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Uniqueness for the harmonic map flow from surfaces to general targets*

ALEXANDRE FREIRE

Abstract. Let M be a two-dimensional compact Riemannian manifold with smooth (possibly empty)
boundary, N an arbitrary compact manifold. If ¥ and v are weak solutions of the harmonic map flow
in H (M x [0, T]; N) whose energy is non-increasing in time and having the same initial data
uo€ H'(M, N) (and same boundary values if M # ) then u =v. Combined with a result of M.
Struwe, this shows any such u is smooth in the complement of a finite subset of M x (0, T}].

1. Introduction

Let M be a compact two-dimensional Riemannian manifold with smooth
(possibly empty) boundary dM, N an arbitrary compact Riemannian manifold of
dimension k, which we assume isometrically embedded in R?. In this paper we
obtain a uniqueness result for solutions of the ‘harmonic map flow’ of maps from
M to N:

u,— Au =try,u*4A on M x(0,T)
u(x,t)=y(x) fort=0,x edM (1.1)
u(x,0) =uy(x), xeM

where u(x, r) takes values in N = R?, A4 is the second fundamental form of N in R”
and the superscript (*) denotes pullback to M. Time-independent solutions of (1.1)
correspond to harmonic maps from M to N.

By the well-known theorem of J. Eells and J. Sampson [12] (extended by R.
Hamilton [11] to the case of manifolds with boundary), (1.1) has a smooth solution
defined for all time and converging to a harmonic map from M to N, under the
assumption that N has non-positive sectional curvatures; this solution is essentially
unique. If no curvature assumptions are made on N, this is no longer true. For
two-dimensional domains, the existence of a global weak solution with finite
singular set for arbitrary targets (and u, € H'(M, N)) was obtained by M. Struwe in
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1984 [1], when 0M = . He also showed that this solution is unique in the class of
solutions with finite singular set (we recall the precise statements below). Similar
results were obtained by K. C. Chang [2] in the case of non-empty boundary, with
boundary data y € H*¥*(M; N). We will refer to this solution as the ‘almost regular’
solution with initial data u,. The main result of this paper extends the uniqueness
results in [1] and [2] to the general class of H'! weak solutions of (1.1) whose energy
is non-increasing as a function of time.

In order to state our main result precisely, we introduce a space which played
an important role in [1]. Define:

VT=H'(M x [0, T]; N)n L*([0, T]; H' (M, N)) n L¥[0, T]; H*M, N)).

Denote by E,(f) = [ « n|Vu[? dx the total energy of the map u at time . Our
main result is:

THEOREM 1.1. Let u € H'(M x [0, T]; N) be a weak solution of the harmonic
map flow (1.1) with initial conditions uy€ H'(M, N). Assume E,(f) < E,, ae. in
I =10, T]. Then there exists T’ € (0, T) such that ue V7.

Combined with the results of M. Struwe and K. C. Chang, this theorem
immediately implies a uniqueness and partial regularity statement for solutions of
(1.1) in H'(M x [0, T]; N) whose energy is monotone in time. Prior to stating the
corollary, we recall the main results of [1] and [2] (stated in the case M = J for
simplicity).

THEOREM 1.2 (M. Struwe, [1]). Assume 0M = . For any initial value
ug € H'(M; N) there exists a number Ty = To(up) > 0 and a solution v € N\ 7, V"
of (1.1) with u( -, 0) = u,. Moreover,
(i) v is smooth in M x (0, T,] with the exception of finitely many points (x;, T,),
1<i<K;
(ii) v is the unique solution of (1.1) in the space (\r ., VT with initial data u;
(iii) The energy E,(t) is finite for all t € [0, T,] and nonincreasing in t.

The authors of [1] and [2] also showed that the solution can be continued to a
weak solution of (1.1) in M x [0, co) whose singular set is finite.

We will refer to T, as the ‘first singular time’ of #,. Combining theorems 1.1 and
1.2 one obtains the following corollary.

COROLLARY 1.3. Let M be a two-dimensional compact Riemannian manifold
with smooth (possibly empty) boundary, N an arbitrary compact Riemannian mani-
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fold. If u is a weak solution of (1.1) in H'(M x [0, T]; N) with initial data
u,€ H'(M, N) and satisfying E, (t) < E,(s) for t =5 (and with boundary values
y € H¥*(M; N) if OM # &), then u coincides with the ‘almost regular’ solution with
initial data u,. In particular, u is smooth in M x (0, T] away from finitely many
points.

By the main result of [10], this is the optimal regularity for weak solutions of the
harmonic map flow in two dimensions, even if the initial map is smooth. Corollary
1.3 may be regarded as a parabolic version of F. Hélein’s theorem on smoothness
of weakly harmonic maps in H'(M; N) when M is two-dimensional [16]. We
remark that it is well-known that, for regular solutions, the total energy is
non-increasing as a function of time (see e.g. [1, lemma 3.4]). In addition,
monotonicity of the energy (weighted by the heat kernel of M) is presumably
necessary (perhaps sufficient) for uniqueness in higher dimensions.

These results had previously been obtained for spherical targets, by the author
[14], following work of T. Riviére under the assumption that the initial map has
small energy (and also for spherical targets, [3]).

Proof of corollary 1.3. We may assume T” < T,, the first singular time of u,. By
the uniqueness statement (ii) in theorem 1.2, u coincides with the ‘almost regular’
solution in [0, 7). We now repeat the argument starting at 7 (and using the energy
monotonicity hypothesis) to obtain the first condition of the corollary. The partial
regularity statement follows immediately from uniqueness and (i) in theorem 1.2.

Outline of the proof of theorem 1.1. As in [3] and [14], the main idea is to use
Wente’s two-dimensional ‘compensation lemma’.

LEMMA 1.4 (Wente [8] and Brézis-Coron [9]). Let M be a compact two-dimen-
sional Riemannian manifold with ( possibly empty) smooth boundary. If n € H'Q*(M)
and 0 € H\(M), then én - d0 € H=(M) and

|6n - dby-1 < cs|0n] .2 |db| 2

for some ¢ = c(M) > 0.

REMARK. When M is a bounded domain in R? (with the Euclidean metric)
and n =n,dx A dy, df =0,dx + 0,dy, we have:

6" - df = Hx(nl)y - ey(nl)x'

This was the case dealt with in [8] and [9]. In the general case one takes local
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conformal coordinates in which the metric is written as g;; =e~2°9,;, 1 <i,j < 2.
This implies 8,1 = e ~*d,,.1, so locally we are back in the Euclidean case, and we
may globalize with a simple partitions-of-unity argument.

In section 2.1 we show the harmonic map flow equation may be written as:

u, — Au = —Z <du * Wig, €; >ea9 : (12)

where {e, } is an arbitrary global orthonormal frame on N, whose first k vectors {e; }
are tangent to N and whose last p — k vectors {e,} are normal to N; such a frame
may be assumed to exist, by an observation of Hélein [16]. The w,, are connection
1-forms (w;, = {de;, e, )).

The main new technical ingredient in this paper is the construction of a
time-dependent orthonormal frame ‘adapted to u«’ (in the sense that
e(x,t) e T, nNfori=1,...,kand a.e. (x, £)), which has the additional property
that éw,;, € L%(M x I) (theorem 3.1). Since the frame is time-dependent the direct
minimization argument of [15] and [16] does not apply; instead we use time-dis-
cretization (as in [13]) to solve a non-linear parabolic system for the {e,}. Our
argument works in all dimensions. The frame {e,(x, #)} we construct satisfies the
equation:

Oe,
5wrs + <—(3_t- ’ es> - ¢rsa

for some ¢,, € L*(M x I).

In dimension two, the condition dw;, € L*(M x I) implies higher regularity of
the frame for a short time; specifically, we show that de, € L*(I,, L*) (theorem 3.2),
I, =[0, T,]. If we consider the Hodge decomposition of the connection 1-forms for
this frame:

w;,, = dA;, + 0B, + H,,

it turns out that (1.2) may be written as:
u,— Adu= —Y {du- B, e, +f(x,1), (1.3)

where f(x, ) € L*(0, T], L**(M)). Note that the main term in (1.3) is now (essen-
tially) in a form to which Wente’s lemma 1.4 applies (due to the presence of the e,
in (1.3), the actual argument is different from that used in the case of spherical
targets — see section 2.4).
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We regard (1.3) as a perturbation of the linear non-homogeneous heat equation
with source term in L*(I, L) (actually, we first subtract the solution of the linear
homogeneous heat equation to absorb initial and boundary values). For this it is
necessary to assume that B;, is small in L2 norm, uniformly in T. This is possible
for a short time, by an argument similar to that used in [14]. This shows

u € LY[0, T'], w*4P),

for a short time 7’ (depending on u). Since W?**< W'* in dimension 2, this
implies u € L*(I’; W'*) (where I’ =[0, T’]). But then (1.1) may be regarded as a
linear non-homogeneous heat equation with ‘source term’ in LM x I’). Thus by
linear existence and uniqueness (e.g. [17, p. 243]) we have u € L*(I’; H*(M)); hence
u is in the space V7.

We try to adhere to self-explanatory notation; the abbreviations used more
often are listed at the end of the paper.

2. Proof of Theorem 1.1

In this section M is a compact two-dimensional manifold, with or without
boundary. Our goal is to prove the following theorem.

THEOREM 1.1. Let u € H'(M x [0, T]; N) be a weak solution of the harmonic
map flow (1.1) with initial conditions uye H'(M; N). Assume E,(t) <E, a.e. in
I=[0,T]. Let T, be the first singular time for the ‘almost-regular’ solution with
initial data u,. Then there exists T’ <min {T, T,} such that:

u € L¥[0, T"), HX(M; N)).

In particular, ue V7.

Proof. We follow, broadly speaking, the ‘perturbation’ argument used in [3], [4]
and [14]. Our first goal is to rewrite the harmonic map flow (1.1) in the form

u, — Au = ‘compensation terms’ + terms in L*(I, L*?),

where by ‘compensation term’ we mean, loosely speaking, an expression of the form
da - b, where a and b are, respectively, an H' function and an H' 2-form on M.

Doing this for general targets will require the introduction of time-dependent
‘H' othonormal frames adapted to u(x, r)’ satisfying a regularity property (2.1(vi,
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vii) below). By an argument of F. Hélein [16], we may assume the existence on the
target N* = R? of an orthonormal p-frame, the first £ vectors of which are tangent
to N. Composing such a frame with u(x, f) we obtain an orthonormal frame
e,e HHM x I, R?), r=1,...,p. In section 3 we show (Theorem 3.1) that it is
possible to change (¢,) to a frame (e,) satisfying:

(i) <e,e» =9, ael(x,1);
(i) e;(x, t) € TN(u(x, 1)), i=1,...,k a.e.(x,?);

P

(i) | |VePdx<cE,  ae(s); (2.1)
JM,
rT a 2

(iv) f %l dx dt = K < oo;
Jo Ju, |02

r‘
(v) | |Vel|dx <cE,
M

Y,

(conditions (2.1 (i—v)) are also satisfied by €,) and with the additional property:
dw,, € LA(M x I), (2.1(vi))

where we define w,, = {de,, e,> € L*(I, L’Q"). We assume henceforth indices g, r, s
range from 1 to p, i, j from 1 to k and a, b from k + 1 to p. In theorem 3.2 we show
that in the two-dimensional case one obtains, in addition:

de, € LX(I,, LY, (2.1(vii))

where I, =[0, T,] and T, <min {T, T,} depends on u and on the e,.

2.1. Rewriting the equation for u

We fix for the rest of this section an orthonormal frame (e,) satisfying condi-
tions (2.1(i-vi, vii)) above. Let

u;, ={du, e;» € L*(I, L?).
Then, since equation (1.1) implies {u, — 4u, e;> =0, we have:
ou; ={—Au, e;y — {du - de;

(2.2)
={—u, ei)"Zuj " Wi,
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where the fact that (e,) is adapted (condition (2.1(ii))) was used. In addition, since
the same condition implies:

du=) ue,
i

we have:
—Au=358du=Y due —Y u; - de,

= Z Sue, — Y (u;  w,)e,. (2.3)

From (2.2) and (2.3) one easily computes:
u,— Au = "'Z (uj ) wij)ei - Z (u; - w; e,
i,j ir
= —'Z (ui ) wia)eaa

= =) {du - w,, e e, (2.4a)

where we used the fact that w;; = —w; for all i,j=1,...,k.

2.2. Use of the Hodge decomposition

Hodge decomposition theorem. We recall the following standard result (see e.g.
[5, ch. 4]).

2.2.1 (0M = &). Denote by #? (0 < p < n) the space of harmonic forms in M
of degree p. We have the orthogonal Hilbert space decomposition:

L2QP(M) = dQP~"H'(M) @ 6Q7* 'H'(M) @ H#7.

2.2.2 (OM # ). Let 8 € Q'(M);;5, be the metric dual to the unit normal v. Any
p-form e Q?(M) has a unique orthogonal decomposition at points of
oM:.0 =w, +0 A w,, where i,, =0. (We may assume v and the decomposition
have been extended to a tubular neighborhood of dM.) Denote by:

Q7H}(M) — the H' closure of the space of smooth p-forms w in M with
compact support in int (M); by
- A% — the space of (smooth) p-forms w in M such that dw = éw =0 and w, =0
on oM. This is a finite dimensional vector space, isomorphic to the relative
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cohomology space H?(M, oM, R). We have:
L’Q?(M) =dQ?~'"H{0(M) ® 6QF*'H'(M) @ #7,.
In the unique decomposition
o=dou+06p+h (6o = dp =0)
corresponding to either of the two splittings above, one has the bounds:

lel + Bl < el 2,

for some ¢ =c(M) >0. (In the case n =2, p =1 we normalize f by requiring
fs B =0, and if OM = F we also set [, *a =0.)
We write the Hodge decomposition for the 1-forms w;, € L=(I, L?Q") as

0, = dA,, + 5B, + H,, (2.4b)
where

| Aia |l coaarty + | Bia |l Loy + [Hia | Loarr S €| @i |Loger) < B> (2.5)
and

SA‘}P |Hia| <c "Hia "Ll(M,) < cEy? a.e.(t),
given that the space of harmonic 1-forms on M is finite-dimensional. In particular,

H,, - u, e LI, L*?), since:

1B oncny c(s]gp 1, |) oy S o aed)
t

Condition (2.1(vi)) implies that w,, is ‘co-exact modulo more regular terms’, in
the following sense: since

—A4A4,, =dw;, € LA (M x I)

(2.6)

f sd, =0 (A, cH) if oM # ),
M

we have
A,, € LI, H*(M)).

To proceed we appeal to the following interpolation inequality.
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LEMMA 2.1. Assume M is two-dimensional. There exists ¢ = c(M) >0 such
that if f € HY(M),

[, 11t ax =l P 1

For bounded open sets in R2, this is classical (see e.g. [17, p. 63f]). For closed
surfaces, see [1, lemma 3.1] for a proof.

Applying lemma 2.1 to the dA4,,, we obtain:

j (A | dx < |dAi oo |04 Boney  ace(0).
Mt
This implies:

||“x' rdA;, "24/3(%) <c "”i u‘}ﬂ(M,) HdA,-,, ||14(M.)

< CEj | dia |2y |dAi | 220ey  ae(d),
so (by (2.5), (2.6) and the Calderon—Zygmund inequality):

;- dAiq |2 ar.Lomy < CE3 || 4ia | 22012

< CEg ”5(1),-“ "iZ(M x I)*
Thus we may rewrite (2.4a) in the form:

U, — du= Y {du 5By, e;Ye,+ Y. (4 * Culea, 2.7

where by definition «; - C,, = —u; : (d4,, + H,) € L*I, L*?).

2.3. Rewriting the equation for w =u — v

Now let v : M x I — R” be the solution of the linear homogeneous heat equation
on M with initial data 4, (and boundary data y if M # ). From (2.7) we obtain
forw=u—v:

w,—Adw = =Y <dw - 6B, e, > e, + f(x, 1),
ia
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where:

f(-x9 t) =Z (ui ) Cia)ea —Z <dv- 5Bia’ € >e,.

We claim f e LI, L*?). This has already been verified for the first term appearing
in the definition of f. For the second term, we have (using (2.5) and lemma 2.1):
|dv - 0Biy || Lanary < c|ldv || Lacary |10Bia || L2can,y

< c|ldv |23, o] Hiaep Eo”,
which implies:
”dv * 0By, "24(1,“/3) < cE} "0“3,2(1, H2)s

proving the claim.

2.4. Regularity of solutions of linear equations

In this subsection we consider the general non-homogeneous linear system of
the form:

D, —AD = —(dP - 0B)e + f(x,f) on M x1I
d(x,.)=0 xedM (2.923)
(.,00=0 in M,

where BeL®(,Q*H"),feL*I,L*?) and eeL*I, W')YnL>M xI). If
I|B| Lo is small, one may prove the following regularity result.

LEMMA 2.2. There exists ¢ >0 (depending on M and T) with the following
property. Let I' =[0,T’), where T €(0,T) is arbitrary. Let fe L%I’, L*?),
BeL>(I',Q°H") and e € L*(I'y W' nL™(M x I'). Assume |B| L~y 1y <é¢. Let
® be a solution of (2.9a) in (H' nL®)YM x I), such that |V® | .24 € L=(I'). Then
& e LYI', W),

Remark. It is important to observe (to avoid circularity in the proof of theorem
1.1) that ¢ depends on M and T, but does not depend on 77, f or e.

Proof. Fix an arbitrary T € (0, T] throughout the proof; set I’ =[0, T’]. The
idea is to regard (2.9a) as a perturbation of the non-homogeneous linear heat
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equation. We recall the relevant linear theory. Consider the equation:

b, —AP=g in Mx(0,7)
d(x,.) =0 on oM (2.10)
&?(.,00=0 inM

THEOREM 2.1. (P. Grisvard [6], theorem 9.3 and remark 9.15). Assume
g € L?(I, LY(M)), where 1 <p,q < oo are arbitrary. Problem (2.10) has a unique
solution in the space:

L5, W) = (@ € LP(I, W*9) | &, € L’(I, L9), ®ypp; = B, &(. , 0) = 0in M.

Moreover the map & : LP(I, L) — L5(I, W*9), #(g) =0 is an isomorphism with
inverse L® = @, — AQD. '

We now use theorem 2.1 (with ¢ =4/3 and 1 < p < oo arbitrary) to show that,
for small enough & >0, (2.9a) has a unique solution @, € L5(I’, W**?) (assuming
fe LP(I’, L*?)). Observe that (2.9a) may be written as

® + P((dP - 5B)e) = L(f), @ e LA, W**P).

Showing that & +— @ + £(d® - 6B°) is an isomorphism of L5(I’; W?*3) will estab-
lish the existence and uniqueness claimed for (2.9a). Let & e L5(I’; W>*?3). The
Sobolev embedding W'43(M) ¢, LYM) implies d® e L?(I’; L*). By Hélder’s in-
equality we have, for almost every ¢ € I":

(@@ - 6B)e|| Loz < ¢ ||dB|| Laary | AP || Lacas,y < c&]|dP || Lacar,ys
and hence:
| - 6B)e | Locr.Lomy < c&[| @ || Locimaasy-

Since & : L,(I'; L*?) - L§(I’; W**?) is bounded (with the bound depending on 7,
but not on T”), choosing ¢ = ¢, sufficiently small establishes the claim.

Our next goal is to show that the solution @, of (2.9a) obtained in the previous
paragraph coincides with the solution @, =& whose existence is assumed in the
lemma. This will follow from the claim below. For this part of the argument, we fix
p =4

CLAIM. Let ®,€ LYI’; W**?) and ®,e (H'NL®)M x I') be solutions of
(2.92), with |V @, 2€ L*°(I'). Then ®, = ®, (assuming ¢ is sufficiently small).
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Proof. Let ¥ =&, —®,. Note W2 C(M), so &, eL*I;L®), hence
¥ e LYI; L™). Also, the assumptions on @, and &, clearly imply V¥ e L(I; L?).
We will show that ¥ =0. We have:

V,—AY =(d¥ - 6B)e,
so taking inner products with ¥ and integrating,

1d
s | e[ e

{(d¥ - 6B)e, ¥)

M,
<c|[V¥[|VBL[VE].+ ¥ ]s] Vel
<ce| V|3 +c|¥]alvela |V ]|V B].

1
<o P[5+ clvelu(; ¥ 15+ 2171 PBL )
where in the first inequality Wente’s lemma 1.4 was used and in the third Young’s

inequality (for some positive 4 to be chosen below).
For ¢ < ¢, sufficiently small (depending only on c¢) this implies:

1d

1 Vi
— 2 _ 2 e 2 2 4/3
3 |, 17Eg [ PR S el 12+ calPelulre i

It is easy to verify the integrability of the last term in [0, T7]:

[Cwererweraarse([ i) (] were)

which is finite, given the assumptions on ¥ and e. We now choose 4 so that

1 T T 1/3 o 2/3
Ej j ]Vledxdt>cA(J ||V'P|l§) (L ns7e||g/2) . @11)
0 M 0

Then f(f) = |¥| L2, satisfies a differential inequality of the form:

f+h S%gf,
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where (J hdt >0 and |I gdt <oo. The first inequality follows from (2.11); the
second from ||Ve|,e L*I’) and |¥|% € L*1’). Gronwall’s lemma (or a simple
direct argument) then shows that f(0) = 0 implies f(¢) vanishes for all ¢ € I’. This
concludes the proof of the claim, and with it the proof of lemma 2.2.

We will also need to consider the analogous regularity result for an equation
slightly different from (2.9a). This will be very similar to lemma 2.2, but simpler.
The equation is:

S, — AP =d® - 6B+ f(x,t) on M x(0,T)
P(x,.) =0 on M
&(.,0)0=0 on M.

(2.9b)

LEMMA 2.3. Fix 2 <p < . There exists an ¢ > 0 (depending on M, p and T)
with the following property. Let @ be a solution of (2.9b) in H'(M x [0, T"]), where
T'e(0,T) is arbitrary. Assume fe LP(I',L*?) and Be L*(I',Q?H"), with
| B, 1y <& Then & € LP(I', W243),

Proof. The first part of the proof of lemma 2.2 (with e = 1) guarantees the
existence of a solution @, € LP(I', W>*?3) (for ¢ < ¢, small enough). Recall the
following classical result:

THEOREM 2.2. (J. L. Lions and E. Magenes [7], p. 89). Assume
g € L¥(I, H='(M)). Then problem (2.10) has a unique solution in the space:

Wo={® e LY, H")|®, € LI, H™"), @5, =0, &(.,0) =0 in M}.

Moreover the map W : L*(I, H~") —» W,, %(g) = @ is an isomorphism with inverse
Lo =0, — A9.

We use this to show (2.9b) has a unique solution in Wy (defined as W, above,
with 7" in place of T'); this is implied by the statement that @ +— @ — % (6B - dP) is
an isomorphism of Wj (note that fe L*(I’, H™'), since p = 2). For this we use
Wente’s lemma 1.4, which implies that, if ® € L*(I’, H"):

|0B - d® ||y -1ary < || P || rrcary B | rrrcars
and hence:

|6B - d® || L2, -1y < c&||P | L2y

Since % is bounded, this implies the map above is an isomorphism of W, for ¢ small
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enough, and (2.9b) has a unique solution in Wj. Since both the solution & whose
experience is assumed in the lemma and the @, obtained in the previous paragraph
are in W (note (), € L?(I’, L*?) ¢ L¥I', H™"), since p = 2), they must coincide.
This concludes the proof of lemma 2.3. *

2.5. Conclusion of the proof of Theorem 1.1

We apply lemma 2.2 to equation (2.8) and a time interval [0, T,], where
T, < T, < T, (T, is the first singular time of u, and the choice of T, guarantees that
[Vel|se L*[0, T\])—see (2.1(vii))). Fix the &£ >0 given by lemma 2.2.

Let B = (B,,) be the two-forms defined in terms of the map u(x, f) by the Hodge
decomposition (2.4b); recall that B € L*(I, H'). We claim that one may find a
decomposition:

B=B1+BZ

such that B, e C®((0, T"), 2% M)) and for a short time (that is, in M x [0, T”]
where T” depends on ¢, u and {e, }) we have:

1B: | Loy <&
(I’ =[0, T’].) Moreover,
sup |6B,| < cEy>.
M x [0, T
In particular, (6B, - dw) € LYI’, L*?) and
”<5BZ . dw>||L4(I’;L4/3) < CT1/4E0. (2.12)
To obtain this decomposition it suffices to write at time zero:

B(0) = B,(0) + B,(0),

with | B,(0) ||z <&/2 and B,(0) € C*Q*(M). In the next section we show that the
improved adapted frame {e, } given by theorem 3.1 attains its initial data strongly
in H'(M) (see lemma 3.1). Thus w,,(f) = @,,(0) strongly in L*(M). Since the linear
operator that assigns B, to w;, is bounded (from Q'L*M) to Q*H'(M)), this
implies:

|B() — BO)|sia, <8/2  forte[0, T, T' =T ufe})<Ts,
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hence setting B,(f) = B,(0) and B, (f) = B(f) — B,(0) we obtain a decomposition of
B with the desired properties, proving the claim. (A simpler version of this
argument was already used in [14], following a suggestion of M. Struwe.) We fix
this 7’ for the remainder of the proof.

We now apply the decomposition obtained in the previous paragraph to re-write
(2.8) as:
(w,—Aw =Y (dw - 5(B,), €: Y€ +f; in M x (0, T"),

ia (2.13)

w(x,.)=0, xedM,

AL

| W0 =0 in M,

where f; =f + {6B,, dw) € L%I’, L*?) (by (2.12)). By lemma 2.2 (applied to (2.13))
we have w e L4I’, W**7), for the T’ found in the previous paragraph. Since clearly
v e LYI’, W**?3), we have u € LYI’, W>*3). As explained in the outline of the

proof, it follows from this and (1.1) that u € L*(I’, H¥(M)), hence u € V7. This
concludes the proof of theorem 1.1.

3. Existence of adapted frames
In this section M is a compact Riemannian manifold (with or without
boundary), whose dimension is arbitrary until further notice.
Let I =[0, T] (where we allow T to be infinite) and consider a map
u=u(x,t) : M x I-N*cRF (N compact)
such that
ue H(M x I, N);

u,=u(.,0) e H'(M, N), J |Vuo|? < Ey;
M
J |Vuldx < E, a.e.t) (3.1)
M,

We assume the existence of an ‘H! orthonormal frame in R? adapted to »’, that is,
of maps:

eeHWMxI;,R?), r=1,...,p
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such that:

(i) <e,,é,>=0,, ae(x,?),
(i) é;(x, t) € TN(u(x, 1)), i=1,...,k ael(x,?i);

r

(iii) Ve, dx < cE, a.e.(t);

M,

rT
(iv) f
JO JM,

P
(v) | |Vé2P dx < cE,,
M

LY

2

08, dxdt=K < o

ot

where &° = ¢é,(. , 0). Henceforth we assume indices g, r, s range from 1 to p, indices
i from 1 to k£ and a from k + 1 to p. We denote by [F? the manifold of orthonormal
frames in R?, so (&,) € H'(M; F?). An adapted frame satisfying (i)—(v) may be
obtained by composing an existing global o.n. p-frame in N =« R? whose first k
vectors are tangent to N with a map u(x, f) satisfying (3.1) (it is enough to assume
the existence of a frame in the image of u).

Given (¢é,) satisfying (i)—(v) we define the 1-forms:

@, = {de,, &,y e LI, L*Q'(M)).

In general we only have d@,, € H~'(M,) a.e.(f). The main result of this section is
that by changing the frame this can be improved.

THEOREM 3.1. Assume the existence of an adapted frame (€,) satisfying
(1) —(v), where u(x, t) is a time-dependent map satisfying (3.1). Then we may find an
adapted frame (e,) € H'(M x I, F?) satisfying (i)—(v) (with different constants on the
right-hand sides of (iii) and (iv)), coinciding with (€°) for t = 0 and with the additional
property:

ow,, € L*(M x I)

(where by definition w,, = {de,, e, )). The e, (x, t) are weak solutions of the system:

de,
<5;9 es> + 5wrs = ¢rs’



326 ALEXANDRE FREIRE
for some functions ¢,, € LA (M x I), with boundary conditions:

Oe,
E oM = 0

if OM # .

Proof. The idea is to obtain the (e,) by solving a parabolic equation on M x I
with initial data (€2). We will do this following the time-discretization method used
in [13, proof of Theorem 1]. The main difficulty is defining the functional in
variation (F,(e) below) so as to obtain adapted frames in the limit.

The ‘background frame’ (€,) defines pointwise isometries I, ,, : R? - R? by:

H(x,t)v = (<U, e-l (xa t))a s <U, e_p(x, t) >)

Recall that we may assume the maps ¢ — é,(. , ¢) are in C°(Z, L%(M, R?)). Thus for
each ¢ € I we have a bounded linear map I, : L*(M; R?) - L*(M; RP) given by:

(IT,v)(x) = (v(x), &,(x, 1)), . . . , <v(x), &,(x, 1) )).

The maps II, will be used below in the definition of a functional on frames.
STEP 1. Given h € (0, T) we define the sequence of times:

t, =nh; n=0,1,...,[T/h).

Here [x] denotes the largest integer less than or equal to x. We further fix the
notation I, =[t,,,+), 11, =1, ,é; =¢,.,t,). When T is finite, we adopt the
following endpoint conventions: I, =[h[T/h), T),é"*' =¢é&.(.,T) € L(M; RF) if
n =[T/h] (we may assume T/h is not an integer). All the intervals I, have length at
most A.

We define inductively a sequence of frames (e”) € H'(M, F?) (not necessarily
adapted), n=0,1,...,[T/h] +1 as follows. Let e? =¢&%, and given (e") solve the
variational problem:

(e?* 1) minimizes F, in H'(M; [FP),
where

Fie) =¥ L Pefax+ly L T, 1(e) — I, (D) d.
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F,(e) is clearly sequentially weakly lower semi-continuous in H'(M; F?), so a
minimizing frame exists in H'(M; F?) and (e”*') is well-defined.
The Euler-Lagrange equation for F, is:

1 1
5(0" +’E <er - e;-]a € > = ¢:"s’

< (3.2a)
<§€;, es> =0 on oM
ov
"
forall r,s=1,...,p, where w,, = {de,, e,) and
'

1
:'ls 2;1 {<er —e:'a es>}+ + {!/’:'s}..,
< 1 (3.2b)
rs =; ; <€:, é; ><esa éz+1 - é;)

\

(Here for a P XxXp matrix 4 = (ars) we set {ars }+ = %(ars + asr)’ {ars }— = %(ars - asr))'
The (standard) derivation of (3.2) is included in an appendix to this section. We
need some estimates for the minimizers (e?),n = 1. First observe that if
ve(H'NnL®)M;RP),

2,

j (o(x), &,(x, t + h) — &,(x, 1))? dx < ch f Mﬂ'“’ 3
M M : t

i ds) dx, (3.3)

for all te[0,T—h (by Cauchy-Schwarz and |é,(x,t+h) —é,(x, D <
h i+*|0e, [0t|* ds). Thus, for v(x) € L=(M; RP),

r

J |(Hn+l_nn)v‘2 dx =2 J‘ <Ua é.;l+l _e-:'>2 dx
M M

) oe,|?
<hY | vl — | dt |dx, (3.4)
r JM I, at
in particular:
A
|1, . —M,)e*Pdx < ch Y, —| dtdx (3.9)
M s JM JI, ot
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Since F,(e"*"') < F,(e™), we obtain for n = 0:
1
y j Ver+'Pdx += 3 f |, . er*' —I,(er)| dx
r JM h r JM

ddx

<3 [, Iverr

Adding these inequalities for varying » starting at 0, we obtain:

Zj ]Ve”*‘lzdx+’11 Y ¥ [H,,,He’”+1 — .7 | dx

m=0 r

st |Pe? |2dx+c2f f

We also have, since I1, is a pointwise isometry for each ¢:

dt dx < ¢(E,+ K). (3.6)

le:+1 _e:l| =‘Hn+le:-1+l —Hn+le:"

<|M,, er+! —I,e"|+|1,, eF —

which combined with (3.5) gives for each n:

1
P e —apar st [ e - merpas
5 |2
+CZJ J %" 4t dx. (3.7)
s JM JI, a

The form of the functional F, allows us to estimate how far (e¢” * ') is from being
an adapted frame. Clearly, a frame is ‘adapted’ if, and only if, {e;, €,> =0 a.e. for
eachi=1,...,kanda=k +1,...,p. But again from the fact that IT, and II,, , ,
are pointwise isometries, we obtain for each i and a in these ranges, pointwise on
M:

<e?+l’éz+l>=<nn+le?+ Hn+len+l>

=M, e} —Ie}, I, &% ) + (ILef, I1,85)

= <11n+1e?+1 _Hne?’ Hn+lé:+l>+<e?a é:)

n

S +1 +1

- - Z <Hm+le;n '—Hme:'"snn+len >a
m=0
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where in the second equality we used the fact that IT,, , ,é2*! = I1,é" and in the last
that {e?, %> =<e?,e%> =0.
Combined with (3.6), this implies for each i, @ and n:

m=0JM

J. <en+l —n+1>2dxsc Z lnm+lrm+l__n e’ Izdx

< ch(E, + K). (3.8)
STEP 2. We now define on M x [0, T'] two ‘frames’,
e(x, 1), é(x, 1),

where neither is adapted and the e’ are in L®(M x I) but are not orthonormal. For
tel,,n=1,...,[T/h], set:

— Dh—t

&(x, 1) = el (x, ).

e;(x),

It is easy to see that both (e?) and (é”) are in L*(I; H'(M; RP)), and moreover that
e’ e HY(M x I; FP), uniformly in 4 in each case. In fact,

on M x I,, so using (3.6) and (3.7) we obtain:

T h|2 [T/h] detl2
ffag’dxdt jfeddt
o Jm |0t 1
[ |
— Z e;n+l |2dx
m= Oh.,M
c[T/h] [ m+1 m|2
SZ Y M, . er*! —,er [ dx
m=0 JM
=12
a—e—‘? dt dx

3% |, J

* dxdt < By +2K). (3.9)

M
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We also easily obtain from (3.6):

e

t 2
Y |Véf|2deZJ |Ve9|2dx+cZJJ‘ o
r JM, r JM r JO JM at

dx dt < (Ey+K), (3.10)

for all ¢ € [0, T]. Exactly the same bound holds for Z, {,, |Ve?|* dx.
From the Euler-Lagrange equations (3.2) for the e”, one sees that the é&”, e”
satisfy weakly in M x I the equations:

de* sh i
= 11
6wrs + < at S > rso (3 )

where &% = (dé’, é"> and

o= {<a;;, e>} +{yh}_,

Z(e,,'”xe"“ fg v — 833, (3.12)

for (x,7) € M x I,. The family {¢%},., is uniformly bounded in L*(M x I); we
have:

T [T/h) r
Wr)dxdt<c ) 3 2|e""+‘ er 2 dx dt
o Jm v h

m=0 q JI
0é,

2
¥ dx dt

[T/h] f*
<c Sy f
M

m=0 q JI,

where (3.3) was used. This and (3.9) imply:

Jj (¢¢s)2dxdtSCJ J I——— dxdt+cJ f (Wh)? dx dt

< o(E, + 3K). (3.13)

Our last estimate for the (é”) is obtained by observing that, for ¢ € I,:

€ (x, 1), &,(x, 1)) = <el* 1 (%), 83 1(x)) + (&u(x, 1) — &,(x, (n + Dh), €] 1 (x)),
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so using (3.3) again,

f (é?,éa>2dxscj (e?“(x),éﬁ*'(x))zdx+chj '[ 08" dt dx.
M, M M JI, 51‘
Recalling (3.8), this implies:
f éh, e, dx < ch(E,+ 2K) (3.14)

for all 1 € [0, T1].

STEP 3. The frame (e,) whose existence is claimed in the theorem is obtained
by taking limits of the (e?) as #—0. The uniform estimates (3.9) and (3.10)
obtained in step 2 imply that (after possible passage to a subsequence):

e ——e,, weakly in H'(M x I; RP)

e — e,  strongly in L2 (M x I; R) and a.e. (3.15)

(we don’t know at this point if (e,) is an o.n. frame). Moreover, since (by (3.10))
dé" is uniformly bounded (in 4 and ¢) in L2Q'(M,) for ¢ € [0, T'], we have:

dé" —~0,e L2Q\(M x I),

weakly in L2 (in fact, dé”(f) — 0,(¢) weakly in L2Q'(M,) for each t e I). Now
observe that for t € I,,:

eh b= fin + Db — affer ! — ez s fer ! — et

SO

r*

hj2
Oe;

ot

dx,

| IZdXSj ler*! —er|dx = hzj

JM M

Js f le* é”}zdxdtshzf f l——

using (3.9). This implies ||e? — &* || .2 x rr» — 0 as A —0, which has the following

dx dt < ch*(E, + 2K),
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consequences.

(i) é* —»e, strongly in LA(M x I; RP) and (we may assume) almost everywhere.
In particular, (e,) is an orthonormal frame.
(ii) dé* —~de, (weakly in L2Q'(M x I)), hence 0, =de,; in particular,
dé"(t) — de,(f) weakly in L?(M,), for each t € I.
(iii) From (3.14) we have that:

eh e dx — 0 as h -0,
M,

uniformly in ¢ € [0, T], for all i, a in the appropriate ranges. Hence {e;, €,> =0
a.e(x, t), which means (e,) is adapted. From (ii) and (3.10) it follows that

f Ve, dx < c(Ey+ K)  a.e.(d). (3.16)

The last issue to consider is ‘convergence of the Euler-Lagrange equation.’ This
is not hard to verify. Indeed from (ii) above:

(I)rs E— (de,, € > =0,
(weakly in L2Q'(M x I)), and from (3.15) and (i) above,
Oe; éh ) — ge, e
at b s at b s 2

weakly in L2(M x I). In addition, by the uniform bound (3.13) we may assume:

fs E— ¢rs ELZ(M X 1)9

weakly in L2(M x I). Thus we may take limits in (3.11) as 4 -0 and obtain:

e,
5wrs+<—é—t—’es>_¢m' (317)

Since (e, [0t, e,y € LM x I), so does dw,,, concluding the proof of theorem 3.1.
X In the proof of theorem 1.1 (section 2) we used the observation that the e,(x, ?)
attain their initial values in the strong H' sense. This is verified in the following

lemma:
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LEMMA 3.1. X, |de,(t) —de? |34, =0 as t | 0.
Proof. First observe that, by the calculation in (3.9):

J lef(x, ) —e2(x)]> dx < tJ‘ f I—

hence by (3.15):

dx dt < ct(E,+ 2K),

"er(t) - é? Hiz(M) < Ct(EO + 2K)a

which shows that e,(¢) — &? strongly in L%(M) as t —0. Combined with (3.15), this
shows that de,(f) — dé® as t -0 (weakly in L*(M)).
For any ¢ € I, we have:

Zr: | de,(t) — de? ||7.= Z || de,(6) 32— Z |de?|3.—2 Z (de, (1) — dé?, dé? >, )
< fim inf, _, [z Jaet o~ 5. | uin
—2Y (de, (1) — &%, d&° >, 3a0y,
where the inequality follows from (ii) above. Recall (3.10):

ddt

S, k()< 5 |ded i+ X f

for each 4 € (0, T) and ¢ € (0, T). Combining the two preceding inequalities, we
obtain:

5. [de () ~ &2 125 c 3 j

Cdxdt —2 Y (de,(f) — de°, d&° >, 2ar)-

Since (as observed in the first paragraph of the proof) de,(f) — dé? as t -0, we
obtain the conclusion of the lemma.

Remark. One may readily identify the weak limit ¢,, in (3.17). Defining
é(x, t) = e”(x) for (x, f) e M x I,, we may write (3.12) as

¢s={<a§f,és>} +{h}_,

Z <é‘h "‘h(’)><é?’_’;(e'gh(’)+l — 'Zh(’))>’
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with n,(f) =n defined by ¢ € I,,. It is not hard to see that, as 4 —0,

A:' e

-n ,) -
emi —s ¢, é -

strongly in L%(M x I) in each case, and that:

.1_(e'"k(1)+ L _ gh(0) ____;_aﬁ,
h™? ‘ ot

weakly in L?(M x I). Hence Yy —,,, where

l#rs = Z <ers éq ><ess aaﬁ;>

q

Thus ¢,, = {{0e,/0t, e, )}, + {¥,.}_. This fact is not needed in the proof of the
main theorem. (It follows that ¢,, =0.)

Our last result is a short-time ‘higher regularity’ statement for the improved
adapted frame {e,} obtained in theorem 3.1, which holds in the two-dimensional
case. This is needed in the proof of the main theorem 1.1.

THEOREM 3.2. Assume dim M =2. Let {e,} be an adapted orthonormal frame
satisfying properties (3.1(i—vi)), and satisfying equation (3.17), for some
s € LM x I). There exists T, € (0, T) such that

e, € L*([0, T\], W>*?),  forr=1,...,p;

in particular, de, € L*([0, T,], Q'L*(M)).

Proof. The argument parallels closely the proof of theorem 1.1 in section 2.
From de, = X, w,,e,, we derive:

—de, =) [bw,.e, — o, - de]; (3.18)

s

let w,, = dA,, + 6B,, + H,, be the Hodge decomposition of w,,, with 4,, € Hj and
H,, harmonic (and in , if IM#J). Let C, =dA,+ H,. Since
44, = —dw,, € L (M x I), it follows exactly as in section 2.2 that
de, - C,, € L*(I, L*?). Taking into account (3.17), (3.18) and (e,), = Z; {(e,),, €, e,
we obtain:

(er)t - Aer = _Z des ' 5Brs - Z des ’ Crs + Z ¢rses'
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Clearly XZ; ¢, e, € L*(M x I) = L*(I, L*?). Let {g,},r=1,...,p solve the linear
heat equation with the same initial and boundary data as e,, and set f, =e, — g,.
We have:

(

(./;)t - Af;' = —de; ) 5Brs - Z des ! Crs + Z ¢rses - Z dgs ) 6Brs

0
Ehmo =2 py =0,

dv oM

Given that dg,e L%, L% and 6B, € L*(I,L?, it is clear that dg, ‘0B, €
L4, L*?). By the argument in section 2.5, given any ¢ >0 we may find a decom-
position of B =(B,,):

B(f) = B'(1) + B*(1),

valid for a short time interval [0, T;], such that ||B'||;1, <¢ for all ¢ in [0, T}],
and B2e C®(M x (0, T))) satisfies 6B - de, € L*(I,, L**). We conclude the f, are
solutions of a system of the form:

(P,), — AP, = =} d®, - 6B, + 1,(x, 1),

with zero initial and boundary data, where ¥, € L%(1, L**) and ||6B); || < &. Choos-
ing the ¢ given by lemma 2.3 (applied to p=2 on [0,T]), we conclude
e, € L¥(I,, L*?); this concludes the proof of theorem 3.2. (Strictly speaking, f,
satisfies homogeneous Neumann conditions if 0M # (J; but clearly lemma 2.3 is
valid for Neumann conditions as well.)

Appendix

We include here a derivation of the Euler-Lagrange equations (3.2) for the
functional F,(e) in H'(M; F?). Recall:

1
F,(e) =), J Ve, [?dx + 2 3 f T, . 1(e,) — I, (e7)|? dx,
r M h r M
where

I,@) = (<0, &, . .., (v, &) € R".
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Consider a variation e} = X, [exp(ea)],,e, of the e,, where a € so(p) and exp denotes
the exponential map in SO(p). Defining v, by v, = Z_a,.e, (so that a,, = {v,, ¢,)),
we have:

1(d
2 (?i) (e — uenP
1 d >n+ 1\ n Sn
=—2—(EE)|8=0 Y (es,ertty —Ler, &5 ))?

M rs

= Z<Ur5er>——z<Urse-g+1><e75e-?>:|

= Z(v,,e,—ef)—Z(v,,e';’“——é;’)(d’,é;’)]
| r rs

= Z <er _e:’ es><vra es> - Z <€s, e—;+l —é;><€:’, é;)(U,, es>]'
R

JM r.s,q

For the first term in F,(e®), the variational derivative is:

Sl Y VerP=| Y (de,-dn,>=Y | {de, e <dv, e
2de le=0 JM r M r r.s

M

=Z ” (de,, es> * d(<v,., € >)

- Z <dera es> : <vr° des>'

M

The second term in the previous expression vanishes, since it may be written as:

Y (o, - 0,,)<{v,,¢,> =0,

M rs.q

given that X, w,, - w,, is symmetric in r and ¢, while a,, = {v,, ¢, ) is skew-symmet-
ric in r and ¢. Thus we have:

5(2). L 2= [ Teonwer+ | Goaones.
2\ de le=0 oM

M r M rs
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Combining this with the preceding calculation, we obtain:

S

d 1
. Fn(e£)|e =0= Z 6wrs + - <er - e?’ es) - l/l:'s a,s + (ivwrs)arss
de h ag

M rs

with Y7 defined in (3.2b). Thus we have the following equation for the skew-sym-
metric components:

1
5(l),s +Z {<er - e:'a € >}— = {w:lé‘}—’

or.
1
60),.5 +z <er - e;‘” es> = ¢:"s’

where ¢ = 1/h{<e, — e}, e, >}, + {7 }_. This concludes the proof of (3.2). (For
the boundary condition, observe that i,w,, = {de, [0v, e, ).

NOTATION. We try to adhere to self-explanatory notation; the following
abbreviations are often used: 7 =[0, T']; M, =M x {t}.

Wk4(M) is the Sobolev space of functions (or maps to N) which have k
distributional derivatives in L4 H’, s € R, denotes the scale of Hilbert spaces with
h* = W*? for k € N. The domain M and target (N or R?) are usually omitted from
the notation, with the understanding that, as usual:

Wa(M, N) = {u € W*I(M, Rf) | u(x) € N a.e.(x)}.
LP(I, W) = L#([0, T]); W (M, N)).

Q*wke QPHS, etc. denote spaces of differential forms of degree p with coefficients
in the corresponding Sobolev spaces (smooth forms if no space is indicated); &
denotes the co-differential in the metric of M.

¢ denotes a generic positive constant whose value depends only on M and N.
For w,n in Q' M)®R?,x € Q'(M),v : M - R, we denote by w -« the inner
product on M (a function from M to R?), by {w, v) € Q'(M) the inner product in
Rf and by (w - n) the (real-valued) inner product of w and 7.

For a pxp matrix A4=(a,), we denote by {a,},=2Xa,+a,),
{a,,}_ =Xa,, —a,,) the symmetric and skew-symmetric components of A.
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