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Voisinage au sens de Kneser pour les réseaux quaternioniens

Christine Bachoc

1. Introduction

La notion de réseaux voisins fut introduite par M. Kneser ([Kl]) pour les

réseaux usuels. Deux réseauz L et L&apos; entiers sur Z sont voisins si

[L : LnL&apos;] [U : LnLf] —2. Dans [Kl], Kneser montre que deux classes d&apos;iso-

métrie de réseaux unimodulaires peuvent toujours êtres jointes par une chaîne finie
de réseaux voisins. Ce résultat lui permet de classifier les réseaux unimodulaires
jusqu&apos;à la dimension 16. Cette méthode fut également utilisée par Niemeier pour la
classification des réseaux unimodulaires en dimension 24.

Cette notion de voisinage se généralise aux réseaux ayant une structure hermi-
tienne sur un ordre maximal d&apos;un corps de quaternions (appelés réseaux quaternioniens).

On démontre un résultat analogue au théorème de Kneser (théorème 3.1),

que l&apos;on peut exprimer de la façon suivante: le graphe des voisinages sur les classes

d&apos;isométrie de réseaux quaternioniens unimodulaires est connexe.
Le reste de l&apos;article est consacré au corps de quaternions sur Q ramifié en 2 et

à l&apos;infini. À conjugaison près, celui-ci a un unique ordre maximal W appelé l&apos;ordre

de Hurwitz. Au paragraphe 4, on classifie les réseaux unimodulaires sur 90Î jusqu&apos;à

la dimension 28, et l&apos;on construit les graphes correspondants. Le paragraphe 5

concerne la dimension 32; on y construit un réseau sur l&apos;ordre de Hurwitz ayant
même densité que celui déjà construit par H.-G. Quebbemann ([Ql]), et réalisant
donc la meilleure densité connue en dimension 32. Ils ne sont en fait pas
isométriques, comme l&apos;a montré l&apos;algorithme de recherche du groupe des isométries
d&apos;un réseau conçu et implémenté par W. Plesken and B. Souvignier ([P.S]), que
nous remercions ici. Ce résultat renforce la constatation expérimentale selon

laquelle la plupart des réseaux intéressants connus dans des dimensions multiples de

4 ont une structure quaternionienne (par exemple les réseaux de Coxeter-Todd, de

Barnes-Wall, de Leech,...) ([M2]).
La construction du réseau de dimension 32 utilise un code autodual de longueur

8 sur une algèbre de rang 4 sur F2 (paragraphe 5).

350



Voisinage au sens de Kneser pour les réseaux quaternioniens 351

2. Définitions et terminologie

Soit K un corps de nombres d&apos;anneau des entiers £)K et soit H un corps de

quaternions défini sur K. Soit V un espace vectoriel sur H de dimension m, muni
d&apos;une forme hermitienne non dégénérée, c&apos;est-à-dire d&apos;une forme h : V x V-+H,
vérifiant: pour tout À appartenant à H et tout x, y appartenant à K,

h(y, x) h(x,y); h{Xx,y) Àh(x,y); si h(x, y) 0 pour tout y appartenant à F,
alors x 0.

Soit SCR un ordre maximal de H fixé. Un réseau quaternionien L est un 9W-module

contenu dans F et engendrant F. On définit le réseau dual de L par: L* {x e V\
h(x, L) czyft}. On dit alors que L est entier si Lcl*; que L est unimodulaire si

L=L*.
La somme orthogonale (pour la forme hermitienne) de deux réseaux L et L&apos; est

notée L _L L&apos;. On dit qu&apos;un réseau est irréductible s&apos;il n&apos;est pas somme orthogonale
de sous-réseaux.

Une isométrie hermitienne entre deux réseaux L et L&apos; est un isomorphisme de

901-modules de L sur L&apos; qui conserve la forme h. Le groupe des isométries

hermitiennes qui stabilisent un réseau L est appelé groupe unitaire de L et est noté

U(L). Si L est un réseau entier et si a est un élément de L tel que h(a, a) 2, la

réflexion hermitienne sa(x) x — h(x, d)a appartient au groupe unitaire de L. On dit
que a est une racine de L. Le sous-groupe de U(L) engendré par les sa est un groupe
de réflexions hermitiennes. Ces groupes ont été classifiés dans [C].

Soit v une place de K. On définit le localisé de L en v par: Lv DKo ®cK L. C&apos;est

un réseau hermitien relativement à l&apos;algèbre de quaternions Hv*= Kv ®KH, pour la
forme induite par la forme h.

Soit x.y TraceA:/Q(trd (h(x, y))), où trd est la trace réduite dans H. Cette forme
bilinéaire symétrique sur le Q-espace vectoriel V est définie positive si et seulement

si les conditions suivantes sont réalisées: le corps K est totalement réel; toutes ses

places à l&apos;infini sont ramifiés dans H ; les localisées de la forme h en les places à
l&apos;infini de K sont toutes définies positives. Sous ces conditions, que l&apos;on suppose
toujours réalisées, on associe à L un réseau au sens usuel par: Lz (L, x.y). Le dual

au sens usuel de Lz et le dual hermitien de L sont liés par la relation:

Lf @û}QL* (2.1)

où @H/Q est le produit des différentes de H ([V]) et de K.
En particulier, si L est unimodulaire, alors L\ @h)qL, et det (Lz)

{dK np yp 6 Ram[H)
N

Soit p un idéal premier de K; nous allons définir la notion de réseaux p-voisins.
Si p est ramifié dans H, alors il existe un idéal ^P bilatère de 9H, maximal parmi les
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idéaux contenus dans $R contenant p et d&apos;ordre à gauche 301, et tel que
Le quotient 9M/^P est un corps. On dit que deux réseaux L et L&apos; sont p-voisins si ce

sont des réseaux quaternioniens tels que LjLnU ^ L&apos;/LnL&apos; ^ 9M/^3. Si p n&apos;est pas
ramifié dans H, alors il y a plusieurs idéaux maximaux à gauche tyt contenus dans

9ft et contenant p, mais les quotients 9M/^3, sont des 9W-modules simples isomorphes.
On dit que deux réseaux Lot L&apos; sont p-voisins si ce sont des réseaux quaternioniens
tels que LjL ni&apos;- L&apos;/L nU ~

3. Connexité du graphe des voisinages

On fixe un espace hermitien F, h) non dégénéré de dimension m sur un corps de

quaternions H sur un corps de nombres totalement réel K, tel que les places à l&apos;infini

de K soient ramifiées dans H. Les notations sont celles du paragraphe précédent.
Dans ce paragraphe, nous démontrons un théorème analogue au théorème de

Kneser ([Kl]). Il est valable pour une catégorie de réseaux un peu plus générale que
celle des réseaux unimodulaires, que nous définissons maintenant: avec les notations
du paragraphe précédent, soit 21 un idéal bilatère de l&apos;ordre maximal SPÎ. On dit que
le réseau L est 21 modulaire si L* 2IL. Par exemple, un réseau unimodulaire est

501-modulaire; d&apos;après (2.1), un réseau L tel que Lz soit unimodulaire pour la forme

x.y est ^///

THÉORÈME 3.1. Soient L et U deux réseaux quaternioniens ^-modulaires de

(F, h). On suppose m&gt;2. Soit p un idéal maximal de K. Alors il existefappartenant
à U(V, h) et il existe une suite de réseaux ^-modulaires LUL2,..., Ls tels que
Lx L, Ls =f(L&apos;), et Lt et Ll+l sont p-voisins pour tout / 1, 2,..., s — 1.

On démontre d&apos;abord deux propositions:

PROPOSITION 3.2. Soit L et U deux réseaux quaternioniens M-modulaires de

(F, A). Les propositions suivantes sont équivalentes:

(1) // existe une suite de réseaux ^-modulaires LuL2i...,Ls tels que

Lx L, Ls Z/, et Lt et Ll+l sont p-voisins pour tout i — 1, 2,. s — 1

(2) Pour tout idéal maximal p de K différent de p, Lq L^.

Démonstration de la proposition 3.2. L&apos;implication (1) =&gt; (2) est évidente. Supposons

que Lq Lq pour tout q différent de p. Alors [L : L nL&apos;]Oj( [L&apos; : LnL%K et

est une puissance de p. Nous allons procéder par récurrence sur la valuation de

cette puissance. Il suffit de construire un réseau 9ï-modulaire R qui soit un p-voisin
de L et tel que vp(\L&apos; : RnL%K) &lt;vp(\L : LnL%K). Définissons jR par ses

localisés: on pose Rq Lq pour tout q différent de p.
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En l&apos;idéal p, on a: L* 21PLP. Comme 3IP est bilatère, quitte à remplacer la
forme h par &lt;xph pour un certain ap, on peut supposer que 2IP 9PÎP si p est non
ramifié dans //, et que 2lp SOtp ou ty si p est ramifié dans h (où ^P est Tunique idéal
bilatère maximal contenu dans 9MP et contenant pS0?p). On a besoin du lemme
suivant:

LEMME 3.3. Si Lp ^ L&apos;p, il existe un idéal maximal ^ d&apos;ordre à gauche 30tp,

entier, contenant p2Rp et tel que LpnS$Lp &lt;£ $Lp.

Démonstration: supposons p non ramifié dans f/, et Lpn^8Lpc^Lp pour tout
idéal ^3 à gauche de SRP et contenant p. Soit x un élément de Lp n&apos;appartenant pas
à Lp. Soit s &gt; 1 le plus petit entier tel que psx c Lp. Un tel s existe car [Lp : Lp r\L&apos;p]

est_ une puissance de p. Alors, pour tout ty, p*x czLpn^Lp cz &lt;pLp. Comme

^ pSOÎp, ^Sp5 cz pLp. Cette relation est vraie pour au moins deux idéaux
maximaux d&apos;ordre à gauche 50îp contenant p (il y a N(p) -h 1 tels idéaux); or, si ty et ty&apos;

sont deux tels idéaux alors ty -h ^3&apos; 9WP. Donc psx c pLp, soit ps~ lx c Lp, ce qui
contredit la définition de s.

Si p est ramifié dans //, il y a un seul idéal à gauche de 5Jtp contenant p et

maximal; il est bilatère et stable par conjugaison. La démonstration est analogue, en
utilisant le plus petit entier s tel que tysx cz Lp.

Supposons que $lp 90tp. Soit, d&apos;après le lemme précédent, ^ et x tels que

x e LvnS$L&apos;p et x $ %. On pose

Lxp {yeLplfi(x,y)ey} et Rp Lxp + y-lx.

Ainsi défini, R est clairement un p-voisin de L. Montrons qu&apos;il est 2Ip-modulaire,
c&apos;est-à-dire unimodulaire: on voit facilement que Rp est entier si et seulement si

h(x, x)ep, ce qui est réalisé grâce à la condition xetyLp. Montrons que

vp([Lp:RpnL/p]DK)&lt;vp([Lp_:LpnLp]OK): en effet, Rpr\Lp contient strictement
L*nL&apos;p car ^&quot;VcZ/p et ty~lx &lt;£LP, et LpnLp LpnLp car, si y appartient à

LpnLp, alors h(y, x) appartient à$(;ce $LP et Lp est entier).
Finalement, supposons que p soit ramifié dans H et que 2ÏP ^5. Soit, d&apos;après le

lemme précédent, x tel que xeLpntyLp et x$tyLp. Alors h(x, Lp) =^P~1 et

/*(a:, x) e p car jc e ^3LP. On pose

et

De façon analogue au cas précédent, on montre que Rp est un p-voisin de Lp, qui
est ^P-modulaire car h(x, x) € p, et qui vérifie: vp([Lp : Rp]qk &lt;

vp([Lp:LpnL&gt;phK).
P

D
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PROPOSITION 3.4. Soil L et L&apos; deux réseaux quaternioniens de (V,h). On

suppose que m &gt; 2 et que, pour tout idéal maximal q p de K9 il existe fq appartenant
à U(Vq9 h) tels que fq(Lq) L&apos;q. Alors, il existe f appartenant à U(V, h) tel que

Démonstration. C&apos;est une conséquence du théorème d&apos;approximation forte pour le

groupe U(V,h). Rappelons de quoi il s&apos;agit: soit G un groupe algébrique linéaire
défini sur un corps de nombres K, et soit S un ensemble fini de places de K. On note
GK le groupe des points de G rationnels sur K, Gs HveS GKv, et GA le groupe des

adèles de K. On dit que (G, S) vérifie le théorème d&apos;approximation forte si le

produit GKGS est dense dans GA. Le groupe U(V,h) est une Â&apos;-forme du groupe
symplectique Sp2m ([K2, §2.6]). A ce titre, il vérifie le théorème d&apos;approximation

forte pour tout ensemble de places S tel que Gs soit non compact ([K3]).
On prend ici S {p}; alors Gs U(VP, h). Montrons que ce groupe est non

compact si m est supérieur ou égal à 2. Considérons la forme bilinéaire symétrique
sur le Arp-espace vectoriel Vp donnée par b(x, y) trd (h(x, y)), où trd est la trace
réduite de la ATp-algèbre Hp. Comme dim^ (Vp) =4m &gt; 5, la forme quadratique
associée représente 0. Comme b(x, x) 2h(x, x), il existe x e Vp tel que h(x, x) — 0.

Si Hp est un corps, alors on montre facilement que Vp contient un plan
hyperbolique, c&apos;est-à-dire un plan pour lequel la matrice de la forme hermitienne est

Le groupe unitaire de Vp contient donc le sous-groupe des matrices de la

forme I X e K* qui est non compact. Si Hp est isomorphe à l&apos;algèbre de

matrices Ji2{Kp\ c&apos;est encore plus simple: le groupe unitaire de Vp contient un

sous-groupe isomorphe à {A e HP/ÀÀ — 1} (en effet, on voit facilement que la forme
hermitienne h est équivalente à E^L i atxtyn où at e Kp) qui est non compact dans le

cas d&apos;une algèbre de matrices (la condition m &gt; 2 n&apos;est donc pas nécessaire si p est

non ramifié dans H).
L&apos;élément (/p)p appartient à GA (complété par 1 en p et aux places à l&apos;infini de

K) et peut donc être approché par un élément de GKGS. En prenant comme ouvert

HqU(Lg), il existe /e t/(F, h) et aq e U(Lq) tels que pour tout q # p,/qffq =/. Alors
D

Fin de la démonstration du théorème 3.1. D&apos;après les propositions 3.2 et 3.4, il suffit

que les réseaux L et L&apos; soient localement isométriques. Soit q un idéal maximal fixé
de K; si q est ramifié dans H, alors Hq est un corps et Lq et L&apos;q sont isométriques
d&apos;après le théorème 6.2 de [J]. Si q n&apos;est pas ramifié dans H, le résultat est également
bien connu. Faute d&apos;une référence précise, nous donnons une démonstration:



Voisinage au sens de Kneser pour les réseaux quaternioniens 355

l&apos;algèbre Hq est isomorphe à Ji2(Kq). A conjugaison près, on peut supposer que
90ïq M2{^)K^ ([V]). Comme q n&apos;est pas ramifié, quitte à changer h en ocqh, on peut
supposer que Lq et Lq sont unimodulaires.

On note sLq l&apos;idéal bilatère de Hq engendré par les h(x, y) lorsque x, y
appartiennent à Lq et nLq l&apos;idéal bilatère de Hq engendré par les h(x, x) losque x appartient
à Lq. Grâce à la relation h(x + y, x + y) A(x, jc) + /*(&gt;&gt;, .y) + trd {h(x&gt; y% on a les

inclusions: trd (sLq) c nLq c s/q. Comme Lq est unimodulaire, %Lq 9Wq, et comme
trd ($Rq) O^q,nLq 9Kq. Par conséquent, il existe ex appartenant à Lq tel que
h{euex) gO| Comme nrd(9Wq) =det(^2(^/c =CA: on peut supposer que
Ke\-&gt;e\) — \- Alors, Lq 5Kqe1±Lq, et par récurrence on montre que
Lq yjlqex 1 ¦ - - 1 y)lqem avec /z(^, e3) ^I7. Il y a donc une seule classe d&apos;isométrie

hermitienne de réseau unimodulaire sur $Rq.

4. Classification des réseaux unimodulaires jusqu&apos;à la dimension 28 sur l&apos;ordre de

Hurwitz

4.1. Uordre de Hurwitz

On suppose désormais que H Q + Qi+ Qj+ Qk, avec i2=j2=— 1,//
—ji =k. A conjugaison près, H a un unique ordre maximal qui est
$R Z[l, 1,7, (1 + / +y + /^)/2]. L&apos;unique nombre premier ramifié dans // est 2; on
a 2ÎR ^}2, où ^8 1 + i)Wl 9W( 1 + i); le quotient 9M/^ est isomorphe au corps
fini à quatre éléments F4.

Le groupe des unités de Ji est le groupe à 24 éléments 9H* {±1, ±i, ±j\
±k,(±l±i±j ± k)/2}. On note w -1 + / +7 -f fc)/2; c&apos;est un élément d&apos;ordre

3 de ÏR*, dont la classe résiduelle engendre

4.2. Réseaux unimodulaires

Tout espace hermitien (K, A) sur /f tel que la forme associée x • y soit définie

positive est isomorphe à (Hm, S^L, x,yt). Sauf mention explicite du contraire, on se

place dans cet espace. Toutefois, on considérera parfois la forme \ SfLi xtyt. Soit L
un réseau unimodulaire sur l&apos;ordre de Hurwitz de dimension m. Le réseau Lz est un
réseau entier, pair, de dimension n 4m, de déterminant 22m d&apos;après le paragraphe
2. On appelle minimum hermitien et on note min (L) le nombre min (L)
min {h(x, x)jx eL -{0}}; on appelle minimum et on note min(L2) le nombre
min (Lz) min {x • x/x e L - {0}}; on a donc min (Lz) 2 min (L). On note S(L)
l&apos;ensemble des vecteurs minimaux de L, c&apos;est-à-dire l&apos;ensemble des éléments de L qui
réalisent min (L).
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Comme H est de nombre de classes 1, le seul réseau unimodulaire en dimension
1 est L (5DÎ, xy). Il est bien connu que Lz est isométrique au réseau de racines D4

([M2]). Remarquons qu&apos;un réseau de minimum hermitien 1 est réductible car il
contient des facteurs orthogonaux isométriques à 9M.

La construction suivante est due à J. Martinet; afin de travailler avec des

coordonnées entières, on prend sur les réseaux suivants la forme \ Z^L i xj, :

Jf4m i(*i 9x29...,xm)e W/x, Xj mod &lt;P et £ xt e
2SR1

PROPOSITION 4.1. [Ml]
On suppose que m est pair.
(1) Si m est supérieur ou égal à quatre, le réseau J&apos;4m est unimodulaire, irré¬

ductible, de minimum hermitien 2.

(2) Si m est supérieur ou égal à 6, alors S(J&apos;4m) S(J4m) et a pour cardinal
24m(4m —3). Le groupe unitaire U(Jf4m) est de cardinal 3.23m~2 m\; il est

engendré par les permutations des coordonnées et par les transformations
(xu x2,..., xm) -+(xluux2u2,. xmum), où les ut sont des unités de 9JÎ

vérifiant: ut w, mod ^3, et 2 ut e 2StR.

(3) Si m=4,J4nt est isométrique sur Z au réseau de Barnes-Wall BWl6.
L&apos;ensemble de ses vecteurs minimaux est S(J\6) S(Ji6) u {(w,, u2, w3, u4)\

ut e 5R*, ut Uj mod ^P, Z u, g 250Î}. Son groupe unitaire est transitif sur
Vensemble de ses vecteurs minimaux.

4.3. Généralités sur les voisinages

On regroupe dans ce paragraphe quelques résultats techniques faciles à établir
sur la recherche des voisins d&apos;un réseau qui seront utilisés au cours des démonstrations.

Soit L un réseau unimodulaire sur l&apos;ordre de Hurwitz; on cherche à décrire

ses 2-voisins (ou plus simplement ses voisins).
Les sous-réseaux quaternioniens d&apos;indice ty de L sont tous de la forme

où x est un élément de L n&apos;appartenant pas à tyL. L&apos;ensemble Lx ne dépend que
de la classe de x dans le quotient L/^JL; la classe d&apos;isométrie de Lx ne dépend que
de l&apos;orbite de la classe de x sous l&apos;action de U(L) (car a(Lx) La{x)).
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Le dual du réseau Lx est

Le réseau Lx est contenu dans un voisin de L si et seulement si h(x, x) appartient
à 2$ft (et donc à 2Z). Dans ce cas, il est contenu dans exactement cinq réseaux

unimodulaires correspondant aux cinq droites de (Lx)*/Lx qui est un plan sur F4.

En particulier, si h(x, x) est pair, on pose

C&apos;est l&apos;un des quatre voisins de L contenant Lx.
Nous allons maintenant étudier les voisins irréductibles du réseau

L (9MW, I7L i xtyt). Soit x (xl9 xm) un élément de 9JT. Si l&apos;un des xt appartient

à ^S, alors Lx contient un sous-réseau isométrique à 9M, et les voisins de L
contenant Lx sont tous réductibles. Dans le cas contraire, les xt sont tous congrus
à une unité modulo ^P; or U(L) contient tous les (xu xm) -&gt;(xxux,..., xmum)
où ut appartient à 2R*; on peut donc choisir x (1, 1,..., 1). On a vu que Lx n&apos;est

contenu dans un réseau unimodulaire autre que L que si h(x, x) est pair. Or
h(x9 x) m. De plus, on voit facilement que U(L) permute les quatre voisins de L
contenant L(1&gt;1&gt; 1} (voir remarque 4.3). Ils sont donc tous isométriques à L(11 1}

dans lequel on reconnaît JfAm. Nous avons démontré la proposition:

PROPOSITION 4.2. Si m est impair, le réseau (W&quot;, If?m, x,yt) n&apos;a aucun voisin

irréductible. Si m est pair, les voisins irréductibles de (S0îw, ZfLi xtyt) sont tous
isométriques à J\m.

Remarque 4.3. Jusqu&apos;à la dimension 28, un réseau L unimodulaire est toujours
son propre voisin. En effet, quitte à se placer en dimension inférieure, on peut

supposer qu&apos;il est irréductible. Alors on verra au paragraphe suivant qu&apos;il est de

minimum hermitien 2. Si x appartenant à L est tel que h(x, x) 2, alors L est voisin
de A Lx qui est de minimum hermitien 1, donc de la forme 9W 1 A&apos;. Le groupe
unitaire de A contient un sous-groupe isomorphe à 9K* (agissant par multiplication
à droite sur la composante 9JI). On peut écrire AnL Ay avec y =(u,y&apos;) e A.

Alors le sous-groupe de SK* U {ee $R*/e 1 mod ty {± 1, ±i, ±j, ±k]
stabilise Ay et donc opère sur le F4-espace vectoriel de dimension 2 (Ay)*IAy.
L&apos;élément -1 agit trivialement; les autres induisent l&apos;identité sur la droite A\Ay
mais pas sur tout le plan (regarder d&apos;image de (1 4- i)~ly); comme ils sont d&apos;ordre

2, ils n&apos;ont pas d&apos;autre droite stable que A\Ay. Ainsi, le groupe bicyclique U/{±1}
opère sans point fixe sur les quatre réseaux unimodulaires contenant Ay et distincts
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de A. Il opère donc transitivement, et ces quatre réseaux sont isométriques et voisins
les uns des autres.

Le graphe des voisinages présente donc une boucle en chacun de ses sommets
jusqu&apos;à la dimension 28, que nous avons omis de représenter dans les figures 1, 2,

3,4.

4.4. Formes modulaires

D&apos;après (2.1), le réseau Lz vérifie Lf =(1 +i)~lLz; l&apos;application x-»(l +ï)x
est une similitude de rapport y/l de Lf sur Lz. Ce réseau est donc, dans le

vocabulaire de [Q2], un réseau modulaire de niveau 2. H.-G. Quebbemann démontre

([Q2, §1.2]) que la série thêta d&apos;un tel réseau est modulaire de poids dim(Lz)/
2 2m pour le groupe de Fricke r*(2), et pour un certain caractère i- L&apos;étude de
l&apos;espace des formes modulaires correspondant montre que

min(Z,z)&lt;2 + 2[m/4] (1)

et que, de plus, lorsque l&apos;égalité est réalisée, la série thêta est déterminée et
facilement calculable. Avec les notations de [Q2], soit 04 la série thêta du réseau de

racines O4, et soit Al6 (rj(z)ri(2z))s; un réseau L unimodulaire sur l&apos;ordre de

Hurwitz de dimension 24 (m 6) et de minimum 4 a pour série thêta
0L et - 1440% A ï6 1 + 3024?2 + • • • ; si la dimension est 28, 0L 074-

On déduit immédiatement de (1) que, pour les dimensions m 2, 3, il y a une
seule classe de réseau unimodulaire, à savoir (9Wm, D™= j xtyt); en effet, un tel réseau

a pour minimum hermitien 1. Un argument de H.-G. Quebbemann, que nous
restituons ici, montre qu&apos;il y a en dimension 4 une seule classe de réseau unimodulaire

irréductible. Soit L un tel réseau; d&apos;après ce qui précède, min (L) 2. Soit x
l&apos;un de ses vecteurs minimaux. Le réseau Lx =LX + ty~lx est unimodulaire sur
l&apos;ordre de Hurwitz et de minimum hermitien 1; il est donc isométrique à

(50Ï4, Sf=1 jc^). Mais on a vu que celui-ci a (à isométrie près) un seul voisin
irréductible qui est J&apos;l6.

4.5. Une formule de masse

Hashimoto a démontré une formule de masse pour les réseaux unimodulaires
quaternioniens analogue à la formule de Siegel. Dans le cas particulier que nous
considérons, soit Em l&apos;ensemble des classes d&apos;isométrie hermitienne de réseaux

unimodulaires de rang m sur l&apos;ordre de Hurwitz; on a:
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où les B2k sont les nombres de Bernoulli ([H, §3 (25)]).

4.6. La dimension 16

THÉORÈME 4.

(1) Le réseau J\6 est, à isométrie hermitienne près, le seul réseau irréductible et
unimodulaire sur Vordre de Hurwitz en dimension 16.

(2) Son groupe unitaire est de cardinal 213 • 34 • 5, et est engendré par les

réflexions relatives à ses vecteurs minimaux.
(3) Les classes du quotient J\6IWi6 sont représentées par des éléments de norme

hermitienne 0, 2, 3.

(4) Le groupe U(J\6) est transitif sur l&apos;ensemble des classes d&apos;éléments de norme
2 de /&apos;iô/^/&apos;iô (respectivement sur l&apos;ensemble des classes d&apos;éléments de norme
3).

Démonstration: le (1) est démontré au paragraphe précédent. La formule de

masses donne le cardinal de U(J&apos;l6); en effet, le groupe unitaire de S0lm est engendré

par les permutations des m coordonnées et par les applications de la forme

(x,,..., xm) -+(xxux,..., x2u2) avec ut e9W*, et est donc de cardinal 24mw!. Par
ailleurs, on trouve dans [C] un système de racines isométrique à l&apos;ensemble des

vecteurs minimaux du réseau J&apos;l6; c&apos;est le système noté S3. Le groupe engendré par
ses réflexions est de cardinal 213 • 34 ¦ 5 ([C, Table 3]); c&apos;est un sous-groupe du

groupe unitaire de J&apos;X6; il lui est donc égal.
On sait que les classes modulo 2 des vecteurs du réseau de Barnes-Wall ont pour

représentants les vecteurs de norme au plus 12 ([C.S1, chap. 6, §5]). Montrons que
l&apos;on peut en déduire que les classes modulo ^ de J\6 ont pour représentants les

vecteurs de norme hermitienne 0, 2, 3: en effet, soit x un élément de J\6. Alors il
existe z appartenant à 2J&apos;l6 tel que ((1 + i)x -z) • ((1 + ï)x — z) &lt; 12, ou encore
h(x - 1 + 0 - lz, x - 1 + 0 ~ lz) &lt; 3. D&apos;où le résultat, puisque 1 + i) &quot;lz e W\e•

On a déjà vu que le groupe unitaire de J&apos;l6 est transitif sur l&apos;ensemble de ses

vecteurs minimaux. Montrons qu&apos;il est transitif sur les classes de vecteurs de norme
hermitienne 3. Les vecteurs de norme 3 sont de deux types à permutation des

coordonnées près: soit du type (x, uu u2, u3) avec xx 3 et ut e SR*, soit du type
(*i 5 *2&gt; *3&gt; 0) avec x, e ^8. On voit facilement que les transformations décrites au (2)
de la proposition 4.1 permutent transitivement chacun des types modulo tyJ\6.
Pour passer d&apos;un type à l&apos;autre, on utilise la transformation suivante qui stabilise le

réseau J&apos;l6:
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Figure 1. Graphe des voisins en dimension 16.

4.7. La dimension 20

Le cas de la dimension 20 est analogue à celui de la dimension 16; on trouve
également une seule classe de réseau irréductible unimodulaire, dont on verra la
construction explicite au cours de la démonstration du théorème suivant:

THÉORÈME 4.5.

(1) II y a, à isomètrie hermitienne près, un seul réseau irréductible et unimodulaire

sur Vordre de Hurwitz en dimension 20, que Von note R20.

(2) Son groupe unitaire est isomorphe au groupe SU5(2) x {±1}, et est de

cardinal 21 x
• 35 • 5 • 11. // est engendré par les réflexions relatives à ses

vecteurs minimaux.

(3) Les classes du quotient R20ltyR2Q sont représentées par des éléments de norme
hermitienne 0, 2, 3.

(4) Le groupe U(R2o) est transitif sur Vensemble des classes d&apos;éléments de norme
2 (respectivement de norme 3) de R20IS$R20.

Démonstration: la formule de masse (2) montre l&apos;existence d&apos;au moins un réseau

unimodulaire et irréductible; en effet, les réseaux réductibles de la dimension 20

sont, d&apos;après le théorème 4.4, ffî5 et SDÎ 1 J&apos;l6. Leur groupe unitaire a pour ordre
respectivement 245 • 5! et 24 • 213 • 34 • 5; il reste dans la formule de masse le terme

l/(2n • 35 • 5 • 11). Soit R un tel réseau; d&apos;après (1), son minimum hermitien est 2,

il est donc voisin d&apos;un réseau réductible. Comme 5 est impair, le réseau 2W5 n&apos;a pas
de voisin irréductible. Le réseau L SOI 1 J\6 a, à isomètrie près, un seul sous-réseau

d&apos;indice ty et de minimum hermitien 2 grâce au (4) du théorème 4.4, qui est

Lx avec x 1 +x0, x0 étant un élément de J\6 de norme hermitienne 3.
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Les quatre réseaux unimodulaires qui contiennent Lx sont permutés transitivement

par le sous-groupe de U(L) isomorphe à 9M* (agissant sur le facteur SOÎ de

L), et sont donc isométriques. Cela démontre l&apos;unicité à isométrie près du réseau

R20 que l&apos;on peut prendre égal à Lx Lx + ty~lx, pour un choix quelconque
de x0.

On trouve dans [C] un système de racines irréductible en dimension 20 défini sur
l&apos;ordre de Hurwitz et noté U (Table 2). On peut vérifier qu&apos;il engendre en réseau

unimodulaire de minimum hermitien 2, qui est donc isométrique à jR2o- D&apos;après la
Table 3, le groupe engendré par les réflexions relatives à ses racines, est d&apos;ordre

211 • 35 • 5 • 11 et est isomorphe à PSU5(2) x {±1}; de plus, il est transitif sur
celles-ci. D&apos;après la formule de masse, il est égal au groupe U(R20).

On vient de voir que le groupe unitaire du réseau jR2o est transitif sur l&apos;ensemble

de ses vecteurs minimaux. Considérons le quotient R2Q/S$R20; muni de la forme
induite de celle du réseau R20, c&apos;est un espace hermitien non dégénéré sur F4 pour
le Frobenius de F4. D&apos;après le théorème de Witt, son groupe unitaire U5(2) est

transitif sur l&apos;ensemble de ses vecteurs isotropes non nuls, ainsi que sur l&apos;ensemble

de ses vecteurs non isotropes. En utilisant des produits pairs de réflexions, on peut
vérifier que SU5(2) est transitif sur les vecteurs non isotropes. Comme l&apos;image de

U(R20) dans le groupe unitaire de cet espace est SU5(2), les vecteurs non isotropes
du quotient sont représentés par des vecteurs de norme hermitienne 3. Le groupe
SU5(2) est au moins transitif sur les droites isotropes. Comme les classes non nulles
de 9W/^3 sont représentées par des unités de SDÎ, on en déduit que les vecteurs

isotropes non nuls de R20/tyR20 sont représentés par les vecteurs minimaux du
réseau R20.

Figure 2. Graphe des voisins en dimension 20.

(D&apos;après la proposition 4.2, les réseaux 9M5 et R20 ne sont pas voisins.)
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4.8. La dimension 24

En dimension 24, on trouve deux classes de réseaux unimodulaires irréductibles.
Il y a le réseau J24 (voir proposition 4.1), et un réseau construit à partir du réseau

de Coxeter-Todd de la façon suivante: le réseau Kl2 de Coxeter-Todd a une
structure de réseau hermitien sur l&apos;anneau des entiers d&apos;Eisenstein (qui est l&apos;anneau

des entiers du corps quadratique de discriminant 9) ([F]). De plus, il est unimodu-
laire sur cet anneau. Si w -1 -f i +j&apos; + fc)/2, on peut identifier Z[w] aux entiers
d&apos;Eisenstein, ce qui nous permet de définir le réseau

Comme Kn est unimodulaire sur Z[w], R24 est unimodulaire sur 2R. Montrons
que son minimum est encore 4: soit © l&apos;ordre Z[w] + (i — j)Z[w]. Les inclusions
SDÎ(1 — h&apos;) c© c=9H permettent d&apos;écrire la décomposition orthogonale sur Z:
R24 c= ((1 — w)/3)Kl2 ±z (i —y)((l — w)/3)Kl2. La norme d&apos;un élément non nul x de

R24 est donc de la forme x • x ^xx • xx + 2x2 ¦ x2), où xx et x2 sont dans Kl2 et

donc sont soit nuls soit de norme au moins égale à 4; Les facteurs de la
décomposition ayant pour intersection avec R24 respectivement Kl2 et (/ —j)Kl2, la
norme de x est au moins égale à 4.

L&apos;ensemble des vecteurs minimaux de R24 contient les éléments de la forme ux
où u est une unité de SJl et x un vecteur minimal de Kï29 ce qui fait 4.756 3024

éléments distincts ({±1, ±w9 ±w2} cl[w]). Or la théorie des formes modulaires
(§4.4) prévoit qu&apos;un réseau unimodulaire sur l&apos;ordre de Hurwitz en dimension 24 a

exactement 3024 vecteurs minimaux; ils sont donc tous de cette forme.
De plus, on peut remarquer que ces deux réseaux ne peuvent pas être

isométriques; en effet, le réseau R24 est engendré par ses vecteurs minimaux, alors

que ceux de J24 engendrent J24 (proposition 4.1).

THÉORÈME 4.6.

(1) Les réseaux J24 et R24 sont, à isométrie hermitienne près, les seuls réseaux

irréductibles et unimodulaires sur Vordre de Hurwitz en dimension 24.

(2) Le groupe unitaire du réseau R24 est égal au groupe unitaire du réseau de

Coxeter-Todd {comme réseau hermitien sur les entiers d&apos;Eisenstein) qui est

engendré par les réflexions relatives à ses vecteurs minimaux \ il est de cardinal
29 • 37 • 5 • 7.

(3) Les classes du quotient R24jtyR24 sont représentées par des éléments de norme
hermitienne 0, 2, 3,4.

(4) Le groupe U(R24) est transitif sur Vensemble des classes d&apos;éléments de norme
2 (respectivement de norme 3; respectivement de norme 4) de R24/tyR24.
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Démonstration: pour terminer la démonstration du point (1), il suffit de montrer
qu&apos;il y a au plus deux classes de réseaux irréductibles. Par un raisonnement

analogue à celui du théorème précédent, il suffit de compter les voisins irréductibles
des réseaux réductibles de la dimension 24, qui sont: SK6, SPt21 J\6 et M 1 R20. Le
réseau 9W6 a pour seul voisin irréductible J&apos;24 (proposition 4.1(1)). Grâce aux
assertions (3) et (4) du théorème 4.4, on voit que le réseau 9W2 1 J\6 a, à isométrie

près, un seul voisin irréductible, qui correspond à un élément de la forme 1, 1) + x,
où x est un vecteur minimal de J\6. De même, grâce au théorème 4.5, le réseau
$01 _L R20 a&gt; à isométrie près, un seul voisin irréductible, correspondant à un élément
de la forme 1 +jc, où x est un vecteur de norme hermitienne 3 de R2Q.

Montrons que le voisin V de SOI2 ± J&apos;l6 précédemment décrit est isométrique à

J24: notons y (1,1) e 3R2; alors V (m21 J\6)y + X9 et on voit facilement que V
est aussi voisin de (Wl2)y -L (J\6)x — 90Î6. La seule possibilité est que V soit

isométrique à J24.

Le groupe U(R24) contient le groupe unitaire de Kl2; celui-ci est de cardinal
29 • 37 • 5 • 7 et est engendré par les réflexions relatives aux vecteurs minimaux ([F],
[S.T]). Ces groupes sont en fait égaux, car si on met dans la formule de masse (2)
les cardinaux (connus) des groupes unitaires de $R2 1 /&apos;16,9011 R20 et /&apos;24, il reste

exactement l/(29 • 37 • 5 • 7).

La décomposition M Z[w] + 1 + i)I.[w] montre que R24 Kn + 1 + i)Kl2
(la somme est une somme directe mais non orthogonale de Z-modules). Ainsi, tout
élément de R24 est congru modulo tyR24 à un élément de Kl2. Or, d&apos;après [C.S2, §3],

tout élément de Kl2 est congru modulo 2KX2 à un élément de norme hermitienne 0,

2, 3 ou 4, et le groupe unitaire de Kl2 est transitif sur chacune de ces catégories

(remarquons que les quotients Kl2/2Kl2 et R24/tyR24 ont même cardinal).

Déterminons le graphe des voisins: au cours de la démonstration du théorème

4.6, on a vu que J24 est le seul voisin irréductible de SDÎ21 J&apos;i6, et que R24 est le seul

voisin irréductible de 9W 1 R20 (à isométrie près). Pour avoir le graphe complet, il
reste à montrer que J24 et R24 sont voisins. Soit x un élément de R24 de norme
hermitienne 4 et appartenant à Kl2. Nous allons montrer que (R24)x est isométrique

Figure 3. Graphe des voisins en dimension 24.
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à J24. En effet, ce réseau est irréductible (sinon il contiendrait un élément y de

norme hermitienne 1, tel que x (1 + i)y mod ^R24; or la classe d&apos;un élément de

norme hermitienne 4 modulo tyR24 ne contient pas d&apos;élément de norme hermitienne
2). De plus, (R24)x est clairement voisin de Wl ®zw {Kxl2 + Z[w]f). Or K\2 + Z[w]§
est isométrique sur Z[w] à Z[w]6 ([F]), donc 9JI ®i[w] (K*2 + Z[w]f) est isométrique à

2R6 dont le seul voisin irréductible est J24.

4.9. La dimension 28

Nous allons construire trois réseaux non isométriques, irréductibles et unimodu-
laires en dimension 28. Rappelons qu&apos;un tel réseau a 1512 vecteurs minimaux (§4.4).

Le premier se construit à partir du réseau de racines E7 de la façon suivante: le

réseau E7 est de déterminant 2, et son dual E£ est tel que: Ef E7 + Ze, où e est un
vecteur de norme 3/2 (e ^(1, 1, 1, 1, 1, 1, —3, —3) dans le système de coordonnées

pair de Es ([C.S1 chap 4])). On pose alors:

jR28 SER ®z E7 + tye.

On voit facilement que ce réseau est unimodulaire sur l&apos;ordre de Hurwitz; c&apos;est le

seul réseau unimodulaire contenant 501 ®z E7.

Montrons que le minimum hermitien de R2S est encore 2: l&apos;inclusion

50îc:|Z[l, ij,k] montre que 2R® E? c±l* ±Z£E£ lz^E? lz|Ef; le minimum
hermitien de 9JÎ ®z Ey* est donc égal à 3/2. Comme R2S est un sous-réseau entier de ce

dernier réseau, son minimum hermitien est au moins égal à 2.

L&apos;ensemble de ses vecteurs minimaux est égal à {ux, u e 501*, x e S(E7)} qui est

de cardinal 1512.

Le deuxième réseau est construit comme un voisin du réseau 5CR3 J_ J\6. Soit

e (i +7 +k, 1, 1,1) un élément de J&apos;l6 de norme hermitienne 3. Soit

x (l, 1,1) +e eWR3 ± J&apos;l6 de norme hermitienne 6. On pose:

Posons Ll6 — {J\e)e\ il est engendré par l&apos;ensemble de ses vecteurs minimaux qui
apparaît comme système de racines dans [C] sous le nom de Sx. Son cardinal est

864 24.18. Le réseau mihhl) est isométrique à Jl2 qui a 648 24.27 vecteurs

minimaux. Le réseau R2S contient (avec un indice 16) la somme orthogonale
L16 ± Jl2; comme 864 H- 648 1512, l&apos;ensemble des vecteurs minimaux de R&apos;2S est la
réunion S(/12)uS(I16).
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Le troisième réseau est un cas particulier d&apos;une construction générale due à J.

Martinet et dont les réseaux J\m font également partie ([M2]). Nous donnons ici le

cas particulier qui nous intéresse. Soit q et q&apos; deux idéaux à gauche de $R contenant
39JI. On prendra q 5R( 1 — w) et q&apos; 9W( 1 — w)i, mais le choix est indifférent. On

pose:

R2H )(xi&gt;X2&gt; • • - &gt;x7) e Sft7/*, Xj mod q et £ x, 0 mod q&apos;

t 1 1

muni de la forme | Zj= xj&gt;,.

On montre que ce réseau est unimodulaire sur l&apos;ordre de Hurwitz, de minimum
hermitien 2. L&apos;ensemble de ses vecteurs minimaux est, à permutation près des

coordonnées, l&apos;ensemble des vecteurs de la forme w(( 1 — w), v( 1 — w), 0, 0,..., 0),
où u appartient à $R* et v appartient à {1, w, w2}; on peut vérifier que cela fait bien
1512 vecteurs minimaux. Ils engendrent le sous-réseau d&apos;indice 9 suivant:

{(*!, x2,..., x7) e q7/^^! xt g 39W}. On peut remarquer que R&apos;^ est un 3-voisin au

sens du paragraphe 2 de $R7.

Ces trois réseaux ne peuvent pas être isométriques car les sous-réseaux engendrés

par leurs vecteurs minimaux respectifs ne le sont pas: en effet, dans le premier
cas il est d&apos;indice 4, dans le deuxième cas il est d&apos;indice 16, et dans le troisième cas,
il est d&apos;indice 9.

THÉORÈME 4.7.

(1) Les réseaux R2s, R&apos;2s et R2S sont, à isomètrie hermitienne près, les seuls

réseaux irréductibles et unimodulaires sur Vordre de Hurwitz en dimension 28.

(2) Le groupe unitaire du réseau R28 est isomorphe au produit direct 501*/

{ +1} x W(E7), où W(E7) est le groupe de Weil du système de racines E7. //
est de cardinal 212 • 35 • 5 • 7.

(3) Le groupe unitaire du réseau R2s est de cardinal 218 • 35.

(4) Le groupe unitaire du réseau R2S est le produit direct de {± Id} par le groupe
engendré par les réflexions relatives à ses vecteurs minimaux; il est de cardinal
2 ¦ 36 • 7!.

Démonstration: comme pour le théorème précédent, il suffit de démontrer que les

réseaux réductibles ont au plus trois voisins irréductibles non isométriques. D&apos;après

les résultats précédents, les réseaux réductibles de la dimension 28 sont:

m\ m31 j\69 m21 r209 aw i r24, m i r24.
Le réseau SDÎ7 n&apos;a pas de voisin de minimum hermitien égal à 2.

Le réseau 9M _L /&apos;16, a, à isomètrie près, un seul voisin irréductible correspondant
à un élément de la forme (1, 1, 1) -f x, où x est de norme hermitienne 3 dans J\6:
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en effet, on a vu que le groupe unitaire de J\6 est transitif sur les éléments non
isotropes du quotient «/&apos;i6/Wi6 (théorème 4 4(4)) Ce réseau est aussi un voisin de

3R2, 0 1 (501 1 J\6)x +x qui est isométrique à 9W2 1 R20

Le réseau SOI2 1 R20 a, à isométrie près, un seul voisin irréductible correspondant
à un élément de la forme (1, 1) + x, où x est de norme hermitienne 2 dans R20 en

effet, on a vu que le groupe unitaire de R20 est transitif sur les éléments isotropes du

quotient R20I^R20 (théorème 4 5 (4))
Le réseau 9M 1 R24 a, à isométrie près, un seul voisin irréductible correspondant

à un élément de la forme 1 + x, où x est de norme hermitienne 3 dans R24 en effet,

on a vu que le groupe unitaire de R24 est transitif sur les éléments non isotropes du

quotient R24ltyR24 (théorème 4 6 (4))
On a trouvé jusque-là au plus deux classes de réseaux irréductibles, il reste à

examiner les voisins de 5011 J24. Soit V un voisin irréductible de L $R 1 J24

contenant Lx On pose x 1 + x0, avec jc0 e J24 Montrons que S(V) ne peut pas
être inclus dans S(LX), dans ce cas, S(LX) serait de cardinal 1512, et donc S((J24)X°)

serait de cardinal 1488 L&apos;examen de S((J&apos;24)X°) montre que cela ne peut pas arriver
avec un x0 de norme hermitienne impaire Comme S(V) n&apos;est pas inclus dans Lx,
on peut écrire V Lx + Wy, avec h(y, y) 2 Alors (L*)* L + &lt;p~&apos;x L + SRy,

x et (1 -f /)&gt;&gt; déterminent la même droite du StR/^-espace vectonel L/^3L, la classe

de x dans LjtyL contient donc un élément de norme hermitienne 4 On est donc
ramenés au cas où h(x0, x0) 3 On voit facilement que, sous l&apos;action du groupe
umtaire de J24, les éléments de norme hermitienne 3 se répartissent en deux orbites
celle de (1, 1, 1, 1, 1,1), et celle de (1 + i, (1 + i)w, (1 -h i)w2, 0,0, 0) On montre
alors que, dans le dernier cas, V contient un sous-réseau isométrique à Jl21 Ll6
(considérer {x e Vjx0 xx x2 x3 0} 1 {x e V\x4 x5 x6 0}), et que, à

isométrie près, il y a un seul réseau irréducible et unimodulaire contenant J]2 1 L16,

qui est également un voisin de 9W31 J\6 Le point (1) est donc démontré
Le groupe 9K*/{±1} x W(E7) est un sous-groupe du groupe unitaire de

9W ®z E7 (agissant par a ®x -*au ®/(x)), comme R2S est le seul réseau unimodulaire

contenant 9W ®z E7, il est stable par ce groupe
Comme les vecteurs minimaux de R2S engendrent J)2 1 Ll6, son groupe unitaire

est un sous-groupe du produit U(JÏ2) x U(Ll6) II y a exactement 12 réseaux

contenant Jî2 X L16 et isométriques à R2S (correspondants au choix d&apos;un parmi les

trois réseaux d&apos;indice ^J de 5DÎ3 ± J\6, mais distincts de $R31 Ll6 et de Jl2 1 J\6,

puis d&apos;un parmi les quatre réseaux unimodulaires contenant celui-ci et distinct de
2R3 1 J\6) Ils sont permutés transitivement par le groupe U(Jl2) x U(Ll6) Donc

# U(L) Yï # U(Jn) # U(Ll6) II reste à calculer le cardinal du groupe unitaire de

L16. On voit facilement que Lf6n{xlh(x9 x) 2} S(J\6) Le groupe unitaire de

Ll6 est donc un sous-groupe du groupe unitaire de /&apos;16, comme L,6 (/&apos;16)e, U(Ll6)
est formé des éléments de U(J\6) qui stabilisent la droite issue de e du 9W/^}-espace
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vectoriel J\6ltyJ\6. Or on a vu (théorème 4.4) que U(J\6) est transitif sur les

vecteurs non isotropes de ce quotient. Dans un espace hermitien de dimension 4 sur
F4, il y a 40 droites non isotropes, sonc #£/(L16) #£/(/&apos;16)/40. On trouve
finalement que U(R2S) a 218 • 35 éléments.

Le groupe engendré par les réflexion relatives aux vecteurs minimaux de R&apos;^g est

un sous-groupe de son groupe unitaire; c&apos;est le groupe de réflexions noté
G7({1, w, w2}, {1}) dans [C], il est de cardinal 36 • 7!

Pour chaque classe d&apos;isométrie hermitienne de réseau, on connait un sous-

groupe du groupe unitaire; or la formule de masse donne un reste nul quand on
remplace les cardinaux des groupes unitaires par les cardinaux de ces sous-groupes.
Ceux-ci sont donc les groupes unitaires tout entiers.

Déterminons le graphe des voisins: au cours de la démonstration du théorème
4.7, on a montré que $R _L J24 a deux voisins irréductibles, sont un qu&apos;il partage
avec ffll31 J\6 et SK21R20. Ce dernier est donc R2S. Par ailleurs, si

x (1, 1, 1, 1, 1, 1, 1), on montre facilement que (2R 1 J&apos;24)x est isométrique à R2S.

R2S est donc l&apos;unique (à isométrie près) voisin irréductible de 3R 1 R24.

Dans le système de coordonnées pair de E8, soit x — (0, —1,1, — h&gt;, w9 0, 0,0)
qui appartient à R2S. Alors (R2$)x est isométrique à R2S (ceci a été vérifié dans le

système PARI, en calculant l&apos;indice du sous-réseau engendré par les vecteurs

minimaux).
Les voisins irréductibles de R2S n&apos;ont pas été explorés systématiquement; nous

n&apos;avons pas déterminé si R2S et R2S sont voisins.

5. Réseaux unimodulaires sur Tordre de Hurwitz en dimension 32

En dimension 32, l&apos;inégalité (1) laisse la possibilité pour un réseau modulaire de

niveau 2 d&apos;avoir un minimum égal à 6. Dans [Ql], H.-G. Quebbemann a construit
un tel réseau; c&apos;est la meilleure densité connue en dimension 32.

Dans ce paragraphe, nous allons construire un réseau Q de minimum 6,

modulaire de niveau 2, ayant une structure quaternionienne sur l&apos;ordre de Hurwitz,
mais non unimodulaire. (Remarquons que, pour que le réseau Lz associé à un
réseau L hermitien sur l&apos;ordre de Hurwitz soit entier, il n&apos;est pas nécessaire que la

forme h(x, y) prenne des valeurs entières sur L; il suffit que h(x, y) appartienne à

ty~l qui est la codifférente de H.) La question de l&apos;existence d&apos;un tel réseau, qui soit
en outre unimodulaire sur l&apos;ordre de Hurwitz, reste ouverte; son existence est

toutefois peu probable. Il semble qu&apos;il y ait un trop grand nombre de réseaux de

minimum 4 (nous en avons trouvé 9 et cette liste n&apos;est sûrement pas complète) pour
pouvoir utiliser la formule de masses (2).
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±R24

Figure 4. Graphe des voisins en dimension 28.

La méthode s&apos;inspire de la construction bien connue du réseau de Leech comme
voisin (au sens de Kneser) du réseau unimodulaire de système de racines Af*. Ce

dernier est construit à l&apos;aide du code de Golay ([C.S1 chap. 4-18]). Nous allons
d&apos;abord construire un réseau unimodulaire sur l&apos;ordre de Hurwitz, de minimum 4,

et ayant pour vecteurs minimaux huit vecteurs deux à deux orthogonaux ainsi que
leurs multiples par une unité de SDÎ. Autrement dit, l&apos;ensemble de ses vecteurs
minimaux engendre un réseau isométrique à J\. Notons un tel réseau J\. Pour cela,

on utilise un code de longueur 8 sur l&apos;algèbre SDÎ/250Î (qui remplace Z/2Z dans le cas

de A?4). Ensuite, on cherche Q comme voisin (non entier) de 74.

5.1. Codes sur 2R/29K

L&apos;algèbre 9W/290? a la structure suivante: en identifiant les classes modulo 29QÎ de

0, 1, w9 w2 avec le corps F4, et en notant u la classe de 1 + /,

avec les relations u1 0 et uÀ Iw, oùÀ -&gt;X est le Frobenius de F4; la somme est

une somme directe de F4-espace vectoriel. On note (x, y) l&apos;élément x + yu de 501/29K.

Remarquons qu&apos;un tel élément contient une unité de S01 si et seulement si x est non
nul.

Un code (linéaire) sur 9H/2ÎR de longueur m est un sous-module C de ($R/22R)m.

Il n&apos;est pas nécessairement libre, mais admet une matrice génératrice de la forme:

(Ikl M{ M2\
\0 Ik2u M3uf

où Mt, M2 sont des matrices à coefficients dans 9W/295Î et M3 est à coefficients dans
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F4. Le code C est libre si et seulement si k2 0; son cardinal est 16*1 • 4*2.

L&apos;orthogonalité dans ($R/29W)W est définie relativement à la forme Lf! 1 *f&gt;y, ; le

poids d&apos;un mot est défini en comptant 1 par coordonnée n&apos;appartenant pas à F4w,

et 2 par coordonnée appartenant à F4w — {0}.
A partir d&apos;un code C on définit un réseau Lc hermitien sur Tordre de Hurwitz

par:

Lc {(xl9x29.. xm) e W/(xl9 x2,. xm) mod 29M e C}

pour la forme \Z^Li xtyt. Alors Lc est un réseau entier si et seulement si Ce C1,
unimodulaire si et seulement si C C1. Supposons que C c C1. Le minimum du
réseau Lc est 4 si le poids minimal de C est au moins égal à 4, et le réseau engendré

par son système de racines contient (29W)m, qui est isométrique à J™. Si le poids
minimal de C est au moins égal à 6, alors Lc ne contient pas d&apos;autre racine.

À un code C sur 9W/29W, on associe de façon naturelle deux codes sur F4 de la

façon suivante: soit Ct {x e Cjux 0} la torsion de C. C&apos;est un F4-espace

vectoriel de dimension k{ +k2. On pose

T {(yï9 ...,ym)e Kliyiu,. 9ymu) g C,}

On définit également un code Cx par projection sur la première coordonnée:

C, {(yl9. ..,ym)e F7/3(z,,.. ,zj e F?/^, +z,i/,... ,^m +zww) e C}.

Remarquons que, si C c: C1, alors T a C\ (pour la forme E x,^): en effet, soit

(xu...,xm)e C, et (.y,,... ,ym) e T. Alors il existe (zl9..., zm) tel que
(x, + Zj w,..., xm + zmw) et (^, w,..., &gt;&gt;ww) soient dans C. Ils sont donc orthogonaux,

ce qui équivaut à la condition E xty, 0.

5.2. Construction de J\

On définit un code C de longueur 8 par la matrice génératrice:

G

1

0

0

0

0

0
1

0

0

0

0

0

1

0

0

(1,

(1,
1

(0,
0

1)

1)

1)

(1,

(w,

(w,

0

(0,

w)

1)

w)
1

1)

(0,

(w,

(w,

(0,
(0,

1)

w)

w)

w)

1)

(0,
(w,

(w,

(0,

(0,

1)

w)

w)

1)

(1,
(w,

(w,

(0,
(0,

1)

w)

w)

1)

1)
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PROPOSITION 5.1. Le code C sur 2R/29W de matrice génératrice G a les

propriétés suivantes:

(1) C CL

(2) C est de poids minimal 6.

(3) Le réseau Lc associé à C est un réseau unimodulaire sur Vordre de Hurwitz,
de minimum hermitien 2; ses vecteurs minimaux sont au nombre de 192 et

engendrent un réseau isométrique à J\.

Notation: on notera J\ le réseau Lc ainsi défini.

Démonstration: on vérifie facilement sur la matrice G que C c= C1. Le cardinal de

C montre que C C1. Remarquons que cela entraine que le poids d&apos;un mot de C
est pair.

Pour calculer son poids minimal, on étudie les codes T et Cx. Notons
e\ &gt; e2&gt; e3&gt; e4&gt; e5 les lignes de la matrice G. Une base de Ct est {uex, ue2, ue3, e4,e5}.
On obtient pour matrice génératrice du code T:

10 0 110 0 1

0101 w w w w

001 1 w w w w

0 0 0 1 0 w w 1

0 0 0 0 1111
qui est équivalent à:

1 0 0 0 0 w w 1

0 1 0 0 0 w w 0

0 0 1 0 0 w h&gt; 0

0 0 0 1 0 w w 1

0 0 0 0 1111
Le code T est clairement un code sur F4 de poids minimal 3 (pour le poids usuel,

c&apos;est-à-dire le nombre de coordonnées non nulles). Le code Cx a pour matrice

génératrice

/l 0 0 1 1 0 0 T

(0 1 0 1 w w w w

\0 0 1 1 w w w wj
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qui est équivalente à

/l 0 0 1 1 0 0 1\
0 110 0 110.

\0 0 1 1 w w w w]

Le code Cj est de poids pair, son poids minimal est 4, et il n&apos;est atteint que sur
les mots 10011001 et 01100110.

Soit maintenant c un mot du code C. Notons c, le mot de C, associé à c. Le

nombre de coordonnées de c n&apos;appartenant pas à F4w est égal au poids de cx. il y
a trois cas à considérer: si le poids de cl est 0, alors c appartient à Ct ; or on a vu

que T est de poids minimal 3, donc Ct est de poids minimal 6. Si le poids de c, est

au moins égal à 6, alors c a au moins six coordonnées non nulles, et c est de poids

au moins égal à 6. Si le poids de cx est 4, il faut montrer qu&apos;au moins une
coordonnée de c appartient à F4w — {0}. Comme C, n&apos;a que deux mots de poids 4,

c est de l&apos;un des deux types suivants:

c (i,oxo, oxo, oxi, 0(1, wXO, îxo, wxi,*) + &apos;

ou

c (0, 0X1, 0X1, 0X0, 1X0, w)(l, 1X1, w)(0, 1) + t

avec t appartenant à Ct. Pour faire baisser le poids à 4, il faudrait que t annule les

coordonnées qui sont dans F4« (t ne peut pas annuler les autres). Pour cela, t doit
être de la forme t t&apos;u avec tr e T du type *00 * *(0, l)(0, w)* dans le premier cas,

et 0* *(0, l)(0, w)* *(0,1) dans le deuxième (les * pouvant être n&apos;importe quoi).
L&apos;examen du code T montre que c&apos;est impossible.

D&apos;après le paragraphe précédent, le point (3) se déduit du point (2).

Remarques. 1. On peut aussi construire le réseau J\ par voisinages successifs à

partir du réseau J&apos;32. On passe alors successivement par des réseaux dont les

vecteurs minimaux engendrent des réseaux isométriques à /32, /îéî^t»^
®z O4, J%. Cette méthode a été mise en œuvre en utilisant le système PARI.

2. Le code C permet d&apos;écrire une base du réseau J\. Elle est donnée par les

colonnes de la matrice suivante:
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1

0

1

1+I+/-Î

1-/+/-/

1

1

1

2

— i +j
2

+ i ~j
2

+ i +j

+ k

-k

+ k
2 2

pour la forme \ Sf=, x,y,.

l + i

0

1+y l+i 0 2

1 + / l+i 0 0 2

5.3. Construction de Q

Le code C contient le mot 11111111 (c&apos;est la somme des trois premières lignes
de G). Soit e (1,1, 1,1, 1, 1,1, 1) l&apos;élément de J\ correspondant. Le réseau (J\)e
ne contient plus les vecteurs minimaux de JJ; nous avons cherché Q parmi les

réseaux contenant (7^)^ avec un indice ^3.

Le calcul montre que les cinq réseaux unimodulaires sur l&apos;ordre de Hurwitz et

contenant {J\)e ont pour minimum hermitien 2. En faisant décrire à y les classes de

(Jl)eiy(Jl)e9 on trouve que le réseau

Q avecj =(1,1, 1, 1,1, 1, -1, 1-2*)

a pour minimum hermitien 3. Les calculs numériques ont été effectués dans le

système PARI.

THÉORÈME 5.2.

(1) 77 existe une isométrie hermitienne a telle que Q* g(Q).
(2) Le réseau Qz est entier, pair, modulaire de niveau 2, a pour minimum 6 et pour

déterminant 216.

Démonstration: soit a l&apos;isométrie hermitienne définie par: a(xu x2,x3, x4, x5,x69
x7ix8) =(xl,x2,x3,x4, x5, x6, —xl9 —x8). C&apos;est clairement une isométrie du
réseau J\, puisque c&apos;est l&apos;identité sur le code C. montrons que g* &lt;x(0, c&apos;est-à-dire
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que h{x,a{y)) eW pour tout x,y appartenant à Q. Comme Q =(Jl)€ + ty~ly,
-l*(y). Or h{(j\)\ &lt;j{(Jl)e)) c=9M puisque a conserve Jl et
501 si et seulement si ^~l(r(y) c((Jl)e)* P4+ ^~le. Or &lt;r(y)

(1,1, 1, 1,1,1, 1, -1 + 2k) e + (k - l)(0,0,0,0, 0,0,0, 2) appartient bien à

S$Jl + Wle. Puisque a~l (T, on a aussi l&apos;inclusion /i(&lt;7((J^)*), S$~l(y)) c 9M. Enfin,
^(.F* gO)) =0 appartient à 29M.

Comme .y appartient à (J\)e, pour que le réseau Qz soit pair, il suffit que h(y, y)
appartienne à 2Z. Or h(y,y) =6. Le dual du réseau Qz est (\ + i)~lo(Q). La
transformation jc -&gt;(1 + i)a~l(x) est une similitude de rapport yjl de Qf sur g.

La valeur du minimum de Qz a été vérifiée dans le système PARI. Il a 261120

vecteurs minimaux, comme prévu par la théorie des formes modulaires.

Remarque. La méthode de construction de Q permet d&apos;en donner une 9M-base:

l-i
2

l-i
2

l-i
1

0 1

i^ 1 11+/
1-/ l-i+j + k -l+i+j+k 0 1 +

2

l-i
2

-1+ï
2

l-i-2j-2k

1 +

1 +

1-

2
• i +7 + -

2

¦I+7--
2

k

k

1-

1 +

3-

2

i+j + k
2

i-j-k
2

i-j-k

1+7 l+i 2

1+7 l+i 0 2

l + i 1+ï -2 -2 2(1+0

pour la forme \ Xf
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