arising in Case I, we have K,(Fx) < K = K, (Fx).

CASE 1I. This is similar to Case I. We perform the same preliminary transfor-
mations to find that

Zl,n - Z3,n Z4,n - ZZ,n C'l
Zl,n - ZZ,n Z4,n - Z3,n (Zl,n - Z2,n)(Z4,n - ZS,n)

a, =

as n — o0, where C; = —(Z, — Z;)* #0. Thus, as before,
n/M(Q,) ~loga, ~ —log|Z,, — Z,,| —log|Z,, — Z,,],
while in a similar fashion,
n[M(Fx(Qn)) ~log b, ~ —log [Wy,, — Wy, | —log [Wa, — W3, |

As in Case I we find, again by passing to a subsequence if necessary, that each of
the quotients

—lOg IZl,n - ZZ,nI and _log IZ4,n - ZB,nl
—lOg IWI,n - W2,n| "'lOg |W4,n - W3,nl
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tends to a limit k¥ as n —» o0, with k =1, or k =n/n,, or k =(1 —n)/(1 —n,). If
k, =max {1, n/n,, (1 —n,)/(1 —n)} so that 1 <k; <K then

—log|Z,, — Z,,| < (x; + o(1))(—log | W, ,, — Wy, |)
and

—log|Z,, — Z,,| < (k; + o())(—log |W;,, — W, ))
and hence

n/M(Q,) < (x; + o(1)n/M(Fk(Q,)).

Similarly,

n/M(Q,) 2 (k7' — o(1))n | M(Fi(Q,))

and so K,(Fx) <k, <K =K,(Fg) also in Case II.

§5. Quadruple degeneracy

CASE IV. Suppose that z, lies in the interior of an edge of V. For simplicity,
we assume first that this edge is the lower horizontal edge of V. We shall frequently
assert that various sequences tend to limits and this can always be achieved by
passing to a subsequence if necessary. For all large n, the points z;, are ordered
from left to right along the edge. Any j could correspond to the leftmost point, and
we may assume that it is the same j for all n. Let these points also be denoted by
a, < B, <y, <9d,. To be able to use definite notation, suppose that «, = z;,, for all
n. Then B, =2z4,, Y» =2,,, and J, = z,,. Arguments similar to those presented
below work in all the other three cases also. Let L, be the Mobius transformation
of the upper half plane H onto itself taking a,, g,, 7., and J, onto 0, 1, a,, and oo,
respectively. Here a, € (1, 00) is determined by the cross ratio of the points z;,,.
Write &, = Fx(a,) and so on, and let L~,, be the Mobius transformation of H onto
itself taking &,, 5,,, 7., and 5,, onto 0, 1, b,, and oo, respectively. We have
L,(V)< H and I:,(F x(V)) = H. Clearly, for all large n, the set dL,(V) contains
(—o0, 4,]U[B,, ©] where —o0<A'< A, <B,<B' <0 and A’ and B’ are inde-
pendent of n, and furthermore B, — A4,—0 as n—o0. We may assume that
A, A e (—0,0) so that B, — A4 also. In fact, for any € > 0 there is an integer #,
such for all n >n,, the set H\L,(V) is contained in an e-neighbourhood of A.
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Similarly, we may assume that there is a point Ae (— o0, 0) such that A \f,,, (Fe(V))
tends to 4 in the above sense.

We may assume that a,—ae[l, o] and b,—-be[l, ©] Now
M(Q,) = M(L,(V)(0, 1, a,, 00)), and M(Fx(Q,)) = M(L,(F(V))(0, 1, b,, ©0)). We
shall show that

M(L,(V)(, 1, a,, ©))

-1
M(H(0, 1, a,, o))

and, for a similar reason, M(Zn(F «(V))0,1,b,, 0)/M(H(,1,b,, ) =1 as
n— . Now M(H(0, 1, a,, o0)) = 1/m(a,). We show below that m(a,)/m(b,) — 1 as
n — 00, which then implies that

MG
KoFy) = im0 =0,

=1 <K =K, (Fx),

as desired. (In the particular case considered now, it turns out that a, =b,.

However, in other similar cases we need not have equality but something weaker.)
We first study the relationship between a, and b,. We have

Z — Z3 Z4 - 22 ~ w — W3, W4, - Wz’n
L,(z) = =—=—=2 and L,(w) = - ;
z — ZZ,n Z4,n - ZB,n w— w2,n W4,n - W3,n

and

z —Z
L_] Z — 2,n 3,nR ,
n ( ) Z2,n + Z—R n

n

where

Rn — Z4,n - ZZ,n .
z4,n - Z3,n

Since, in this particular case, w;, = Kz; ,, we obtain that
b,=(L,° FxoL;")a,) =a,,

as asserted above. Hence m(a,)/m(b,) = 1.
Consider then the relationship between M(L,(V)(O0,1,a,, ©0)) and
M(H(0, 1, a,, )). If a, = a € (1, o) then it follows from the convergence proper-
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ties of the conformal module [7, p. 27] that M(L,(V)O,1,a,, o)) —
M(H(0, 1, a, o0)) € (0, 0©). Since, in any case, 1/K < M(Fx(Q,))/M(Q,) <K we
further see that a =1 if and only if 5 =1, and a = o if and only if b = c0. So if
1<a < oo then 1 <b < oo, and similarly to the above, M(L,(Fx(V))(0, 1, b,, 00))
- M(H(0, 1, b, ©0)) € (0, 00). Since a, =b,, we have a = b, and so

M(F(Q,) _ M(L,(Fx(V)XO, 1, b,, 0)) L M#HQ, 1,5, ©) _,
M@,) — MZL(VX0,1,a, )  MHQO1,awx)

as desired. We next consider the case a =b = 1. The case a =b = o0 can either be
dealt with in the same way, or reduced to the case a = b = 1 by passing to conjugate
quadrilaterals, which does not affect the assumption of Case IV that all the z;
coincide.

Let ¥, be the conformal mapping of L,(V) onto H fixing each of 0, 1, and oo.
If ¥, (a,) =c, then M(L,(V)(0, 1, a,, ©)) = M(H(O0, 1, ¢,, o0)). By the discussion in
§4 before (4.1), we have

asa—-1+.

Thus to show that

ML, V)0, 1, a, @)
M(H(O’ 1’ arn w)) ’
we need to demonstrate that

1 1
~ log

log

a,—1 ¢, — 1

as n — oo.
Let w(y, z, D) denote the harmonic measure of the set y < D at the point z € D
with respect to the domain D. We have for 1 <a < oo,

y 1 1 -1 a-—1
o((1,a), i, H) = - (arctana — arctan 1) = — arctan Z " a27z
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asa—-1+.If Z=X+iY, |Z—i|<1/4 and 1 <a <2 then

1 -X —
w({(1l,a),Z, H) = - (arctan a 2 arctan L YX)
= 1 arctan a1
T Y+@-X)(1-X)Y"!

so that for all those Z and a,

1 <w((l,a), Z, H)S

c™ a—1 ¢

for some absolute constant C > 1. For every € > 0, there is an integer n, such that
if n > n, then

H\{Z:|Z-A|<e}cL,(V) < H.

Let D, be the domain whose closure is H\{Z :|Z — A| <€}. It follows that for
nz no,

o((1, a,), i, D)) < (1, ¢,), ¥,(i), H)

=w((1, a,), i, L,(V)) < w((1, a,), i, H) ~an2; 1,

as n — o0. Since (i) =i as n - 00, we have

1_o((1,6). ¥ H) _ .
C c, — 1

for all large n. We only need to show that
w((1, a,), i, D) > Ci(a, — 1)

for some fixed C, > 0, for all large n, to deduce, in view of all of the above, that
log (1/(a, — 1)) ~log (1/(c, — 1)) as n — .
The map

(Z-(4+9Y
‘p(z)‘(Z—(A—e))
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takes D, conformally onto H, taking i, 1, and a, onto

) i—(4+e\? 1—(4+¢€))? a, — (4 +¢€)\?
ri=\—"7"—">=/, G=\T "% /> Con=\"""F717"—"~ />
i—(4—¢€ 1—(4—¢ ’ a,— (A —e)
respectively. Choose a small but fixed € >0 so that 4 + € # —1. If I, is the open
interval with endpoints ¢; and ¢,, then we obtain

Cl)((l, an)a ia De) = w(Ina ¢y + icZa H)

. Cl - C4 C, - C3
= —|arctan  _ arctan
n c, o
C3— Cy4
=~ |arctan 1 —{ > Ciles — ca
n cy + (€1 — ¢4)(c; — ¢3)C;5 I

— (1—(A +€))2 <a,,-—(A +e)>2
TN\l —d-9) \g,—(4—¢
_4eCil—a,l|la,— A4 +A4°—€*—a,A|
- (1=(4 —e)Xa, — (4 —¢)?

> C,la, — 1

for some positive constants C, and C, that depend only on 4, €, and the distance
of A —e from —1. This completes the proof that log (1/(a, — 1)) ~log (1/(c, — 1))
as n — oo, as desired.

We indicate briefly the changes to be made when z, lies in the interior of a
non-horizontal side of V. We map V and Fx (V) by rotations and translations so
that this non-horizontal edge becomes a segment of the real axis and the images of
V and Fx(V) lie in H. It only matters how the transformation of the map Fy looks
like in a neighbourhood of the image of z,. A calculation shows that in the case of
the right non-horizontal side, the map corresponding to Fy is given by

(K%0% + BP)x + ap(1l — K2y + iK(a? + B2y
V(@2 + BOH(Ka2 + p2)

xX+iy

which for y =0 gives x — K'x where

K2a2+ﬁ2
K= [——< XK.
V a?+p? <

Recall that o + if is one of the vertices of V. Since the change of the module M(Q,)
only depends on the boundary mapping, we are reduced to considering an affine
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stretch by a factor not exceeding K. Hence all the previous arguments in the case
of a horizontal side can now be followed. We leave any further details to the reader.

Suppose then that z; is a geometrical vertex of V. To fix ideas, we first consider
the case when z, = 0. The map P,(z) = z!/" takes V conformally onto a subset of H
so that the points P,(z;,) lie on the real axis R close to the origin. Let these points
be a, <f, <7, <9,. One of these points may be equal to 0, and some may be
positive and some negative. Without loss of generality, we suppose that
a, < p, <0<y, <9I, and that a, = P,(z;,) for all n. All other cases are similar. Let
L, be the Mobius transformation of the upper half plane H onto itself taking a,,, £,
v, and &, onto 0, 1, a,, and oo, respectively. Here 1 < L,(0) =d, <a, < o©. Then
L,(P,(V)) =« H. We perform the corresponding auxiliary maps on Fg(V). In
particular, we take P,(w) = w!/m and choose the Mébius transformation Z,, of H in
a suitable way. Then we consider y, = Zn oPyoFroPy'o L which is a (Kn/n,)-
quasiconformal mapping of L,(P,(V)) onto En(Pz(F «(V)) fixing 0, 1, and oco. We
may assume that the maps y, tend to a (Kn/n,)-quasiconformal map y of H onto
itself, first locally uniformly in the spherical metric. We assume further that
d,—de|[1, oo] and that d = ,(d,) ~de [1, oo]. Again there is 4 € (— o0, 0) such
that for any given € > 0, with D_ defined as before, y, is defined in D, and tends to
¥ uniformly in the closure of D,. It is shown as above that in the limit it does not
matter, for the purpose of determining K,(Fx ), that y, is defined in a subset of H
rather than in all of H. Thus the value of lim,,_, , M(Fx(Q,))/M(Q,) depends only
on a, and b,, as before.

We set
1/n 1/n
Z4/n —Zop
R 1/rl__zl/n >1
4,n 3,n
and
1/n 1/m
~ w — W
R =3~ o ],

Unm _ wl/m
w4,n w3,n

We may assume that R, —» R €[1, o] and 13,, —>Re [1, 0] as n = c0. A calculation
shows that

1/rn _ w;/m
N

(Z) =R, 1+ 20—z N\ [ ’ ‘
[”{(+7‘—R"R> {]" e

For Z € (— 0, 4 —¢€) U(d,, 0], the application of Fx above amounts to multiplica-
tion by K. We assume that R and R are finite. One can check that R = oo if and
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only if R = o0, and this case can be reduced to the case when R is finite by passing
to conjugate quadrilaterals. Now we obtain

AZ) = R(1 +[A + (K(, + RA;/(Z — R)") '],

where
1/m 1/n
. —w2n . Zzn
Ay = lim ————— = lim :
Um _ ylm? 2 Um _ ywlUmymin®
nsoo Wt — wil ns 0 (W2,nl w3,n') 1
i/n 1/n
3= lim = -

1/ 1/ n*
n— o (WZ,ZI — W3’Z‘)'“

We may assume that these limits, possibly infinite, exist. We may further assume
that z;,,/z,,, = A, € C\{1}, say (since z3,/z,, has constant argument different from
0 modulo 7). Now it is easily seen that 4; is a finite non-zero complex number.
Next, clearly 4, and A, are both zero, or both infinite, or both finite and non-zero.
In the second case, y will not be a homeomorphism, which is impossible. In the two
other cases, the restriction of y to (—o0, 4 —€)u(d,, 0] can be written as
P;o Po P, where P, and P, are Mobius transformations while P({) = K'/mgnm,
used here for { > 0.

Note that wi{,’l‘ — wéf,’l‘ > 0 and that 4;/A, =1 — A" e R. An analysis similar to
the one above shows that for 4 + € < Z <d,, we have

X(Z) = R(1 + [4, + Cy)d, + RA3[(Z — R)"m]~Y),

where C, = (Fx(e™))'/" = —[K cos (y=r)/cos (n;7)]'/m. This function y has the same
decomposition as above with the same P; and P, but with P replaced by

0(0) = —I[K cos (nm)/cos (n;m)]'™|C[7m,

used here for { <0. Since € is arbitrary, we have found the boundary behaviour of
X

The function y changes the module of any quadrilateral with domain H by at
most the same factor as the function 2 given by A(x) = P(x) for x >0 and
h(x) = Q(x) for x < 0. We compose s with conformal mappings of H onto the strip
S ={x+1iy:0<y<n} and note that the function g(z) = log h(e®) taking 05 onto
itself is given by g(x) =px +gq, where p=n/n, and g =n;'log K, and by
g(x +in) = px + q +ni ' log (cos (nr)/cos (n,m)) + in, for all real x. A calculation
shows that g coincides with g, o Fxo g5 ! on 0S, where g,(z) = ™ and g,(z) = e™*
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are conformal maps of S onto the angles S, ={z:0<argz<nrn} and
{z: 0 <argz < n,n}, respectively. Reich [9, §IIL.3, p. 123] has shown that the affine
stretch Fy is not extremal for its boundary values in S,, and so there is K, < K such
that Fi | 0S, has a K,-quasiconformal extension to S,. This can be lifted to a
K,-quasiconformal self-map of S with boundary values g. Therefore, the function A
has a K,-quasiconformal extension to H. It follows that 4 can change the module
of any quadrilateral by the factor K, at most.

We now return to the numbers a, and b,. As before, we have a = 1 if and only
ifb=1,and a = o0 if and only if b = 0. So if | <a < o0 then 1 <b < 00, then the
above implies that K,(Fx) < K, <K =K,(Fg). The cases a=1 and a = o0 are
similar, so we only consider the case « = 1. Then also d = d =b = 1. We note that
if €, > 0 then there is an integer n, such that for all n > n,, the function g, restricted
to the extended real axis apart from a small interval around the point A, and
defined in a suitable way in this small interval, can be extended to a (K, + €,)-
quasiconformal mapping of H onto itself. Hence M(F,(Q,))/M(Q,) <K, + €,, and
s0, again, Ky(Fx) < K, < K =K, (F).

When z, is a geometrical vertex of V other than the origin, similar consider-
ations can be followed, the only possible difference being that 1 and #, are replaced
by 1 —#n and 1 — #,. The only important thing about # and n, was that (2.2) holds,
and now we use its counterpart (2.3) to get the desired conclusion. This completes
our treatment of Case IV.

§6. Triple degeneracy

CASE III. We give only a sketch of the proof in this case, leaving the details to
the reader. Consider first the case when z, lies in the interior of some edge of ¥V, and
suppose that it is the lower horizontal edge. We map V by a linear real polynomial
onto a subset of H taking the leftmost and rightmost of the points z, ,, z,,, and z,,
onto 0 and 1. For large n, z,, will go to a point, possibly non-real but in H, close
to infinity in the spherical metric. We then map the image of V conformally onto
H, fixing 0 and 1 and taking the image of z,, to co. The sequence of these maps
tends to the identity map. We pick a segment, S say, such as [—1, 2], which
contains [0, 1] and is mapped by each such function onto a segment of R containing
a fixed segment [c, d] with ¢ <0 and 4 > 1. In S, each such map can be approxi-
mated by a linear mapping with non-zero derivative. We perform analogous
transformations to Fx (V). Then we proceed as in Case IV, the only difference being
the use of the auxilliary conformal maps of a subset of H onto H. It can be verified
by a straightforward, though tedious estimation that this does not make any
essential difference.
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When z, lies in the interior of some other edge of V or is a geometrical vertex
of V, we again proceed as in Case IV, using power maps and linear maps, the only
difference being that we again also use auxiliary conformal maps taking a suitable
subset of H onto H, these conformal maps being close to the identity map and
being almost linear in a neighbourhood of [ —1, 2], say. This concludes our sketch
of the treatment of Case III.

§7. The affine stretch of other domains

It is clear that the above reasoning is valid for the affine stretch of a wide class
of domains 4, say. In the case of non-degenerating quadrilaterals when
Ky(Fg | 04) = M(F(Q))/M(Q) for some quadrilateral Q we require two things:

(a) that the affine stretch of 4 is uniquely extremal for its boundary values. This
is certainly the case when 4 has finite area [12];

(b) the mapping ¥, of Fx(Q) (which, as a set, is the same as Fy(4)) onto its
canonical rectangle is not a polynomial of degree one or two. This is true
for almost all domains 4.

For degenerating quadrilaterals it is sufficient that the boundary of 4 consists of
a finite number of straight line segments meeting in angles different from /2.
When, for example, the four vertices of Q, degenerate to a single point z, then

(¢) if z, is an interior point of a side of 4 then locally 4 looks like the upper
half plane H where the affine stretch is not extremal for its boundary values;

(d) if z, is a geometrical vertex of 4 then locally 4 looks like an angle
{z:0<argz <a}. Once again the affine stretch is not extremal for its
boundary values (see, for example, [9, p. 124]).

In items (c) and (d) it is the lack of extremality that is needed, rather than the
lack of unique extremality.

It seems reasonable to suppose that the above considerations apply also to
bounded domains 4 with sufficiently smooth boundary (possessing a tangent at
every point) or to domains whose boundary consists of a finite number of smooth
arcs intersecting in non-zero interior and exterior angles. The technical difficulties
involved would make our proofs of these suggestions rather complicated. But we
poini out that if d4 has a sharp enough cusp, at z = 0, say, then our method would
certainly fail. An example of Reich [10, p. 82] is as follows. Let 4, be the region
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{x +iy :y >max {C, x|/}, x e R}, (7.1)

where C >0 and f > 1 are constants. Then the affine stretch of 4, is

(e) not extremal for its boundary values if f =1,
(f) extremal but not uniquely extremal for its boundary values if 1 < < 3;
(g) uniquely extremal if f > 3.

Thus if the cusp of 04 at z =0 is sufficiently sharp then the mapping w = 1/z
might map 4 locally near z =0 onto a region given by (7.1) with f > 3, say. Our
method then fails, though it is now possible that K, (Fx | 84) = Ky(Fx | 64). Pre-
sumably in this case the supremum in Ky(Fx | 04) is nevertheless attained only in
the limit as the vertices of the quadrilateral degenerate to the cusp.

What really matters in the degenerate case is that when one looks at the limiting
functions obtained, after suitable renormalization, and the limiting domains ob-
tained then these functions are, to within pre- and post-composition with Mobius
transformations, equivalent to the affine stretch in domains where the affine stretch
is not extremal for its boundary values. Call such functions ®@4. Thus in such
domains 4, there is a number K, < K such that K, (®x | 04,) < K, < K while in 4
itself we have K,(Fx | 04) = K. An example of this is the angle {z : 0 <argz <a}
mentioned above where K,=(1+k,)/(1 —k,) <K. Here k,=k(sina|/a and
k=K-1)/(K+1).

It also seems likely that the modules of the polygons introduced by Jenkins in
[4] will not suffice to determine the minimal maximal dilatation K,(f) of a
quasiconformal extension of a homeomorphism f of d D onto itself if the number of
vertices of the permitted polygons remains bounded. Jenkins [4, Theorem 1, p. 931]
has shown, however, that if arbitrarily many vertices are permitted then such
modules will suffice (more precisely, instead of modules in the sense that we have
discussed them, one considers solutions of suitable extremal problems for path
families).
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