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Voisinage au sens de Kneser pour les réseaux quaternioniens

CHRISTINE BACHOC

1. Introduction

La notion de réseaux voisins fut introduite par M. Kneser ([K1]) pour les
reseaux usuels. Deux réseauz L et L’ entiers sur Z sont voisins si
[L:LnL1=[L":LnL’]=2. Dans [K1], Kneser montre que deux classes d’iso-
métrie de réseaux unimodulaires peuvent toujours €étres jointes par une chaine finie
de réseaux voisins. Ce résultat lui permet de classifier les réseaux unimodulaires
jusqu’a la dimension 16. Cette méthode fut également utilisée par Niemeier pour la
classification des réseaux unimodulaires en dimension 24.

Cette notion de voisinage se généralise aux réseaux ayant une structure hermi-
tienne sur un ordre maximal d’un corps de quaternions (appelés réseaux quaternio-
niens). On démontre un résultat analogue au théoréme de Kneser (théoréme 3.1),
que 'on peut exprimer de la fagon suivante: le graphe des voisinages sur les classes
d’isométrie de réseaux quaternioniens unimodulaires est connexe.

Le reste de P'article est consacré au corps de quaternions sur Q ramifié en 2 et
a linfini. A conjugaison prés, celui-ci a un unique ordre maximal 9t appelé I'ordre
de Hurwitz. Au paragraphe 4, on classifie les réseaux unimodulaires sur 9 jusqu’a
la dimension 28, et I’on construit les graphes correspondants. Le paragraphe 5
concerne la dimension 32; on y construit un réseau sur I’ordre de Hurwitz ayant
méme densité que celui déja construit par H.-G. Quebbemann ([Q1]), et réalisant
donc la meilleure densité connue en dimension 32. Ils ne sont en fait pas
isométriques, comme I’a montré P’algorithme de recherche du groupe des isométries
d’un réseau congu et implémenté par W. Plesken and B. Souvignier ([P.S]), que
nous remercions ici. Ce résultat renforce la constatation expérimentale selon
laquelle la plupart des réseaux intéressants connus dans des dimensions multiples de
4 ont une structure quaternionienne (par exemple les réseaux de Coxeter-Todd, de
. Barnes-Wall, de Leech,...) ((M2]).

La construction du réseau de dimension 32 utilise un code autodual de longueur
8 sur une algébre de rang 4 sur F, (paragraphe 5).
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2. Définitions et terminologie

Soit K un corps de nombres d’anneau des entiers Oy et soit H un corps de
quaternions défini sur K. Soit ¥ un espace vectoriel sur H de dimension m, muni
d’une forme hermitienne non dégénérée, c’est-a-dire d’une forme A: V x V- H,
vérifiant: pour tout A appartenant a H et tout x,y appartenant a V,
h(y, x) = h(x, y); h(ix, y) = Ah(x, y); si h(x, y) =0 pour tout y appartenant a V,
alors x =0.

Soit M un ordre maximal de H fixé. Un réseau quaternionien L est un IR-module
contenu dans V et engendrant V. On définit le réseau dual de L par: L* = {x € V|
h(x, L) = M}. On dit alors que L est entier si L < L*; que L est unimodulaire si
L=L*

La somme orthogonale (pour la forme hermitienne) de deux réseaux L et L' est
notée L 1 L’. On dit qu’un réseau est irréductible s’il n’est pas somme orthogonale
de sous-réseaux.

Une isométrie hermitienne entre deux réseaux L et L’ est un isomorphisme de
IR-modules de L sur L’ qui conserve la forme h. Le groupe des isométries
hermitiennes qui stabilisent un réseau L est appelé groupe unitaire de L et est noté
U(L). Si L est un réseau entier et si a est un élément de L tel que A(a, a) =2, la
réflexion hermitienne s,(x) = x — h(x, a)a appartient au groupe unitaire de L. On dit
que a est une racine de L. Le sous-groupe de U(L) engendré par les s, est un groupe
de réflexions hermitiennes. Ces groupes ont été classifies dans [C].

Soit v une place de K. On définit le localisé de L en v par: L, = O ®p, L. Cest
un réseau hermitien relativement a I’algébre de quaternions H, = K, ® x H, pour la
forme induite par la forme A.

Soit x.y = Tracekq(trd (A(x, y))), ou trd est la trace réduite dans H. Cette forme
bilinéaire symétrique sur le Q-espace vectoriel V est définie positive si et seulement
si les conditions suivantes sont réalisées: le corps K est totalement reel; toutes ses
places a l’infini sont ramifiés dans H; les localisées de la forme 4 en les places a
linfini de K sont toutes définies positives. Sous ces conditions, que 'on suppose
toujours réalisées, on associe 4 L un réseau au sens usuel par: L, = (L, x.y). Le dual
au sens usuel de L, et le dual hermitien de L sont liés par la relation:

L} =DyloL* (2.1)

Ou Dy q est le produit des différentes de H ([V]) et de K.

En particulier, si L est unimodulaire, alors L% = @;,,‘QL, et det(L,) =
N(@H/o)m = (dg Hpe Ram(H) NK/Q(p))zm-

Soit p un idéal premier de K; nous allons définir la notion de réseaux p-voisins.
Si p est ramifié dans H, alors il existe un idéal P bilatére de M, maximal parmi les
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idéaux contenus dans M contenant p et d’ordre a gauche M, et tel que pIMN = P2
Le quotient M/P est un corps. On dit que deux réseaux L et L' sont p-voisins si ce
sont des réseaux quaternioniens tels que L/L "L ' ~ L'[L n L' ~Mi/P. Si p n’est pas
ramifi¢ dans H, alors il y a plusieurs idéaux maximaux a gauche B, contenus dans
IR et contenant p, mais les quotients IN/P, sont des IR-modules simples isomorphes.
On dit que deux réseaux L et L’ sont p-voisins si ce sont des réseaux quaternioniens
tels que L/ILNL' ~L'|L AL ~IM/B,.

3. Connexité du graphe des voisinages

On fixe un espace hermitien (¥, k) non dégénéré de dimension m sur un corps de
quaternions H sur un corps de nombres totalement réel K, tel que les places a I'infini
de K soient ramifiées dans H. Les notations sont celles du paragraphe précédent.

Dans ce paragraphe, nous démontrons un théoréme analogue au théoréme de
Kneser ([K1]). Il est valable pour une catégorie de réseaux un peu plus générale que
celle des réseaux unimodulaires, que nous définissons maintenant: avec les notations
du paragraphe précédent, soit U un idéal bilatére de I’ordre maximal 9R. On dit que
le réseau L est A modulaire si L* = AL. Par exemple, un réseau unimodulaire est
IR-modulaire; d’aprés (2.1), un réseau L tel que L, soit unimodulaire pour la forme
x.y est Dy q-modulaire.

THEOREME 3.1. Soient L et L’ deux réseaux quaternioniens N-modulaires de
(V, h). On suppose m > 2. Soit p un idéal maximal de K. Alors il existe f appartenant
a UV, h) et il existe une suite de réseaux W-modulaires L,,L,, ..., L, tels que
Li=L L =f(L"), et L;et L, , sontp-voisins pour tout i =1,2,...,s5s — 1.

On démontre d’abord deux propositions:

PROPOSITION 3.2. Soit L et L' deux réseaux quaternioniens W-modulaires de
(V, h). Les propositions suivantes sont équivalentes:

(1) Il existe une suite de réseaux W-modulaires L,,L,,...,L, tels que

Li=L L ,=L' et L;et L, , sont p-voisins pour tout i =1,2,...,5s —1

(2) Pour tout idéal maximal p de K différent de p, L,= L.
Démonstration de la proposition 3.2. L’implication (1) = (2) est évidente. Suppo-
sons que L, = L, pour tout q différent de p. Alors [L : LNL']y, =[L': LN L’]p, et
est une puissance de p. Nous allons procéder par récurrence sur la valuation de
cette puissance. Il suffit de construire un réseau A-modulaire R qui soit un p-voisin
de L et tel que v,(|L': RnL'lg,) <v,(JL:LNL7s,). Définissons R par ses lo-
calisés: on pose R, = L, pour tout q différent de p.
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En P'idéal p, on a: L}=A,L,. Comme U, est bilatére, quitte & remplacer la
forme h par o,k pour un certain «,, on peut supposer que U, =N, si p est non
ramifié dans H, et que A, = M, ou P si p est ramifié¢ dans A (ou P est I'unique idéal
bilatére maximal contenu dans 3, et contenant pR,). On a besoin du lemme
suitvant:

LEMME 33. Si L,#L,, il existe un id_é:al maximal B d’ordre a gauche M,,
entier, contenant PN, et tel que L,nPL, & PL,,.

Démonstration: supposons p non ramifié dans H, et L,nBPL, = BL, pour tout
idéal P a gauche de M, et contenant p. Soit x un ¢élément de L, n’appartenant pas
a L,. Soit s > 1 le plus petit entier tel que p*x = L,. Un tel s existe car [L,: L, N L]
est une puissance de p. Alors, pour tout P, px = LPA‘BL; < E'BLP. Comme
PP = pI,, Pp* = pL,. Cette relation est vraie pour au moins deux idéaux maxi-
maux d’ordre a gauche N, contenant p (il y a N(p) + 1 tels idéaux); or, si P et P’
sont deux tels idéaux alors B + B’ =M,. Donc p*x = pL,, soit p°~'x = L,, ce qui
contredit la définition de s.

Si p est ramifi¢ dans H, il y a un seul idéal 4 gauche de M, contenant p et
maximal; il est bilatére et stable par conjugaison. La démonstration est analogue, en
utilisant le plus petit entier s tel que P'x = L,. O

Supposons que A, =M. Soit, d’aprés le lemme précedent, P et x tels que
xeL,nPL, et x ¢ P,. On pose

Li={yeL,/h(x,y)eP} et R,=L:+P'x.

Ainsi défini, R est clairement un p-voisin de L. Montrons qu’il est 2 ,-modulaire,
c’est-a-dire unimodulaire: on voit facilement que R, est entier si et seulement si
h(x, x) € p, ce qui est réalis¢é grace a la condition x € ‘J_SL' Montrons que

v,((L,: R,nL; ],:, )<vp([L L,nL}ls, ) en effet, R,nL, contient strictement
LinL, car ‘B X cL’ et P~'x ¢Lp, et LinL,=L, nL’ car, si y appartient a
L nL;, alors A( y, x) appartlent aP(xe ‘BL’ et L, est entier).

Finalement, supposons que p soit ramifi¢ dans H et que A, = B. Soit, d’aprés le
lemme précédent, x tel que x e L,nPL, et x ¢ PL,. Alors h(x, L,) =P et
h(x, x) € p car x € BL,. On pose

={yeL,/hx,y) eM} et R,=L;+P 'x
De fagon analogue au cas précédent, on montre que R, est un p-voisin de L,, qui

est P-modulaire car A(x,x)ep, et qui verifiec v,([L;:R]p KP) <
v, ([L, LPnL;]DKP). g
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PROPOSITION 3.4. Soil L et L' deux réseaux quaternioniens de (V, h). On
suppose que m > 2 et que, pour tout idéal maximal q = p de K, il existe f, appartenant
a U(V,, h) tels que f,(L,) = L. Alors, il existe f appartenant a U(V, h) tel que

Va#p Sf(L),=L,.

Démonstration. C’est une conséquence du théoréme d’approximation forte pour le
groupe U(V, h). Rappelons de quoi il s’agit: soit G un groupe algébrique linéaire
défini sur un corps de nombres K, et soit S un ensemble fini de places de K. On note
Gk le groupe des points de G rationnels sur K, Gs =11, 5 Gk , et G, le groupe des
adéles de K. On dit que (G, S) vérifie le théoréme d’approximation forte si le
produit GGy est dense dans G,. Le groupe U(V, h) est une K-forme du groupe
symplectique Sp,,, ([K2, §2.6]). A ce titre, il vérifie le théoréme d’approximation
forte pour tout ensemble de places S tel que Gg soit non compact ([K3]).

On prend ici S = {p}; alors G5 = U(V,, h). Montrons que ce groupe est non
compact si m est supérieur ou égal a 2. Considérons la forme bilinéaire symétrique
sur le K,-espace vectoriel ¥, donnée par b(x, y) = trd (h(x, )), ou trd est la trace
reduite de la K -algebre H,. Comme dimg (V,) =4m > 5, la forme quadratique
associée représente 0. Comme b(x, x) = 2h(x, x), il existe x € V, tel que h(x, x) = 0.
Si H, est un corps, alors on montre facilement que V, contient un plan hyper-
bolique, c’est-a-dire un plan pour lequel la matrice de la forme hermitienne est
(? (1)) Le groupe unitaire de ¥, contient donc le sous-groupe des matrices de la

A
forme ( 0 i-!
matrices #,(K,), c’est encore plus simple: le groupe unitaire de V, contient un
sous-groupe isomorphe a {4 € H, /A4 =1} (en effet, on voit facilement que la forme
hermitienne A est équivalente a X7_, g,x;j;, ou g; € K,) qui est non compact dans le
cas d’une algébre de matrices (la condition m > 2 n’est donc pas nécessaire si p est
non ramifié dans H).

L’¢lément (f,), appartient & G, (complété par 1 en p et aux places a I'infini de
K) et peut donc étre approché par un élément de GxGg. En prenant comme ouvert
IT,U(L,), il existe f € U(V, h) et a,€ U(L,) tels que pour tout q # p, f,0, =f. Alors
Ly =f,Ly) =f(L), 0

), A € K¥ qui est non compact. Si H, est isomorphe a I’algébre de

Fin de la démonstration du théoréme 3.1. D’aprés les propositions 3.2 et 3.4, il suffit
que les réseaux L et L’ soient localement isométriques. Soit q un idéal maximal fixé
de K; si q est ramifi¢ dans H, alors H, est un corps et L, et L; sont isométriques
d’apreés le théoréme 6.2 de [J]. Si q n’est pas ramifié dans H, le résultat est également
bien connu. Faute d’une référence précise, nous donnons une démonstration:
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’algebre H, est isomorphe a .#,(K,). A conjugaison prés, on peut supposer que
M, = M,(Dxg,) ([V]D. Comme q n’est pas ramifié, quitte a changer 4 en a,h, on peut
supposer que L, et L; sont unimodulaires.

On note sL, I'idéal bilatére de H, engendré par les A(x, y) lorsque x, y appar-
tiennent a L, et nL, I'idéal bilatére de H, engendré par les A(x, x) losque x appartient
a L,. Grace a la relation A(x +y, x +y) = h(x, x) + h(y, y) + trd (h(x, y)), on a les
inclusions: trd (sL,) = nL, = s/,. Comme L, est unimodulaire, sL, =M, et comme
trd (MM,) = DKq, nL, =9M,. Par conséquent, il existe e, appartenant a L, tel que
h(e, e,) € O%,. Comme nrd (M) = det (A,(Dg, )) =Dk, , on peut supposer que
h(e,,e,) =1. Alors, L,=9M.e L L;, et par récurrence on montre que
L,=Me, L --- L WMe, avec h(e;, ;) =96,;. Il y a donc une seule classe d’isométrie
hermitienne de réseau unimodulaire sur I, . O

4. Classification des réseaux unimodulaires jusqu’a la dimension 28 sur Pordre de
Hurwitz

4.1. L’ordre de Hurwitz

On suppose désormais que H =Q+ Qi + Qj + Qk, avec i’=j’=—1,j=
—ji=k. A conjugaison prés, H a un unique ordre maximal qui est
M=27[1,ij,(1+i+j+k)/2]. L’unique nombre premier ramifi¢ dans H est 2; on
a2M =P ou P=(1+i)M=IM(1 +i); le quotient M/P est isomorphe au corps
fini & quatre éléments F,.

Le groupe des unités de .# est le groupe a 24 éléments M* = {+1, +i, +j,
t+k,(x1+i+j+k)/2}. Onnote w=(—1+i+j+k)/2; cest un elément d’ordre
3 de MM*, dont la classe résiduelle engendre (I/P)*.

4.2. Réseaux unimodulaires

Tout espace hermitien (¥, h) sur H tel que la forme associée x - y soit définie
positive est isomorphe a (H™, £, x;7;). Sauf mention explicite du contraire, on se
place dans cet espace. Toutefois, on considérera parfois la forme 3 7, x,,. Soit L
un réseau unimodulaire sur 'ordre de Hurwitz de dimension m. Le réseau L, est un
réseau entier, pair, de dimension n = 4m, de déterminant 2*” d’aprés le paragraphe
2. On appelle minimum hermitien et on note min (L) le nombre min (L) =
min {A(x, x)/x € L — {0}}; on appelle minimum et on note min (L;) le nombre
min (L;) = min {x - x/x € L — {0}}; on a donc min (L;) =2 min (L). On note S(L)
'ensemble des vecteurs minimaux de L, c’est-a-dire ’ensemble des éléments de L qui
réalisent min (L).
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Comme H est de nombre de classes 1, le seul réseau unimodulaire en dimension
1 est L = (M, xp). Il est bien connu que L, est isométrique au réseau de racines D,
(IM2]). Remarquons qu’un réseau de minimum hermitien 1 est réductible car il
contient des facteurs orthogonaux isométriques a In.

La construction suivante est due a J. Martinet; afin de travailler avec des
coordonnées entiéres, on prend sur les réseaux suivants la forme 5 £ | x,¥;:

J4m={(x,,x2,...,xm)e‘13”’/z x,-eZiUi}

i=1

J,4m ={(x]9x29 o 5xm) eﬁlnm/xi Exj' mod ‘B et Z X; €2§Ut}

i=1

PROPOSITION 4.1. [M1]

On suppose que m est pair.

(1) Si m est supérieur ou égal a quatre, le réseau J,,, est unimodulaire, irré-
ductible, de minimum hermitien 2.

(2) Si m est supérieur ou égal a 6, alors S(J,,,) = S(J4,) et a pour cardinal
24m(4m — 3). Le groupe unitaire U(J,,,) est de cardinal 3.2°"~2-m!; il est
engendré par les permutations des coordonnées et par les transformations
(X1, X35« oy X)) = (X Uy, XoUs, . . ., X, U,,), OU les u; sont des unités de M
vérifiant: u; = u; mod B, et T u; € 2M.

(3) Si m=4,J,, est isométrique sur Z au réseau de Barnes-Wall BW.
L’ensemble de ses vecteurs minimaux est S(J's) = S(J16) U {(uy, uy, us, uy)/
u; € M*, u, =u; mod B, Z u; € 29M}. Son groupe unitaire est transitif sur
Pensemble de ses vecteurs minimaux.

4.3. Généralités sur les voisinages

On regroupe dans ce paragraphe quelques résultats techniques faciles a établir
sur la recherche des voisins d’un réseau qui seront utilisés au cours des démonstra-
tions. Soit L un réseau unimodulaire sur I’ordre de Hurwitz; on cherche a décrire
ses 2-voisins (ou plus simplement ses voisins).

Les sous-réseaux quaternioniens d’indice ‘8 de L sont tous de la forme

L*={y e LIh(y, x) € B}

ou x est un élément de L n’appartenant pas a BL. L’ensemble L* ne dépend que
de la classe de x dans le quotient L/BL; la classe d’isométriec de L* ne dépend que
de Porbite de la classe de x sous I’action de U(L) (car a(L*) = L°™),
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Le dual du réseau L* est
(L*)* =L + P~'x.

Le réseau L~ est contenu dans un voisin de L si et seulement si A(x, x) appartient
a 2IM (et donc a 27Z). Dans ce cas, il est contenu dans exactement cinq réseaux
unimodulaires correspondant aux cinq droites de (L*)*/L* qui est un plan sur F,.
En particulier, si A(x, x) est pair, on pose

L .=L"+ P 'x

C’est I’'un des quatre voisins de L contenant L~*.

Nous allons maintenant étudier les voisins irréductibles du réseau
L =", 2 x,9;). Soit x = (x4, ..., X,,) un élément de MM™. Si I'un des x, appar-
tient & B, alors L* contient un sous-réseau isométrique a I, et les voisins de L
contenant L* sont tous réductibles. Dans le cas contraire, les x; sont tous congrus
a une unité modulo B; or U(L) contient tous les (x;, ..., x,) = (X4, . .., X, U,,)
ou u; appartient a IM*; on peut donc choisir x =(1,1,...,1). On a vu que L~ n’est
contenu dans un réseau unimodulaire autre que L que si A(x, x) est pair. Or
h(x, x) = m. De plus, on voit facilement que U(L) permute les quatre voisins de L

.....

dans lequel on reconnait J,,,. Nous avons démontré la proposition:

PROPOSITION 4.2. Si m est impair, le réseau (™", L. | x,;j;) n’a aucun voisin
irréductible. Si m est pair, les voisins irréductibles de (IM™, X7, x;y;) sont tous
isométriques a J,,,.

Remarque 4.3. Jusqu’a la dimension 28, un réseau L unimodulaire est toujours
son propre voisin. En effet, quitte a se placer en dimension inférieure, on peut
supposer qu’il est irréductible. Alors on verra au paragraphe suivant qu’il est de
minimum hermitien 2. Si x appartenant a L est tel que A(x, x) = 2, alors L est voisin
de A = L, qui est de minimum hermitien 1, donc de la forme 9 L A’. Le groupe
unitaire de A4 contient un sous-groupe isomorphe a IM* (agissant par multiplication
a droite sur la composante M). On peut écrire ANL =A” avec y =(u,y’) € A.
Alors le sous-groupe de M* U = {¢ € M*/e = 1 mod P} ={+1, +i, tj, tk} sta-
bilise A” et donc opére sur le F,-espace vectoriel de dimension 2 (A”)*/A’.
L’élément —1 agit trivialement; les autres induisent I’identité sur la droite 4/4”
mais pas sur tout le plan (regarder d’image de (1 + i) ~'y); comme ils sont d’ordre
2, ils n’ont pas d’autre droite stable que A/4”. Ainsi, le groupe bicyclique U/{+ 1}
opére sans point fixe sur les quatre réseaux unimodulaires contenant A” et distincts
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de A. Il opére donc transitivement, et ces quatre réseaux sont isométriques et voisins
les uns des autres.

Le graphe des voisinages présente donc une boucle en chacun de ses sommets
jusqu’a la dimension 28, que nous avons omis de représenter dans les figures 1, 2,
3, 4.

4.4. Formes modulaires

D’aprés (2.1), le réseau L, vérifie L% = (1 +i)~'L,; 'application x — (1 +i)x
est une similitude de rapport \/5 de L* sur L,. Ce réseau est donc, dans le
vocabulaire de [Q2], un réseau modulaire de niveau 2. H.-G. Quebbemann démon-
tre ([Q2, §1.2]) que la série theta d’un tel réseau est modulaire de poids dim (L;)/
2 =2m pour le groupe de Fricke I' .(2), et pour un certain caractére y. L’étude de
I’espace des formes modulaires correspondant montre que

min (L;) <2 + 2[m/4] (1)

et que, de plus, lorsque P’égalit¢ est réalisée, la série theta est déterminée et
facilement calculable. Avec les notations de [Q2], soit 0, la série theta du réseau de
racines D,, et soit 4,5 = (n(z2)n(22))%; un réseau L unimodulaire sur 'ordre de
Hurwitz de dimension 24 (m =6) et de minimum 4 a pour série theta
0, =05—144024,=1+3024g>+---; si la dimension est 28, 0, =0} —
168034,6=1+1512¢%> +- - - .

On déduit immediatement de (1) que, pour les dimensions m =2, 3, il y a une
seule classe de réseau unimodulaire, a savoir (IMM™, | x,5,); en effet, un tel réseau
a pour minimum hermitien 1. Un argument de H.-G. Quebbemann, que nous
restituons ici, montre qu’il y a en dimension 4 une seule classe de réseau unimodu-
laire irréductible. Soit L un tel réseau; d’aprés ce qui précede, min (L) = 2. Soit x
Pun de ses vecteurs minimaux. Le réseau L, = L*+ P~ 'x est unimodulaire sur
Pordre de Hurwitz et de minimum hermitien 1; il est donc isométrique a
(M4, =¥, x,7,). Mais on a vu que celui-ci a (& isométric prés) un seul voisin
irréductible qui est Ji¢.

4.5. Une formule de masse

Hashimoto a démontré une formule de masse pour les réseaux unimodulaires
quaternioniens analogue a la formule de Siegel. Dans le cas particulier que nous
considérons, soit E,, ’ensemble des classes d’isométrie hermitienne de réseaux
unimodulaires de rang m sur 'ordre de Hurwitz; on a:
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o 7 U(L) =1 ”) )

ou les B,, sont les nombres de Bernoulli ([H, §3 (25))).

4.6. La dimension 16

THEOREME 4.

(1) Le réseau J'¢ est, a isométrie hermitienne preés, le seul réseau irréductible et
unimodulaire sur ’ordre de Hurwitz en dimension 16.

(2) Son groupe unitaire est de cardinal 2'3-3*- 5, et est engendré par les
réflexions relatives a ses vecteurs minimaux.

(3) Les classes du quotient J's/BJ ¢ sont représentées par des éléments de norme
hermitienne 0, 2, 3.

(4) Le groupe U(J¢) est transitif sur ’ensemble des classes d’éléments de norme
2 de J'\¢|BJ 6 (respectivement sur I’ensemble des classes d’éléments de norme
3).

Démonstration: le (1) est démontré au paragraphe précédent. La formule de
masses donne le cardinal de U(J¢); en effet, le groupe unitaire de IMN™ est engendreé
par les permutations des m coordonnées et par les applications de la forme
X1y -y X)) 2 (XU, ..., Xuy) avee u; € IM*, et est donc de cardinal 24”m!. Par
ailleurs, on trouve dans [C] un systéme de racines isométrique a I’ensemble des
vecteurs minimaux du réseau J',; c’est le systéme noté S;. Le groupe engendré par
ses réflexions est de cardinal 2'*- 3% 5 ([C, Table 3]); c’est un sous-groupe du
groupe unitaire de Ji; il lui est donc égal.

On sait que les classes modulo 2 des vecteurs du réseau de Barnes-Wall ont pour
représentants les vecteurs de norme au plus 12 ([C.S1, chap. 6, §5]). Montrons que
'on peut en déduire que les classes modulo P de Jis ont pour représentants les
vecteurs de norme hermitienne 0, 2, 3: en effet, soit x un ¢lément de J'¢. Alors il
existe z appartenant a 2J9, tel que ((1+i)x —z)- ((1 +i)x —z) <12, ou encore
h(x —(14+i)7'z,x —(1+i)~'z) <3. D’ou le résultat, puisque (1 + i)'z € PJ'¢

On a déja vu que le groupe unitaire de Jis est transitif sur ’ensemble de ses
vecteurs minimaux. Montrons qu’il est transitif sur les classes de vecteurs de norme
hermitienne 3. Les vecteurs de norme 3 sont de deux types & permutation des
coordonnées pres: soit du type (x, u;, ¥,, u3) avec xx =3 et u; € M*, soit du type
(x1, x5, x5, 0) avec x; € P. On voit facilement que les transformations décrites au (2)
de la proposition 4.1 permutent transitivement chacun des types modulo PJi,.
Pour passer d’un type a I'autre, on utilise la transformation suivante qui stabilise le
réseau J'q:
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(1—i 1—i 0 0
1| 1—=i —14i 0 0
21 0 0 1—i  1-i
0 0 1—i —1+i
L J O
4 Ji6

Figure 1. Graphe des voisins en dimension 16.

4.7. La dimension 20

Le cas de la dimension 20 est analogue a celui de la dimension 16; on trouve
également une seule classe de réseau irréductible unimodulaire, dont on verra la
construction explicite au cours de la démonstration du théoréme suivant:

THEOREME 4.5.

(1) 1l y a, a isométrie hermitienne prés, un seul réseau irréductible et unimodulaire
sur lordre de Hurwitz en dimension 20, que I’on note R,,.

(2) Son groupe unitaire est isomorphe au groupe SUs(2) x {+1}, et est de
cardinal 2'' - 3°- 5 11. Il est engendré par les réflexions relatives & ses
vecteurs minimaux.

(3) Les classes du quotient R,,[BR,, sont représentées par des éléments de norme
hermitienne 0, 2, 3.

(4) Le groupe U(R,,) est transitif sur ’ensemble des classes d’éléments de norme
2 (respectivement de norme 3) de Ry, /*BR,,.

Démonstration: la formule de masse (2) montre I’existence d’au moins un réseau
unimodulaire et irréductible; en effet, les réseaux réductibles de la dimension 20
sont, d’aprés le théoréme 4.4, M> et M L Jix. Leur groupe unitaire a pour ordre
respectivement 24° - 5! et 24 - 213 - 3% . 5; il reste dans la formule de masse le terme
1/(2' - 35-5-11). Soit R un tel réseau; d’aprés (1), son minimum hermitien est 2,
il est donc voisin d’un réseau réductible. Comme 5 est impair, le réseau 9> n’a pas
de voisin irréductible. Le réseau L =R L J)¢ a, a isométrie pres, un seul sous-ré-
seau d’indice P et de minimum hermitien 2 grace au (4) du théoréme 4.4, qui est
L* avec x =1+ x,, X, étant un élément de J;, de norme hermitienne 3.
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Les quatre réseaux unimodulaires qui contiennent L* sont permutés transitive-
ment par le sous-groupe de U(L) isomorphe a IM* (agissant sur le facteur M de
L), et sont donc isométriques. Cela démontre I'unicité & isométrie prés du réseau
R,, que l'on peut prendre égal a L, =L*+ P~ 'x, pour un choix quelconque
de x,.

On trouve dans [C] un systéme de racines irréductible en dimension 20 défini sur
I’ordre de Hurwitz et note U (Table 2). On peut vérifier qu’il engendre en réseau
unimodulaire de minimum hermitien 2, qui est donc isométrique & R,,. D’aprés la
Table 3, le groupe engendré par les réflexions relatives a ses racines, est d’ordre
2'1.35.5.11 et est isomorphe a PSUs(2) x {+1}; de plus, il est transitif sur
celles-ci. D’aprés la formule de masse, il est égal au groupe U(Ry).

On vient de voir que le groupe unitaire du réseau R, est transitif sur ’ensemble
de ses vecteurs minimaux. Considérons le quotient R,,/BR,,; muni de la forme
induite de celle du réseau R,,, c’est un espace hermitien non dégénéré sur F, pour
le Frobenius de F,. D’aprés le théoréme de Witt, son groupe unitaire Us(2) est
transitif sur I’ensemble de ses vecteurs isotropes non nuls, ainsi que sur ’ensemble
de ses vecteurs non isotropes. En utilisant des produits pairs de réflexions, on peut
vérifier que SU5(2) est transitif sur les vecteurs non isotropes. Comme I'image de
U(R,,) dans le groupe unitaire de cet espace est SUs(2), les vecteurs non isotropes
du quotient sont représentés par des vecteurs de norme hermitienne 3. Le groupe
SUs(2) est au moins transitif sur les droites isotropes. Comme les classes non nulles
de IR/P sont représentées par des unités de M, on en deduit que les vecteurs
isotropes non nuls de R,,/*BR,, sont représentés par les vecteurs minimaux du
réseau R. O

ML J,

N

Rao

Figure 2. Graphe des voisins en dimension 20.

gﬁs

(D’aprés la proposition 4.2, les réseaux MM et Ry, ne sont pas voisins.)
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4.8. La dimension 24

En dimension 24, on trouve deux classes de réseaux unimodulaires irréductibles.
Ily a le réseau J3, (voir proposition 4.1), et un réseau construit a partir du réseau
de Coxeter-Todd de la fagon suivante: le réseau K, de Coxeter-Todd a une
structure de réseau hermitien sur ’anneau des entiers d’Eisenstein (qui est I’anneau
des entiers du corps quadratique de discriminant 9) ([F]). De plus, il est unimodu-
laire sur cet anneau. Si w =(—1+i+j+k)/2, on peut identifier Z[w] aux entiers
d’Eisenstein, ce qui nous permet de définir le réseau

R24 =M ®Z[w] KIZ-

Comme K, est unimodulaire sur Z[w], R,, est unimodulaire sur 9%. Montrons
que son minimum est encore 4: soit O 'ordre Z[w] + (i —j)Z[w]. Les inclusions
M(1 —w) c O M permettent d’écrire la décomposition orthogonale sur Z:
Ry = ((1 —W)/3)K,, L, (i —j)((1 —w)[3)K,,. La norme d’un élément non nul x de
R,, est donc de la forme x - x =3(x, - x; + 2x, - X,), ou X, et x, sont dans K;, et
donc sont soit nuls soit de norme au moins égale a 4; Les facteurs de la
décomposition ayant pour intersection avec R,, respectivement K, et (i —j)K,, la
norme de x est au moins égale a 4.

L’ensemble des vecteurs minimaux de R,, contient les éléments de la forme ux
ou u est une unité de M et x un vecteur minimal de K,,, ce qui fait 4.756 = 3024
éléments distincts ({41, +w, +w?} = Z[w]). Or la théorie des formes modulaires
(§4.4) prévoit qu’un réseau unimodulaire sur 'ordre de Hurwitz en dimension 24 a
exactement 3024 vecteurs minimaux; ils sont donc tous de cette forme.

De plus, on peut remarquer que ces deux réseaux ne peuvent pas Etre
isométriques; en effet, le réseau R,, est engendré par ses vecteurs minimaux, alors
que ceux de J5, engendrent J,, (proposition 4.1).

THEOREME 4.6.

(1) Les réseaux J’, et R,, sont, a isométrie hermitienne pres, les seuls réseaux
irréductibles et unimodulaires sur I’ordre de Hurwitz en dimension 24.

(2) Le groupe unitaire du réseau R,, est égal au groupe unitaire du réseau de
Coxeter-Todd (comme réseau hermitien sur les entiers d’Eisenstein) qui est
engendré par les réflexions relatives a ses vecteurs minimaux; il est de cardinal
22-37.5-7.

(3) Les classes du quotient R,,[*BR,, sont représentées par des éléments de norme
hermitienne 0, 2, 3, 4.

(4) Le groupe U(R,,) est transitif sur I’ensemble des classes d’éléments de norme
2 (respectivement de norme 3; respectivement de norme 4) de R,,/*BR,,.
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Démonstration: pour terminer la démonstration du point (1), il suffit de montrer
qu’il y a au plus deux classes de réseaux irréductibles. Par un raisonnement
analogue a celui du théoréme précédent, il suffit de compter les voisins irréductibles
des réseaux réductibles de la dimension 24, qui sont: MM, M L Jis et M L Ry,. Le
réseau IMM° a pour seul voisin irréductible J,, (proposition 4.1(1)). Grice aux
assertions (3) et (4) du théoréme 4.4, on voit que le réseau M? L Ji4 a, 4 isométrie
prés, un seul voisin irréductible, qui correspond a un élément de la forme (1, 1) + x,
ou x est un vecteur minimal de J}4. De méme, grace au théoréme 4.5, le réseau
IM L R, a, & isométrie pres, un seul voisin irréductible, correspondant a un élément
de la forme 1 + x, ot x est un vecteur de norme hermitienne 3 de R,,.

Montrons que le voisin ¥ de M? L J¢ précédemment décrit est isométrique a
Jh: notons y =(1,1) e M alors V' = (I L Ji), . ,, et on voit facilement que V
est aussi voisin de (M), L (Ji), =M. La seule possibilitt est que V soit
isométrique a J5,.

Le groupe U(R,,) contient le groupe unitaire de K,,; celui-ci est de cardinal
2%-37. 5.7 et est engendré par les réflexions relatives aux vecteurs minimaux ([F],
[S.T]). Ces groupes sont en fait égaux, car si on met dans la formule de masse (2)
les cardinaux (connus) des groupes unitaires de M2 L Jiq, M L R,, et J5,, il reste
exactement 1/(2°-37-5-7).

La décomposition M = Z[w] + (1 + i)Z[w] montre que R,, =K}, + (1 + K,
(la somme est une somme directe mais non orthogonale de Z-modules). Ainsi, tout
élément de R,, est congru modulo BR,, & un élément de K,,. Or, d’apres [C.S2, §3],
tout élément de K, est congru modulo 2K, a un élément de norme hermitienne 0,
2, 3 ou 4, et le groupe unitaire de K, est transitif sur chacune de ces catégories
(remarquons que les quotients K,,/2K;, et R,,/BR,, ont méme cardinal). O

Déterminons le graphe des voisins: au cours de la démonstration du théoréme
4.6, on a vu que J5, est le seul voisin irréductible de IMM?* L Jig, et que R,, est le seul
voisin irréductible de I L R,, (& isométrie prés). Pour avoir le graphe complet, il
reste & montrer que J5, et R,, sont voisins. Soit x un élément de R,, de norme
hermitienne 4 et appartenant a K,,. Nous allons montrer que (R,4), est isométrique

M2 L Jjg——IM L Ryo

Ja4 Ra4

Figure 3. Graphe des voisins en dimension 24.

m‘tfi
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a Jy,. En effet, ce réseau est irréductible (sinon il contiendrait un élément y de
norme hermitienne 1, tel que x = (1 + i)y mod PR,,; or la classe d’un élément de
norme hermitienne 4 modulo BR,, ne contient pas d’élément de norme hermitienne
2). De plus, (Ry,), est clairement voisin de M ®4,,; (KT, + Z[w]). Or KT, + Z[wh
est isométrique sur Z[w] & Z[w]® ([FI]), donc M @ z,,; (K72 + Z[wl}) est isométrique &
IM® dont le seul voisin irréductible est J5,.

4.9. La dimension 28

Nous allons construire trois réseaux non isométriques, irréductibles et unimodu-
laires en dimension 28. Rappelons qu’un tel réseau a 1512 vecteurs minimaux (§4.4).

Le premier se construit a partir du réseau de racines E, de la fagon suivante: le
réseau [, est de déterminant 2, et son dual E¥ est tel que: E¥ = E, + Ze, ou e est un
vecteur de norme 3/2 (e =4(1,1, 1,1, 1,1, —3, —3) dans le systéme de coordonnées
pair de E; ([C.S1 chap 4])). On pose alors:

Rys =M ®; E; + Pe.

On voit facilement que ce réseau est unimodulaire sur I’ordre de Hurwitz; c’est le
seul réseau unimodulaire contenant I ®, E,.

Montrons que le minimum hermitien de R,; est encore 2: Iinclusion
M < 127[1, i, j, k] montre que M@ E* < 1E* L, iE* L, LE* 1, %F*; le minimum her-
mitien de M ®; E* est donc égal a 3/2. Comme R,; est un sous-réseau entier de ce
dernier réseau, son minimum hermitien est au moins égal a 2.

L’ensemble de ses vecteurs minimaux est égal a {ux, u € M*, x € S(E,)} qui est
de cardinal 1512.

Le deuxiéme réseau est construit comme un voisin du réseau I L Jic. Soit
e=({+j+k 1,1,1) un élément de Jj¢ de norme hermitienne 3. Soit
x=(1,1,1) +e e M L J}¢ de norme hermitienne 6. On pose:

’28 = (‘.UP 1 J’16)x'

Posons L, = (J6)¢; il est engendré par 'ensemble de ses vecteurs minimaux qui
apparait comme systeme de racines dans [C] sous le nom de S;. Son cardinal est
864 = 24.18. Le réseau MV est isométrique a J;, qui a 648 =24.27 vecteurs
minimaux. Le réseau R’ contient (avec un indice 16) la somme orthogonale
L,g L J,,; comme 864 + 648 = 1512, ’ensemble des vecteurs minimaux de R5g est la
réunion S(J},) US(Le).
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Le troisiéme réseau est un cas particulier d’une construction générale due a J.
Martinet et dont les réseaux J,,, font également partie ((M2]). Nous donnons ici le
cas particulier qui nous intéresse. Soit g et ' deux idéaux a gauche de I contenant
39. On prendra q = M(1 —w) et q' = M(1 — w)i, mais le choix est indifférent. On
pose:

4 7
Rig = {(xl,xz, ey, Xg) € W x; = x; mod q et Z x; =0 mod q’},

i=1

muni de la forme 1 X7_, x,7,.

On montre que ce réseau est unimodulaire sur I’ordre de Hurwitz, de minimum
hermitien 2. L’ensemble de ses vecteurs minimaux est, a permutation prés des
coordonnées, ’ensemble des vecteurs de la forme u((1 —w), v(1 —w),0,0,...,0),
ou u appartient & I* et v appartient a {1, w, w?}; on peut vérifier que cela fait bien
1512 vecteurs minimaux. Ils engendrent le sous-réseau d’indice 9 suivant:
{(x1, X5, ..., X7) €q7[Z]_, x; € 33R}. On peut remarquer que R est un 3-voisin au
sens du paragraphe 2 de 9.

Ces trois réseaux ne peuvent pas €tre isométriques car les sous-réseaux engen-
drés par leurs vecteurs minimaux respectifs ne le sont pas: en effet, dans le premier
cas il est d’indice 4, dans le deuxiéme cas il est d’indice 16, et dans le troisiéme cas,
il est d’indice 9.

THEOREME 4.7.

(1) Les réseaux R,5, R5 et R5g sont, a isométrie hermitienne prés, les seuls
réseaux irréductibles et unimodulaires sur I’ordre de Hurwitz en dimension 28.

(2) Le groupe unitaire du réseau R,g est isomorphe au produit direct IN*/
{+1} x W(E,), ou W(E,) est le groupe de Weil du systéme de racines E,. Il
est de cardinal 2'*- 3% 5-17.

(3) Le groupe unitaire du réseau R’g est de cardinal 2'% - 3°,

(4) Le groupe unitaire du réseau R est le produit direct de { + 1d} par le groupe
engendré par les réflexions relatives a ses vecteurs minimaux; il est de cardinal
2-3%- 71,

Démonstration: comme pour le théoréme précédent, il suffit de démontrer que les
réseaux réductibles ont au plus trois voisins irréductibles non isométriques. D’apres
les résultats précédents, les réseaux réductibles de la dimension 28 sont:
M7, M3 L T, M2 L Ryp, M L Ry, M Lo,

Le réseau MM’ n’a pas de voisin de minimum hermitien égal a 2.

Le réseau M L Ji, a, a isométrie prés, un seul voisin irréductible correspondant
a un élément de la forme (1, 1, 1) + x, ou x est de norme hermitienne 3 dans Ji4:
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en effet, on a vu que le groupe unitaire de Ji¢ est transitif sur les ¢éléments non
isotropes du quotient J¢/BJ ¢ (théoréme 4.4(4)). Ce réseau est aussi un voisin de
M2y L (ML Ji6) 4 » qui est isométrique a > L Ry.

Le réseau M L R,, a, a isométrie prés, un seul voisin irréductible correspondant
a un ¢lément de la forme (1, 1) + x, ou x est de norme hermitienne 2 dans R,,: en
effet, on a vu que le groupe unitaire de R,, est transitif sur les éléments isotropes du
quotient R,o/BR,, (théoréme 4.5 (4)).

Le réseau M L R,, a, a isométrie pres, un seul voisin irréductible correspondant
a un élément de la forme 1 + x, ou x est de norme hermitienne 3 dans R,,: en effet,
on a vu que le groupe unitaire de R,, est transitif sur les éléments non isotropes du
quotient R,,/BR,, (théoréme 4.6 (4)).

On a trouvé jusque-la au plus deux classes de réseaux irréductibles; il reste a
examiner les voisins de M L J5,. Soit ¥ un voisin irréductible de L =M L J,
contenant L*. On pose x =1 + x,, avec x, € J54,. Montrons que S(V) ne peut pas
étre inclus dans S(L*); dans ce cas, S(L*) serait de cardinal 1512, et donc S((J54)*°)
serait de cardinal 1488. L’examen de S((J5,)*°) montre que cela ne peut pas arriver
avec un x, de norme hermitienne impaire. Comme S(¥) n’est pas inclus dans L*,
on peut écrire V = L*+ My, avec h(y,y) =2. Alors (L)* =L + P~ 'x =L + My;
x et (1 + i)y déterminent la méme droite du MM/ P-espace vectoriel L/PL, la classe
de x dans L/BL contient donc un élément de norme hermitienne 4. On est donc
ramenés au cas ou h(x,, X,) = 3. On voit facilement que, sous I’action du groupe
unitaire de J5,, les éléments de norme hermitienne 3 se répartissent en deux orbites:
celle de (1,1,1,1,1,1), et celle de (1 + i, (1+i)w, (1+i)w? 0,0,0). On montre
alors que, dans le dernier cas, ¥ contient un sous-réseau isométrique a J,, L L
(considérer {x e V/xpo=x;=x,=x,=0} L {x e V/x,=x5=x4=0}), et que, a
isométrie pres, il y a un seul réseau irréducible et unimodulaire contenant J;, L L,
qui est également un voisin de M> L Js. Le point (1) est donc démontré.

Le groupe MM*/{+1} x W(E;) est un sous-groupe du groupe unitaire de
IR ®; E, (agissant par a ® x - au ® f(x)); comme R,z est le seul réseau unimodu-
laire contenant M ®;, E,, il est stable par ce groupe.

Comme les vecteurs minimaux de R’ engendrent J,, 1 L,¢, son groupe unitaire
est un sous-groupe du produit U(J,,) x U(L¢). Il y a exactement 12 réseaux
contenant J,, L L,, et isométriques a R’ (correspondants au choix d’un parmi les
trois réseaux d’indice P de M L J', mais distincts de M> L L, et de J;, L i,
puis d’'un parmi les quatre réseaux unimodulaires contenant celui-ci et distinct de
M3 1 Jie). Ils sont permutés transitivement par le groupe U(J,,) x U(L,¢). Donc
#U(L) =1 # U(Jy,) # U(Lyg). 1l reste a calculer le cardinal du groupe unitaire de
L,s. On voit facilement que L{;n {x[h(x, x) =2} = S(J'¢). Le groupe unitaire de
L, est donc un sous-groupe du groupe unitaire de J4; comme L,g = (J16)¢, U(Lg)
est formé des ¢léments de U(J'¢) qui stabilisent la droite issue de e du t/B-espace
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vectoriel Jis/BJis. Or on a vu (théoréme 4.4) que U(J)) est transitif sur les
vecteurs non isotropes de ce quotient. Dans un espace hermitien de dimension 4 sur
F*, il y a 40 droites non isotropes, sonc # U(L;s) = # U(J)¢)/40. On trouve
finalement que U(R’) a 2!8 - 3° éléments.

Le groupe engendré par les réflexion relatives aux vecteurs minimaux de R’ est
un sous-groupe de son groupe unitaire; c’est le groupe de réflexions noté
G,({1, w, w?}, {1}) dans [C], il est de cardinal 3¢ - 7!

Pour chaque classe d’isométrie hermitienne de réseau, on connait un sous-
groupe du groupe unitaire; or la formule de masse donne un reste nul quand on
remplace les cardinaux des groupes unitaires par les cardinaux de ces sous-groupes.
Ceux-ci sont donc les groupes unitaires tout entiers. O

Déterminons le graphe des voisins: au cours de la démonstration du théoréme
4.7, on a montré que M L J), a deux voisins irréductibles, sont un qu’il partage
avec M* L J)s et M L R,,. Ce dernier est donc Rj. Par ailleurs, si
x=(1,1,1,1,1,1, 1), on montre facilement que (M L J3,), est isométrique a R,s.
R’ est donc I'unique (a isométrie prés) voisin irréductible de M L R,,.

Dans le systéeme de coordonnées pair de [Eg, soit x =(0, —1, 1, —w, w, 0, 0, 0)
qui appartient 2 R,g. Alors (R,3), est isométrique a R’ (ceci a été vérifié dans le
systtme PARI, en calculant l'indice du sous-réseau engendré par les vecteurs
minimaux).

Les voisins irréductibles de R7 n’ont pas été explorés systématiquement; nous
n’avons pas déterminé si R et R5g sont voisins.

5. Réseaux unimodulaires sur Pordre de Hurwitz en dimension 32

En dimension 32, I'inégalité (1) laisse la possibilité pour un réseau modulaire de
niveau 2 d’avoir un minimum égal a 6. Dans [Q1], H.-G. Quebbemann a construit
un tel réseau; c’est la meilleure densité connue en dimension 32.

Dans ce paragraphe, nous allons construire un réseau @ de minimum 6,
modulaire de niveau 2, ayant une structure quaternionienne sur ’ordre de Hurwitz,
mais non unimodulaire. (Remarquons que, pour que le réseau L, associ€é & un
réseau L hermitien sur 'ordre de Hurwitz soit entier, il n’est pas nécessaire que la
forme h(x, y) prenne des valeurs entiéres sur L; il suffit que A(x, y) appartienne a
B! qui est la codifférente de H.) La question de I’existence d’un tel réseau, qui soit
en outre unimodulaire sur 'ordre de Hurwitz, reste ouverte; son existence est
toutefois peu probable. Il semble qu’il y ait un trop grand nombre de réseaux de
minimum 4 (nous en avons trouvé 9 et cette liste n’est surement pas compléte) pour
pouvoir utiliser la formule de masses (2).
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e

m L J, M? L Js—— M2 L Ry

! "
Rag 2 28

Figure 4. Graphe des voisins en dimension 28.

La méthode s’inspire de la construction bien connue du réseau de Leech comme
voisin (au sens de Kneser) du réseau unimodulaire de systéme de racines A%?*. Ce
dernier est construit & ’aide du code de Golay ([C.S1 chap. 4-18]). Nous allons
d’abord construire un réseau unimodulaire sur ’ordre de Hurwitz, de minimum 4,
et ayant pour vecteurs minimaux huit vecteurs deux a deux orthogonaux ainsi que
leurs multiples par une unité de M. Autrement dit, ’ensemble de ses vecteurs
minimaux engendre un réseau isométrique a J5. Notons un tel réseau J§. Pour cela,
on utilise un code de longueur 8 sur ’algébre /29N (qui remplace Z/2Z dans le cas
de A?*). Ensuite, on cherche Q comme voisin (non entier) de J§.

5.1. Codes sur I2IM

L’algébre 9%/2M a la structure suivante: en identifiant les classes modulo 29t de
0, 1, w, w? avec le corps [F,, et en notant u la classe de 1 + i,

9]&/2% = [F4 + [F4u,

avec les relations u2 =0 et ul = Au, oud — A est le Frobenius de F,; la somme est
une somme directe de F,-espace vectoriel. On note (x, y) I’élément x + yu de IR/29N.
Remarquons qu’un tel élément contient une unité de IR si et seulement si x est non

nul.
Un code (linéaire) sur M/2M de longueur m est un sous-module C de (Pt/29R)™.
Il n’est pas nécessairement libre, mais admet une matrice génératrice de la forme:

o (T M M
0 Ikzu M3u |

ou M,, M, sont des matrices a coefficients dans /29 et M, est a coefficients dans
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F,. Le code C est libre si et seulement si k,=0; son cardinal est 16*'- 4%,
L’orthogonalité dans (9R/29M)™ est définie relativement a la forme X7, x;p;; le
poids d’un mot est défini en comptant 1 par coordonnée n’appartenant pas a [F,u,
et 2 par coordonnée appartenant a F,u — {0}.

A partir d’'un code C on définit un réseau L. hermitien sur 'ordre de Hurwitz
par:

Le={(x;, X3, ... X)) €M"[(x,, X3, ..., X,) mod 2 e C}

pour la forme 5 7, x,7,. Alors L est un réseau entier si et seulement si C = C*,
unimodulaire si et seulement si C = C*. Supposons que C = C*. Le minimum du
réseau L est 4 si le poids minimal de C est au moins égal a 4, et le réseau engendré
par son systéme de racines contient (29R)™, qui est isométrique a J7j'. Si le poids
minimal de C est au moins égal a 6, alors L. ne contient pas d’autre racine.

A un code C sur M/2IN, on associe de fagon naturelle deux codes sur F, de la
fagon suivante: soit C,={x e Clux =0} la torsion de C. C'est un [F,-espace
vectoriel de dimension k, + k,. On pose

T={(y1s--sIm) €FZ(0u, ..., yuu) € C,}

On définit également un code C, par projection sur la premiere coordonneée:

Cr={(y1s-- V) €7z, ...,2,) EFF(yi+ 210y ... s ¥, + 2,,u) € C}.

Remarquons que, si C = C*, alors T = Cy (pour la forme X x;y,): en effet, soit
(x;,....,x,)€C, et (y1,...,¥m)€T. Alors il existe (z;,...,2,) tel que
e, +zty ...y X, +2,u) €t (W14, . .., y,u) soient dans C. Ils sont donc orthogo-
naux, ce qui équivaut a la condition X x;y; =0.

5.2. Construction de J8

On définit un code C de longueur 8 par la matrice génératrice:

(10 0 (1,1) (1,bw (0,1 (O,w (1,1))
010 (L) w1 (hw W1 (5w
G=10 01 1 (wmw ww (5% (5w
000 (0,1) 0 (0,w) (0,w) (0,1)
000 0 (O (O (01 (01 ]
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PROPOSITION 5.1. Le code C sur M2IN de matrice génératrice G a les
propriétés suivantes:
(H) C=cCt
(2) C est de poids minimal 6.
(3) Le réseau L, associé a C est un réseau unimodulaire sur I’ordre de Hurwitz,
de minimum hermitien 2; ses vecteurs minimaux sont au nombre de 192 et
engendrent un réseau isométrique a J§.

Notation: on notera J§ le réseau L. ainsi défini.

Démonstration: on vérifie facilement sur la matrice G que C = C*. Le cardinal de
C montre que C = C*. Remarquons que cela entraine que le poids d’un mot de C
est pair.

Pour calculer son poids minimal, on étudie les codes 7 et C,. Notons
ey, e,, €3, €4, €5 les lignes de la matrice G. Une base de C, est {ue,, ue,, ue,, e,, es}.
On obtient pour matrice génératrice du code T

(100110 0 1)
01 01 ww w w
001 1 W W ww
0 0 01 0 w w1
00001 1 1 1

qui est équivalent a:

(1 0000 w w 1]
01000 w woO
00100 wwO
00010 ww.l
00001 1 11

Le code T est clairement un code sur F, de poids minimal 3 (pour le poids usuel,
c’est-a-dire le nombre de coordonnées non nulles). Le code C; a pour matrice
génératrice

1 001 1 0 0 1
01 01 wwwwl,
001 1 wwww
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qui est équivalente a

1 001 1 0 0 1
060110 01 1 0
0011 wwww

Le code C, est de poids pair, son poids minimal est 4, et il n’est atteint que sur
les mots 10011001 et 01100110.

Soit maintenant ¢ un mot du code C. Notons ¢, le mot de C, associé a c. Le
nombre de coordonnées de ¢ n’appartenant pas & F,u est égal au poids de c,. il y
a trois cas a considérer: si le poids de c; est 0, alors ¢ appartient a4 C,; or on a vu
que T est de poids minimal 3, donc C, est de poids minimal 6. Si le poids de ¢, est
au moins ¢egal a 6, alors ¢ a au moins six coordonnées non nulles, et ¢ est de poids
au moins égal a 6. Si le poids de ¢, est 4, il faut montrer qu’au moins une
coordonnée de ¢ appartient a F,u — {0}. Comme C, n’a que deux mots de poids 4,
c est de I'un des deux types suivants:

¢ = (1, 0)(0, 0)(0, 0)(1, 1)(1, w)(O, 1)(0, w)(1, 1) + ¢
ou
¢ = (0, 0)(1, 0)(1, 0)(0, 1)(0, w)(1, 1)(1, w)(0, 1) + ¢

avec ¢t appartenant a C,. Pour faire baisser le poids a 4, il faudrait que ¢ annule les
coordonnées qui sont dans F,u (¢ ne peut pas annuler les autres). Pour cela, ¢ doit
étre de la forme ¢ = t'u avec ¢’ € T du type 00 » »(0, 1)(0, w)* dans le premier cas,
et 0x x(0, 1)(0, w)* »(0, 1) dans le deuxiéme (les * pouvant étre n’importe quoi).
L’examen du code T montre que c’est impossible.

D’aprés le paragraphe precédent, le point (3) se déduit du point (2). O

Remarques. 1. On peut aussi construire le réseau J& par voisinages successifs a
partir du réseau J5,. On passe alors successivement par des réseaux dont les
vecteurs minimaux engendrent des réseaux isométriques a Jy,, J%,Js, M
®; D3, J§. Cette méthode a été mise en ceuvre en utilisant le systéme PARI.

2. Le code C permet d’écrire une base du réseau J%. Elle est donnée par les
colonnes de la matrice suivante:
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g N
1 1
1 0 1
1 1 1 1 +i
1_. . k — - .
1 i+j+ 1+i+j+k 0 14i
2 2
1 . . k 1—- . k
o Leitj+ e L PR
2 >
lditik 14i—j—k
p HitJ tiJ 1+ 14i 0 2
2 2
l—iti—k 14itjtk
p 2t Hi K i 14i 0 0 2
2 2
. J

pour la forme 1 Z%_, x,7..

5.3. Construction de Q

Le code C contient le mot 11111111 (c’est la somme des trois premiéres lignes
de G). Soit e =(1,1,1,1,1,1, 1, 1) ’élément de J§ correspondant. Le réseau (J5)¢
ne contient plus les vecteurs minimaux de J%; nous avons cherché Q parmi les
réseaux contenant (J5)¢ avec un indice B.

Le calcul montre que les cinq réseaux unimodulaires sur ’ordre de Hurwitz et
contenant (J&)¢ ont pour minimum hermitien 2. En faisant décrire a y les classes de
(J3)¢/P(J?)¢, on trouve que le réseau

0=+ Py, avecy =(1,1,1,1,1,1, =1, 1 —2k)

a pour minimum hermitien 3. Les calculs numériques ont été effectués dans le
systtme PARIL.

THEOREME 5.2.

(1) 1l existe une isométrie hermitienne o telle que Q* = o(Q).

(2) Le réseau Q est entier, pair, modulaire de niveau 2, a pour minimum 6 et pour
déterminant 2'S,

Démonstration: soit o I'isométrie hermitienne définie par: a(x,, X,, X3, X4, Xs, Xg,
X7, Xg) = (X1, X5, X3, X4, X5, Xg, —X7, —Xg). C’est clairement une isométric du ré-
seau J3, puisque c’est I'identité sur le code C. montrons que Q* = a(Q), c’est-a-dire
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que h(x, 6(p)) € M pour tout x,y appartenant & Q. Comme Q = (J§)*+ Py,
a(Q) = a((J$)°) + B~'a(y). Or h(T3)e, 6((J8)?) =M puisque & conserve JE, et
h((T8)e, B~'a(»)) = M si et seulement si B~'a(p) < ((J8)9)* = T8 + B-'e. Or o(3)
=(LL,L1L,L1,1,-142k)=e+(k—-1)0,0,0,0,0,0,0,2) appartient bien a
PBJ§ + Me. Puisque 6! = o, on a aussi inclusion A(c((J3)9), B~'(»)) = M. Enfin,
h(y, a(y)) =0 appartient a 2IR.

Comme y appartient a (.7 %), pour que le réseau Q, soit pair, il suffit que 4(y, y)
appartienne a 2Z. Or h(y,y) =6. Le dual du réseau Q, est (1+1i)~'a(Q). La
transformation x — (1 + i)o ~!(x) est une similitude de rapport \/i de Q% sur Q.

La valeur du minimum de Q, a été vérifiée dans le systéme PARI. Il a 261120
vecteurs minimaux, comme prévu par la théorie des formes modulaires. O

Remarque. La méthode de construction de Q permet d’en donner une IM-base:

( 1 —i b
2
1—i
=5 1
1—i
_ 1
3 0
_1%’ 1 1 1+i
1—i l—i+j+k —1+i+j+k ;
. > 5 0 1+
1—i l+i+j+k 1—i+j+k . "
- 1 2
> 5 3 1+ + i
—14i l+i+j—k l1+i—j—k : ;
1 1 0 2
5 5 5 +J +1
1—i—2j—-2k 1—-i+5—-k 3—i—j—k 1+i 14+i =2 =2 2(1+i)
2 2 2
¢ /

pour la forme 1 Z8_, x,7..
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