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On the set of orbits for a Borel subgroup

FRIEDRICH KNOP*

1. Introduction

Let X = G/H be a homogeneous variety for a connected complex reductive
group G and let B be a Borel subgroup of G. In many situations, it is necessary to
study the B-orbits in X. An equivalent setting of this problem is to analyze H-orbits
in the flag variety G/B.

The probably best known example is the Bruhat decomposition of G/B where
one takes H = B. Another well-studied situation is the case where H is a symmetric
subgroup, i.e., the fixed point group of an involution of G. Then H-orbits in G/B
play a very important role in representation theory. They are the main ingredients
for the classification of irreducible Harish-Chandra modules (see e.g. the surveys
[Sch], [Wo)).

In this paper, we introduce two structures on the set of all B-orbits. The first
one is not really new, namely an action of a monoid W* on the set B(X) of all
B-stable closed subvarieties of X. As a set, W* is the Weyl group W of G but with
a different multiplication. That has already been done by Richardson and Springer
[RS1] in the case of symmetric varieties and the construction generalizes easily. As
an application we obtain a short proof of a theorem of Brion [Brl] and Vinberg
[Vin]: If B has a open orbit in X then B has only finitely many orbits. Varieties with
this property are called spherical. All examples mentioned above are of this type.

The second structure which we are introducing is an action of the Weyl group
W on a certain subset of B(X). Let me remark that in the most important case, X
spherical, B(X) is just the set of B-orbit closures and the W-action will be defined
on all of it.

We give two methods to construct this action. In the first, we define directly the
action of the simple reflections s, of W. This is done by reduction to the case
tk G =1 and then by a case-by-case consideration. The advantage of this method
is that it is very concrete and works in general. The problem is to show that the
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s.-actions actually define a W-action. For that the braid relations have to be
verified which I don’t know how to do directly.

The second method doesn’t have this problem but it is more complicated, less
explicit, and works only in the spherical case. It is based on a construction of
Lusztig and Vogan [LV]. Let 5, be the Hecke algebra attached to the Weyl group
W. Then Lusztig and Vogan define an J,-module ¥, which is closely related to
B(X). In this paper we look only at the case ¢ = 1. Then ] is just the group
algebra of W, hence €, is a W-module. We show that, after some modifications, €,
becomes a permutation representation with B(X) as basis. Hence, this defines a
W-action on B(X).

It should be noted that one could generalize Lusztig-Vogan’s construction of the
#,-module to all spherical varieties. Then specializing ¢ =0 or g = co gives the
W*-action (see [RS2] 7.4 in the symmetric case). Hence, 5, unifies both the W-
and the W*-action. However, in this paper I don’t pursue this line any further.

Actually, there is a third method to construct the ¥ -action, but so far it works
only on an even smaller subset of B(X). It consists in relating B-orbits via
conormal bundles to the cotangent bundle of X. The advantage of this construction
is that one obtains more information. Observe, that B(X) contains a distinguished
element, namely X itself. We are able to determine its isotropy group W,:

Wy =Wx X Wea,).

Here W, is the Weyl group of X. It was defined by Brion [Br2] for spherical
varieties and generalized in [Knl], [Kn2], [Kn4]. The group Wpy, is the Weyl
group of a certain parabolic subgroup attached to X. If X is symmetric then Wy is
just the little Weyl group and P(X) the complexification of a minimal parabolic
subgroup. As opposed to the symmetric case, the definition of Wy is in general very
complicated. Hence, it is one of the main virtues of the W-action on B(X) that one
obtains a relatively easy construction of W,.

Finally, let me mention that many statements hold over an arbitrary alge-
braically closed ground field of characteristic p 2 0. The monoid action goes
through and also the W-action, at least if X is spherical and p # 2. There are
counterexamples for p = 2.

Notation. All varieties are defined over an algebraically closed field k. Let p be
its characteristic exponent, i.e., p = 1 if char k =0 and p = char k otherwise. The
algebra of regular functions on a variety X is denoted by k[X].

Throughout this paper, G will denote a connected reductive group. Let B < G be
a Borel subgroup with unipotent radical U and maximal torus 7. Let 4 be the set
of roots and let 4* be the subset of positive roots corresponding to B. Let X =4+
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be the set of simple roots. For a € Z let s, be the simple reflection in the Weyl group
W = Ng(T)/T of G and P, the corresponding minimal parabolic subgroup of G
containing B. Conjugation is denoted by ¢H = gHg ~!.

For any B-module V let V® be the set of non-zero semiinvariant vectors
vectors. For v € V® let yx, € x(B) = x(T) be the character with which B acts on the
line kv. For any abelian group 4 and positive integer n let 4., =4 ®z Z[3].

2. The action of the Richardson-Springer monoid
For a B-variety Z we define the following objects:

o(Z)=trdeg k(Z)®/k = min codim, Bx (the complexity of Z)
xeZ

WZ):={x,€ x(B)|fek(Z)P} (the character group of Z)
rk Z:=rk y(Z) (the rank of Z)

u(Z) :=max dim Ux.
xeZ

These are all invariants of Z under B-birational morphisms.

2.1. LEMMA. The relation dim Z = ¢«(Z) + rk Z + uw(Z) holds.

Proof. By replacing Z by an open subset we may assume that the orbit spaces
Z/U and Z/B =(Z/U)|T exist. Then we have dim Z/B =c¢(Z) and dim Z =
dim Z/U + u(Z). Moreover, the image of T in Aut Z/U is of dimension rk Z. This
implies dim Z/U =dim Z/B + rk Z.

2.2. THEOREM. Let X be a G-variety and Z = X a G-stable subvariety. Then
cZ)<cX), tkZ <tk X, wW(Z) <uw(X), and if «(Z) =c(X) and 1k Z =1k X then
Z=X.

Proof. Let X — X be the normalization and Z < X a component of the preimage
of Z which maps onto Z. Then ¢(Z)=c(Z), xZ)<x2), wW(Z)=u?Z),
c(X) = e(X), x(X) = x(X), and u(X) = u(X). Hence we may assume X to be normal.
By Sumihiro’s Theorem (see [KKLV]) we may then assume that X is G-isomorphic
to a subvariety of a projective space. For every f € k(Z)® there is ¢ =p’ and
fe 0%, such that |, = f7 ((Kn2] 2.3). Because of y; =gy, we get x(Z) < x(X)(,)-
We also obtain that k(Z)2 is a purely inseparable extension of the residue field of
0%z < k(X)2. Hence ¢(Z) < c(X). The inequality u(Z) < u(X) follows from the
lower semicontinuity of the function x — dim Ux.
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Finally, there is a G-variety X and a proper birational morphism X — X such
that w(Z) = u(X) for every Z < X which is G-stable ([Kn2] 2.13). Choose a Z which
is mapped onto Z. Then u(Z) = u(X) implies dim Z = dim X, hence Z = X. O

In [RS1], Richardson and Springer defined a new product w * w’ on the Weyl
group W which turns it into a monoid. It can be described as follows: For w e W
consider the Schubert cell X,, = BwB < G. Every closed B x B-stable subvariety of
G is of this type. Therefore, one can define w x w’ by

Xw;w’ = Xwa"

We denote the set W equipped with this product by W*. It is easy to see that W*
is generated by {s, |« € Z} with the relations s, * s, =, for all « € Z and the braid
relations for all a, f € X.

For a G-variety X let B(X) be the set of all non-empty, closed, irreducible,
B-stable subsets of X. Let we W and Z € B(X). Then X,Z is the image of
X,, x8 Z under the proper morphism G x2 Z — X. Hence X,,Z € B(X) and

waZ=X,Z

defines a W*-action on B(X). For a parabolic subgroup P containing B let w, be
the longest element of its Weyl group. Then P = X,,, and we get wp * Z = PZ for
every Z € B(X). Note in particular, s, « Z = P, Z.

Next we study the behavior of ¢(Z), y(Z), and u(Z) under the W*-action. In the
next theorem, £(w) is the length of w € W.

2.3. THEOREM. Let X be a G-variety, let we W and Z € B(X). Then
d(Z)<cw=*Z), t(kZ<tkwxZ, w(Z)<uw=xZ), and dmZ <dimw x Z <
dim Z + £(w).

Proof. By induction on /(w) it suffices to consider the case of a simple reflection
w = s,. Consider the surjective morphisms

P xPZ P Z=s+2

i
P,/B=P!

If Z =P,Z then there is nothing to prove. Otherwise, dim P,Z =dim Z + 1. In
particular, ¥ has finite degree. Let B,:=Bns,Bs;!. Then P, x#Z contains
B x525,7Z as an open subset. Hence,
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«(P,Z) = trdeg, k(P,Z)® = trdeg, k(P, x Z)®
= trdeg, k(s,Z)%= = trdeg, k(Z)%= = trdeg, k(Z)® = ¢(Z).

Every fek(Z)® defines a rational function f on B xZ%s,Z by
f(tu, s,2) = f(s; 'ts,z). Then fek(P, x?Z)® with y;=s,x. Hence,
5, X(Z) € x(P, X2 Z). Because ¥ is of finite degree, y(P,Z) o x(P, x2Z) is of
finite index. This shows rk Z < rk P,Z. Finally, by semicontinuity of orbit dimen-
sions, we get

B
uZ)=u(lxZ)<uP, x Z)=u(P,Z). O
The combination of Theorem 2.3 for w = wg with Theorem 2.2 yields:

2.4. COROLLARY. Let ZeB(X). Then c(Z)<cX),tkZ<rkX, and
w(Z) < u(X).

2.5. COROLLARY. Let H be either B or U. Then for any H-stable subvariety
Z of a G-variety X the following inequality holds

trdeg, k(Z)* < trdeg, k(X)”.

Proof. We may assume that Z is closed. Then for H = B the assertion follows
directly from Corollary 2.4. Consider H = U. Because B normalizes U, the general
U-orbits in Z and BZ have the same dimension. This implies trdeg, k(Z)Y <
trdeg, k(BZ)Y = ¢(BZ) + rk BZ. Now the assertion follows from Corollary 2.4.

O

Recall, that X is called spherical if B has a dense open orbit in X. This is
equivalent to k(X)2 =k, i.e., c¢(X) =0.

2.6. COROLLARY. Every spherical variety contains only finitely many B-orbits.

Proof. Let Z € B(X) be minimal with infinitely many B-orbits. By Corollary 2.4
c(Z) =0 which implies that Z contains a dense orbit Bz. But then one of the

components of Z\ Bz contains infinitely many orbits contradicting the minimality of Z.
O

Remark. The last statements are not new. Vinberg [Vin] proved Corollary 2.5 in
characteristic zero using an entirely different method. Independently, Brion [Brl]
used the same method to prove Corollary 2.6 (also chark =0). Later on,
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Grosshans [Gro] generalized the method used by Brion and Vinberg to arbitrary
characteristic, such that Corollary 2.5 could be deduced in full generality. Then,
Matsuki [Ma] has given another proof for homogeneous spherical varieties which
uses ideas which are similar to those in the proof given above.

The character group is actually a property of a general orbit:

2.7. PROPOSITION. For any B-variety Z there is a non-empty, open subset Z,,
such that y(Z) = y(Bx) for all x € Z,.

Proof. There is a non-empty open subset Z, = Z such that the orbit space Z,/U
exists. Furthermore, Z, can be chosen B-stable ((DR] 1.6). By replacing Z with
Z,/U and B by T = B/U we may assume that B is a torus. Then Z contains a
non-empty, B-stable, open, affine subset Z, in which all orbits are closed. Then the
B-action on Z, is the same as a y(B)-grading of k[Z,] and x(Z,) is the group
generated by those characters which actually occur. Because k[Bx] is a quotient of
k{Z,] for every x € Z, this shows yx(Bx) < x(Z,) = y(Z). Conversely, choose
fis oo fs €K[Z,]® such that x(Z) is generated by their characters. Then
x(Bx) 2 x(Z) for every x € Z, such that f(x)...f,(x) #0. O

3. Isotropy groups

Fix a minimal parabolic subgroup P = P, with Levi part L and unipotent
radical P,. We want to study the relation between the B-orbits in a P-orbit Px. Let
P:=P/B = P' and consider the canonical morphism

B
n:P xX2PxX—X.

Then the P, -orbits in P correspond to P-orbits in P x Px, which correspond to the
B-orbits in Px, the correspondence being given by

P.g > P(g,x) =P, g 'x) « Bg 'x. (%)
here ¢ = gB € P. The isotropy groups are in the following relation:
(P)g=PgnP, =5P;NP,_\,) =B, _1,,

Set H = P, and let H be its image in Aut P= PGL,. Then we get a cartesian
diagram (x’ =g ~'x):
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B, -» ﬂg
£ £
P.»H

3.1. LEMMA. Let x € X.
(a) The equivalences c(Px) = c¢(Bx) <> c(Px) =0 <> dim H = 1 hold.
(b) If c(Px) = c(Bx) + 1 then s,x(Px),) = Xx(Px), and x(Bx), < 1(Px),.

Proof. (a) follows from the correspondence ().

(b) By (a), dim H =0 hence all P, -orbits in P are finite. Therefore, for general
g € P the isotropy subgroup H, is trivial. This implies (P,), is normal in P and
contained in Z(L)Pu. Hence, B, = (P,); with y =g ~'x and « € x(By),,, = 2(Px),
which implies the s,-stability. Furthermore, B, = B, which implies the inclu-
sion. O

We consider now the case dim H = 1. For G,:= PGL,(k) define

0 1 . 0 1
s"’:[l 0]’ T"’:[O *]’ U"’:[o 1]’

By:=T, * U,, Ny:= NGO(TO) =Touse T,

It is easy to see that all positive dimensional subgroups of G, are conjugated to
either G,, S - U, (where S = T,), T,, or N,. Hence, we can choose an isomorphism
¢ :PxP'=A'U{ow} inducing @ : P - Aut P G, such that &(P,) is one of the
subgroups above.

Choose n € Np(T) — T and let § € P be one of its fixed points. Then we can find
a € P with ¢(aé) = o0, @(ari) =0, and ¢(ag) =0, and ¢(ag) = 1. Let x+=a~'x and
Xo:=(an) 'x =n"'x_, and x,:=(ag) "'x = ¢ 'x,. Furthermore, let H:=P, and
H_, H,, H, the isotropy group of H at 4, ain and ag respectively. Observe the
equalities

HOQ:anoo’ H0=aan0, Hl:anxl'

Now we go through the different cases in more detail. We are interested in the
character group up to p-torsion x(Bx), and in the group of components
k(H,):=H,/H}.

3.2. LEMMA. With H = P, one of the following cases holds:

®(H) = G,. Then Bx = Px and y(Bx) < y(T)<=°.

®(H) = S - Uy. Then Px contains two B-orbits, namely Bx, (closed) and Bx,
(open).
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There is a short exact sequence
1— K—«k(Hy) — k(H,) =x(H) — 1.
where K is a finite elementary abelian p-group. For the character groups holds

SaX(BxO)(p) = X(ono )(p) .

If S is finite then y(Bx,) ® Q is s,-stable and in case S is trivial then even
X(Bxo), is sy-stable. If S is not trivial then K is contained in the commutator
subgroup of k(H,). If S =T, then K is trivial.

®(H) = T,. Then Px contains three B-orbits, namely Bx, (open), Bx,, and Bx,,
(both closed). There is an exact sequence

1 — K — k(H,) — k(H,) = x(H,) — 1,
where K is cyclic of order prime to p. For the character groups holds

S X(BXo)(py = X(BX ) py S X(BX1)(p) = 52 X(BX1)(p)-

Furthermore, y(Bx,)(,) [1(BX%)py = Z(p)-

®(H) = N,. Then Px contains two B-orbits, namely Bx, (open), and Bx,, = Bx,
(closed). There are short exact sequences

1 —x(H,)— x(H) — Z/2Z — 1

1—K-—«k(H,) —xk(H)—1

where K is cyclic of order prime to p. Let I :=°"" ker(H — N,). Then

X(BX ) py € X(B/I)( 5 2 x(BX1)p)

with quotient Z , and (Z[2Z),, respectively. All of these groups are s,-stable.
Proof. ®(H) = G,: Then Bx = Px implies x(Bx) < x(P) < x(T)<=’.

®(H) = S - U,: We get the cartesian diagram
an.B = Ho -» S

xo
£ £ £
“B, =H,=H-»S"U,
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This implies in particular, "B, < B,_. Because both groups differ only by a
unipotent group we get the claimed equalities of character groups.

Let U be a maximal unipotent subgroup of H°. It acts transitively on H,/
Hy, =~ U,, hence H,, = H,U. This implies the claim on the component groups with
K =x(UnH,). Then K it is elementary abelian because it is a subgroup of
U /(U n Hy)° which is connected, unipotent, and one-dimensional hence isomorphic
to G,.

If S is finite then B} < Z(L)P,. Hence, « € x(Bx,) ® Q which implies that
x(Bxo) ® Q is s,-stable. If §'is trivial then B, < Z(L)P, and by the same reasoning
we get that x(Bx,),, is s,-stable. If S is not trivial, then it acts on U,, hence on its
covering U/(U n Hy)° = G, by multiplication with a non-trivial character. This
implies that K consists of commutators. In particular, if § =T, then K must be
trivial.

d(H) = T,: As above we get
H, =H,=H, H,=ker(H » T,) = Hnker ® < Z(L)P,.

Thus we get "B, = B, _29B,, and a € x(Bx,). This implies the assertion on the
character groups. There is a one-dimensional torus § contained in H, with
H, = H,S. This implies the exact sequence for x where K = k(H,S) = S is cyclic
of order prime to p.

®(H) = N,: There are two cartesian diagrams

H, —» T, Hy, —» <5
A o £ £
H —-» N, H —» N,

which imply the exact sequences for x where as above K is isomorphic to a
subgroup of G,,. Furthermore, we have B, /I = T,, 9B,/I = {s,). This implies the
inclusions among the character groups. We show that all of them are s,-stable. This
is clear for y(B/I) because I <= Z(L)P,. There is /i € °~'H such that &(afia~") = s,.
Then # € nZ(L)P, and # normalizes B, . This implies that y(Bx,,) is s,-stable. It
also implies that B, U contains a(G,,), where a¥ : G,, - T such that s,a¥ = —a"
and <{a, ¥ ) =2. Then ®(ax¥(—1)a~!) =1, hence oV (—1) € IU. It follows that s,
acts trivially on y(B/I),, ® Z/2Z. Hence every subgroup of index two, in particular
X(Bx,),,, is s,-stable. O

3.3. COROLLARY. Let X be a G-variety, Ze€B(X) and we W with
cwWxZ)=c(Z). Let ze€ Z and y € w » Z be points in general position. Then B,|B’
is isomorphic to a subquotient of B, |BY.
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Proof. 1t suffices to consider w =s,. Then the assertion follows by inspection
from Lemma 3.2. |

3.4. COROLLARY. Let X be homogeneous and spherical with open B-orbit
Bx,. Assume U,  is connected. The U, is connected for every x € X.

Proof. U, is connected if and only if B,/B% has no p-torsion. Now apply
Corollary 3.3 with w = wy.

4. The action of the Weyl group

In this section, I construct an action of the Weyl group with its usual
multiplication on a subset of B(X), namely on

By(X) ={Z € BX) | «(Z) = c(X)}.

Observe, that B,(X) is stable for the W*-action (Theorem 2.3). In particular,
PZ € By(X) whenever P is a parabolic subgroup of G and Z € B,(X).

Let for the moment H be any connected algebraic group and X any H-variety.
Recall, that a sheet for H is an irreducible component of one of the locally closed
subsets {x e X [ dim Hx =d},d=0,1,...,dim X. Obviously, there are only
finitely many sheets.

If X is spherical then B,(X) =B(X) and consists precisely of the B-orbit
closures (Corollary 2.6). In general, we have

4.1. PROPOSITION. Every Z € B,(X) is the closure of some sheet for B. In
particular, By(X) is finite.

Proof. Because Z is the disjoint union of the locally closed subsets Zn S, S a
sheet, there must be one such that S~ Z is open in Z. This implies Z < S. Because
all B-orbits in S have the same dimension, we get dim S —dim Z = ¢(S) —
co(Z) <c(X) —c(X)=0. Hence Z = S. O

For a parabolic subgroup P & G and a P-stable closed subvariety Y < X with
c(Y) =c(X) let

B,(Y, P):={Z € Bo(X) | PZ = Y}.

Then B, (X) is the disjoint union of its subsets of the form B, (Y, P).
For every simple root & we construct an action of s, on B8,(X). We are going to
define this action on each set B,(Y, P,) separately. Choose an identification
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P,/B =P! inducing ® : P -» PGL,. Then there is an open P-stable subset Y°c Y
such that for all y € Y, the group @(P,) is either finite or conjugated to G,, S - U,,
T, or N, (notation as in section 3). If &(P,) is finite then every proper B-stable
subvariety Z of Y with PZ = Y has smaller complexity (see Lemma 3.1a). Hence,
B(Y, P,) = {Y}. Otherwise, each Py breaks up into at most three B-orbits giving
rise to at most three elements in B(Y, P,). _

In case ¢(P,) ~ T, and ¢(Y) = 1 it may happen that the union of the closed
B-orbits in Py, y € Y° has either two components Z,, Z,, or form a single irre-
ducible component Z,,. For example, consider G =G, PGL, and X, =
G,/To, x Al. Then B,(X,, G,) has three elements. Now consider the involution ¢ of
X, defined by o(gT,, x) =(gs,Tp, 1 —x) and let X = X,/6. Then the generic
isotropy group is still 7, but Z, and Z_ map to one component Z,, .

Now, the s,-action on B,(Y, P,) is defined by the following table.

D(P)) B,(Y, P,) S,-action

finite {Y} S. Y=Y

G, (v} .- Y=Y

S U, {Y,Z) s, Y=2Z s5,-Z=Y

T, (Y,Z,Z,) s.°Y=Y s5,-Zo=2Z, 5y Zo =2,
or {Y, Z,..} 5 Y=Y 85, Zow=Zoo

N, {Y,Z} s, Y=Y s,-Z=2Z

One of the main results of this paper is

4.2. THEOREM. Let X be a G-variety. Assume one of the following conditions
holds:

(a) chark =0.

(b) X is spherical and char k # 2.

(¢) X is spherical and U, is connected for every x € X.

(d) X is spherical and G, is contained in a Borel subgroup for every x € X.

Then the s,-actions on By(X) define an action of W.

The cases (b), (¢), and (d) will be proved in section S. The proof for part (a) is
given in section 7. Observe, that it suffices to check (c) for the general points of each
G-orbit (Corollary 3.4).

When char k # 2, then I conjecture that one gets a W-action for all X, spherical
or not. Actually, it would be possible to prove this by using “brute force”, i.e.,
rather nasty case-by-case considerations in rank two (see the remark after Lemma
7.3). Note, that without further conditions for char k =2 the assertion of the
Theorem is definitely wrong (see the example after Theorem 5.10).
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Let W be the free group generated by {s, | @ € Z'} with the relations s2 = 1. Then
clearly, we have a W-action on B,(X) denoted by w - Z. There is a surjective
homomorphism W — W and the theorem claims that the W-action factors through
W. One of the main features of this W-action is that it preserves character groups:

4.3. THEOREM. Let Z € By(X) and we W. Then y(w L)y =WZ)py In
particular, tkw - Z =1k Z.

Proof. 1t suffices to prove this for w =s,. Let ¥ = P,Z. In case ®(P,) is finite,
the assertion follows from Proposition 2.7 and Lemma 3.1b. Otherwise, it follows
from Proposition 2.7 and the explicit calculations in Lemma 3.2. O

Remark. The inversion of p is really necessary in every positive characteristic.
Take for example G = GL, and X = A? x ’P!. Here P! is the projective line with
the Frobenius twisted G-action. Then s, - X = X, but y(X) = Zpe, ® Ze, is not
s,-stable.

5. The spherical case

In the whole section, X is a spherical G-variety. In this case B,(X) = B(X) and
we identify the set of B-orbits with B(X). We want to modify the construction of
a representation of the Hecke algebra due to Lusztig-Vogan [LV]. Under condition
(b), (c), or (d) of Theorem 4.2 this will define an action of W on B(X).

Fix a prime number / # p and an algebraic closure F of the prime field F,. let H
be an algebraic group and X and H-variety. Then let S(X, H) be the category of
constructible H-equivariant sheaves of F-vector spaces on X. Denote its associated
Grothendieck group by S(X, H). For a sheaf # € S(X, H) let [#] be its class in
S(X, H). For an H-stable subvariety Z let F, the sheaf which is the constant sheaf
with fiber F on Z and zero outside. If ¢ : X - Y is an H-equivariant morphism then
there is a homomorphism

@ : S(X, H) > S(Y, H) : [#] — } (—1)[Rip, #].

If H is a subgroup of an algebraic group G then we have an induction functor
H H
indf :S(X,H)»S(G X X,G): F —G x F=(p,q*F)¥

where p : G x X -G x*® X is the quotient and ¢ : G x X — X the projection. Then
ind§, is an equivalence of categories where restriction to the fiber over 1H € G/H is
inverse to it.
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For three H-varieties X; and sheaves #, € S(X, x X,, H), #, € &(X, x X3, H)
define

FioFy=pialphbF QpHF,)] € S(X, x X3, H).

where p;; 1 X; X X, x X; - X; x X are the projections. The following theorem is well
known. '

5.1. THEOREM. Let X;,i=1,2,3,4, be four H-varieties.
(i) The product o induces a bilinear homomorphism

S(Xl X Xz,H) X S(Xz X X3, H)'—')S(Xl X X3, H).

(i) Assume X, =X, and let A < X, x X, be the diagonal. Then [F,] o F = F for
all Fe S(X, x X5, H).
(iii) Let F; e S(X; x X; ) fori=1,2,3. Then (F, o F,) o F;=F, o (F, o F;).

Proof. (i) and (ii) are easy. For (iii) see the argument in [Fu] 16.1.1. O

5.2. COROLLARY. With this operation, R = S(X, x X,, H) becomes a ring
and M = S(X, x X,, H) a left R-module.

Now return to our situation that G is a connected reductive group and X a
spherical G-variety. We consider the case X, = G/B and X, = X. Then X, x X, =
G/Bx X;,=G x2X, implies S(X; x X,,G)3S(G/B,B) and S(X,x X,,G)3
S(X, B). Therefore, R = S(G/B, B) is a ring and M = S(X, B) is an R-module. The
task is to make R and M as explicit as possible.

We start by describing a basis. Let Bz < X be a B-orbit and p : B,/B? - GL(F*)
a representation on a finite dimensional F-vector space F*. We can form the sheaf
F%. which is ind3_ F” on Z = B/B,, extended to X by zero. We denote the class of

%.in S(X, B) by [z, p]. Then S(X, B) is freely generated by the set of all [z, p] where
Bz runs through all B-orbits and p through all irreducible representations.

In particular, if all isotropy groups B, are connected then a basis of S(X, B)
consists of all [z, 1] = Fg,]. This happens e.g. for X = G/B. Therefore, if we let
[w]:=[w, 1] for w € W then R is the free abelian group with basis [w], w € W. The
next lemma gives an easy method for computing the product with [s,] (cf. [LV] 3.3).

5.3. LEMMA. Consider the morphism u:P, x8X —» X :[p, x] — px and let
F € S(X, B). Then

[s.] © [#] = w[indf=F] — [#].
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Proof. In S(G/B, B), the equality [s,] + [1] = [F, ;] holds. The formula follows
from

[FP,,/B ®indg-g’_ =ind§°‘y. O

The following theorem describes the action of [s,] on S(X, B) explicitly. It is the
analogue of [LV] 3.5.

5.4. LEMMA. Using the notation Lemma 3.2, let Px < X, z € {xy, X;, X, } and

p an irreducible representation of B,|B?. Then [s,] acts on S(X, B) according to the
following table.

®(P,) z [sa] ° [, p]

GO X [xoo ’ P]
S Uy, X —[x0, P] p |k non-trivial
[xo, Pl otherwise
Xeo [x09 p]
T, X1 —[x, p]

Xo [*w, 0] + [x1, p]
Xeo [x0, p] + [x1, ]
N, Xy —[x1, 0] p IK non-trivial
—[x,, ep] otherwise, where ¢ : B, >N, » {+1} = F*
Xo  [Xwspl+[x1,p]  where p’=indg: p

Proof. Let # be the sheaf on P:= P, /B which equals H x “¢ F* on Heé and zero
outside. Let #':= H'(P, #) considered as an k(H)-module. Then Lemma 5.3
translates into

2 H
[sc] o [z, 1 = Y (=DTP, x #7] [z, pl.

i=0

Therefore, everything boils down to calculate the s#° which is either very easy or
follows from the following lemma.

5.5. LEMMA. Let G be either G, or G,, and let K be a finite subgroup of G.
Then G/K = G and there exists an open embedding j: G/K < P'. For a character
x : K—F* let F be the sheaf G x X F* on G[K. Assume y # 1. Then H(P', j %) =0
for all i 2 0.
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Proof. Clearly, H%(P!, j,#) =0. Observe H*(P!, j,#) = H*(G/K, #) by defini-
tion of cohomology with compact support. Then HZ(G/K, ) = Hom(F, Fgx)"
by Poincaré duality ([Mi] V.2.1). Because y # 1, the latter group vanishes.

Now for H! to vanish it suffices that the Euler-Poincaré characteristic of j, #
vanishes. This follows easily from the expression of the Euler-Poincaré characteris-
tic in local terms: y =2 — X, c,, where c, is the conductor of j, # at x € P! (see [Mi]
V.2.12). In case G = G, there is only one ramification point co with ramification
groups Go=G, =K and G; =1 for i 2 2. Hence c,, =2. If G =G,, there are two
ramification points but the ramification is tame, hence the sum of the conductors is
again two. O

The following Corollary is well known:

5.6. COROLLARY. The map w > [w] induces an algebra-isomorphism
1 : Z[W] 3 S(G/B, B). In particular, S(X, B) is a W-module.

Proof. Take X = G/B and z =w = wB. Then all B-orbits in X have the same
rank. Hence, in the table of Lemma 5.4 only the case &(P,) = T, - U, occurs. It
follows,

[5,] o [W] = [s.w].
This shows by induction on the length that 1 is multiplicative. a

5.7. COROLLARY. The W-action on S(X, B) preserves the subgroup S,(X, B)
generated by all classes [z, p] with tk Bz 2 r.

Proof. This follows by inspection from Lemma 5.4. O

In particular, W will act on the associated graded module gr S(X, B). This is
almost a permutation representation. To get rid of the signs, we define
S(X, B):=gr S(X, B) ®Z/2Z. The class of [z, p] in $(X, B) will be denoted by

[z, p]-

5.8. THEOREM. There is an action of the Weyl group W on the set of all
isomorphism classes [z, p] of simple B-equivariant constructible sheaves of F-vector
spaces, such that

(a) Its F,-permutation representation is S(X, B).

(b) If wlz,p] =[z’, p’] then dim p = dim p’.

(c) If wlz, p] =[z’, p’] then wy(Bz) ® Q = x(Bz") ® Q. In particular, tk Bz =
rk Bz'/S".

(d) Assume chark =0 or dimp =1. If w[z, p] =]z, p] then wy(Bz), =
x(Bz ’)(p)'
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Proof. (a) holds by definition. For the rest we may assume that w is a simple
reflection. For (b) observe that p is at most tensored by a character. For (¢) and
(d), we may use Theorem 4.3 and the fact that s, - Bz = Bz’ except in one case:
&(P,) = S - U, and p|x is non-trivial. By Lemma 3.2, this cannot happen under the
assumptions of (d). In any case, y(Bz) ® Q is s,-stable. O

Now we are able to prove part of Theorem 4.2:

5.9. THEOREM. Assume X satisfies one of the conditions (b), (c) or (d) of
Theorem 4.2. Then the s,-actions on B(X) extend to a W-action.

Proof. Let B be the set of all [z, 1] which is in bijection to B(X). First I claim
that we can arrange B to be W-stable. By Lemma 5.4, the only bad case is
®(P,) = N, with the appearance of €. If (b), char k # 2, then we may choose F to
be of characteristic two which forces ¢ = 1. If char k£ =2 and if (c), U, is connected,
then B,/B? has odd order. Hence, case ®(P,) =N, doesn’t occur. The same
happens under (d), G, is contained in a connected solvable subgroup, since then N,
is not a subquotient of G,. This shows the claim.

It remains to check that the action of W on B coincides with the W-action on
B(X). According to Lemma 5.4, the only bad case is ®(P,) =S - U, with p|,
non-trivial which doesn’t occur since already p is trivial. O

In any case, if we start off with the trivial representation for p then at most
characters of order two appear. These correspond to double covers of orbits. Hence
we get

5.10. THEOREM. Let X be a spherical variety. Then there is a canonical action
of W on the set of equivariant double covers of B-orbits in X. If char k # 2, then this
action is compatible with the W-action on the set of B-orbits.

In chark =2 in general some extra condition is needed as the example
X = PGL,/S0, shows. This variety is spherical with five B-orbits. Two of them
have rank two. These are interchanged by one simple reflection and fixed by the
other. Hence, this doesn’t define a W-action. The B-isotropy group of the open
orbit has order two, hence that orbit has a non-trivial double cover, while the
isotropy group of the other orbit of rank two is connected (= G,) One checks that
W =~ S, acts on these three objects, namely the two orbits and the double cover.

6. The orbits of maximal rank in characteristic zero

This section is independent of the preceding one. Here, the G-variety X may be
arbitrary but we consider only a subset of B,(X) namely
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Boo(X):={Z € B(X) | «(Z) = e(X); 1k Z =1k X}.

It is W-stable by Theorem 4.3 and contains X as an element. If Z < X is a closed
B-stable subvariety then, regarded as an element of B(X), we denote it sometimes
by (Z). This may avoid confusion.

6.1. LEMMA. The group W acts transitively.on Boo (X)), i.e., Boo(X) = W - (X).

Proof. Assume (Z) € B,(X) is of maximal rank and of maximal dimension in
its W-orbit. Then Z is P,-stable for all o by Lemma 3.2, hence G-stable. Then
Theorem 2.2 implies Z = X. O

Hence, for the description of By, (X) we need the isotropy group Wm. For this
assume from here to the end of the paper char k =0. Then I defined in [Knd4] a
certain subgroup W, of Aut y(X), the little Weyl group of X. According to [Kn3]
6.5 it has a canonical lift to W as follows: Let p € y(B) be the half-sum of the
positive roots. Then for every w € W, there is a unique w’ € W inducing w on x(X)
with w'p — p € y(X). Using this lift we regard W, as a subgroup of W.

Furthermore, we defined in [Kn4] §2 the parabolic subgroup

P(X):={g € G | gBz = Bz for general z € X}.

Let Wpy) be its Weyl group. It is generated by all s, with &((P,),) = G, in the
notation of section 3. Then the other main result of this paper is

6.2. THEOREM. Assume chark =0. Then the W-action on By (X) factors
through W. The isotropy group of (X) is Wixy = Wy x Wpy,.

Let me start with some reductions. First, we may assume that X is the only
G-stable subvariety in By, (X). Next, recall from [Kn4] that X is called non-degen-
erate if P(X) is determined by x(X) in the following sense: For every root
appearing in Lie R, P(X) there is y € y(X) such that {y, ¥ ) # 0. This means that
P(X) is the largest parabolic subgroup P such that every character in y(X) extends
to a character of P. By [Knd] §5, there exists a principal G,,-bundle = : L — X with
G-action such that L is non-degenerate as a G x G,,-variety. Then By, (X) 3
By(L): Z—>n"YZ), Wpyry = Wpyy and W, = Wy ((Knd] 7.5). Hence, may re-
place X by L and may assume that X is non-degenerate.

Also we may remove all singularities from X. Then the cotangent bundle T'% is
a vector bundle over X. It is equipped with a projection n : T% — X and the moment
map & : T% —g* defined by [®(@)]({) = a(yny)- This gives rise to the composed
morphism
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Y:.T%—>g*>g*//G =t*/W.

The last equality is the Chevalley isomorphism.
With u:=Lie U we define

C:=0¢"'(ut) ={a e T} | z:=m(x), a(uz) = 0}.

Then C is the union of the conormal bundles of the U-orbits in X. Therefore, if Z
is a U-sheet then = (Z)NC is a vector bundle over Z with total dimension
dim X +m where m =dim Z — w(Z) = «(Z) + rk Z is the number of parameters
(Lemma 2.1). By Corollary 2.4, we have m < ¢(X) + rk X with equality if and only
if the closure of Z is in By, (X). Define N(X) :=dim X + ¢(X) + rk X =2 dim(X) —
u(X). Thus we have proved

6.3. PROPOSITION. The dimension of C is N(X) and Z > C, defines a
bijection between By (X) and the set of irreducible components of C of dimension
N(X).

Consider the morphism
T,=T% x t*og* x t*
to/W g*/W

The projection g* X . wt* —g* admits a section over u*, namely

g:utog* x t*: A (44 |w).
t*/wW
Then the preimage C of o(ut) in T is isomorphic to C. Let C, be its component
corresponding to Z € By (X).
The point is now, that there is an action of W on T induced by the action on
the second factor t*. In particular, W is acting via W on the set .# of irreducible
components of Ty.

6.4. THEOREM. Let X be non-degenerate.

(a) For Z € ByX) let (Z):=G - C,. Then (Z) is an irreducible component of
T. In particular, this defines a map 1 : Boy— £.

(b) The map 1 is bijective and W-equivariant.

Before we enter into the proof let me first show how to derive Theorem 6.2.

Proof of Theorem 6.2. Part (b) implies immediately that the W-action on
Byo(X) factors through W. The assertion on the isotropy group is almost the
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definition of W, in [Kn4] §3: (X) is the component of T, containing C,. Then
observe that the objects denoted by C and T in [Kn4] are open subsets of Cy and
1(X). Denote the isotropy group of 1(X) in W by W,. The image of 1(X) in t* is the
k-subspace a* generated by y(X) < t* ((Kn4] 3.2). This implies

Cw(a*) <€ W, < Ny (a*).

Because X is non-degenerate, we have Cy (a*) = Wp(y,. The images of W, and Wy
in GL(a*) are the same by definition (see [Knd] p. 315). Hence Wy = Wy x Wpy,.
a

Theorem 6.4 will follow from the next three lemmas.

6.5. LEMMA. All irreducible components of T have the same dimension. They
map onto T% and W acts transitively on £.

Proof. Because t*/W is an affine space, T is a complete intersection in T% x t*.
This implies that all irreducible components of T, have the same dimension. Since
all fibers of T, —» T* are W-orbits every component of T is mapped finite to one
onto T%. This implies also that W acts transitively on #.

6.6. LEMMA. Let Z € Byo(X). Then «(Z) = G - Cy is an irreducible component
of Ty and 1 : Boo(X) » F is W-equivariant.

Proof. First assume that the Lemma is true for groups of semisimple rank one.
We show the general case. Because W acts transitively on By, (X) it suffices to show
that for every simple reflection s, € W and Z € By, (X):

(i) X)es.

) (Z)e S =>i(s, - Z) e S.

(iit) (s, - Z) = s,U(Z).

Part (i) is precisely the content of [Knd] 3.2. Let P,:=R,P,, L:=P/P,, and
W, =Wy _=s,). There is a nonempty, smooth open subset ¥ < P,Z such that a
quotient morphism Y — V:=Y/P, exists and is smooth. Furthermore, Y can be
chosen to be P,-stable ((DR] 1.6). Then V is an L-variety and By, (V') is defined
with respect to the L-action. Define Z’:=Z n Y/P, = V which is in By (V). By the
definition of the W-action, we get (s, - Z)NY/P, =5, Z’'. Now let

S:={aeT%|x=n(x) €Y, a(p,x) =0}.

Then there is a morphism S — T% which is easily seen to be the quotient morphism
by P,. Moreover, there is a commutative diagram
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S — T%
* *

g*2p, — I*

This shows that the preimage of C, = T% is an open subset of C, namely
C,nn (Y).

Now we show (ii): Assume 1(Z) € #. By Lemma 6.5, this is equivalent to
G - C, =T%. Because P P is dense in G and PC, = § we conclude that

P, S is dense in T%. (%)

Since X is non-degenerate the general element of #(T%) < g* is semisimple ([Knl]
5.4). By (*) and the commutative diagram above, the same holds for &(T%), i.e., V
is non-degenerate. Hence, we may use that the Lemma is true for the group L.
Therefore, L - C,,. , = T which implies that P - C, ., is dense in S. With (x) we
get G - C, ., = T} which means i(s, - Z) € 4.

Finally observe that there is the following diagram of W,-equivariant mor-
phisms:

S Xt-/Wﬂt* e 4 T/*Y Xt;/Wt*

l

TV X ow, t*

Therefore (s, - Z") = s5,1(Z’) implies (iii). This finishes the reduction and it remains
to prove the Lemma when the semisimple rank of G is one.

We may assume that the quotient X/G exists. Then it is easy to see that it
suffices to consider only a general fiber, i.e., we may assume that X = G/H is
homogeneous. Let H, be the image of H in G/Z(G) =~ PGL,. If H, is finite or
conjugated to G,, Ty, or N, (notation as in section 3) then By (X) ={X} and
G - Cy = T% by [Knd] 3.2. Furthermore, either Hy = G, and Wy, #1 or Wy # 1
(see [Kn1] 9.1, or direct computation). Therefore, T is irreducible, i.e., £ = {Ty}.
This shows the Lemma in these cases.

It remains the case H,~ S - U,. Because X is non-degenerate, H does not
contain the Borel subgroup of (G, G). This means that a* does not consist of
s.-fixed points. Choose B < G such that its image in PGL, is opposite to B,. Then
we have T% = G x ¥ h* with h* = a* D u,. Hence T has two components consist-
ing of all [(g, & + u,), &), and([g, & + u,], 5,(£)) respectively. Furthermore, €, and
C, (with Z =5, - X) contains ([b, £], &) and ([bs,, & + 1], s, &) respectively. This
shows that G - C, and G - C, are dense in T% and that €, and C, lie in different
components of T. This finishes the proof of the lemma. O
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6.7. LEMMA. Let Z € Byy(X). Then G - C, =G - Cy implies Z = X.

Proof. 1t suffices to show that there is a non-empty G-stable open subset T of
(X)) =G - Cy such that T"n C is irreducible. By [Kn4] §3, there is an open G-stable
subset T, of 1(X) such that there is a factorization

Tx—i G/L x o — g* x t*.
to/w
where L is the Levi part of P(X) and o’ is the open subset of elements of a* which
have L as centralizer. The morphism y is defined by y(gL, ) = (g4, ). Now assume
that (g4, A) is in the image of u’. Then there is u € U such that ugi e t*.
Furthermore, ugd = A. Hence A € a” implies ug € Cz(a*) = L. This shows that
C N Ty is the preimage of the irreducible subset Ué x a’ = G/L x o’. Furthermore,
the morphism & has irreducible generic fibers (see [Kn4] 3.4). This implies that
there is T" < T such that 7" € is irreducible. O

Proof of Theorem 6.4. Lemma 6.6 establishes a W-equivariant map By (X) — #
where Z is mapped to G - C,. This map is surjective (Lemma 6.5) and injective
(Lemma 6.7). O

The method of proof gives more namely a description of the W-action on
B, (X) in terms of the G-action on X. For this we need:

6.8. LEMMA. Let X be non-degenerate and Z = w - X € Byo(X). Then Bwa’ is
dense in &(C;) < g*.

Proof. If we identify g* with g we have &(C;) cu' =t*@u. Let f € k(Z)®.
Then the 1-form df is a section of C, = Z. We have {&(df), &) = x,({) for all { e t.
This shows that #(C,) < a’@u where a’ < t* is the subspace spanned by x(Z).
Hence, o’ = wa* by Theorem 4.3. Furthermore, the projection #(C;) —»wa* is
surjective.

Let ¢ e wa"@u and & + &, be its Jordan decomposition. Then there is b € B
such that b¢, € wa'. Let also ¢ € #(C;). Then ¢ € Ga* because X is non-degenerate
([Kn4] 3.3). In particular, dim Cg (&) 2 dim L = dim Cg(¢,). This can only happen
if ¢ =&, which shows &(C;)na"@u = Ba'. a

For n e Ng(T) let i € W be its image in the Weyl group.

6.9. THEOREM. For every Z € By (X) choose any non-empty open B-stable
subset Z”. Then there exists x € X such that nx € (i - X)® for all n € Ng(T).
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Proof. We may again assume that X is non-degenerate. Consider the diagonal
embedding t* ¢ g* x . t* and its preimage = < Ty. Then Ng(T) acts on =
diagonally: n(a, A) :=(na, 7il). Let T < G - Cy as in the proof of Lemma 6.7. Then
we get n(ENT) s CnaT’ < C,. . Therefore, (1, 1) € ENT’ implies no € C;. 4,
hence nx €7 - X for x = n(a). By Lemma 6.8, BEC, is dense in C, for any
Z € By (X). Hence we can choose x € X such that nx lies in the chosen open
B-stable subset Z® of Z =n - X. O

In case of a spherical variety there is a canonical choice for Z® < Z, namely the
open B-orbit. Hence, we obtain:

6.10. COROLLARY. Let X be a spherical variety. Then there exists a point x in
the open B-orbit of X such that 7i - X = Bnx for all n € Ng(T).

This means that the W-action on B,,(X) is induced by some carefully chosen
Ng(T)-orbit. When X is a symmetric variety, then one can choose x such that W,
is precisely the image of Ng(T) NG, in W. This means, every z € By (X) contains
precisely one component of the orbit N;(7T)x. This can not be achieved in general,
for the simple reason that the isotropy group G, may not contain W, as a
subquotient (e.g. if G, is solvable and Wy is not.) If ¢(X) > 0 then it may even
happen that all components of N;(T)x lie in different B-orbits. Take for example
X = G on which G acts by left translation. Then Bn,x = Bn,x implies 7, = i, for
every x € X and n;, n, € Ng(T'). In this case Byo(G) = {G}.

7. Characteristic zero

In this chapter I want to finish off the proof that the W-action on B,(X) factors
through W, provided char k = 0. We start with some reductions.

For every set /1< X of simple roots let P, be the corresponding parabolic
subgroup and W, < W, W, = W the subgroups generated by {s, |« € I}. Then W, is
the Weyl group of L,:=P,/R, P,.

7.1. PROPOSITION. For P =P, let (Y) € By(X) be such that Y is P-stable.
Let Py be a general P-orbit of Y. Consider X;:=Py/R,P = P/P,R,P as an L;-vari-
ety. Then there is a natural W,-equivariant surjective map

72 Bo(X;) — Bo(Y, P) = By (X).

“Proof. First observe, that there is a bijection between B,(X,;) and closed
B-stable subvarieties Z of Py such that ¢(Z) = ¢(Py). Now choose Y°< Y non-
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empty, open such that the orbit space Y°/P exists. Moreover, we can choose Y?° that
small such that for y € ¥Y° and for Z < Py a closed B-stable subvariety there is a
unique Z € B,(Y, P) such that Z is an irreducible component of Zn Py. This
defines the surjective map By(X;) — B,(Y, P). The W,-equivariance follows directly
from the definition. O

7.2. LEMMA. It suffices to prove Theorem 4.2(a) for G semisimple of rank two
and X = G/H homogeneous where H is connected.

Proof. As a normal subgroup, the kernel of W — W is generated by the braid
relations

SaSﬁSa e =SﬁSaSﬂ e

Because each of them involves only two reflections it suffices to check them for the
L,-action on X; where I = {a, B} and where Y runs through all P,-stable closed
subvarieties of X with ¢(Y) = c(X). Dividing out the center of L, doesn’t change B,
and makes the group semisimple. Finally, the natural map B,(G/H®) — B,(G/H) is
surjective and equivariant. Hence it suffices to consider connected isotropy sub-
groups. O

From now on assume we are in the situation of the Lemma. For r € N define
By, :={Z e By(X) [tk Z=1k X —r}.

This set is W-stable and empty unless r =0, 1, or 2. The case r =0 is handled in
Theorem 6.2 (that is where char k =0 comes in). For r =2 remember the corre-
spondence of B-orbits on G/H and H-orbits on G/B (section 3). If B,,(X) is not
empty then H must contain a maximal torus 7 of G. Then each Z € B,,(X)
corresponds to a subset HV cG /B where ¥ is an irreducible component of (G/B)7.
Hence V is one point which implies ¢(X) = ¢(Z) =0, i.e., X is spherical. This case
is handled in Theorem 5.9.

That leaves the case r =1. Assume B, (X) # J. Then H must contain a
one-dimensional torus S such that some Z € B, (X) corresponds to HV where V is
a component of (G/B)S. Again we may exclude the case that X is spherical. Then
¢(Z) 2 1 implies that V has positive dimension. Therefore, if we choose H and §
such that S = T then S is the connected kernel of some root f. Let L = Cg(S).
Then S = H N L because otherwise H has a dense orbit in HV. In particular, Sis
a maximal torus of H. This implies that every Z € B,, (X) corresponds to some HV.

For we W let w:=wB € G/B and V,,=Lw~! = G/B. This induces a bijection
between W/ {sg»> and the set of irreducible components (G/B) S. Let Z, € B(X) be
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the subvariety associated to HV,. Now Theorem 4.2(a) follows from the next
lemma.

7.3. LEMMA. The assignment w — Z,, induces a W-equivariant surjective map-
ping W/<Sﬂ > — By, (X).

Proof. As already mentioned, every Z € B,,(X) is of the form Z,. Because we
assumed that B,,(X) is not empty at least one Z,, is in it. Therefore, it suffices to
show for every simple root « and w € W

Assume Z, € B, (X). Then Z, ,, is in B,,(X) and equals s, - Z,,.

For this consider the projection n : G/B — G/P,. Then V,, is a fiber of = if and only
if L = w~!'P,w. Otherwise, n is injective on V. i L

In the first case we have w~'s,w € L, hence (s,w) ' =w~'s,ww~' € V,. This
implies Z, , = Z,,. Let y:=n(w~"'). Then H, induces a finite group action on the
fiber V,. Hence s, - Z, = Z,, by definition.

Now assume = : V,, ¢ G/P,. Then as above V_,, has the same image in G/P,.
Let y be a general point in this image. Then S < H, acts non trivially in the fiber
n~'(y) with two fixed points lying in ¥, and V, ,, respectively. This implies that
HV, contains a dense H-orbit if and only if n(HV,) does. Hence Z, € B,(X)
implies Z, , € B,(X). Now a simple case-by-case consideration shows, that either

Z,,=2,=s,"Z, or s, interchanges Z,, and Z_,,.

Remark. As already mentioned, the only part of the proof which uses
char k =0 was Theorem 6.2. Therefore, to prove that for a given ground field &
with char k # 2, the W-action on B,(X) factors through W it suffices to prove this
for the subset B,,(X) where X = G/H is homogeneous and not spherical, H
connected and G is semisimple of rank two.
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