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Formes différentielles sur I’espace projectif réel sous P’action du groupe
linéaire général

PIERRE-YVES GAILLARD

Résumé. On montre que les seuls sous-espaces invariants par transformations projectives et fermés pour
la topologie C* de I’espace des p-formes sur I’espace projectif réel sont les suivants: le sous-espace nul,
celui des formes exactes, celui des formes fermées, et I’espace lui-méme — avec les coincidences bien
connues entres ces sous-espaces. On résoud aussi le probléme analogue sur la sphére.

Summary. We show that the only subspaces of the space of p-forms on the real projective space which
are invariant under projective transforms and closed for the C*® topology are the following ones: the
zero subspace, the subspace of exact forms, the subspace of closed forms, and the space itself — with the
well known coincidences between these subspaces. We also solve the analogous problem of the sphere.

Fixons un entier n plus grand ou égal a deux, et considérons, pour tout entier
p (avec 0<p <n—1) les espaces B” = Z? = C? formés respectivement des p-
cobords, p-cocycles et p-cochaines du complexe de de Rham des formes différen-
tielles C* sur I'espace projectif réel de dimension » — 1. Ces espaces seront vus
comme des modules (topologiques) pour le groupe G = GL(n, R) agissant par
transformations projectives, et munis de la topologie C® (le noyau de cette action
est le sous-groupe R* des homothéties, le quotient étant le groupe projectif,
habituellement noté PGL(n, R)).

THEOREME.

(a) Les seuls sous-espaces G-invariants fermés de C? sont 0 c B? =« Z? < C”. Plus
précisément, les seuls sous-espaces G-invariants fermés non-trivaux de C?
sont:

C = {constantes} =Z° si p =0
B,=Zfsil<p<n-2,
B"~! si n est pair et p=n —1.
(b) Notant Hom (C?, C9) I’espace des applications linéaires continues G-équi-

variantes de C? dans C4, on a Homg (C?, CP) = C, Homg; (C?, CP*') = Cd
et Hom (C?, C?% =0 dans les autres cas.
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376 PIERRE-YVES GAILLARD

Le point (b) a été noté par le referee. La solution du probléme analogue sur la
sphere, suggéré par Pierre de la Harpe, est donnée au §3. D’aprés la théorie des
“globalisations canoniques” de Casselman-Wallach et Schmid (voir [W] comme
source de références), on a un résultat analogue pour les formes analytiques, les
courants et les hyperformes. 11 serait intéressant de savoir ce qui se passe lorsqu’on
se restreint & GL(n, Z). Comme Norbert A’Campo me I’a fait remarquer, ’énoncé
analogue pour les courants et les hyperformes sera alors pris en défaut, ainsi qu’on
le voit déja dans le cas particulier traité par Hafliger et Li-Banghe [HL]. Une autre
question naturelle serait de savoir si I’on peut classifier les actions de groupes de Lie
sur des variétés telles que, dans les notations ci-dessus, les seuls sous-espaces
invariants fermés de C” soient 0 « B =« Z? = C?. Le seul autre exemple que je
connaisse est celui du groupe PO(n + 1, 1) des transformations conformes (qui ne
préservent pas nécessairement I’orientation) de la n-sphére, n impair [G1, thm 5].

Indiquons une autre question naturelle relative aux représentations de GL(n, R)
qui se pose au sujet du complexe de de Rham de RP"~'. Soient plus généralement
G un groupe réductif (exemple: GL(n, R), PO(n, 1),...) et X un G-espace homo-
géne (connexe) compact de dimension k sans cohomologie en degré 1 <p <k —1
(exemple RP”-! S"~!). Selon l'orientabilitt de X les deux cas suivants sont
possibles: (a) H*(X,C)=C, (b) H¥X,C)=0. On a donc une suite exacte
0-C—->C%>- - >Ck->C—0 dans le cas (a) - la seconde fléche étant I’inclusion
des constantes, les suivantes provenant de la différentielle extérieure et I’avant-
derniére donnée par intégration — ou 0»C—->C°—--- - Ck¥—0 dans le cas (b).
D’ou une classe c¢(X) e H** (g, K; C) ~ H**(G,./K,; C) — ou G./K, est le dual
compact —dans le cas (a), ou (en utilisant la dualit¢ de Vogan)
c(X) € H¥(g; K; C*) dans le cas (b). Pour PO(n, 1) agissant sur S"~' on se trouve
dans le cas (a), et 'on a: ¢(S"~') =0 si n est impair, et ¢(S"~!) est la classe
fondamentale de S"=G./K, si n est pair. Pour GL(n, R) agissant sur RP"~!
j’ignore ce qui se passe, mais je soupgonne que ¢(RP"~') n’est jamais nulle, que si
n est pair ¢(RP"~') est le générateur “spécial” de degré n de H*(U(n)/SO(n)) qui
apparait dans Borel [Bor, prop. 31.4] (ce générateur est probablement la classe
d’Euler), et que, si n est impair, C"~! est unitaire — ¢((RP"~') e H"~!(g, K; C" 1)
serait alors, en vertu du célébre théoréme d’annulation au-dessous du rang de
Borel-Wallach [BW, V.3.3], une classe de cohomologie unitaire de degré minimum.
Les résultats de [G2] suggérent que c’est bien ce qui se produit lorsque » vaut 3. (Le
résultat principal de ce texte dit que ¢(RP”~!) est un produit d’extensions de degré
un entre modules simples.) Dans tous les cas, la méthode naturelle pour calculer
¢(X) consiste a envoyer la suite exacte qui la définit dans le complexe de de Rham
de G/K - lequel tient lieu en quelque sorte de ‘“résolution injective” du module
trivial — par “transformation de Poisson”. C’est ainsi que les résultats mentionnés
ci-dessus pour PO(n, 1) découlent immédiatement de [G1, thm 1].
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Ma principale source d’inspiration a été Particle [HT] de Howe et Tan. Je
remercie Norbert A’Campo, Etienne Ghys, André Haefliger, Pierre de la Harpe et
le referee pour de nombreuses et intéressantes remarques.

1. Préliminaires

Soit K = O(n) = G le groupe orthogonal. D’aprés Harish-Chandra [HC] il existe
une unique décomposition de C? en somme directe topologique C? = &, . CP* de
K-modules isotypiques de dimensions finies; si un K-sous-module est préservé par
I’algebre de Lie g de G alors son adhérence est G-invariante; et tout sous-espace
G-invariant fermé (on dira “G-sous-module”) est de cette forme. Ce principe
général s’applique aussi au G-module V), défini plus bas, et sera utilisé sans
référence explicite.

Considérons dans un premier temps un entier p quelconque. Posons U = R"\{0}
et formons le G-module

V, ={fe C(U) | ftx) = t~2f(x), Vi € R*, x e U}.

Pour décrire la relation entre V, et C?, introduisons la puissance extérieure
A7 = A\?(C)* du G-module standard dual; désignons par x; les coordonnées
naturelles de R”, par 0; les champs 0/0x;, par E =X x,0; le champ d’Euler, et par
i(E) le produit intérieur par E. L’espace des p-formes R*-invariantes sur U
s’identifie alors 4 V, ® A%, et 'on a

1.1. (a) C°=x V,,
(b) CP~Ker (i(E): V,®@47>CP )sip>1,
(©) C,RUE)V,. . ®AP*Y),
(d) C"*1x V, ® A"

On utilise librement dans la suite la théorie élémentaire des harmoniques
sphériques (voir les références indiquées dans [HT]). Notons H, Pespace des
polyndmes harmoniques homogénes de degré k sur R”. Rappelons que H, est un
K-module simple. Posons Q =X x?. Pour p +k pair définissons le K-module
Vo= Q- P+ORH, et décrétons que V,, est nul pour les autres valeurs de (p, k).
On a alors V,, <V, et V,=®,V,, (somme directe topologique de K-modules
simples non isomorphes deux a deux). Le résultat suivant est énoncé (sous une
forme plus générale) par Gruber et Klimyk dans [GK]. Les auteurs ne démontrent

pas leur théoréme mais indiquent que la preuve est similaire & celle d’un resultat
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analogue paru en russe dans la revue Naukova dumka éditée a Kiev. Jai crii étre
agréable au lecteur en donnant une preuve aussi bréve qu’élémentaire.

PROPOSITION 1.2. (Gruber et Klimyk [GK]). Les G-sous-modules non tri-
viaux de V, sont

®k5—p Vp,k Slp < 0’

®D..._ ...V . sin estpair et p>n.
k2p-n+27 pk

Soit m,, la projection canonique de V, = @, V,, sur V,,. Les champs x;0, formant
une base de g, I’action de g sur V, est entiérement déterminée par les applications
de “transition” @, ,,«; : H; = H,, données par

Cpmpif(f) = QP ™1, (x,0,Q~#+PRfY,

Calculer le treillis des sous-modules de V, revient donc a décider pour quelles
valeurs de (p, k, m) les applications ¢, ,,,;; sont nulles pour tout i,j. C’est ce que
nous allons faire.

LEMME 1.3.

(a) Simé¢{k—2,k k+2},alors ¢,,,;,; =0. En d’autres termes on a gV,,
Voir2t Vore + Vopse—oa-

(b) ng,k < Vi + Vp,k—-Z < Qpit2xiHe =0 Vi,j < =0=p,

©) 8Vork S Vosio+ Vor = @piopijHy =0Vi,jesk=p—n+2ou k<1,

Posons 4 = X 8%. On utilisera librement les relations
[aia xj] = (SiJ, [aia Q] = 2xi, [A, xi] = 261‘9 [A9 Q] = 4E + 2n'

Définissons ¥, ;. H, > H,, et ¥_,, H,—>H,_, par ¥_,,=(n+2k —2)7'0,
(avec la convention ¥_,;=0) et ¥, ,;,=x,— 0¥ _,.,.

LEMME 1.4.
(@) xh=¥, ,;h+Q¥_,hVheH,
(b) Pok + 24,0 = —(p+ k)'P+,k+1,i 'P+,k,j,
Coiesij =i fo-10— (P + Y _ s 1 Wipey + Vi 1:¥ — e j)s
ok —24ig = ¥ - g-1,00; — (P + )Y _ 1 ;)s
) Y ph=0Vieh=0.
Y _1.H, =0Viek =0,
@0, —(p+R)Y_, )H, =0Viwk=p—n+2ouk=0.
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Preuve de (1.4.a). Pour h € H, on a Ax;h = 20;h et donc 4%x;h = 0. Par suite A
est de la forme h=Y¥ ., .h+Q¥_, havec ¥, , heH,, ,, Y_,heH._, Dou
20,h = Ax.h = AQY_ . h = (4k — 4+ 2)¥_, ;h. 0

Preuve de (1.3.a) et (1.4.b). On calcule x,0,0~"*M2h § Paide de la régle de
Leibniz et de (1.4.a). O

Preuve de (1.4.c). Montrons ¥, , ,h =0Vi<>h=0. Soient k > 1 (le cas k =0
est trivial) et h € Hy tel que ¥, ;2 =0Vi. D’aprés la définition de ¥ ,; cela est
équivalent a (n + 2k — 2)x;h = Q0;h Vi. En multipliant par dx; et en sommant sur i
on obtient (n + 2k — 2)/2h dQ = Q dh. On en déduit aisément 4 =0, comme désiré.
Les deux derniéres assertions sont immédiates. O

Preuve de (1.3.b) et (1.3.c). Ces relations découlent de (1.4.b) et (1.4.c). O

Preuve de (1.2.). La proposition résulte de (1.3). a

2. Preuve du résultat principal

Soit d* la codifférentielle euclidienne sur R” (rappel: 4?7 = /\? (C")*). Posons

H"* ={weH,@A?|i(E)o =0=d*o}V0<p<n-—1,k>1,p +k pair,
Xrk = Q-(prilRfpk = Cr VO<p<n-—1kz21,p+k pair,

BPk =dgxr-1tk+1 - Br Vi<p<n—1,k>0,p+k pair.

Décrétons que les H?*, XP*, BP* sont nuls pour les autres valeurs de (p, k). Enfin,
pour 0 <p <n — 1, notons X? ’adhérence de X, X?* dans CP”.

THEOREME 2.1. (Ikeda & Tanaguchi, [IT, §6], voir aussi Boerner [Boe, 7.5];
ce théoréme devrait pouvoir également se déduire de Howe [H]).

(a) HP ¥~ XPkx BP+1k-1Y0 <p <n —2, B?° ~ A? Yp pair (K-isomorphismes),

(b) les XP*, pour 0<p <n—1,k >1,p +k pair, sont des K-modules simples
deux a deux non-isomorphes,

(¢) dim B?*>2,

(d) X, =@ XP*V0<p<n-—1;, B?=@, B, CP=B*@X*V1<p<n-—1
(somme directe de K-modules). O
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LEMME 2.2. Pour 1<p<n—1ona

(a) (gXP*) N XP < Xpk+2 4 Xpk 4 XPk=2
gXp,k c Xp,k +2 + Xp,k + Xp,k—-2 + Bp,
ng,kC Bp,k+2+Bp,k+ Bp,k—z’

(b) B? est un G-module simple.

Preuve. Les X?",r > 1, r 4+ p pair, étant les composantes isotypiques de X? par
(2.1), on a (gXP*)nX? =X, ((gX?*)n X?"). Supposons r¢{k +2,k, k —2}. 1l
vient

(8X7*) N XP" < (g(V, 1 ® A7) N (V,, ® AP)) car XMV, ® A%,
S((Vosr2t Vor + Vor—2) A7) N (V,, ® A7) par (1.3.a)
=((Voks2t Vo + Vor—2) 0V,,) ® A7
=(0 par ’hypothése sur r.

Cela prouve la premiére inclusion de (a). Les autres découlent alors de (2.1).
Montrons que B? est simple. Pour tout sous-module V < B? posons S(V) =
{k €Z|0+# B** = V}. Par (2.1) on a alors V =&, _ 5, B?*. D’aprés (2.2.a), B” est
simple si et seulement si gB?* > BP*+2 4 BP* -2 pour tout k € S(B?). Supposons par
I’absurde que cette inclusion est prise en défaut pour un certain k € S(B?). Cela
signifie que ’on a B7**+2 ¢ gB?* ou B?*~2 ¢ gB”* pour un certain k € S(B”). Dans
le premier cas Z,_, B?’ est un sous-module non nul de dimension finie; dans le
deuxiéme cas £, _, B?/ est un sous-module propre de codimension finie. Or d’aprés
la théorie des représentations des groupes semi-simples réels (voir par exemple [BW,
I11.3.2)), tous les sous-quotients de C? ont le méme caractére infinitésimal y, et x est
le caractére du module trivial. De plus la théorie des représentations des algébres de
Lie semi-simples complexes (voir par exemple [D, ch. 7]), dit qu’il n’y a que deux
G-modules de dimension finie dont le caractére est y, a savoir C = A% et A”. Ces deux
modules étant de dimension un, cela contredit (2.1). O

LEMME 2.3.

(a) Homg (B?*, CP) =0,

(b) Homg (C?, B?) =0.

Preuve. Les égalités (a) et (b) sont équivalentes. Supposons p pair et montrons
(a). En posant A, = (47)* on a

Homg (B*', C?) c Homg (BP*', V,® A7)  car C? c ¥V, ® A? par (1.1.b),

~ Homg; (B?*'®A4,, V,)  par propriété générale du pro-
duit tensoriel,
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cHomg (B?*'®4,, V, ;) car V, est simple par (1.2) et

Voo #0,

~Homg (B**'®4,, C) car V,,~C,

~ Hom, (B?*!, A7) par propriété générale du pro-
duit tensoriel,

~ Homy (B?*!, B*) par (2.1.a),

=0 par (2.1.a) et (2.1.b).

Supposons p impair et montrons (b). Le raisonnement étant le ““‘dual’” du précédent,
on omettra les justifications:

Homg (C?, B”) « Homg (V;)+1®Ap+l’ B?)
o HomG (Vp+19 Bp®Ap+1) < HomK(Vp+l,0, Bp®Ap+l)
~ Homy (C, B?® A, ;) * Homg (47*!, B?) ¥ Hom (B?*'°, B?)=0. O

Preuve du théoréme. Le point (a) résulte de (2.2.b) et (2.3). Le point (b) découle
du point (a) et de (2.1.b). O

3. Formes différentielles sur la sphére

Pierre de la Harpe m’a suggéré le raffinement suivant. Le groupe G agit sur la
sphére S”~!, vue comme I’espace des demi-droites issues de 0 dans R”, avec noyau
R*. Soient #” le G-module des p-formes sur §”~! et ¢ € G 'homothétie de rapport
—1. Posons C” = {w € C? |ow = —w}. On alors 4” = C? @ C”, somme directe de
complexes de G-modules. On a alors, avec des notations évidentes:

THEOREME. Les seuls sous-espaces G-invariants fermés non-trivaux de C'
sont

B?P=Z7"s51<p<n-2,

B~ si n est impair.

Preuve. Posons V,={fe C*(U) |f(tx) =t7?f(x) et f(—x)=(=1)" 'f(x)
Vt >0, x € U}. Recopions mot & mot la preuve du premier théoréme en remplagant
systématiquement “pair” par “impair”; C?, Z?, B?, V,,, V, ., H?*, XP*, B"* respec-
tivement par C”?, Z?, B?, V,, V., H 'k X'k B'Pk et (1.2.d) par ’énoncé suivant:
si n est impair et p > n, le seul G-sous-module non trivial de V), est D> p-n+2Vpis

dans les autres cas V), est simple. L
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