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Rational points of bounded height on Del Pezzo surfaces of degree six

MARCELLO ROBBIANI

Abstract. Let K be a number field. Denote by V5 a split Del Pezzo surface of degree six over K and by
o its canonical divisor. Denote by W, the open complement of the exceptional lines in V;. Let
Ny, (—o, X) be the number of K-rational points on W, whose anticanonical height H_, is bounded
by X. Manin has conjectured that asymptotically Ny .(—w, X) tends to cX(log X)?, where c is a
constant depending only on the number field and on the normalization of the height. Our goal is to
prove the following theorem: For each number field K there exists a constant cyx such that
Ny,(—w, X) <cxgX(log X)3+%, where r is the rank of the group of units of Ox. The constant c, is
far from being optimal. However, if K is a purely imaginary quadratic field, this proves an upper
bound with a correct power of log X. The proof of Manin’s conjecture for arbitrary number fields and
a precise treatment of the constants would require a more sophisticated setting, like the one used by
[Peyre] to prove Manin’s conjecture and to compute the correct asymptotic constant (in some
normalization) in the case K = Q. Up to now the best result for arbitrary K goes back, as far as we
know, to [Manin-Tschinkel], who gives an upper bound N ,(—w, X) < cX'*=

The author would like to express his gratitude to Daniel Coray and Per Salberger for their
generous and indispensable support.

1. Introduction
1.1. Del Pezzo surfaces

Let K be an algebraic number field and K an algebraic closure.

DEFINITION 1.1.1. A Del Pezzo surface over K is defined to be a smooth
projective surface defined over K whose anticanonical divisor —w, is ample and
whose field of rational functions over K is a purely transcendental extension of K.

The self-intersection number d = w, - w, is called the degree of the Del Pezzo
surface. If the anticanonical divisor is very ample it coincides with the projective
degree of the anticanonical embedding of V.

Essentially we need only the following classical result about Del Pezzo surfaces.

THEOREM 1.1.2. Let V be a Del Pezzo surface over K of degree 6, then
V @« K is isomorphic to the blowing up of three distinct points Py, P,, P, in P% in
general position, i.e. non collinear.
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404 MARCELLO ROBBIANI

This explains the standard notation V; for Del Pezzo surfaces of degree 6
over K, and 7, for V; @ x K. We denote by 7 : ¥, - P% the birational morphism
induced by the blowing up of three points.

LEMMA 1.1.3. The only exceptional divisors on V, are the inverse images
E; = n~'(P;) of the blown up points and the strict transforms L,; of the lines l,; passing
through the points P; and P;.

The six effective divisors E; and L,; coincide with the straight lines on V5 in the
anticanonical embedding. That is why we shall refer to them as the “lines” on V.

PROPOSITION 1.1.4. The divisor Ey+ 2Ly, + 2E, + L, and those derived from
it by the action of the symmetric group S; on the subscripts are members of the
anticanonical linear system.

For proofs and additional information consult e.g. [Manin, Chap. 4]. Observe
that the divisor Ey + Ly, + E, + L, + E, + Ly,, as a weighted sum of these divisors,
also belongs to the anticanonical system.

An exceptional divisor may not be defined over the groundfield K. We exclude
this situation from further investigation and assume throughout this paper that our
surfaces are split, i.e. that all exceptional divisors are defined over K.

1.2. Heights

We give a brief summary of the theory of local and global heights or, in another
terminology, of Weil functions and associated heights needed in the sequel. For
proofs of the statements mentioned in this subsection we refer to the standard
literature, e.g. [Langl, Chap. 10] or [Serre, Chap. 6].

We fix once for all a complete set of embeddings, up to conjugation, of the field
K in R or C. We denote the real ones by oy, ..., 0, , and the complex ones by
Tiseeees Ty Weputr=r,+r,—1.

Let | | be the ordinary absolute value on R or C. To each embedding we attach
an Archimedean absolute value v, of K, given by v;(¢) = |o,(£)| in the real case, and
by v,(&) =|r;(&)? in the complex one.

We denote by Py the set of prime ideals of Og. For a prime p € P lying over
a prime p € Z with ramification index e,, local degree d,, and residue class degree
J, we introduce an ultrametric absolute value v,(£) for ¢ € K by writing the ideal
£Ok as I1, . p, p™ and putting

Up(é) =p —(vplep)dy =p‘vpfv.
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We denote by M, the set of all these absolute values. The chosen normalization
ensures that for every & € K* the product formula holds:

[T w9 =1

UEMK

Let ¥V be a smooth projective variety and D and effective divisor of V. We

neous equations of degree d,.
Since we do not consider the most general setting, the following definitions will
be sufficient for our purposes:

DEFINITION 1.2.1. Let v € Mg be an absolute value on K and x a K-rational

function) A, associated with the divisor D is defined to be

A,(x) =inf sup v(x? [f;(x)).

This is defined as in [Serre, Chap. 6], but note that the function A appearing in
Example 5 of §6.2 is the logarithm of the present height.

PROPOSITION 1.2.2. For each absolute value v € My there exists a constant
¢, >0 such that for all K-rational points x on V we have 4,(x) > c,.

DEFINITION 1.2.3. The (global) height associated with the divisor D is
defined to be

Hp(x) = ] 4,().

l)EMK

DEFINITION 1.2.4. The finite height D associated with the divisor D is defined
to be

o) = T 2, ().

pe Pk

Remark. In view of our normalizations the height of a point x depends on the
choice of the field K. However, one checks immediately that multiplying the x; by
a constant leaves the local, the global and the finite height invariant. All heights are
defined outside Supp D.
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We say that two global heights H,, and H,, are equivalent, and we write H, ~
H,, if they differ only by a multiplicative function, bounded from above and from
below, i.e. if there exists a constant ¢ > 0 such that (1/c)Hp(x) < Hpy(x) < cHp(x)
for any point x € V(K) outside Supp D.

THEOREM 1.2.5. If D and D' are two linearly equivalent divisors then H, ~ H .

This theorem implies that, up to equivalence, the global height is independent of
the choice of the generators f; and of the choice of an embedding. Note that this
need not be the case for finite heights. Thus, given a smooth projective variety V'
and an effective divisor D, we shall further on speak about the height H,.

PROPOSITION 1.2.6. Let ¢ : V' =V be a morphism between two smooth pro-
Jjective varieties. Let D be an effective divisor on V and D' = ¢ *(D) its pullback divisor
on V'. Then the identity Hy, > ¢ ~ Hp holds.

This identity is often called the morphism formula. The morphism formula
implies: if A, is a finite height associated with the divisor D, then A, ¢ is a finite
height associated with the divisor D’'.

PROPOSITION 1.2.7. Let D and D’ be two effective divisors on a smooth
projective variety V, then HoHp ~ Hp, , .

The above definition of global height is linked with the better known one by the
following proposition:

PROPOSITION 1.2.8. Let V be a smooth variety embedded in projective space
by means of a morphism associated with the linear system ¥(D) of a very ample

Define

H.ff(D)(x) = H sup v(x;).

ve Mg !}

Then we have H 4,y ~ Hp.

1.3. Counting problems

Let X be a large positive number, K a number field, ¥ a smooth projective
algebraic surface over K, and W an open subset of V. Let D be an effective divisor
on V.
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DEFINITION 1.3.1. The counting function Ny (D, X) is defined to be the
number of rational points x in W(K) whose height H,(x) does not exceed X.

THEOREM 1.3.2. (Schanuel) Let V be P' and #(D) = O(2). Then for X
tending to infinity

Npi(D, X) = cX? + o(X?).

The constant ¢ depends only on the number field and on the normalization of
the height. For a proof and a more precise statement see [Schanuel].

Our aim is to investigate the asymptotic behaviour of Ny (—w, X) as X goes to
infinity. As V; contains six copies of P! the leading term will certainly be ¢cH?. That
is why in what follows we consider only the open complement W, of the six
exceptional lines in V5. We are interested in the asymptotics of

Ny (—, X) = card{x € W,(K) | H_,(x) < X}.

Previous results about the asymptotic behaviour of counting functions on Del
Pezzo surfaces have appeared in [Batyrev-Manin], [ Franke-Manin-Tschinkel] and
especially in [Manin-Tschinkel] and [Tschinkel].

A special remark should be made about the beautiful work of [Peyre]. Peyre
calculates not only the asymptotics of the rational points on V; in the case K = Q,
but he succeeds also in the difficult task of giving an interpretation of the exact
constant by means of Tamagawa numbers.

In our investigation we restrict our interest to the task of finding upper bounds
for Ny (—w, X) over arbitrary number fields without trying to determine the
precise constants.

2. Counting rational points on V,
2.1. Finite heights on V,
Let ¥V be a smooth projective variety embedded in P% with coordinates

coordinates. We write 9 for the absolute norm 4. Denote by a the integral ideal
(%o, ...,x,) and by b the ideal (f1(x), ..., f.(x)).
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LEMMA 2.1.1. Suppose that for all homogeneous polynomials f; we have d; = 1,
then the finite height of x with respect to D satisfies the identity

hp(x) = N(a~'b).

Proof. Let v,(¢) be the exponent of p in the factorization of the (fractional) ideal
¢ into prime ideals. Observe that v,(a) =inf; v,(x;0x ) and v,(b) = inf; v,( f;(x)Ox).
Hence, as the subscripts i and j are independent, we have

hp(x) = [] inf sup v,(x;/[f;(x))

pePg J £

= [ sup vy (%) [sup v, ()

pePg !

= H sup p“vp(xioK)fp/Sup p~vp(fj (X)OK)f,
' J

pePx !

= n p @O [p =M
pe Pg

— l"[ p‘”v(“"”)fv=‘ﬁ(a“b). O
pe Pk

All split V;-surfaces are isomorphic over K. Hence the choice of one model will
be sufficient. V; may for example be viewed as the subvariety of P? x P2, with
bihomogeneous coordinates (x,: X, :x;) X (yo:)::),), given by the equations
XoYo = X1Y1 = X,¥,. This model comes naturally along with two projections 7, and
n, of ¥, into P2. The exceptional divisors can be described as £, =n;'(1:0:0) or
L,=n;'(1:0:0), or by homogeneous equations of degree one in P?x P2 as
follows: Ey = {x, =0, x, =0}, L, = {y, =0, y, = 0}. We refer for further details to
[Hartshorne, Chap. 5].

LEMMA 2.1.2. Let x =(ay:a,:a,) X (by: b, : b,) be a K-rational point on V;
with integer coordinates. A set of finite heights with respect to the exceptional divisors

is given by the following expressions and by those derived from these two by the action
of the symmetric group S, on the subscripts:

hEo(x) = N((a1, a)(a, a1, ay) ™) = R(by(bo, by, by)(bo, by) ~'(bo, by) 1),

hy,,(x) = N(ao(ao, a1, a;)(ao, @) ~'(ao, a2) ~') = N((by, b,)(bo, by, b,) ).
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Proof. By symmetry it is enough to compute the finite height with respect
to the divisor E,. Embed P?>x P? by the Segre map ¥ in P% Thus

new projective coordinates by putting z;; = x;y;. The image of V5 under y is given
by the identities zy, = z,, = z,,. The image E| of the divisor E, is defined by the
system of homogeneous equations zo,=2z;y=2, =23 =2y = Z3; =25, =0. The
finite height of a point z now follows immediately from Lemma 2.1.1:

V4 Z Z Z Z Z z
hEb(Z)=SR( (OOa 105 “115 ©125 205 “21> 22) )

(Z00» Zo1> 2025 Z105 Z115 Z125 220> 221> O22)

By the morphism formula we have that Az, (¥(x)) is a finite height associated
with the divisor E,. Thus by the foregoing argument we have to compute

N((apbo, a,by, a, by, a1 by, ayby, ayb,, a,b,))
N((aobo, aoby, aph,, a by, a;b,, ab,, asb,, ayb,, a,b,))

hEo(-x) =

But as aobo = albl = a2b2, weE haVC aobo € (a], az)(b] ’ bz). HenCC

hEo(x) = N((apbo) + (a1, a))(by + (by, b,)))|N((ao + (a1, ax))(bo + (by, by)))

= N((a,, a,)(bo + (b1, b2))) |N((ao + (a;, a;))(by + (b1, b))

= N((a,, a,))/N(ao + (a;, a3))

= N((ar, &)@y, a1, a,) ") O
Notation. We write D= (dg, a,,a,), ¢=1(a;,a)d7", ¢4 =d(a;)(ay,a) ™" x

(ay, ay) ~". Similarly we define the ideals ¢}, ¢},, ¢, and cy,. Observe that these ideals
satisfy the identities (a,) = D¢ c¢),¢5, (@) = Degepacs, (@) = Degeg ¢ .

2.2. The idea of Manin and Tschinkel

Let U be the group of units in Og. Note that the subgroup of U* x U3,
(ug, Uy, u,) X (vg, vy, v,), defined by uyv, = u, v, = u,v, acts transitively on W;. Since
finite heights are invariant under this action, it makes sense to write 4, (%) for the
orbit X of any K-rational point x in W;. On the other hand, global heights are not
invariant, whence the following definition.

DEFINITION 2.2.1. n(X) is the number of orbits y on W; which contain at least
one rational point x € y such that H_,(x) < X.
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Let 5(X) be an upper bound for the number of rational points x in an orbit vy
which satisfy H_,(x) <X. Then Ny .(—w, X) is by definition smaller than
b(X)n(X). We may thus say that any upper bound for n(X) will yield an upper
bound for Ny .(—w, X) up to the action of units.

By the functorial properties of heights (Proposition 1.2.7) and by Proposition
1.2.2 (see also [Tschinkel]) there arise constants ¢, ¢’, ¢” > 0 such that

H—co(x) 2 CHE()+ 2L +2E, + L]z(x)
> ¢'Hg (x)H,,(x)*Hg (x)*H_ (%)
2 ¢"hg (Dhor (%), (X)*hy ().
Choosing another representation of the anticanonical divisor leads to another

inequality. This motivates the introduction of finite heights in [Manin-Tschinkel]
and the following definition.

DEFINITION 2.2.2. v(X) is the number of orbits of K-rational points x in W,
that satisfy the six simultaneous inequalities:

e (X)hL,, (DhE, (DL, (3) <X,
and those derived from it by the action of the symmetric group S; on the subscripts.
Since we are not interested in determining the exact constant we can do as if the
constants c, ¢’ etc. were equal to 1. Thus by definition we have n(X) < v(X). Hence
an upper bound for v(X) will yield an upper bound for Ny .(—w, X) up to the
action of units.

2.3. Transforming the problem

As pointed out by [Tschinkel] the following idea can be considered an applica-
tion of Weil’s theory of distributions.

DEFINITION 2.3.1. u(X) is the number of sextuplets (¢, ¢, €7, €12, €3, ¢g2) Of
nonzero ideals in O that satisfy the six simultaneous inequalities:

(o) N(cor)*N(c1)*N(ejz) < X,
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and those derived from it by the action of the symmetric group S, on the
subscripts.

Remark. The non-triviality may also be expressed as 1 <(c;), 1 <N(c}). As
the number of ideals in Oy with bounded norm is finite, the numbers v(X), u(X)
and later on u(K,,, ..., K;,, X) and u(b; ,...,b; , X) will be finite.

Let x be a K-rational point on V;. We can represent the point x with relatively
prime integer coordinates. This means that we fix once for all a family of ideals
a,...,a, representing the s classes of ideals &; in Oy and additionally require
from our coordinates to satisfy (ao, a,, a,) = a; respectively (b, b,, b,) = q; for

some i, j.

LEMMA 2.3.2. We have v(X) < u(X).

Proof. Represent x by relatively prime integer coordinates and define the ideals
D, ¢, ¢, €tc. as in the preceding subsection. Since the integral ideals are non-trivial
we have 1 <R(c;) and 1 < N(c;;). Moreover our calculations show e.g. that

hey (L, (DhE, (DhL ,(X) = N(o) (e, )*N(e})*R(cy).

Hence the first inequality is satisfied. Similarly we check the other inequalities.

Remark that by identity (a,) = D¢} ¢}, ¢, the ideal d has to belong to the inverse
class of ¢}, ¢5. Since the coordinates are relatively prime, d has to be equal to the
corresponding representative a,. Thus D is uniquely determined by the sextuplet c,
€1, €1, €12, €5 and cg,.

Let x" = (ag:a):a5) x (by: b} :b%) be a second rational point on W, with rela-
tively prime integer coordinates and with the same associated set of ideals b, ¢, ¢g;,
etc. as x. Then the three identities (ay) = dc}¢j,¢5 = (ap), (a;) = deyep¢; = (a}) and
(a,) = dey e, ¢f = (ay) imply that x and x’ belong to the same orbit. O

Thus any upper bound for u(X) will also be an upper bound for v(X). For a
further more sophisticated (and more powerful) development of this idea we refer
to [Peyre].

3. Counting ideals in number fields
In this section we generalize in a suitable manner the classical theorem about the

number of ideals with bounded norm in a given number field (for a survey we refer
to [Lang2, Chap. 6]). One of the main obstructions to an asymptotic formula is
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given by the difficulty to establish precise error terms for the volume of a certain
fundamental domain.

3.1. Lattices

To simplify the notation we put ¢, = ¢y, ¢; = ¢p1, ¢ = €}, €3 = ]2, €4 = €5, €5 = (g
and choose the set of subscripts m in Z/6Z. We observe that the above six
inequalities can now be written as

() R 1) N(c, 4 2) N,y 3) < X,

form=0,...,5. In particular we remark that the system of inequalities is mapped
into itself by a translation of the subscripts modulo 6. In this sense the six
inequalities are equivalent.

DEFINITION 3.1.1. Let i, . .., is be six positive integers such that i; < h. Then
WK, ..., K, X) is the number of sextuplets (¢, . . ., ¢5) of nonzero ideals of Ok
with the property that ¢; € &, and that for every m € Z/6Z

.2 .2 :
s:R(cm cm-{-l cm+2 cm+3)<X'

Fix once for all a set of representatives b, = O, 1 < i <h, for the inverse classes
K;!. We write & for the class ¢ - U and b, for the set of classes {# | 8 €b,}.

DEFINITION 3.1.2. Let iy, ..., is be six positive integers such that i; < h. Then
(b, ,...,b;, X) is the number of sextuplets (&, ..., &) of classes of integers
modulo U with the property that & e b,}, that MN(b,) < N(&;), and that for every
melZ|6Z

R Eomer Corz Emas) <XW(b, - b7 -b] -b )
Notation. We write e, for b, b7 -b2 b, ..
LEMMA 3.1.3. We have

ux) =Y w(K,, ..., 8, X)=) ub,,...,b,X).

The sums are taken over all sextuplets of classes of ideals, respectively over all
sextuplets of representatives b, .
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Proof. 1t suffices to prove that u(&;, ..., &, X) = u(b;,, ..., b;,, X). Fix six
classes of ideals &; , ..., K;, and let (¢, ..., ¢5) be a sextuplet of non-zero ideals
of Ok contained in &,, 0 <j <5, satisfying the corresponding six inequalities. Each
product ¢; - b, is equal to a principal ideal ({;), for some &; € Ox. Hence we can
attach to each sextuplet of ideals a different sextuplet (&,,..., ¢s) of algebraic
integers contained in the ideals b;. Moreover, we obtain 9(b,) <9(b, - ¢;) = N(E;)
and the six inequalities

N €241 E2rn Emra) < X(e,).

Conversely, fix six representatives b, and define the six fractional ideals e, as
before. Suppose that six numbers &, . .., & in Ok contained in the b,-j are given in
such a way that the corresponding six inequalities are fulfilled. Then it suffices to set
¢ =¢b; ! to get back six ideals satisfying the required inequalities. This map is not
yet one-to-one. If we multiply the &; with units »; € U we get the same set of ideals.
However this is the only obstruction to bijectivity. We get rid of this obstruction by
going over to classes modulo U. ad

Suppose that for all choices of sextuplets b;,...,b;, the integers
u(b;, ..., b, X) have the same upper bound m(X). Then we have
u(X) < chSm(X). Hence, as we are not interested in multiplicative constants, an

upper bound for one of the u(b; ,...,b;, X) will also do for u(X).

1g?

3.2. Fundamental domains

Denote by A the product Rx --- x Rx C x - - - x C, the first r; factors being
real and the next r, being complex. Denote by J the subset of 4 consisting of those
elements all of whose coordinates are nontrivial, and by W the subgroup of U of
roots of unity.

Write an element of A4 as

x = (Xo1, - - 'xOrpZOl""ZOrz"--*ax519"’x5r1’251""25r2)

with x;; € R and z; € C. Then an element u = (i, . . . , us) of the group US acts on
A6 and J6 as fO]lOWSZ ux = (0’1 (uO)x()l g 0 0 0y G,l(uo)xorl ’ T](uo)Z()] g0 e oy
Trz(uO)ZOrzs .. °)'

DEFINITION 3.2.1. A fundamental domain of J¢ for U%/W?® is a subset D of
Jg with the following three properties: D is stable under the action of W*, U®D = J°
and yDND = for y ¢ W6,y e U°.
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DEFINITION 3.2.2. For x an element in 4° with coordinates x,; and z;, we
consider the partial norms N,(x), defined by

rno
N:x) =TT IT Ixyllzal?
j=lk=1

and define the norm N(x) as

Ve = [T 869 =TT T1 [T ool

Let x be an element of J® with coordinates x;; € R and z;, e C. Introducing
polar coordinates (r;, 9;;) with 0 <r;; and §;; = +1 in the real case, and (g4, @i)
with 0 < g, and 0 < ¢, <2n in the complex case, we can write x;; = 3,r;; and
Zi = Qi eV low,

LEMMA 3.23. Let n,,...,n, be a basis for U modulo roots of unity. A
Sfundamental domain D of J® for US| WS is given in polar coordinates by the following
6(r + 1) conditions:

IOg (rlj) — 7 lOg lr—[ H thtk) = I—il Cit lOg (|Gj(r’1)l)9

j=1k=1

log(e,k)——log H H quk):é:l ¢y log ([te(m)])s

j=1k=1

withi=0,...,5j=1,...,r,k=1,...,r,and 0 <c; < 1.

Proof. Let x be an element of J® with coordinates x;; # 0 and z;, # 0. We define
a map @ : J® - R *D as follows:

X, Xor 1 z Zor 2

The image ®(J®) is contained in the linear subspace H of R%"* D determined by the
six equations y; + - +y;, ., =0, for i =0,...,5.

Now the embedding ¥ : (&, ..., ¢s)(0,(&o), - - ., 0,,(80),T1(So), - - -5 Try(E0)s - - +)
of K® into A°® allows us to view U® as a subset of J° whose image
under @ is a lattice 4 of maximal rank in H, spanned by the 6r vectors
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w;=P-¥0,...,0,74,,0,...,0),for/=1,...,r Thesubscripti=0,...,5 indi-
cates the position of #, in the corresponding vector. It follows from classical theory
that the kernel of & o ¥ is W*® (see [Samuel, Chap. 4]). Hence there is an additive
action of US/W*® on H. Thus, given a fundamantal domain F for the lattice 4, we
obtain a fundamental domain of J® for US/W® as D = & ~!(F).

We now choose a fundamental domain F for A the set of all linear combinations
T2 _0 Zj_, cuwy,, where 0 < c; < 1. The result is then immediate. O

Remark. The domain D is a star-body, i.e., it satisfies tD = D for all ¢ > 0.

3.3. Geometry of numbers

A sextuplet of ideals (b, . .., b;,), viewed as a free Z-module in K®, is mapped

ig?

by ¥ into a lattice B in A° (see [Lang2, Chap. 5]) with discriminant

A(B) = (/d)27 (b, - b,).

DEFINITION 3.3.1. D(X) is the subset of the fundemental domain D consist-
ing of those points x which satisfy 9(b;;) < N;(x) and the six inequalities

NNy 1 ()N 4 2(3) Ny 4 3(6) < XR(e,).

DEFINITION 3.3.2. u(B, D, X) is the number of points of the lattice B
contained in the domain D(X).

LEMMA 3.33. Let b, ,...,b,  be six fixed representatives of the inverse
classes K ' and B the -corresponding lattice in A°. Then we have
u(b;y, ..., b, X) =u(B, D, X).

Proof. The actions of U® on K*$ and on J® commute with ¥. Hence the
elements of a given US-orbit in K*® are mapped by ¥ into the elements of one and
the same U®-orbit in J¢. Thus, to each sextuplet (&, . . ., &) of classes modulo U,
such that Ej € E,-j, we can attach a well-defined element x of D n B. By definition we
have N(&,,) = N,,(x), and the inequalities follow immediately. O

By identifying C with R? in the usual manner, 4% may be identified with R
Thus it makes sense to talk about the volume V(S) of certain subsets S of 4°. As
we are only interested in upper bounds modulo multiplicative constants, the volume
of D(X) should provide a satisfactory upper bound for (B, D, X). More precisely:
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PROPOSITION 3.3.4. There exist two constants ¢ and c', depending only on the
number field, such that

W(B, D, X) < cV(D(c'X)).

Proof. Let X be as large as necessary. Fix a cell € of B. Throughout this proof
a “cell” will always be a translate of €. Denote by é the length of the longest
diagonal of ¥. As D is a star-body, there exists a constant ¢, > ¢ such that a
¢;-neighbourhood of any point P e BN D includes a cell which is completely
contained in the interior of D. Let x € D(X). For 0 <c; <1 let ¢, be a constant
larger than all the values

exp (1; Ci log(laj(m)l)) and exp (I_il Ci log(lrk(n/)l)).

Then from the definition of our fundamental domain in Lemma 3.2.2 we obtain for
i=0,...,5 the estimates

ry <cN;(x)" and gz <N, ()"

Let 4 be a vector in R% of maximal length 6. An immediate verification shows that
for m=0,...,5:

r ry
N+ DNy 8+ DNy (6 + DNy + ) < [T TT TT (ry+0)eu+9),

iel,j=1k=1

where I, ={m,m+1,m+2,m+3}cZ/6Z, and ¢ =1 if i=m or m+3 and
g;=2ifi=m+1 or m + 2. We compute the product on the right. The factors of
r; and g, that will appear have for total exponent at most r; + 2r, for the subscripts
m or m + 3 and 2(r, + 2r,) for the subscripts m +1 or m + 2. As d =r, + 2r, we
can bound each term up to a constant by N,,(x)N,,. (x)>M,,, . ,(x)*>N,, . 5(x). Thus
the right hand side is smaller than ¢'9(e,)X, with ¢’ a constant that does not
depend on m, and any c,-neighbourhood of a point P € u(B, D, X) includes a cell
which is completely contained in the interior of D(c'X).

Denote by ¢ the maximum number of cells that can intersect a c¢,-ball, by n’ the
number of cells that are completely contained in the interior of D(c’X) and by V'
the volume of ¢. We now define a map from the set of lattice points contained in
D(X) to the set of cells which are completely contained in D(c'X) as follows: We
attach to each P € u(B, D, X) any one of the cells that are completely contained in
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a c;-neighbourhood of P and that are at the same time completely contained in the
interior of D(c’X). In the image of this map the same cell will appear at most ¢
times. Hence we have the estimates

W(B, D, X) <cn'V' < cV(c'X). O

3.4. Volume computations

Let b; and e; be positive constants. S is the subset of R® given by b, < s, and by
the six inequalities

2 2 7]
SrSmm+ 15m+25m+3 < €pX .

LEMMA 3.4.1. There exists a constant ¢ such that V(S) < cX'(log X')>.

Proof. Choose X’ large enough. Since we are not interested in multiplicative
constants we are allowed to set b, =e,, = 1. Moreover, it will suffice to determine
the leading term of

I(S)zf"'JdSo"'dss,

where the integral is taken over S.

By symmetry we are free to assume that one expression, say s,57s3ss, is larger
than the five others. This amounts to splitting the domain of integration into six
parts. Then, by comparing these expressions, we are led to the inequalities
5055 < 5,8, and $35, < So5,. Define S’ to be the subset of R® given by 1 <s;, for
every i, and by so5753s5; < X', 5055 < 5,55 and s35, < 505,. Replacing the integration
domain S by S’ will enlarge our integral, up to a fixed multiplicative constant c, i.e.
I(S) < cI(S"). Integrating I(S’) over s, and ss leads to

I(S,)SJ * :S:O_s‘]’s_z:&;’dSOdsl dS2dS3,

S3  So

where the integral is taken over the set S” < R% given by 1<s,, for every i,
Sos1s3s, < X'. Integrating over s, we obtain

X/
I(sSYy<\|--- ———ds, ds, ds,,
( )-—J j(slsz)s%sgss Sy 48, as;
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where the second integral can be taken over the cube 1 <s, < X', 1 <s, < X’ and
1 <53 < X'. Of course this integral is equal to X’(log X")>. O

LEMMA 3.4.2. There exists a constant ¢ such that V(D(X')) < cX'(log X')°.

Proof. Let §'<R%"*D be the set of norms 0 <r;, and 0 <g,; of the points of
D(X"). Working in polar coordinates the volume V(D(X’)) can be computed up to
a multiplicative constant as

J JQm"'QOrz"'Qsl"'QSrzdr()l"'d"Or."‘drsl"'d"sr,onx'"dQOrz"'dQﬂ"'derza

where the integral is taken over S’.

Let (sg, ..., 85, Co15-++»Coms---5Cs15--.,Cs) be new variables for R®"+Y, and
let S” be the subset defined by the inequalities N(b,) <s; as well as by the six
inequalities

2 2 '
smsm+ lsm+2sm+3 < iﬁ(em)X .

A diffeomorphism from S” to S’ is given as follows:

ro=stemp (5 cutog o)) e =st e 3 crtog () )

In the other direction we have s, =II'L, IT2,r 0%, and the numbers c,
are uniquely determined by the r; and g,. Indeed it is well known that the
determinant

1log (loy(m))) - -log (|o:(n,)]

oooooooooooooooooooooooooooo

11og (|o,,(m)]) - - - log (Jo,, (1))
Llog ([t (n)]) - - - log (jra(n,)])

----------------------------

1log (z,,(m)) - - log (|z,,(n,))

does not vanish. In fact, it is equal to +d27"2R, where R is the regulator of K (see
[Lang2, Chap. 5]). As in [Lang2, Chap. 5] the Jacobian determinant of the
diffeomorphism is equal to the product of the determinants
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17,

55 Talog (et -+ ralog (o (n,))
17,

2—;— rirl log (lo'r,?h)l) e rirl log (Iarl(nr)l)
Lo,

5 gy log (frm))) ~ - e log (1))
1 Qirz

2 i Qir, log(|1r2(nl)|) T Qi log (ltrz(nr)D

1
S()"'Ss c 5 ra :
l_[ n Qix

i=0k=1

Thus, up to a constant which depends only on the field, our integral becomes

J‘,..J‘dso...dssdcm...dcor...dcsl...dcsr,

where integration runs over S”. On setting b; = ER(b,.j) and e; = N(e;), we see that
V(S”) = V(S). By Lemma 3.4.1, this is at most a constant times X’(log X”)>. O

COROLLARY 3.4.3. There is a constant ¢ such that u(B, D, X) < cX(log X)3.

Proof. This is a consequence of Proposition 3.3.4 and Lemma 3.4.2. O

The final result
4.1. The units

We make use of some ideas of [Manin-Tschinkel]. Let a be a K-rational point
in P? with integer, nonzero coordinates (ao, a,, a,). Define

Hou)(a): H sup v(a;).

UEMK 4

For j =0, 1,2 we have by the product formula H,(a) =I1, . 5, sup; (a;/a;).
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DEFINITION 4.1.1. Assume Hyy(a) < X. Then b'(a, X) is the number of
K-rational points a’ = (a, : u,a, : u,a,), u; € U, which satisfy Hyy(a') < X.

LEMMA 4.1.2. There exists a positive constant c, which does not depend on a,
such that b'(a, X) < c(log X)?.

Proof. Let X be as large as necessary. The assumption I, . ,,, sup; v(a;/a;) < X
and the obvious fact that sup,v(a;/a;) > 1 imply sup, v(a;/a;) < X. Consequently
1/X <wv(a;/a;) < X. These inequalities do not depend on the choice of v or on the
choice of the subscripts i and j.

Similarly, for i = 1,2 we obtain 1/X < v(u;a;/a,) < X. On combining these two
inequalities with 1/X <v(a;/a,) < X, we get the inequalities 1/X? <o(u;) < X2
Observe that these inequalities no longer depend on a. From the Dirichlet theorem
it follows that there are no more than O((log X)") x O((log X)") units with this
property. This implies b'(a, X) < c¢(log X)*, as required. O

We go back to our model for V;. Fix x a K-rational point on W; with integer
bihomogeneous coordinates (a,: a, : a,) X (by : b, : b,). Let n, and =, be the stan-
dard projections of Vj into P2

LEMMA 4.1.3. (Hpg(7,(x))) 12 < H0(1)(7Ty(x)), and (HO(I)(ny(x))) 12 <
HO(l)(nx(x))‘

Proof. Remember that a,b,=a,b, =a,b,. Since the coordinates are nonzero
the result follows from the trivial inequality sup,,; v(b;b;) <sup;, v(b?), together
with the product formula. Indeed,

I1 sup v(a;) = [I supw(b,bya)= I1 sup v(b;b;a,) 5( [T sup v, ))2 =(Hoqy(n,(x)))*

veMg ! ve Mg veMg '* ve Mg

LEMMA 4.1.4. Assume that 1 < X and H_(x) < X. Then there exists a positive
constant ¢, which does not depend on x, such that Hy(n,.(x)) <cX and
Ho(l)(ny(.X)) < cX.

Proof. Without loss of generality we may assume that 1 < Hy)(n,(x)). Let D
be the divisor of P2 given in projective coordinates (x, : x, : x,) by the homoge-
neous equation {x, =0}. By Proposition 1.2.8 we have H, ~ H,,. Moreover we
have for the corresponding pullbacks: n¥(D) =E, + L, + E, and n}(D) = Ly, +
E, + Ly,. Thus, by the morphism formula, the functorial properties of heights, and
Lemma 4.1.3 there exist positive constants c, ¢’, etc. such that
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H_,(x) 2CcHg 1o+ Ey+Lyy+Ep+ Loy(X)
2CHpy s rg+8, (L L4 Byt 15,(X)
> ¢"Hp(n(x))H p(n,(x))
= ¢""H oy, (x))H o1y (T, (X))
> ¢" H oy (70, (X)) (H o1 (7 (X)) 12

>c" oy (1,(x)). O

DEFINITION 4.1.5. Assume H_,(x) < X. Then b(x, X) is the number of
K-rational points x'=(ay:u,a,:ua,) x (by:u}b,:usb,), u; € U, which satisfy
H_,(x) <X

COROLLARY 4.1.6. There exists a positive constant c, which does not depend
on x, such that b(x, X) < c(log X)*.

Proof. Observe that 7, induces a bijection between points x on W5 and points
a in P? with nonzero coordinates. By Lemma 4.1.4 a K-rational point x’ with
coordinates (@, :u,a, : ua,) x (by: u\b, : uyb,) satisfying H_,(x') < X is mapped
into a K-rational point a’ = (ay : 4,4, : u,a,) which satisfies Hy,(a) < c'X. Hence
b(x, X) < b(a, c'X), and we conclude with Lemma 4.1.2. O

4.2. Conclusion

In subsection 2.2 we have seen that N, (—w, X) is bounded by &(X)n(X),
where n(X) denotes the number of orbits y of rational points under the action of
units, containing a rational point x satisfying H_,(x) < X, and b(X) denotes an
upper bound for the number of rational points x’ € y satisfying the same inequality.
Since n(X) is bounded, up to a multiplicative constant, by u(B, D, X), and b(X)
can be taken equal, up to a multiplicative constant, to the upper bound of b(x, X),
the following theorem is an immediate consequence of Corollary 3.4.3 and
Corollary 4.1.6.

THEOREM 4.2.1. For each number field K there exists a constant cy such that
Ny (—o, X) < cxX(log X)**7.

The theorem proves an upper bound with a correct power of log X in two cases:
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COROLLARY 4.2.2. Let K= Q or let K be a purely imaginary quadratic field.
Then there exists a constant cg such that
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