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Uniqueness for the harmonie map flow from surfaces to gênerai targets*

Alexandre Freire

Abstract. Let M be a two-dimensional compact Riemannian manifold with smooth (possibly empty)
boundary, N an arbitrary compact manifold. If u and v are weak solutions of the harmonie map flow
in H1(M x [0, T];N) whose energy is non-increasing in time and having the same initial data

u0 e H\M&gt; N) (and same boundary values if ÔM # 0) then u-v. Combined with a resuit of M.
Struwe, mis shows any such u is smooth in the complément of a finite subset of M x (0, T].

1. Introduction

Let M be a compact two-dimensional Riemannian manifold with smooth

(possibly empty) boundary dM, N an arbitrary compact Riemannian manifold of
dimension k, which we assume isometrically embedded in Up. In this paper we
obtain a uniqueness resuit for solutions of the &apos;harmonie map flow&apos; of maps from
Mto N:

ut-Au= trM u*A on M x (0, T)
u(x91) y(x) for t * 0, x e dM (1.1)

xgM

where u(x, t) takes values in N c IR^, A is the second fundamental form of N in Up

and the superscript (*) dénotes pullback to M. Time-independent solutions of (1.1)
correspond to harmonie maps from M to N.

By the well-known theorem of J. Eells and J. Sampson [12] (extended by R.
Hamilton [11] to the case of manifolds with boundary), (1.1) has a smooth solution
defined for ail time and converging to a harmonie map from M to N, under the

assumption that N has non-positive sectional curvatures; this solution is essentially

unique. If no curvature assumptions are made on N, this is no longer true. For
two-dimensional domains, the existence of a global weak solution with finite
singular set for arbitrary targets (and u0 e Hl(M, N)) was obtained by M. Struwe in

Mathematics subject classification (1991): 35K55, 58E20, 58G11.
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1984 [1], when dM 0. He also showed that this solution is unique in the class of
solutions with finite singular set (we recall the précise statements below). Similar
results were obtained by K. C. Chang [2] in the case of non-empty boundary, with
boundary data y g H3/2(M; N). We will refer to this solution as the &apos;almost regular&apos;

solution with initial data w0. The main resuit of this paper extends the uniqueness
results in [1] and [2] to the gênerai class of H1 weak solutions of (1.1) whose energy
is non-increasing as a function of time.

In order to state our main resuit precisely, we introduce a space which played
an important rôle in [1]. Define:

VT H\M x [0, T]; N)nL™([0, T]; H\M, N)) nL2([0, T]; H2(M9 N)).

Dénote by Eu(t) JMx {,}|Fw|2 dx the total energy of the map u at time t. Our
main resuit is:

THEOREM 1.1. Let ue H\M x [0, T]; N) be a weak solution of the harmonie

map flow (1.1) with initial conditions uoe H\M,N). Assume Eu(t) £ EUQ a.e. in

I [0, T]. Then there exists T e (0, T) such that u e Vr.

Combined with the results of M. Struwe and K. C. Chang, this theorem

immediately implies a uniqueness and partial regularity statement for solutions of
(1.1) in H1 (M x [0, T]; N) whose energy is monotone in time. Prior to stating the

corollary, we recall the main results of [1] and [2] (stated in the case ÔM 0 for
simplicity).

THEOREM 1.2 (M. Struwe, [1]). Assume dM 0. For any initial value

u0 e Hl(M; N) there exists a number To T0(u0) &gt; 0 and a solution v e f|r &lt; t0 Vt
.l) with u( -, 0) uQ. Moreover,
(i) v is smooth in M x (0, To] with the exception offinitely many points (xi9 To),

(ii) v is the unique solution 0/(1.1) in the space f]r&lt;T0^T w/YA initial data u0;

(iii) The energy Ev(t) is finite for ail t g [0, To] and nonincreasing in t,

The authors of [1] and [2] also showed that the solution can be continued to a
weak solution of (1.1) in M x [0, oo) whose singular set is finite.

We will refer to To as the &apos;first singular time&apos; of w0. Combining theorems 1.1 and
1.2 one obtains the following corollary.

COROLLARY 1.3. Let M be a two-dimensional compact Riemannian manifold
with smooth (possibly empty) boundary, N an arbitrary compact Riemannian mani-
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fold. If u is a weak solution of (1.1) in H1 (M x [0, T]; N) with initial data

u0 e Hl(M9 N) and satisfying Eu(t) &lt;. Eu(s) for t ^ s (and with boundary values

y g H3/2(M; N) if ÔM # 0), then u coincides with the &apos;almost regular&quot; solution with
initial data u0. In particular, u is smooth in M x (0, T] away front finitely many
points.

By the main resuit of [10], this is the optimal regularity for weak solutions of the
harmonie map flow in two dimensions, even if the initial map is smooth. Corollary
1.3 may be regarded as a parabolic version of F. Hélein&apos;s theorem on smoothness

of weakly harmonie maps in Hl(M;N) when M is two-dimensional [16]. We
remark that it is well-known that, for regular solutions, the total energy is

non-increasing as a function of time (see e.g. [1, lemma 3.4]). In addition,
monotonicity of the energy (weighted by the heat kernel of M) is presumably
necessary (perhaps sufficient) for uniqueness in higher dimensions.

Thèse results had previously been obtained for spherical targets, by the author
[14], following work of T. Rivière under the assumption that the initial map has

small energy (and also for spherical targets, [3]).

Proofofcorollary 1.3. We may assume T &lt; To, the first singular time of u0. By
the uniqueness statement (ii) in theorem 1.2, u coincides with the &apos;almost regular&apos;

solution in [0, 7&quot;]. We now repeat the argument starting at T&apos; (and using the energy
monotonicity hypothesis) to obtain the first condition of the corollary. The partial
regularity statement follows immediately from uniqueness and (i) in theorem 1.2.

Outline of the proof of theorem 1.1. As in [3] and [14], the main idea is to use
Wente&apos;s two-dimensional &apos;compensation lemma&apos;.

LEMMA 1.4 (Wente [8] and Brézis-Coron [9]). Let M be a compact two-dimen-
sional Riemannian manifold with (possibly empty) smooth boundary. Ifrje HlQ2(M)
and 9 g H\M), then ôtj - d0 e H~l(M) and

for some c c(M) &gt; 0.

REMARK. When M is a bounded domain in IR2 (with the Euclidean metric)
and r\ ~nxdx a dy, dO 0xdx -f 0ydy, we have:

This was the case dealt with in [8] and [9]. In the gênerai case one takes local
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conformai coordinates in which the metric is written as gtJ e~2vôtJ, 1 ^ i,j ^ 2.

This implies ôgrj =e~2vôeuclrj, so locally we are back in the Euclidean case, and we

may globalize with a simple partitions-of-unity argument.
In section 2.1 we show the harmonie map flow équation may be written as:

w, - Au -£ {du • œm9 etyea, (1.2)
i,a

where {er} is an arbitrary global orthonormal frame on N, whose first k vectors {el}
are tangent to N and whose last p — k vectors {ea} are normal to N; such a frame

may be assumed to exist, by an observation of Hélein [16]. The œta are connection
1-forms (coia {den ea».

The main new technical ingrédient in this paper is the construction of a

time-dependent orthonormal frame &apos;adapted to w&apos; (in the sensé that
et(x, t) e Tu(xt)N for / 1,..., k and a.e. (#, t)), which has the additional property
that ôo)la e L2(M x /) (theorem 3.1). Since the frame is time-dependent the direct
minimization argument of [15] and [16] does not apply; instead we use time-dis-
cretization (as in [13]) to solve a non-linear parabolic System for the {er}. Our

argument works in ail dimensions. The frame {er(x, t)} we construct satisfies the

équation:

for some (j)rs e L\M x /).
In dimension two, the condition ôœia e L\M x /) implies higher regularity of

the frame for a short time; specifically, we show that der e L\IX, L4) (theorem 3.2),

Ix [0, Tx\ If we consider the Hodge décomposition of the connection 1-forms for
this frame:

it turns out that (1.2) may be written as:

w, - Au -X {du - ÔBia &gt;ea +/(*, 0, (1.3)
i,a

where /(*, /) e L4([0, T], LAI\M)). Note that the main term in (1.3) is now (essen-

tially) in a form to which Wente&apos;s lemma 1.4 applies (due to the présence of the ea

in (1.3), the actual argument is différent from that used in the case of spherical

targets - see section 2.4).
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We regard (1.3) as a perturbation of the linear non-homogeneous heat équation
with source term in L4(I, L4/3) (actually, we first subtract the solution of the linear
homogeneous heat équation to absorb initial and boundary values). For this it is

necessary to assume that ôBla is small in L2 norm, uniformly in T. This is possible
for a short time, by an argument similar to that used in [14]. This shows

for a short time T (depending on u). Since W2t3/4 c WXA in dimension 2, this

implies u e L\l\ WXA) (where /&apos; [0, T]). But then (1.1) may be regarded as a

linear non-homogeneous heat équation with &apos;source term&apos; in L\M x /&apos;). Thus by
linear existence and uniqueness (e.g. [17, p. 243]) we hâve u e L\V\ H2(M)); hence

u is in the space Vr.
We try to adhère to self-explanatory notation; the abbreviations used more

often are listed at the end of the paper.

2. Proof of Theorem 1.1

In this section M is a compact two-dimensional manifold, with or without
boundary. Our goal is to prove the following theorem.

THEOREM 1.1. Letue H\M x [0, T]; N) be a weak solution of the harmonie

map flow (1.1) with initial conditions uoe Hl(M; N). Assume Eu(t) &lt;&gt; EUQ a.e. in

/ [0, T]. Let To be the first singular time for the &apos;almost-regular9 solution with

initial data w0. Then there exists T &lt; min {T, To} such that:

u€L2([09T&apos;],H2(M;N)y

In particular, u e VT.

Proof. We follow, broadly speaking, the &apos;perturbation&apos; argument used in [3], [4]
and [14]. Our first goal is to rewrite the harmonie map flow (1.1) in the form

ut — Au &apos;compensation terms&apos; 4- terms in L4(/, L4/3),

where by &apos;compensation term&apos; we mean, loosely speaking, an expression of the form
da - ôb9 where a and b are, respectively, an H1 function and an H1 2-form on M.

Doing this for gênerai targets will require the introduction of time-dependent
&apos;H1 othonormal frames adapted to u(x, /)&apos; satisfying a regularity property (2.1(vi,
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vii) below). By an argument of F. Hélein [16], we may assume the existence on the

target Nk c UP of an orthonormal /?-frame, the first k vectors of which are tangent
to N. Composing such a frame with w(x, /) we obtain an orthonormal frame
ër g H\M x /, W\ r 1,...,/?. In section 3 we show (Theorem 3.1) that it is

possible to change (êr) to a frame (er) satisfying:

(i) (er9es} ôrs a.e.(x,t);

(ii) et (x, t) g TN(u(x, t)), i 1,..., k a.e.(x, t);

dx^cE0 a.e.(t)l (2.1)(iii)

(iv)

(v)

L

r
JM

\Ve,

Jm,

de,

dt

2

dxdt =K&lt; oo;

dx ^ cE0

(conditions (2.1 (i-v)) are also satisfied by ër) and with the additional property:

SœrseL\MxI),

where we define œrs (der, es&gt; g L°°(/, L2Ql). We assume henceforth indices q, r, s

range from 1 to /?, ij from 1 to k and a, b from k + 1 to p. In theorem 3.2 we show
that in the two-dimensional case one obtains, in addition:

dereL2{IuL% (2.1(vii))

where Ix [0, Tx] and 7^ &lt; min {T, To} dépends on u and on the er.

2.1. Rewriting the équation for u

We fix for the rest of this section an orthonormal frame (er) satisfying conditions

(2.1(i-vi, vii)) above. Let

Then, since équation (1.1) implies &lt;w, — Au, et} 0, we hâve:

Su, (-Au9 ety- (du • de,}
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where the fact that (er) is adapted (condition (2.1(ii))) was used. In addition, since
the same condition implies:

we hâve:

— Au=ôdu=YJ àulel — Y, ut
&apos; det

2&gt;,e,-£ {u,o)ir)er. (2.3)

From (2.2) and (2.3) one easily computes:

ut - Au -£ (Uj • œlJ)el -£(*/,- ^rK
i,J hr

i,a

-X {du ¦ com, e,)ea, (2.4a)
i,a

where we used the fact that œtJ — a&gt;Jt for ail i,j 1,..., k.

2.2. £/$e 0/ fAe Hodge décomposition

Hodge décomposition theorem. We recall the following standard resuit (see e.g.
[5, ch. 4]).

2.2.1 (dM 0). Dénote by Jfp (0 ^ /? ^ «) the space of harmonie forms in M
of degree p. We hâve the orthogonal Hilbert space décomposition:

L2QP(M) dQp~ lHl(M)®ÔQp+lHl(M)®Jfp.

2.2.2 (dM # 0). Let 0 6 G^M)^ be the metric dual to the unit normal v. Any
p-ïotm co e QP(M) has a unique orthogonal décomposition at points of
dM:o) o)t -h 0 a cort, where /vcow 0. (We may assume v and the décomposition
hâve been extended to a tubular neighborhood of dM.) Dénote by:

QpHq(M) - the /f1 closure of the space of smooth p -forms co in M with
compact support in int (M); by

JfpN - the space of (smooth) p -forms co in M such that dco ôco 0 and co, 0

on dM. This is a finite dimensional vector space, isomorphic to the relative
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cohomology space HP(M, dM, IR). We hâve:

L2Qp(M) dQp- lH\0(M)®ÔQp + lH\M)®tfpN.

In the unique décomposition

œ da + dp + h (ôoc=dp=O)

corresponding to either of the two splittings above, one has the bounds:

for some c c(M) &gt; 0. (In the case n 2, p 1 we normalize /} by requiring
jM p 0, and if dM 0 we also set JM * a 0.)

We write the Hodge décomposition for the 1-forms coia e Z/°°(/, L2Ql) as

cow dAia -f- 55la + HM9 (2.4b)

where

Mia |U«(/,iy») + ll^w IUoo(/,7fl) + H^ia |L°°(/,L2) ^ ^i^ia IU«(/,Z.2) ^ C^02 (2.5)

and

sup |//w | ^ c H^ ||L2(M/) £ c£J/2 a.e.(r),

given that the space of harmonie 1-forms on M is finite-dimensional. In particular,
)9 since:

cl p

Condition (2.1(vi)) implies that œla is &apos;co-exact modulo more regular terms&apos;, in
the following sensé: since

-AAm=ôcoiaeL2(MxI)
(2.6)

*Am=0 (AlaeHl0 if

To proceed we appeal to the following interpolation inequality.
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LEMMA 2.1. Assume M is two-dimensional. There exists c=c(M)&gt;0 such

that iffeH\M\

)m

For bounded open sets in M2, this is classical (see e.g. [17, p. 63f]). For closed

surfaces, see [1, lemma 3.1] for a proof.

Applying lemma 2.1 to the dAm9 we obtain:

f \dAm |4 dx ^ \\dAm \\2HHMt) \dAm ||l2(Mr) a.e.{t).
JMt

This implies:

\\Uhm,) ^ c\ut

so (by (2.5), (2.6) and the Calderôn-Zygmund inequality):

Thus we may rewrite (2.4a) in the form:

ut - Au -X &lt;rfW • SBm9 et &gt;ea + X (Wl • ClaK, (2.7)

where by définition w, • Cia -w, • (&lt;MW + /Tla) e L4(/, L4/3).

2.3. Rewriting the équation for w u — v

Now let t; : M x / -? IIF be the solution of the linear homogeneous heat équation
on M with initial data u0 (and boundary data y if dM ^ 0). From (2.7) we obtain
for w u — v:

wt - Aw ~X &lt; dw • ^5^, e, &gt;
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where:

/(*, 0 Z (k, &apos; Cia)ea - X &lt; * • àB», et &gt; ea.
i,a i,a

We daim f e L4(/, L4/3). This has already been verified for the first term appearing
in the définition of/. For the second term, we hâve (using (2.5) and lemma 2.1):

\\dv • ÔBia \\L4/3(Mt) ^ c\\dv\\LHMt) \&amp;Bm \\L2(Mt)

which implies:

II dv - ôBia ||iv.i.4/3) ^ cEl\\v\\lHltH2),

proving the claim.

2.4. Regularity of solutions of linear équations

In this subsection we consider the gênerai non-homogeneous linear System of
the form:

f*, - A&lt;P ~(d&lt;P - ÔB)e +f(x91) on M x /
\&lt;P(x,.)=0 xeôM (2.9a)

,0)=0 in M,

where B e L°°(/, Q2Hl),feL\I9 L4/3) and e g L\l, WU4)nL°°(M x I). If
is small, one may prove the following regularity resuit.

LEMMA 2.2. There exists e &gt; 0 (depending on M and T) with the following
property. Let /&apos; [0, T% where T&apos;e(09T] is arbitrary. Let f&apos;e L\I\ L4/3),

B g L™(I\ Q2Hl) and e e L\l\ WlA) nL^iM x /&apos;). Assume |£||Loo(rf/,i) &lt;e. Le/
^ be a solution of(2.9a) in (Jï1 n£°°X^ x O. ««c* ^l ||P«H^acjio e L°°(r). Tten

^ g L\I\ W2A/3).

Remark. It is important to observe (to avoid circularity in the proof of theorem

1.1) that e dépends on M and T9 but does not dépend on T&apos;,f or e.

Proof. Fix an arbitrary T g (0, T] throughout the proof; set /&apos; [0, T]. The
idea is to regard (2.9a) as a perturbation of the non-homogeneous linear beat
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équation. We recall the relevant linear theory. Consider the équation:

(4&gt;t-A&lt;P=g in Mx(OJ)], .)=0 ondM (2.10)

$(., 0) 0 in M

THEOREM 2.1. (P. Grisvard [6], theorem 9.3 and remark 9.15). Assume

g e LP(I, Lq(M)), where l &lt;p,q &lt; oo are arbitrary. Problem (2.10) has a unique
solution in the space:

{# e Z/(/, W2«) | 0t g L&apos;(I, L% 0]dM &lt;P, &lt;P(., 0) 0 in M}.

Moreover the map &lt;£ : LP(I, L*)-+L$(I9 W2&gt;% S£(g) 0 w aw isomorphism with
inverse L$ &lt;Pt — A&lt;P.

We now use theorem 2.1 (with q 4/3 and 1 &lt;p &lt; oo arbitrary) to show that,
for small enough s &gt; 0, (2.9a) has a unique solution #! e Lg(/&apos;, JF2&apos;4/3) (assuming

/e £/(/&apos;, L4/3)). Observe that (2.9a) may be written as

&lt;f&gt; H-

Showing that $^&lt;P + if(rf# • ôBe) is an isomorphism of Lg(/&apos;; MP^2&apos;4/3) will estab-

lish the existence and uniqueness claimed for (2.9a). Let 0 g £{&gt;(/&apos;; W2A/3). The
Sobolev embedding ^14/3(M) c» L\M) implies d&lt;!&gt; g L^/&apos;; L4). By Hôlder&apos;s in-
equality we hâve, for almost every t g /&apos;:

)\\Ll \\\LHMÙ \\\\LHMt, ce

and hence:

Since $£ : Lp(f; L4/3) -*LW\ W2A/3) is bounded (with the bound depending on T,
but not on T&apos;)9 choosing e e0 sufficiently small establishes the claim.

Our next goal is to show that the solution $x of (2.9a) obtained in the previous
paragraph coincides with the solution &lt;P2 * whose existence is assumed in the
lemma. This will follow from the claim below. For this part of the argument, vtsfix
p=4.

CLAIM. Let *, €L\I&apos;\ W2-*&apos;3) and ^e^&apos;nL^P x /&apos;) be solutions of
(2.9a), with |F*2||z,2eLoo(/&apos;). Then &lt;P, 4&gt;2 (assuming e is sufficiently small).
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Proof. Let !F &lt;*&gt;,-&lt;l&gt;2. Note W2A/3aC(M), so #, e L4(/; £°°), hence

!P e L\l\ L°°). Also, the assumptions on «^ and #2 clearly imply VW e L\I; L2).
We will show that W 0. We hâve:

ÔB)e,

so taking inner products with y and integrating,

JM,
ÔB)e,

where in the first inequality Wente&apos;s lemma 1.4 was used and in the third Young&apos;s

inequality (for some positive k to be chosen below).
For e &lt; e0 sufficiently small (depending only on c) this implies:

It is easy to verify the integrability of the last term in [0, T] :

rr
jo

i/3/ fr \2/3

which is finite, given the assumptions on W and e. We now choose A so that

y/3/fr \2/3U) ¦ (2&apos;n)

Then/(r) |^/||£2(Af} satisfies a differential inequality of the forai:
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where $ hdt&gt;0 and $ gdt &lt; oo. The first inequality follows from (2.11); the
second from ||Fe||46l2(J&apos;) and l7\\2coeL2(If). Gronwall&apos;s lemma (or a simple
direct argument) then shows that/(0) 0 impliesf(t) vanishes for ail tel&apos;. This
concludes the proof of the claim, and with it the proof of lemma 2.2.

We will also need to consider the analogous regularity resuit for an équation
slightly différent from (2.9a). This will be very similar to lemma 2.2, but simpler.
The équation is:

(&lt;Pt-A4&gt;=d&lt;P -ÔB+f(x,t) on Mx (0,7)
&gt;(*,.) =0 onÔM }

&lt;P(., 0) 0 on M.

LEMMA 2.3. Fix 2 &lt;. p &lt; oo. There exists an e &gt; 0 (depending on M, p and T)
with the following property. Let $ be a solution o/(2.9b) in Hl(M x [0, I&quot;]), where

re(0, T] is arbitrary. Assume feLp(I\LAiy) and BeL™(I\Q2Hl\ with
\\B\\Looift*!)&lt;«. Then 4&gt;eL*&gt;(r, W2^).

Proof. The first part of the proof of lemma 2.2 (with e s 1) guarantees the
existence of a solution #, e LP(I\ W2A/3) (for e &lt;eQ small enough). Recall the

following classical resuit:

THEOREM 2.2. (J. L. Lions and E. Magenes [7], p. 89). Assume

g € L2(I, H~l(M)). Then problem (2.10) has a unique solution in the space:

W0={&lt;Pe L2(I, Hl)\0t e L2(I, H-1), $]dM 0, #(., 0) 0 in M}.

Moreover the map % : L2(/, H&apos;1)-* Wo,$t(g) 0 is an isomorphism with inverse

We use this to show (2.9b) has a unique solution in W&apos;o (defined as Wo above,
with T in place of T); this is implied by the statement that &lt;P h&gt; 0 - %(ôB • d&amp;) is

an isomorphism of W&apos;o (note that feL2(J\ H~l), since p ^ 2). For this we use
Wente&apos;s lemma 1.4, which implies that, if $eL2(I&apos;, H1):

and hence:

Since *f is bounded, this implies the map above is an isomorphism of W&apos;o for e small
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enough, and (2.9b) has a unique solution in W&apos;Q. Since both the solution 4&gt; whose

expérience is assumed in the lemma and the &lt;PX obtained in the previous paragraph
are in WfQ (note (#,), e LP(I\ L4/3) c» L2(I\ H~l), since/? £ 2), they must coincide.
This concludes the proof of lemma 2.3.

2.5. Conclusion of the proof of Theorem 1.1

We apply lemma 2.2 to équation (2.8) and a time interval [0, T2]9 where

T2&lt;TX&lt; To (To is the first singular time of w0 and the choice of Tx guarantees that
||Fe||4eL2([0, TX])—see (2.1(vii))). Fix the e &gt;0 given by lemma 2.2.

Let B (Bia) be the two-forms defined in terms of the map u(x, t) by the Hodge
décomposition (2.4b); recall that BeLœ(I,Hl). We daim that one may find a

décomposition:

B Bx + B2

such that B2 e C°°((0, T), Q\M)) and for a short time (that is, in M x [0, T]
where T dépends on e, u and {er}) we hâve:

(/&apos; [0, T].) Moreover,

sup \ôB2\ym x [o, r]
&apos;

In particular, {ÔB2 - dw} e L\I\ L4/3) and

\&lt;fiB2 - dwy\\LHr,L^ £ cTx&apos;AE0. (2.12)

To obtain this décomposition it suffices to write at time zéro:

B(0)=Bx(0)+B2(0)9

with H^O) \\Hi &lt; e/2 and B2(0) g CcoQ\M). In the next section we show that the

improved adapted frame {er} given by theorem 3.1 attains its initial data strongly
in H\M) (see lemma 3.1). Thus (oia{t) -&gt;coia(Q) strongly in L2{M). Since the linear

operator that assigns Bia to œ^ is bounded (from QlL2(M) to Q2H\M)\ this

implies:

\\B(t) - B(0)\\HHMt) &lt; e/2 for t e [0, T% T&apos; T&apos;(e, u9 {er}) &lt; T2,



324 ALEXANDRE FREIRE

hence setting B2(t) B2(0) and Bx{t) B{i) - B2(0) we obtain a décomposition of
B with the desired properties, proving the claim. (A simpler version of this

argument was already used in [14], following a suggestion of M. Struwe.) We fix
this T for the remainder of the proof.

We now apply the décomposition obtained in the previous paragraph to re-write
(2.8) as:

in M x (0, F),

w(x9.) 0, x € 3Af,

w(.,0)=0 in M,

where/i =/+ &lt;àB2, &lt;/w&gt; 6 L\l\ L4/3) (by (2.12)). By lemma 2.2 (applied to (2.13))
we hâve w e L\I&apos;9 W2AI3)9 for the T found in the previous paragraph. Since clearly
v € L\I\ W2AI3)9 we hâve u e L4(/&apos;, W2A/3). As explained in the outline of the

proof, it follows from this and (1.1) that u e L\T9 H\M))9 hence u e Vr. This
concludes the proof of theorem 1.1.

3. Existence of adapted frames

In this section M is a compact Riemannian manifold (with or without
boundary), whose dimension is arbitrary until further notice.

Let / [0, T] (where we allow T to be infinité) and consider a map

u u(x91) : M x I-+Nk aW (N compact)

such that

u e Hl(M x I; N);
r

\ruo\2zEoi

i
JM

\Vu\2dx£E0 a.e.(t) (3.1)

We assume the existence of an &apos;H1 orthonormal frame in Up adapted to u\ that is,

of maps:

êreHl(MxI;W), r !,...,/&gt;
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such that:

(i) (ër,ës) ôrs a.e.(x,t);

(ii) ë,(x, t) g TN(u(x, t)), i 1,..., k a.e.(x91);

(iii) \Vër\2dx £ cE0 a.e.(t);

2

dxdt K&lt; oo(iv)
JO jMt

(v) f \Vê°r\2dx&lt;&gt;cE09

JM

where ë°r êr(., 0). Henceforth we assume indices q9 r, s range from 1 to p9 indices
/ from 1 to k and a from k + 1 to p. We dénote by P the manifold of orthonormal
frames in Rp, so (ër) g H\M; F77). An adapted frame satisfying (i)-(v) may be

obtained by composing an existing global o.n. /?-frame in N c Rp whose first k
vectors are tangent to N with a map u(x, t) satisfying (3.1) (it is enough to assume
the existence of a frame in the image of u).

Given (ër) satisfying (i)-(v) we define the 1-forms:

œrs (dër,ës}eL&lt;»(I,L2Ql(M)).

In gênerai we only hâve ôœrs g H~\Mt) a.e.(t). The main resuit of this section is

that by changing the frame this can be improved.

THEOREM 3.1. Assume the existence of an adapted frame (ër) satisfying

(i)-(v), where u(x91) is a time-dépendent map satisfying (3.1). Then we mayfind an

adapted frame (er) e Hl(M x /; ¥p) satisfying (i)-(v) (with différent constants on the

right-handsides 0/(iii) and (iv)), coinciding with (ë°r)for t 0 and with the additional

property:

ôcors g L2(M x I)

(where by définition œrs (der9 es ». The er(x91) are weak solutions of the System:

dt*e*
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for some functions (j&gt;rs e L\M x /), with boundary conditions:

de&apos;

-o

Proof. The idea is to obtain the (er) by solving a parabolic équation on M x I
with initial data (ë°r). We will do this following the time-discretization method used

in [13, proof of Theorem 1]. The main difficulty is defining the functional in
variation (Fn(e) below) so as to obtain adapted frames in the limit.

The &apos;background frame&apos; (ër) defines pointwise isometries TI{xt) : Up -» Up by:

nMv «t&gt;, ëx(x, 0&gt;, • •., &lt;v, êp(x, /)».

Recall that we may assume the maps t »-? ër(., t) are in C°(/, L2(M9 Up)). Thus for
each / € / we hâve a bounded linear map Tlt : L^iM; Rp) -&gt;L°°(M; W) given by:

(ntv)(x) (&lt;t&lt;x), ël{x, 0&gt;,..., &lt;v(x), êp(x, 0».

The maps TIt will be used below in the définition of a functional on frames.
STEP L Given h g (0, T) we define the séquence of times:

tn=nh; «=0,1,..., [77/*].

Hère [x] dénotes the largest integer less than or equal to x. We further fix the

notation In [tn, tn+ï), TIn =#,„, ënr =êr(-, /„). When T is finite, we adopt the

following endpoint conventions: In [h[T/h], T), ênr + l ër{., T) e L\M\ W) if
n [r/A] (we may assume T/h is not an integer). AH the intervais /„ hâve length at
most h.

We define inductively a séquence of frames (e?) e Hl(M, P) (not necessarily

adapted), n 0, 1,..., [T/h] + 1 as follows. Let e°r ë°r, and given (enr) solve the

variational problem:

(enr + l) minimizes Fn in H\M; P),

where
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Fn(é) is clearly sequentially weakly lower semi-continuous in Hl(M; P), so a

minimizing frame exists in Hl(M; P) and (e&quot; + l) is well-defined.
The Euler-Lagrange équation for Fn is:

1

de
—r-y es 0 on ÔM

for ail r, s 1,...,/?, where cors &lt;^r, ^5&gt; and

1

(3.2a)

(3.2b)

(Hère for a /? x /? matrix A (ar5) we set {ars}+ 5^ + asr\ {«„}_ i(a« - asr)).

The (standard) dérivation of (3.2) is included in an appendix to this section. We

need some estimâtes for the minimizers (e&quot;)9 n ^ 1. First observe that if

JM
ër(x, t+h)- ër{x, 0&gt;2 dx £ ch

ôt
ds\dx, (3.3)

for ail / e [0, T - h] (by Cauchy-Schwarz and \ër(x, t + h)- ër(x, t)\2

h J; + * \dë,/dt\2 ds). Thus, for v(x) e L°°(M; Rp),

Je\{nH+l - nn)v\2 dx Z &lt;», «;+! - ^
M r JM

r JM \Jln

&apos;dx

dt (3.4)

in particular:

f \(nn+i-nn)e*r\2dx£chZ f f |§ dtdx (3.5)
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Since Fn(e&quot;+l) ^ Fn(e% we obtain for n £ 0:

[
r JM

lf f
r JM JIn

de,

et
dtdx.

Adding thèse inequalities for varying n starting at 0, we obtain:

„ f ll7 „...,. 1 » _ f .„ m + 1 „ aj&gt; I FV&gt; /7T -I &gt; &gt; I 77 /? w + * JT pm \z fj\rLu I i r I i, ^ ^ I im+l^r llm^ r \ u^
r JM &quot; /« 0 r JM

l n 19 V-&quot; I I + ^r
|P^&quot; I a^: -f c 2^ I I -r~ dt dx ^ c^o + K).

m r jm Jo vt

We also hâve, since 77, is a pointwise isometry for each /:

(3.6)

which combinée with (3.5) gives for each n:

If \en+l^en\2dx^C_[ \U en+l_nen\
h )m r h )M

dx

dé,

dt
dtdx. (3.7)

The form of the functional Fn allows us to estimate how far (e&quot; + &apos;) is from being
an adapted frame. Clearly, a frame is &apos;adapted&apos; if, and only if, &lt;e,, êa} 0 a.e. for
each i 1,...,k and a =k + l,... ,p. But again from the fact that Tln and Tln +,
are pointwise isometries, we obtain for each i and a in thèse ranges, pointwise on
M:

m-0
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where in the second equality we used the fact that FIn + xëna+
x

—ïlnêna and in the last
t&lt;e?,ë°o&gt; &lt;&gt;-?,ë°&gt; 0.

Combinée! with (3.6), this implies for each i, a and n:

f &lt;erl,é&quot;a+iydx£c i f \nm+lrr+1=nme?\2dx
JM m=OjAf

(3.8)

STEP 2. We now define on M x [0, T] two &apos;frames&apos;,

ehr(x, t), ëhr(x, i),

where neither is adapted and the ehr are in Z,CO(M x /) but are not orthonormal. For
; e/n,« l, ...,[77*], set:

êhr(x,i)=enr + \x,i).

It is easy to see that both (ehr) and (ê*) are in LX(I; H\M; W)), and moreover that
ehr € Hl(M x I; ¥p), uniformly in h in each case. In fact,

dt

on M x /„, so using (3.6) and (3.7) we obtain:

nJO JM
dxdt

[T/h] Ç Ç

m oj/n JM

[T/h] | Ç

Z | \e? + l —e?\2dx
m=*0&quot; JM

dx

s m=OjM

£ C(£o + K) + ^
dt

(3.9)
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We also easily obtain from (3.6):

IVe^dx + c^Hf
r jM

ôêr
(3.10)

for ail t € [0, T]. Exactly the same bound holds for £r \Mt \Vehr\2 dx.
From the Euler-Lagrange équations (3.2) for the e?9 one sees that the ëhr,ehr

satisfy weakly in M x I the équations:

K,

where cô^ (de*, èhs &gt; and

(3.11)

éh =- Y &lt;en ën
n q

(3.12)

for (x, t) e M x /„. The family {ri)n&gt;o is uniformly bounded in L\M x /); we
hâve:

Çt r
JO JM m » 0 q

Z
0 q

Jln JM

nJim JM

M
~êt

f 2

dxdt

2

dxdt,

where (3.3) was used. This and (3.9) imply:

(ri)2dxdt£c\ -£ dxdt + c\
JO JM JO JM Ol JO JM

(3.13)

Our last estimate for the (ë?) is obtained by observing that, for t eln:

(ë1(x, t), ëa(x, 0&gt; &lt;e? + &apos;

(*), *2+ &apos;(*)&gt; + &lt;ë.(x, 0 - ëa(x, (« + \)h), erl
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so using (3.3) again,

331

f iëhl9ëay
JM, ôt

dtdx.

Recalling (3.8), this implies:

JM
(3.14)

for ail t e [0, T].
STEP 3. The frame (er) whose existence is claimed in the theorem is obtained

by taking limits of the (ehr) as h-+0. The uniform estimâtes (3.9) and (3.10)
obtained in step 2 imply that (after possible passage to a subsequence) :

e) er, weakly in H\M x /;

e) er9 strongly in Ljoc(M x /; IR^) and a.e. (3.15)

(we don&apos;t know at this point if (er) is an o.n. frame). Moreover, since (by (3.10))
dëhr is uniformly bounded (in h and /) in L2Q\Mt) for t e [0, T], we hâve:

dëhr

weakly in L2 (in fact, dëhr(t)-^ 0r(t) weakly in L2Q\Mt) for each tel). Now
observe that for t e L:

\Ph — Sh\2 L \(n 4-
&apos;

&apos;

&quot;&quot;

h2 &apos;

— t\2\pn +l — pn I2 &lt;&gt; \en + l — en\2

SO

f \ehr - ëhr\2 dx &lt;&gt; [ \enr + l ~enr\2dx=h2 \

jMt JM JM

\ f \ehr-ëhr\2dxdt£h2 I f
Jo Jm Jo J

dx,

de?

ôt
dxdt&lt;.ch2(E0

using (3.9). This implies \\ehr - ëhr 0 as h -*0, which has the following
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conséquences:

(i) ëhr -*er strongly in L\M x /; Mp) and (we may assume) almost everywhere.
In particular, (er) is an orthonormal frame.

{\ï)dëhr-^der (weakly in L2Ql(M x /)), hence 0r der; in particular,
dëhr(t) -* der(t) weakly in L2(Mt), for each t e I.

(iii) From (3.14) we hâve that:

i (ëlëay2dx &gt;0 asA-&gt;0,
Mt

uniformly in t e [0, T], for ail /, a in the appropriate ranges. Hence &lt;e/? ëa &gt; 0

a.e(x, t), which means (er) is adapted. From (ii) and (3.10) it follows that

i \Ver\2dx &lt;L c(EQ + K) a.e.(t). (3.16)

The last issue to consider is &apos;convergence of the Euler-Lagrange équation.&apos; This
is not hard to verify. Indeed from (ii) above:

œrs

(weakly in L2Q\M x /)), and from (3.15) and (i) above,

weakly in L\M x /). In addition, by the uniform bound (3.13) we may assume:

weakly in L\M x /). Thus we may take limits in (3.11) as h -?O and obtain:

&lt;l&gt;n. (3.17)

Since (dejdt, es) e L\M x /), so does ôcors9 concluding the proof of theorem 3.1.

In the proof of theorem 1.1 (section 2) we used the observation that the er(x, t)
attain their initial values in the strong Hl sensé. This is verified in the following
lemma:
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LEMMA 3.1. £r \\der(t) - de* \\h{M) -0 as t [ 0.

Proof. First observe that, by the calculation in (3.9):

i 2

dt
f \ehr(x,t)-ê°r(x)\2dx^t ffJM JO JM

dx dt &lt;L ct(Eo + 2K),

hence by (3.15):

\\er(t)-ê0r\\2LHM)£ct(E0-

which shows that er(t) -&gt;ë? strongly in L\M) as t -?0. Combined with (3.15), this
shows that der(t) -^ dê°r as t -? 0 (weakly in L\M)).

For any t e I, we hâve:

||&lt;fer(0 - rfê» m, - 2 r(r) - de?, dë°r

lim inf^

where the inequality follows from (ii) above. Recall (3.10):

ej,
dt

dxdt,

for each h e (0, T) and t e (0, J). Combining the two preceding inequalities, we
obtain:

M
dxdt-2% (der(t) - *?, de*yL2iM).

Since (as observed in the first paragraph of the proof) der{i)-^dë°r as /-*0, we
obtain the conclusion of the lemma.

Remark. One may readily identify the weak limit &lt;/&gt;„ in (3.17). Defining
é*(jc, t) enr(x) for (je, t) e M x /„, we may write (3.12) as

«¦;&lt;
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with nh(f) n defined by / e /„. It is not hard to see that, as h -&gt;0,

strongly in L\M x /) in each case, and that:

hKq &quot;
&apos;

dt&apos;

weakly in L\M x /). Hence i//% -&gt;¦ ij/rs, where

*„-! &lt;*„,;&gt;(*„ f).
Thus &lt;t&gt;rs {{der/ôt, es}}+ H- {^rj}_. This fact is not needed in the proof of the
main theorem. (It follows that &lt;t&gt;ia 0.)

Our last resuit is a short-time &apos;higher regularity&apos; statement for the improved
adapted frame {er} obtained in theorem 3.1, which holds in the two-dimensional
case. This is needed in the proof of the main theorem 1.1.

THEOREM 3.2. Assume dim M 2. Let {er} be an adapted orthonormal frame
satisfying properties (3.1(i-vi)), and satisfying équation (3.17), for some
&lt;l&gt;rs e L2(M x /). There exists Tx e (0, T) such that

ereL2{[^TxlW^% for r l9.. .,p;

in particular, der e L2([0, 7\], QlL\M)).

Proof The argument parallels closely the proof of theorem 1.1 in section 2.

From der 2^ corses, we dérive:

- Aer X [ôcorses - œrs • des]; (3.18)
s

let cors dArs -f ôBrs + Hrs be the Hodge décomposition of a&gt;rs9 with Ars e Hq and

Hrs harmonie (and in JtfN if dM ^ 0). Let Crs=dArs +Hrs. Since

zd^4r5 — 5cor5 e L2(M x /), it follows exactly as in section 2.2 that
&lt;fe5. Crj e L4(/, L4/3). Taking into account (3.17), (3.18) and (*,), 2, &lt;(er)t, es }es9

we obtain:

• ÔBrs -
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Clearly S, (j&gt;rses e L\M x /) c L2(/, L4/3). Let {gr}, r 1,...,/&gt; solve the linear
heat équation with the same initial and boundary data as er, and set/r =er — gr.
We hâve:

(fr)&lt; ~ àfr -

Given that dgssL\I9L4) and ÔBrs e L°°(/, L2), it is clear that dgs • ÔBrs e

L4(I, L4/3). By the argument in section 2.5, given any e &gt; 0 we may find a

décomposition of B (2?r5):

valid for a short time interval [0, 7\], such that li?1^^,) &lt;e for ail t in [0, 7^],
and B2 e C^iM x (0, Tx)) satisfies (55^ • des eL4(Il9L4/3). We conclude the/r are
solutions of a System of the form:

(9r)t - A0r -X «s &apos; SBls + Z,(^ 0,

with zéro initial and boundary data, where %r e L2(I, L4/3) and \\ôBlrs || &lt; e. Choos-

ing the e given by lemma 2.3 (applied to p 2 on [0, T]), we conclude

ereL2(Il9L4J3); this concludes the proof of theorem 3.2. (Strictly speaking, fr
satisfies homogeneous Neumann conditions if dM # 0; but clearly lemma 2.3 is

valid for Neumann conditions as well.)

Appendix

We include hère a dérivation of the Euler-Lagrange équations (3.2) for the

functional Fn(e) in H\M\ P). Recall:

r JM r JM

where
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Consider a variation e\ Ts [exp(sa)]rses of the er9 where a e so(p) and exp dénotes
the exponential map in SO(p). Defining vr by vr Xq arqeq (so that ars &lt;i;r, es »,
we hâve:

» f rz&lt;f,,o-I&gt;,,ërTx&lt;&apos;;&apos;,«

For the first term in Fn(ee)9 the variational derivative is:

^ «£ |e « 0 JM r JM r r,s JM

-Z f &lt;&amp;„«,&gt;•&lt;/«»„«.»
r,5 JM

r,5 JM

The second term in the previous expression vanishes, since it may be written as:

given that Z5 cwrj • œsq is symmetric in r and #, while ^ (vr, eq &gt; is skew-symmet-
ric in r and q. Thus we hâve:

f
JA/0 JA/ r Ja/ r,5 JdA/
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Combining this with the preceding calculation, we obtain:

\4Fn(e% o I Z \à(ors + \ &lt;er - e% es)-^nrs}ars + f (ivcors)arsi
L ae JM r,s l &quot; JdM

with \J/&quot;S defined in (3.2b). Thus we hâve the following équation for the skew-sym-
metric components:

or:

ôœrs+-(er-enr,es&gt; &lt;l)nrs9

where 4&gt;nrs l/h{(er - enr, es &gt;} + + {^&quot;5}- • This concludes the proof of (3.2). (For
the boundary condition, observe that ivcors (dejdv, es}).

NOTATION. We try to adhère to self-explanatory notation; the following
abbreviations are often used: / [0, T]; Mt M x {t}.

WKq(M) is the Sobolev space of functions (or maps to N) which hâve k
distributional derivatives in Lq; H\ s eU, dénotes the scale of Hilbert spaces with
hk WK1 for k eN. The domain M and target (N or W) are usually omitted from
the notation, with the understanding that, as usual:

W) \ u(x) e Na.e.(x)}.

Lp(I, WKq) Lp([0, T]; Wk\M, N)).

q, QPH\ etc. dénote spaces of differential forms of degree p with coefficients
in the corresponding Sobolev spaces (smooth forms if no space is indicated); S

dénotes the co-differential in the metric of M.
c dénotes a generic positive constant whose value dépends only on M and N.

For co, tj in Ql(M) (g) W, a e Ql(M)9 v : M-&gt;UP, we dénote by œ • a the inner
product on M (a function from M to Up), by (co9 v) g Ql(M) the inner product in
Up and by &lt;co • rj} the (real-valued) inner product of œ and r\.

For a pxp matrix A=(ars), we dénote by {ars}+ =^ars + asr\
{ars}- j(ars ~ asr) the symmetric and skew-symmetric components of A.
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