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Rational points of bounded height on Del Pezzo surfaces of degree six

Marcello Robbiani

Abstract. Let K be a number field. Dénote by V3 a split Del Pezzo surface of degree six over K and by
o) its canonical divisor. Dénote by W3 the open complément of the exceptional Unes in K3. Let
NWs(-w, X) be the number of ^-rational points on W3 whose anticanonical height H.a is bounded
by X. Manin has conjectured that asymptotically NW3(— co, X) tends to cX(\o% X)3, where c is a

constant depending only on the number field and on the normalization of the height. Our goal is to
prove the following theorem: For each number field K there exists a constant cK such that
NW3( — co, X) &lt; cfCX(\ogX)3 + 2r, where r is the rank of the group of units of OK. The constant cK is

far from being optimal. However, if AT is a purely imaginary quadratic field, this proves an upper
bound with a correct power of log X. The proof of Manin&apos;s conjecture for arbitrary number fields and
a précise treatment of the constants would require a more sophisticated setting, like the one used by
[Peyre] to prove Manin&apos;s conjecture and to compute the correct asymptotic constant (in some
normalization) in the case K Q. Up to now the best resuit for arbitrary K goes back, as far as we
know, to [Manin-Tschinkel], who gives an upper bound N^i — a), X) &lt; cXl +\

The author would like to express his gratitude to Daniel Coray and Per Salberger for their
generous and indispensable support.

1. Introduction

1.1. Del Pezzo surfaces

Let K be an algebraic number field and K an algebraic closure.

DEFINITION 1.1.1. A Del Pezzo surface over K is defined to be a smooth

projective surface defined over K whose anticanonical divisor — œv is ample and
whose field of rational functions over K is a purely transcendental extension of K.

The self-intersection number d cov- cov is called the degree of the Del Pezzo

surface. If the anticanonical divisor is very ample it coincides with the projective
degree of the anticanonical embedding of V.

Essentially we need only the following classical resuit about Del Pezzo surfaces.

THEOREM 1.1.2. Let V be a Del Pezzo surface over K of degree 6, then

V ®KR is isomorphic to the blowing up of three distinct points P0,Pu P2 in P% in

gênerai position, Le. non collinear.
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404 MARCELLO ROBBIANI

This explains the standard notation V3 for Del Pezzo surfaces of degree 6

over K, and V3 for V3®KK. We dénote by n : V3-&gt;P% the birational morphism
induced by the blowing up of three points.

LEMMA 1.1.3. The only exceptional divisors on V3 are the inverse images

El=n~x{Pl) ofthe blown up points and the strict transforms LtJ of the Unes ltJpassing
through the points P, and Pj.

The six effective divisors Et and LtJ coincide with the straight lines on V3 in the
anticanonical embedding. That is why we shall refer to them as the &quot;lines&quot; on V3.

PROPOSITION 1.1.4. The divisor Eo + 2L01 + 2EX + Lu and those derivedfrom
it by the action of the symmetric group S3 on the subscripts are members of the

anticanonical linear system.

For proofs and additional information consult e.g. [Manin, Chap. 4]. Observe
that the divisor Eo + L01 + Ex + Ll2 + E2 + L02, as a weighted sum of thèse divisors,
also belongs to the anticanonical system.

An exceptional divisor may not be defined over the groundfield K. We exclude
this situation from further investigation and assume throughout this paper that our
surfaces are split, i.e. that ail exceptional divisors are defined over K.

1.2. Heights

We give a brief summary of the theory of local and global heights or, in another
terminology, of Weil functions and associated heights needed in the sequel. For
proofs of the statements mentioned in this subsection we refer to the standard
literature, e.g. [Langl, Chap. 10] or [Serre, Chap. 6].

We fix once for ail a complète set of embeddings, up to conjugation, of the field
K in R or C. We dénote the real ones by al9..., crv and the complex ones by

rl9 Tr2. We put r r, -h r2 - 1.

Let | | be the ordinary absolute value on R or C. To each embedding we attach

an Archimedean absolute value v, of K, given by v,(0 |ff,(0| in ^e real case&gt; and

by v,(Ç) |t,(&lt;!;)|2 in the complex one.
We dénote by PK the set of prime ideals of OK. For a prime p e PK lying over

a prime p g Z with ramification index ep, local degree dv, and residue class degree

fv we introduce an ultrametric absolute value !&gt;p(£) for Ç e K by writing the idéal

ÇOK as TLP€Pk pv&quot; and putting
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We dénote by MK the set of ail thèse absolute values. The chosen normalization
ensures that for every Ç e K* the product formula holds:

vyç) — 1.
v e M%

Let F be a smooth projective variety and D and effective divisor of V. We
embed Fin PnK with projective coordinates (x0:... : xn). Suppose that D is defined

by an homogeneous idéal, generated by a System fj(x) =fj(x0:... : xn) of homoge-
neous équations of degree d}.

Since we do not consider the most gênerai setting, the following définitions will
be sufficient for our purposes:

DEFINITION 1.2.1. Let v e MK be an absolute value on K and x a ^-rational
point on V with projective coordinates (x0:... : xn). The local height (or Weil
function) Xv associated with the divisor D is defined to be

This is defined as in [Serre, Chap. 6], but note that the function A appearing in
Example 5 of §6.2 is the logarithm of the présent height.

PROPOSITION 1.2.2. For each absolute value v eMK there exists a constant

cv &gt; 0 such that for ail K-rational points x on V we hâve Xv(x) ^ cv

DEFINITION 1.2.3. The (global) height associated with the divisor D is

defined to be

HD(x)= fi KM.
veMK

DEFINITION 1.2.4. The finite height D associated with the divisor D is defined

to be

hD(x)= fi K,(x).

Remark. In view of our normalizations the height of a point x dépends on the
choice of the field K. However, one checks immediately that multiplying the xt by
a constant leaves the local, the global and the finite height invariant. AU heights are
defined outside Supp D.
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We say that two global heights HD and HD are équivalent, and we write HD ~
H&amp;, if they differ only by a multiplicative function, bounded from above and from
below, 1 e if there exists a constant c &gt; 0 such that \jc)HD(x) &lt; HD (x) &lt; cHD(x)
for any point x e V(K) outside Supp D

THEOREM 12 5 IfD and D&apos; are two hnearly équivalent divisors then HD ~ HD

This theorem implies that, up to équivalence, the global height îs independent of
the choice of the generators f} and of the choice of an embedding Note that this
need not be the case for finite heights Thus, given a smooth projective vanety V
and an effective divisor Z), we shall further on speak about the height HD

PROPOSITION 12 6 Let &lt;/&gt; V&apos;-&gt; V be a morphism between two smooth

projective vaneties Let D be an effective divisor on Vand D&apos; 4&gt;*(D) its pullback divisor
on V Then the identity HD°(f) ~ HD holds

This identity îs often called the morphism formula The morphism formula
implies if hD îs a finite height associated with the divisor Z&gt;, then hD ° 0 îs a finite
height associated with the divisor D&apos;

PROPOSITION 12 7 Let D and D&apos; be two effective divisors on a smooth

projective vanety V, then HDHD ~

The above définition of global height îs linked with the better known one by the

following proposition

PROPOSITION 12 8 Let V be a smooth vanety embedded in projective space
by means of a morphism associated with the hnear system &amp;(D) of a very ample
divisor D, and x a K-ratwnal point on V with projective coordînâtes (x0 xn)
Define

#W*)= II supifo)
veMK l

Then we hâve H^D^ ~ HD

1 3 Counting problems

Let X be a large positive number, K a number field, V a smooth projective
algebraic surface over K, and W an open subset of V Let D be an effective divisor
on V
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DEFINITION 1.3.1. The counting fonction NW(D,X) is defined to be the
number of rational points x in W(K) whose height HD(x) does not exceed X.

THEOREM 1.3.2. (Schanuel) Let V be P1 and &lt;£(D) 0(1). Then for X
tending to infinity

The constant c dépends only on the number field and on the normalization of
the height. For a proof and a more précise statement see [Schanuel].

Our aim is to investigate the asymptotic behaviour of NV3(—co9 X) as X goes to
infinity. As V3 contains six copies of P1 the leading term will certainly be cH2. That
is why in what follows we consider only the open complément W3 of the six

exceptional Unes in V3. We are interested in the asymptotics of

NW3( -œ, X) card{x e W3(K) \ H.m(x) &lt; X}.

Previous results about the asymptotic behaviour of counting functions on Del
Pezzo surfaces hâve appeared in [Batyrev-Manin], [Franke-Manin-Tschinkel] and

especially in [Manin-Tschinkel] and [Tschinkel].
A spécial remark should be made about the beautiful work of [Peyre]. Peyre

calculâtes not only the asymptotics of the rational points on V3 in the case K &lt;Q,

but he succeeds also in the difficult task of giving an interprétation of the exact

constant by means of Tamagawa numbers.

In our investigation we restrict our interest to the task of finding upper bounds

for NW3(— co, X) over arbitrary number fields without trying to détermine the

précise constants.

2. Counting rational points on V3

2.1. Finite heights on V3

Let F be a smooth projective variety embedded in PnK with coordinates

(xQ:... : xn) and D an effective divisor defined by m homogeneous éléments

fj(x) =fj(x0:... : xn) of degree d}. Let x be a À^-rational point of V with integer
coordinates. We write 91 for the absolute norm 9t*|Q. Dénote by a the intégral idéal

(x0, ...,*„) and by b the idéal (/,(*),... Jm(x)).
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LEMMA 2.1.1. Suppose that for ail homogeneous polynomials f3 we hâve d} 1,

then the finite height of x with respect to D satisfies the identity

Proof. Let vp(c) be the exponent of p in the factorization of the (fractional) idéal
c into prime ideals. Observe that vp(û) inf, VpfoO^) and vp(b) inf) vp(fj(x)OK).
Hence, as the subscripts i and j are independent, we hâve

M*)= II inf wpv^xjfjix))
pePK J &apos;

n s\xpvp(xt)ls\xpvp(fj(x))

fi p-^&apos;^^Ccr&apos;b). D

AU split F3-surfaces are isomorphic over K. Hence the choice of one model will
be sufficient. V3 may for example be viewed as the subvariety of P2 x P2, with
bihomogeneous coordinates (x0 : xr : x2) x (y0 :yl :y2), given by the équations

Xoyo Xiyl= x2y2- This model cornes naturally along with two projections nx and

%y of V3 into P2. The exceptional divisors can be described as £0 n~l{\ : 0 : 0) or
Ll2 7tyl(l : 0:0), or by homogeneous équations of degree one in P2 x P2, as

follows: Eo {xx =0,x2 0}, Ll2 {yY 0,y2 0}. We refer for further détails to
[Hartshorne, Chap. 5].

LEMMA 2.1.2. Let x (a0 : ax : a2) x (b0 : bx : b2) be a K-rational point on V3

with integer coordinates. A set offinite heights with respect to the exceptional divisors
is given by thefollowing expressions and by those derivedfrom thèse two by the action

of the symmetric group S3 on the subscripts:

6O&gt; bub2)(b09 bx)-\bQ, b2)~l),

ax,a2)(a0, axyl(a0, a2)~l) 5ft((èl5 b2)(b0, bx,b2)~l).
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Proof. By symmetry it is enough to compute the finite height with respect
to the divisor Eo. Embed P2 x P2 by the Segre map ij/ in P8. Thus
(x0 : xx : x2) x (y0 : yx : y2) is mapped to (xoyo: : xjj :... : x2y2)&gt; We introduce
new projective coordinates by putting ztJ xjj. The image of V3 under \j/ is given
by the identities zOQ zu z22. The image E&apos;o of the divisor Eo is defined by the

system of homogeneous équations Zoo zlo zn =z12 z20 z21 =z22 0. The
finite height of a point z now follows immediately from Lemma 2.1.1:

U \ — q&gt;{

(Z00&gt; Z10? Zll&gt; Z12&gt; Z20&gt; Z21&gt; Z22)

\(z00&gt; Z01î Z02» Z10» Zll» Z12&gt; Z20» Z21»

By the morphism formula we hâve that hEJ^/(x)) is a finite height associated

with the divisor Eo. Thus by the foregoing argument we hâve to compute

u \ - ^((^o^o&gt;aify)&gt;a\b\,a\b2,a2b0,a2bua2b2))
E° X

yi((aobo, a0bua0b2, axb0, albuaxbl9 a2b0, a2bua2b2))
&apos;

But as aobo — axbx a2b2, we hâve aobo e (au a2)(bî, b2). Hence

hEo(x) îl((Ooft0) + («1
&gt; (hXbo + (*i, *2)))/K((ûo + («i • fl2))(*o + (*i, *2»)

62»)

^{aua2){a^aua2)-xy U

Notation. We write b (a09aua2\ Co («i, a2)^&quot;!5 coi K^X^o»^)&quot;1 x
(«i, a2)&quot;1- Similarly we define the ideals ci, c&apos;12, c2 and Cq2. Observe that thèse ideals

satisfy the identities (a0) =bcic&apos;12c2, (ax) =bCoCo2c2, (a2)

2.2. The idea of Martin and Tschinkel

Let U be the group of units in OK. Note that the subgroup of t/3 x t/3,
(w0, Mj, m2) x (i?0, t?!, t?2), defined by uovo uxvx u2v2 acts transitively on W3. Since

finite heights are invariant under this action, it makes sensé to write hD(x) for the

orbit x of any A&apos;-rational point x in W3. On the other hand, global heights are not
invariant, whence the following définition.

DEFINITION 2.2.1. n{X) is the number of orbits y on W3 which contain at least

one rational point x e y such that H_w(x) &lt; X.
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Let b(X) be an upper bound for the number of rational points x in an orbit y
which satisfy H_(û(x) &lt; X. Then NWz(— œ, X) is by définition smaller than
b(X)n(X). We may thus say that any upper bound for n(X) will yield an upper
bound for NW3( —co, X) up to the action of units.

By the functorial properties of heights (Proposition 1.2.7) and by Proposition
1.2.2 (see also [Tschinkel]) there arise constants c, c\ c&quot; &gt; 0 such that

&gt; c&apos;HEo(x)HLm(x)2HE}(x)2HLl2(x)

&gt;c&quot;hEo(x)hol(x)2hEl(x)2hLl2(x).

Choosing another représentation of the anticanonical divisor leads to another
inequality. This motivâtes the introduction of finite heights in [Manin-Tschinkel]
and the following définition.

DEFINITION 2.2.2. v{X) is the number of orbits of ^-rational points x in W3

that satisfy the six simultaneous inequalities:

and those derived from it by the action of the symmetric group S3 on the subscripts.

Since we are not interested in determining the exact constant we can do as if the
constants c, c&apos; etc. were equal to 1. Thus by définition we hâve n(X) &lt; v(X). Hence

an upper bound for v(X) will yield an upper bound for NW3( — œ9 X) up to the
action of units.

2.3. Transforming the problem

As pointed out by [Tschinkel] the following idea can be considered an application

of Weil&apos;s theory of distributions.

DEFINITION 2.3.1. fi(X) is the number of sextuplets (ce, c^, c;, c&apos;12, c&apos;2, c&apos;O2) of
nonzero ideals in OK that satisfy the six simultaneous inequalities:
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and those derived from it by the action of the symmetric group S, on the

subscripts.

Remark. The non-triviality may also be expressed as 1 &lt;9i(c;), 1 &lt;9l(c;y). As
the number of ideals in OK with bounded norm is finite, the numbers v(X), fi(X)
and later on ji(ftl0,. ft,5, X) and n(blQ,..., b,5, X) will be finite.

Let x be a ^-rational point on V3. We can represent the point x with relatively
prime integer coordinates. This means that we fix once for ail a family of ideals

a},..., ah representing the h classes of ideals 51, in OK and additionally require
from our coordinates to satisfy (ao,al9a2) =a, respectively (60,6,,fe2) û, for
some i,j.

LEMMA 2.3.2. We hâve v(X) &lt; ju(X).

Proof. Represent x by relatively prime integer coordinates and define the ideals

b, Co, Cqi, etc. as in the preceding subsection. Since the intégral ideals are non-trivial
we hâve 1 &lt; 91(0 and 1 ^ 9i(c!/)- Moreover our calculations show e.g. that

hEo{x)h2LQX{x)h2Ex{x)hLx2{x) 9l(ci)91(ci1)2^(c/l)29î(c;2).

Hence the first inequality is satisfied. Similarly we check the other inequalities.
Remark that by identity (aQ) bcic&apos;12c2 the idéal b has to belong to the inverse

class of c&apos;,c&apos;12c2. Since the coordinates are relatively prime, b has to be equal to the

corresponding représentative a,. Thus b is uniquely determined by the sextuplet Cq,

coi, ci, ci2, c2 and Cq2.

Let x&apos; (af0\a\\ a&apos;2) x (b&apos;o : b\ : b&apos;2) be a second rational point on W3 with
relatively prime integer coordinates and with the same associated set of ideals b, Co, Cqi,

etc. as x. Then the three identities (a0) bcic&apos;,2c2 (a&apos;o), {ax) bCoCo2c2 (a\) and

(a2) bcotoici =(a2) imply that x and x&apos; belong to the same orbit. D

Thus any upper bound for fi(X) will also be an upper bound for v(X). For a

further more sophisticated (and more powerful) development of this idea we refer

to [Peyre].

3. Counting ideals in number fields

In this section we generalize in a suitable manner the classical theorem about the

number of ideals with bounded norm in a given number field (for a survey we refer

to [Lang2, Chap. 6]). One of the main obstructions to an asymptotic formula is
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given by the difficulty to establish précise error terms for the volume of a certain
fundamental domain.

3.1. Lattices

To simplify the notation we put c0 ce, q Cqi c2 ci, c3 c&apos;12, c4 c2, c5 c&apos;o2

and choose the set of subscripts m in Z/6Z. We observe that the above six

inequalities can now be written as

for m 0,.. 5. In particular we remark that the System of inequalities is mapped
into itself by a translation of the subscripts modulo 6. In this sensé the six

inequalities are équivalent.

DEFINITION 3.1.1. Let ï0, i5 be six positive integers such that /, &lt; h. Then

ju(5^0,.. ft,5, X) is the number of sextuplets (c0,..., c5) of nonzero ideals of OK

with the property that c, g ft, and that for every m g Z/6Z

W(cw- c2m+l • c2m
+ 2- tm + 3)&lt;X.

Fix once for ail a set of représentatives b, &lt;= OK, \&lt;i &lt;h, for the inverse classes

Sir1- We write &lt;f for the class Ç • U and b, for the set of classes {j8 | p g b,}.

DEFINITION 3.1.2. Let /0,..., /5 be six positive integers such that j, &lt; //. Then

//(bl0,..., b/5, X) is the number of sextuplets (&lt;f0,.. f5) of classes of integers
modulo U with the property that ^ ebM that 9î(b, &lt; 9l(^), and that for every
m g \

ton. We write em for b,m • b?m
+ 1

• b?m+2 • b,m
+ 3.

LEMMA 3.1.3. We Aaue

MA-) X M(«,o, • • •, «,5, J0 I Mb,0, • • •, b,5, X).

The sums are taken over ail sextuplets of classes of ideals, respectively over ail
sextuplets of représentatives b,.
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Proof. It suffices to prove that ji(ftl0,..., 5*l5, X) /*(bl0,..., b,5, X). Fix six

classes of ideals ftIO,..., ftl5 and let (c0,..., c5) be a sextuplet of non-zero ideals

of OK contained in % 0 &lt;j &lt; 5, satisfying the corresponding six inequalities. Each

product tj • bt is equal to a principal idéal (£,), for some &lt;^ g Ok. Hence we can
attach to each sextuplet of ideals a différent sextuplet (£0,..., &lt;^5) of algebraic
integers contained in the ideals bt. Moreover, we obtain 9t(b, &lt; ^(b, • cy)

and the six inequalities

Conversely, fix six représentatives bt and define the six fractional ideals ew as

before. Suppose that six numbers f0,..., £5 in OK contained in the b, are given in
such a way that the corresponding six inequalities are fulfilled. Then it suffices to set

tj £,jb~l to get back six ideals satisfying the required inequalities. This map is not

yet one-to-one. If we multiply the £ with units ut e Uwe get the same set of ideals.

However this is the only obstruction to bijectivity. We get rid of this obstruction by
going over to classes modulo U. D

Suppose that for ail choices of sextuplets byo,..., bj5 the integers

li(bJo,... 9bJs,X) hâve the same upper bound m(X). Then we hâve

li{X) &lt;ch6m(X). Hence, as we are not interested in multiplicative constants, an

upper bound for one of the ^(b,0,.. b,5, X) will also do for jx(X).

3.2. Fundamental domains

Dénote by A the product IR x • • • x U x C x • • • x C, the first r, factors being
real and the next r2 being complex. Dénote by J the subset of A consisting of those

éléments ail of whose coordinates are nontrivial, and by W the subgroup of U of
roots of unity.

Write an élément of A6 as

X \Xq\ Xç)r j, Zqj ^0r2&gt; * &apos; • • »
&quot;^51

» * * * &quot;^5^

i » ^51 » * * * ^5^2/

with xtJ g IR and zlk e C. Then an élément u (w0,..., u5) of the group U6 acts on
A6 and J6 as follows: ux (crl(uo)xol,. ar 1 (uo)xOrl,xl(uo)zol,...,

DEFINITION 3.2.1. A fundamental domain of J6 for U6/W6 is a subset D of
J6 with the following three properties: D is stable under the action of W6, U6D J6

0 for y $ W6,y g U6.
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DEFINITION 3.2.2. For x an élément in A6 with coordinates xiy and zlk, we
consider the partial norms Nt(x)9 defined by

*.(*) ft ft kll**l2.

and define the norm N{x) as

UNl(x) UU fl
1=0 i=0j=lk=\

Let x be an élément of J6 with coordinates xtJ e R and zlk e C. Introducing
polar coordinates (rlJ9 StJ) with 0 &lt; rtJ and 9tJ ± 1 in the real case, and (&amp;£, &lt;plk)

with 0 &lt; £lA: and 0 &lt; cplk &lt; 2n in the complex case, we can write xtJ — #iyr/7 and

LEMMA 3.2.3. Let r\x,...,r\r be a basis for U modulo roots of unity. A
fundamental domain D of J6 for U^jW* is given in polar coordinates by the following
6(r -f 1) conditions:

log(r,,)-ilog(fl ft ruQ

fl ft ru
1^1

with i 0,..., 5, j 1,..., r,, k 1,..., r2, and 0 &lt; cd &lt; 1.

Proof Let x be an élément of J6 with coordinates xtJ ^ 0 and zlk ^ 0. We define

a map &lt;P : J6 -&gt; U6{r+1) as follows:

The image &lt;P(/6) is contained in the linear subspace H of R6^4&quot;1} determined b&gt; the
six équations &gt;&gt;,! + *••+ 7i,r +1 0, for / 0,..., 5.

Now the embedding «F : ({0&gt;..., és)hK*i (4),..., a,t (i0), t, ({o), Tr2(£0), • • •

of ^T6 into ^46 allows us to view U6 as a subset of J69 whose image
under ^ is a lattice A of maximal rank in H, spanned by the 6r vectors
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o?... 0, r\h 0,..., 0), for / 1,..., r. The subscript i 0,..., 5 indi-
cates the position of r\t in the corresponding vector. It follows from classical theory
that the kernel of 4&gt; ° W is W6 (see [Samuel, Chap. 4]). Hence there is an additive
action of U6/ W6 on H. Thus, given a fundamantal domain F for the lattice A9 we
obtain a fundamental domain of J6 for U6/W6 as D &lt;P~\F).

We now choose a fundamental domain F for A the set of ail linear combinations
Ef=0 S/=, ctl(olh where 0 &lt; q &lt; 1. The resuit is then immédiate.

Remark. The domain D is a star-body, Le., it satisfies tD D for ail r &gt; 0.

3.3. Geometry of numbers

A sextuplet of ideals (bl0,..., b,5), viewed as a free Z-module in K69 is mapped
by *F into a lattice i? in A6 (see [Lang2, Chap. 5]) with discriminant

A(B)=(y/d)62-6rW(blQ- -bl5).

DEFINITION 3.3.1. D(Z) is the subset of the fundemental domain D consist-

ing of those points x which satisfy 9l(btJ) &lt;Nj(x) and the six inequalities

DEFINITION 3.3.2. n(B, D, X) is the number of points of the lattice B
contained in the domain D{X).

LEMMA 3.3.3. Let biQ,..., b,5 be six fixed représentatives of the inverse
classes ft&quot;1 and B the corresponding lattice in Ab. Then we hâve

ti(blo,.../bl59X)==fi(B9D,X).

Proof The actions of U6 on K*6 and on J6 commute with W. Hence the
éléments of a given J76-orbit in K*6 are mapped by W into the éléments of one and
the same £/6-orbit in J6. Thus, to each sextuplet (&amp;,..., f&quot;5) of classes modulo U,
such that lj e b,, we can attach a well-defined élément x of D n B. By définition we
hâve 9l(£w) Nm(x), and the inequalities follow immediately.

By identifying C with U2 in the usual manner, A6 may be identified with U™.

Thus it makes sensé to talk about the volume V(S) of certain subsets S of A6. As
we are only interested in upper bounds modulo multiplicative constants, the volume
of D(X) should provide a satisfactory upper bound for fj{B, D9 X). More precisely:
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PROPOSITION 3.3.4. There exist two constants c and c&apos;, depending only on the

number field, such that

fi(B,D,X)&lt;cV(D(c&apos;X)).

Proof. Let X be as large as necessary. Fix a cell ^ of B. Throughout this proof
a &quot;œil&quot; will always be a translate of c€. Dénote by ô the length of the longest
diagonal of (€. As D is a star-body, there exists a constant c{&gt; à such that a

crneighbourhood of any point PeBnD includes a cell which is completely
contained in the interior of D. Let x e D(X). For 0 &lt; ctl &lt; 1 let c2 be a constant
larger than ail the values

Yu \j I and exP Z

Then from the définition of our fundamental domain in Lemma 3.2.2 we obtain for
i — 0,..., 5 the estimâtes

rtJ&lt;c2Nt(x)lfd and Qlk&lt;c2NXx)xld.

Let A be a vector in U6d of maximal length ô. An immédiate vérification shows that
for m 0,.. 5:

ft ft ft (rij

where Im {m, m + 1, m + 2, m + 3} c Z/6Z, and ê, 1 if /=m or m+3 and

e, 2 if / w + 1 or m + 2. We compute the product on the right. The factors of
rtJ and Qlk that will appear hâve for total exponent at most rx + 2r2 for the subscripts

m or m 4- 3 and 2(r! + 2r2) for the subscripts m + 1 or m + 2. As d r, H- 2r2 we

can bound each term up to a constant by Nm(x)Nm + l(x)2Mm + 2(x)2Nm + 3(x). Thus
the right hand side is smaller than c&apos;9t(ew)Ar, with c&apos; a constant that does not
dépend on m, and any c,-neighbourhood of a point P e fi(B, D, X) includes a cell

which is completely contained in the interior of D(c&apos;X).

Dénote by c the maximum number of cells that can intersect a c,-ball, by n&apos; the

number of cells that are completely contained in the interior of D{c&apos;X) and by V
the volume of (€. We now define a map from the set of lattice points contained in

D(X) to the set of cells which are completely contained in D(c&apos;X) as follows: We

attach to each P e [â(B9 2), X) any one of the cells that are completely contained in
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a crneighbourhood of P and that are at the same time completely contained in the
interior of D{c&apos;X). In the image of this map the same cell will appear at most c

times. Hence we hâve the estimâtes

D,X)&lt;cn&apos;V &lt;cV(c&apos;X).

3.4. Volume computations

Let bt and ex be positive constants. S is the subset of R6 given by bt &lt; s, and by
the six inequalities

LEMMA 3.4.1. There exists a constant c such that V(S) &lt; cX&apos;{\og X&apos;)3.

Proof. Choose X&apos; large enough. Since we are not interested in multiplicative
constants we are allowed to set bt em 1. Moreover, it will suffice to détermine
the leading term of

where the intégral is taken over S.

By symmetry we are free to assume that one expression, say sQs*s2s3, is larger
than the five others. This amounts to splitting the domain of intégration into six

parts. Then, by comparing thèse expressions, we are led to the inequalities
soss&lt;s2s3 and s3s4&lt;s0Si. Defîne 5&quot; to be the subset of M6 given by 1 &lt;sn for
every /, and by SqS^sIs^ &lt; X&apos;, sos5 &lt; s2s3 and s3s4 &lt; sos{. Replacing the intégration
domain S by S&apos; will enlarge our intégral, up to a fixed multiplicative constant c, i.e.

I(S) &lt; cI(S&apos;). Integrating I(S&apos;) over s4 and s5 leads to

J *3 *0

where the intégral is taken over the set S^ciR4, given by 1 &lt;sn for every «,

&lt; X. Integrating over s0 we obtain

\ • • \

J J
sl ds2ds3,
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where the second intégral can be taken over the cube 1 &lt; sx &lt; X\ 1 &lt; s2 &lt; X&apos; and
1 &lt; s3 &lt; X&apos;. Of course this intégral is equal to ^&apos;(log X&apos;)3.

LEMMA 3.4.2. There exists a constant c such that V(D(X&apos;)) &lt; cX&apos;(\og X&apos;)\

Proof. Let S&apos; &lt;= [R6(r+1} be the set of norms 0 &lt; rtJ and 0 &lt; gtJ of the points of
D(X&apos;). Working in polar coordinates the volume V(D{X&apos;)) can be computed up to
a multiplicative constant as

• &apos; * \ Qoi&quot; Qor2 &quot;Qsi&quot; Q5r2dr0l • • • drOn •¦¦dr5X-- dr5ridQ0l • • • dgOr2 • • • dg5l • • •

where the intégral is taken over S&apos;.

Let (s0,. ^5, c0l,..., cOr9.. c5l,.. c5r) be new variables for (R6(r +1}, and

let S&quot; be the subset defined by the inequalities 91^) &lt; Sj as well as by the six

inequalities

A diffeomorphism from S&quot; to S&apos; is given as follows:

rtJ s}&quot; exp ^t cu log (^(i//)|)), Qlk s)&gt;d exp

In the other direction we hâve sl TVJl=lIY^=lrlJQ\, and the numbers ciq

are uniquely determined by the rtJ and ^y. Indeed it is well known that the

déterminant

does not vanish. In fact, it is equal to ±d2~r2R, where R is the regulator of K (see

[Lang2, Chap. 5]). As in [Lang2, Chap. 5] the Jacobian déterminant of the

diffeomorphism is equal to the product of the déterminants
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for / 0,..., 5, and hence equal to

5 r} r2

n ik n «*
- c-

n

Thus, up to a constant which dépends only on the field, our intégral becomes

ds0- - • ds5 dcQl ¦ • dcOr&apos; - dc5X - • • dc5r,

where intégration runs over S&quot;. On setting b3 9l(bt and et 9t(e,), we see that
F(S&quot;&apos;) V(S). By Lemma 3.4.1, this is at most a constant times A&quot;(log X&apos;)3.

COROLLARY 3.4.3. There is a constant c such that fi(B, D, X) &lt; cX(\og X)\

Proof. This is a conséquence of Proposition 3.3.4 and Lemma 3.4.2.

The final resuit

4.1. The units

We make use of some ideas of [Manin-Tschinkel]. Let abea Â^-rational point
in P2 with integer, nonzero coordinates (ao,al,a2). Define

II

For y 0, 1, 2 we hâve by the product formula =UveMfC sup, v(ajaj).
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DEFINITION 4.1.1. Assume HO{X)(a) &lt; X. Then b&apos;(a,X) is the number of
À&gt;rational points a&apos; (a0 :uxax: usa2)9 ut e U, which satisfy HO{X)(af) &lt; X.

LEMMA 4.1.2. There exists a positive constant c, which does not dépend on a,
such that b&apos;(a9 X) &lt; c(log X)2r.

Proof. Let X be as large as necessary. The assumption IT^eMfc sup, v{at jcij) &lt;X

and the obvious fact that sup, v{aljaJ) &gt; 1 imply sup, v{aljaJ) &lt;X. Consequently

l/X &lt; v(ajaj) &lt; X. Thèse inequalities do not dépend on the choice of v or on the

choice of the subscripts / and j.
Similarly, for i 1, 2 we obtain \\X &lt; viu.a^a^) &lt; X. On combining thèse two

inequalities with \jX &lt; v(ajao) &lt; X, we get the inequalities \\X2 &lt; v(ut) &lt; X2.

Observe that thèse inequalities no longer dépend on a. From the Dirichlet theorem

it follows that there are no more than O{(\ogX)r) x O((\ogX)r) units with this

property. This implies b&apos;(a, X) &lt; c(log X)2\ as required.

We go back to our model for V3. Fix x a Â&apos;-rational point on W3 with integer
bihomogeneous coordinates (a0 : ax : a2) x(b0: bx:b2). Let nx and ny be the standard

projections of F3 into P2.

LEMMA 4.1.3. {HO{l)(nx(x)))xl2 &lt; Ho(l)(ny(x)), and (H^n^x)))1/2 &lt;

Proof. Remember that a0b0 albï=a2b2. Since the coordinates are nonzero
the resuit follows from the trivial inequality sup/#y v{btbj) &lt;sup, v(b2), together
with the product formula. Indeed,

/ yfi sup v(at) [] supi;(^iM/)= FI supK^flo)^! \\ sup v(bt) i ={HO{l)(ny{x)))2.
v e Mk &apos;

v e MK
&apos;

v e MK l*J \v e MK
&apos; /

D

LEMMA 4.1.4. Assume that 1 &lt; X and H_œ(x) &lt; X. Then there exists a positive
constant c, which does not dépend on x, such that H^^in^x)) &lt; cX and

Proof. Without loss of generality we may assume that 1 &lt; HOil)(nx(x)). Let D
be the divisor of P2 given in projective coordinates (jc0 : xx : x2) by the homoge-

neous équation {xo 0}. By Proposition 1.2.8 we hâve HD ~ H^^. Moreover we

hâve for the corresponding pullbacks: n*(D) =EX+ LX2 + E2 and n*(D) Lox -h

E0 + L02. Thus, by the morphism formula, the functorial properties of heights, and

Lemma 4.1.3 there exist positive constants c, c\ etc. such that
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H_w{x) &gt; cHEq

&gt;c&quot;HD{nx{x))HD{ny{x))

&gt; c&quot;&apos;HO{X){nx(x))HO{X){ny{x))

&gt; cff&apos;HO{X){nx{x)){H(XX){nx(x)))1/2

&gt; c&apos;&quot;HO{X)(nx(x)).

DEFINITION 4.1.5. Assume H_a}(x)&lt;X. Then b(x, X) is the number of
A^-rational points x&apos; (a0 :uxax\ u2a2) x (b0 : u\bx : u2b2), ut e U, which satisfy
H_w(x&apos;)&lt;X

COROLLARY 4.1.6. There exists a positive constant c, which does not dépend

on x, such that b(x, X) &lt; c(log X)2r.

Proof. Observe that nx induces a bijection between points x on W3 and points
a in P2 with nonzero coordinates. By Lemma 4.1.4 a A&apos;-rational point xf with
coordinates (a0 : uxax : u2a2) x (b0 : u\bx : u&apos;2b2) satisfying H_(O(x&apos;) &lt; ^ is mapped
into a Â^-rational point a&apos; (a0 :uxax: u2a2) which satisfies HO{])(à) &lt; c&apos;X. Hence
b(xy X) &lt; b(a, c&apos;X), and we conclude with Lemma 4.1.2.

4.2. Conclusion

In subsection 2.2 we hâve seen that Nw^{-œ,X) is bounded by b(X)n(X)9
where n(X) dénotes the number of orbits y of rational points under the action of
units, containing a rational point x satisfying H_œ(x) &lt; X, and b(X) dénotes an

upper bound for the number of rational points x&apos; e y satisfying the same inequality.
Since n(X) is bounded, up to a multiplicative constant, by ju(B, D, X), and b(X)
can be taken equal, up to a multiplicative constant, to the upper bound of b(x, X),
the following theorem is an immédiate conséquence of Corollary 3.4.3 and

Corollary 4.1.6.

THEOREM 4.2.1. For each number field K there exists a constant cK such that

The theorem proves an upper bound with a correct power of log X in two cases:
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COROLLARY 4.2 2. Let K Q or let Kbe a purely imaginary quadratic field.
Then there exists a constant cK such that

NW3(-co,X)&lt;cKX(logXy
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