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L&apos;image d&apos;un groupe dans un groupe hyperbolique

T. Delzant

Introduction

Soit G un groupe de présentation finie et F un groupe hyperbolique au sens de

M. Gromov [Gr2]; le but de cet article est de décrire l&apos;ensemble des images de G

dans F.

Le groupe F est équipé d&apos;un système de générateurs, partant de la métrique du

mot, notée |g|. On note T(G) le nombre minimum de relations d&apos;une présentation
triangulaire de G, c&apos;est-à-dire d&apos;une présentation dont toutes les relations sont de

longueur deux ou trois; si G est défini par des relations arbitraires, un argument de

triangulation montre que T(G) est inférieur à la somme des longueurs de ces

relations.

THÉORÈME. Soit h : G i-&gt; F un homomorphisme. On a Valternative suivante:
Soit h{G) est conjugué à un sous-groupe de F engendré par des éléments

aï9...9ak dont la longueur vérifie Sup^a,] &lt;srT2(G). (sr est une constante ne

dépendant que de F).
Soit h se factorise à travers une somme amalgamée ou une extension HNN

au-dessus d&apos;un groupe fini: il existe deux groupes A et B, un groupes fini F (distinct
de A et B dans le cas d&apos;une somme amalgamée), une application surjective
s : G \—&gt; A *FB (ou s : G i—&gt; A *F) et un homomorphisme h&apos; : A *FB h-&gt; F9 (ou
h&apos; : A *F h-* G), tels que h h&apos;os.

Rappelons qu&apos;on dit d&apos;un groupe G qu&apos;il satisfait la propriété FA de Serre si

toute action de G dans un arbre simplicial fixe un point; un quotient d&apos;un tel groupe
ne peut être un amalgame ou une extension HNN [Se]. Comme F n&apos;a qu&apos;un nombre
fini d&apos;éléments de longueur donnée, on obtient:

COROLLAIRE, a) Soit G un groupe de présentation finie qui n&apos;est ni une

somme amalgamée ni une HNN-extension au dessus d&apos;un groupe fini. Si un groupe
F est hyperbolique il ne contient qu&apos;un nombre fini de classes de conjugaison de

sous-groupes isomorphes à G.
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268 T. DELZANT

b) Si G est un groupe de présentation finie satisfaisant la propriété FA et F un
groupe hyperbolique, F ne contient qu&apos;un nombre fini de classes de conjugaisons de

quotients de G.

Remarques. L&apos;énoncé de la partie a) du corollaire dans le cas où G est sans
torsion est dû à M. Gromov ([Grl]), théorème 6.7, [Gr2] théorème 5.3.C). Une
démonstration en a été proposée par E. Rips et Z. Sela ([R-Sl]). Dans le cas ou F
est le groupe fondamental d&apos;une variété hyperbolique compacte, et G celui d&apos;une

surface, ce résultat est dû a W. Thurston ([Th]) pour h injective, et à A. Reznikov

pour h quelconque ([R]). Pour les groupes de surface, les démonstrations de [Th],
[Grl, 2] (avec y injective) et [R] (A quelconque) sont respectivement basées sur
l&apos;existence de surfaces plissées, minimales et d&apos;applications harmoniques. La
démonstration de [R-Sl] s&apos;appuie sur la théorie de E. Rips des groupes opérant dans les

arbres réels. Le cas des groupes ayant de la torsion nécessite une approche nouvelle.
On peut interpréter la partie a) du corollaire en terme de l&apos;espace des monomor-

phismes modulo conjugaison au but et automorphisme à la source : si cet espace est

infini, alors G se scinde comme somme amalgamée ou HNN extension au dessus
d&apos;un groupe fini. Dans le cas contraire, on a une borne effective sur son cardinal.
On précisera cela en III.2.

Plan de la démonstration. Soit G un groupe de présentation finie; choisissons

une présentation de G. La donnée d&apos;un homomorphisme A de G dans r est la
donnée d&apos;une solution à un système d&apos;équations dans F. On interprète (paragraphe
I) les résultats de [R-S2] en termes topologiques. La géométrie hyperbolique de F
permet de construire (paragraphe II) sur le polyèdre de van Kampen de G (associé
à cette présentation) un feuilletage mesuré A (plus précisément une lamination)
dont Fholonomie est bien comprise: si on réalise Fhomomorphisme h par une
application continue de ce polyèdre dans H&apos;/F, où H désigne un polyèdre de

dimension deux simplement connexe sur lequel F agit librement, l&apos;image par h d&apos;une

courbe contenue dans une feuille de A mais ne rencontrant pas de singularités est

homotope, à extrémités fixées, à courbe de H/F de longueur uniformément bornée.
Un argument topologique, objet du dernier paragraphe, permet alors de conclure.
En appendice est détaillé, sur la suggestion du rapporteur, le calcul d&apos;un exemple
simple montrant l&apos;intérêt d&apos;introduire le feuilletage par tranche construit au
paragraphe I et II: cet exemple contient l&apos;idée de la démonstration du théorème.

I. Le feuilletage des triangles géodésiques

Rappelons d&apos;abord la définition de la &lt;5-hyperbolicité au sens de M. Gromov
([Gr2], [CDP], [GH]).
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Le groupe F est équipé d&apos;un système de générateurs; la métrique du mot
invariante par translation à gauche en fait un espace métrique; cet espace métrique
est contenu dans le graphe de Cayley de F, noté Ca(F), muni de la métrique
simpliciale. Ceci permet de parler de géodésiques de F.

Dans cet espace métrique, la distance de deux points v et w est notée \v — w\; la
boule de centre v et rayon R est notée B(v, R).

Soit T un triangle géodésique de F de cotés a, b9 c. On dit que T est S -fin si tout
point de la géodésique a(b ou c) est à une distance inférieure à ô d&apos;un point de b ou
c (a ou c, a on b); on dit que F est hyperbolique si tous ses triangles géodésiques
sont £-fins.

Si T est S -fin on peut découper chaque géodésique a, b, c en deux intervalles
a ca ufcû5 b cb uab et c ac ubc de sorte que les longueurs de ca et cbi ab et ac,
bc et ba soient égales, et tout point de ca soit à une distance inférieure à ô d&apos;un point
de cb (Fig. 1).

ac

cb bc

T3

Figure 1
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Si Tî9 T2, Tn est une suite de triangles adjacents, on peut construire par
récurrence une application d&apos;holonomie isométrique d&apos;un sous-intervalle d&apos;un coté
de Tl dans celui d&apos;un coté de Tn, en suivant successivement les identifications des

cotés données par la définition de Fhyperbolicité (Fig. 1).

Malheureusement, il se peut très bien qu&apos;une partie du premier coté de Tx

coïncide avec une partie du dernier de Tn mais que l&apos;holonomie ainsi définie d&apos;un

sous-intervalle d&apos;un coté Tx à valeur dans ce même coté ne soit pas l&apos;identité: en
voulant préserver la mesure &quot;naturelle&quot; qui équipe chaque géodésique, on a été trop
exigeant. La même difficulté apparaît ([Gr2], 8.3D) quand on cherche à construire
le flot géodésique d&apos;un groupe hyperbolique. Dans ce cas le problème est d&apos;identifier

deux-à-deux les géodésiques joignant deux points à l&apos;infini dans T de façon
équivariante. Cela n&apos;est pas possible en conservant la mesure naturelle de ces

géodésiques (sinon, par exemple, la norme stable des éléments de T serait toujours
entière), mais on peut le faire en changeant la mesure qui les équipe.

Le but de ce paragraphe est de construire une famille de triangles (remplaçant
les triangles géodésiques) équipés d&apos;un feuilletage, ou plus précisément d&apos;une

lamination remédiant à cet inconvénient (Lemme II. 1).

Dans le cas d&apos;un groupe sans torsion, cette construction est la traduction
topologique de l&apos;existence, due à E. Rips et Z. Sela, de représentants canoniques à

l&apos;ensemble des solutions d&apos;un système d&apos;équations dans un groupe hyperbolique.
Nous reprenons, à quelques modifications mineures près, le texte [R-S2] afin de

fixer les notions de &quot;cylindre&quot; et &quot;tranche&quot; utilisées par la suite.

DÉFINITIONS. Un cylindre d&apos;un segment géodésique [/?, q] c Ca(T) est un
sous-ensemble du 5&lt;5 -voisinage de ce segment et qui le contient. Pour tout point
v g C, une projection de v sur [/?, q] désigne un point de [p, q] qui lui est 5ô -proche.

Un point v e C est dit être à gauche (resp. à droite) de vo si la distance \v — vo \

est plus grande que 1005, et si une projection de v sur [p, q] est à gauche (resp. à

droite) d&apos;une projection de vo. On note L(vo, C) (resp. R(vo, C)) l&apos;ensemble des

points situés à gauche (resp. à droite) de vo. Cette notion de position est un peu
délicate: en particulier un point pr du segment [p, q] n&apos;est &quot;à droite&quot; de p que si

\p -/&gt;&apos;|2&gt; 1005.

Le décalage de deux points vo et vx de C est défini par la formule suivante:

d(pO9 vx) *(L(vo, C) - L(vu C)) - *(L{vu C) - L(vo9 C))

+ +(R(pu C) - R(vo, C)) - *(R(voi C) - R(Vl, C))

Par construction, le décalage d est un cocycle :

d{vo,vx) +d(vl9vo) 0 d(vo9vx)+d(vl9v2)+d{v29v0)=O
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On définit aussi la tranche tr(vo9 C) d&apos;un cylindre C contenant vo:
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II est important de noter que tr(vO9 C) ne dépend que de C et pas de la géodésique

La fonction décalage ordonne les tranches d&apos;un cylindre fixé: on dit que
tr(vo, C) &lt; tr(vu C) si d(vo, v{) &lt; 0.

Enfin, deux tranches tr(vo,C) et tr(vuC) sont consécutives si tr(vo,C)&lt;
tr(vu C), et s&apos;il n&apos;existe pas d&apos;élément w tel que tr(vo, C) &lt; tr(w, C) &lt; tr(vu C).

On peut donc découper chaque cylindre C en une (unique) suite croissante
C [Tx, T2 - - - Tk] de tranches consécutives.

Là encore, il convient d&apos;insister sur le fait que deux points consécutifs sur la
géodésique [p, q] n&apos;appartiennent pas nécessairement à des tranches consécutives; il
se peut même qu&apos;un point u situé à droite d&apos;un point v (pour Tordre ordinaire) se

retrouve dans une tranche d&apos;indice inférieur.
Tout ceci est bien défini dans un espace métrique géodésique quelconque, et ces

tranches, ainsi que la relation d&apos;ordre &lt; vérifient des propriétés de localité (Fig. 2).

LEMME 1.1. a) Le diamètre de chaque tranche est inférieur à 2O&lt;5; la distance

entre la i-ème et laj-ème tranche est minorée par E{\i -y|/2O&lt;5) où E désigne la partie
entière.

b) Si deux tranches T et T sont consécutives, V(p,p&apos;) e T x T\ \p—p&apos;\&lt;&gt;

405 + 1 &lt;L 506.

c) Si les cylindres C et C de deux segments [p, q] et [/?&apos;, q&apos;] coïncident dans la
boule de centre vo et de rayon 2005, les tranches correspondantes sont égales:

tr(vo, C) tr(vo, C).

r\

riz VA)
R&gt;200ô

Figure 2
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d) Supposons que \vo — vx\ ^ 1005 et que l&apos;intersection C nC contienne vo9 vx et

que B(vo9 2005)nC B(vo, 2005)nC&quot;; alors:
Soit il existe un point situé à gauche de vo pour C qui est aussi à gauche de ce point

pour C&quot; et tr(vO9 C) &lt; tr(vu C) o tr(vO9 C&quot;) &lt; tr(vl9 C).
Soit, il existe un point situé à gauche de vo pour C qui est à sa droite pour C&quot;, et

tr(vo9 C) &lt; tr(vî9 C) o tr(vo9 C) &gt; tr(vl9C).
e) Si v eC, si B(v9 R)nC coïncide avec B(v9 R) n C, si C [Tx • T2 • • • Tk]

(resp. C [T\ • T2 * * * T^]) est la décomposition de C {resp. C) en tranches consécutives

9 et si v € Tt T&apos;t&gt; alors:
Soit il existe un point situé a gauche de vo pour C et C&quot;, et si l (resp. m) désigne

le plus grand entier pour lesquel il existe veTt_i {resp. Tt + m) tel que
\w - v\ £ R - 2005, alors pour tout j de l&apos;intervalle [ -/, m] on a Tl+J T[^j.

Soit il existe un point situé a gauche de vo pour C qui est à droite de vo pour C,
et si l (resp. m) désigne le plus grand entier pour lesquel il existe w e Tt_i (resp.

Tt + m) tel que \w — v\ ^ R — 1005, alors pour tout j de l&apos;intervalle [ — /, m] on a

La démonstration de ce lemme élémentaire est laissée au lecteur.

Soient gx,..., gn une famille d&apos;éléments de F; on convient dans tout ce qui suit

que g_t grl et que go Idest l&apos;élément neutre de F. Supposons que la famille de

(#i)-«&lt;;*&lt;;« soit solution d&apos;un système d&apos;équations triangulaires w\ ...9wp9 où
wa: gl&lt;xgJoigka 1- Notons que comme go e certaines de ces équations triangulaires
peuvent en fait être de longueur 2.

Pour des raisons qui apparaîtrons clairement dans la suite, les inconnues gt

apparaissant dans ce système d&apos;équations sont appelés les générateurs.
On définit (en suivant [R-S2] une constante c(F) ne dépendant que de F en

posant c(F) 2V2SfÂ° • \io + 2005, où \io 10652, et v2ô est le cardinal de la boule de

F de centre e et de rayon 25.

Une fois donné une telle solution à un système d&apos;équation, E. Rips et Z. Sela

montrent le:

THÉORÈME 1.2. ([R-S2], Cor. 4.3 au Th. 4.2) Soit p c(F)n. Il existe pour
chaque générateur gi9 —n&lt;&gt;i&lt;&gt; n9 un cylindre du segment gèodésique [e,gt]9 noté

C(gt)9 vérifiant les propriétés suivantes:

-(invariance)^,) =giC(g_l) ^gtC(g-x)
— (stabilité) Si w: khg 1 est l&apos;une des équations du système étudié et si r(w)

è(M+ 1*1-1*1).

C(g) fl B{e, r(w)-p + 2(Xtô) C(k~l) f) B{e, r{w) - p + 2005)
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De même, en considérant les équations hgk 1, khg 1, et en posant s(w)

1/2(|*| + \g\ - |*|), t(w) 1/2(|*| -h |*| - \g\X la propriété d&apos;invariance montre:

C(g) fi B(g, s(w) -p + 2OO&lt;5) gC(h) f] B(g9 r(w) - p + 2005)

\ t(w)-p+200ô) =gC(h) f] B{h~\ t(w) -p +2005)

(voir la Fig. 3).

(La propriété d&apos;invariance est le Lemme 3.2 de [R-S2].)
Dans toute la suite, on fixe une famille de cylindres vérifiant ces propriétés.

La L-mesure des générateurs. Par définition, si g est l&apos;un des générateurs
intervenant dans notre système d&apos;équations, la L-mesure de g est le nombre de

tranches du cylindre C(g).
Pour chaque générateur g, on fixe une courbe cg : [O, L(g)] h» Ca(F) telle que

cg(i) soit un élément de la i-ème tranche de g. On peut choisir cette courbe de sorte

que cg-l(L(g)-i)=g~lcg(i). Grâce au lemme I.l.b, on voit que \cg(i) -
cg(i + l)\£ 505. Donc, quitte à remplacer cg par la courbe géodésique par morceaux
qui joint ces points, on peut supposer que \cg(i — 1/2) — cg(i + 1/2) | ^ 505. De plus
le théorème II.l dit que, si w\ghk \ est l&apos;une des équations et si r{w)
l/2(|g| + |*|-|*|), alors C(g) n B(e, r(w) -p + 2005) C(k~l) n B(e9 r(w) -p
+ 2005). Donc, si l&apos;on pose iw Max(i/\cg(i)\ &lt; r(w) - p, |c*-,(|*| - i)| &lt; r(w) - p),

on remarque (grâce au lemme I.l.e) que, pour / &lt;&gt; iw, la i-ème tranche de C(g)

R= l/2( g + k - h )-p+200Ô
^ k

Figure 3
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coïncide avec celle de C(k~l) :

Vi £ iw9 tr(cg(i), C(g)) tr(ck-x(i), C(k&apos;1)) (*)

Dans ce cas on dit que cg{ï) est le vis-à-vis de ck-\{ï).

Remarque 1.1. (Cas où F est sans torsion.) Si une translation de F laisse

invariante un ensemble fini, elle représente nécessairement un élément d&apos;ordre fini
de ce groupe. Ainsi, si F est sans torsion, on peut choisir de façon équivariante un
point—appelé centre—dans chaque sous-ensemble fini (en particulier dans chaque
tranche) de F. Dans ce cas, on peut définir cg{ï) comme étant le &quot;centre&quot; de la
tranche tr(cg(i), C(g)). Cette courbe cg devient le représentant canonique de g au sens

de [R-S2], et (*) devient:

V*£/w, c,(ï)=c*-,(i) (**)

Le feuilletage Aw. Pour chacune des équations de notre système, w: khg 1, on
considère un 2-simplexe Aw; il se peut que que l&apos;équation considérée soit de

longueur deux et dans ce cas Aw est seulement un digone. Chaque coté de Aw est

marqué par g, h, et k puis est considéré comme segment de longueur L(g), L(h\

On défini une lamination (la terminologie est celle de Thurston pour les surfaces)
Aw de Aw, avec (au plus) une singularité de la façon suivante (voir Fig. 4).

a) Aw n [g] est constitué des L(g) points entiers de ce segment ; de même pour
h et £.

b) si i ^ iw, cg(i) est le vis-à-vis de ck-i(J). Dans ce cas: tr(cg(i),
C(g)) tr(ck-i(J), C(k~~l))9 et l&apos;on joint ces deux points par une feuille de Aw. On
procède d&apos;une façon analogue pour les deux autres cotés.

Les feuilles ainsi construites sont, par définition, les feuilles régulières de Aw.
c) On rajoute une singularité au centre de Aw à laquelle on joint les points des

trois cotés qui n&apos;ont pas encore de vis-à-vis. Les feuilles obtenues sont les feuilles
singulières de Aw.

Remarque 1.2. La lamination ansi définie ressemble beaucoup au feuilletage
&quot;horocyclique&quot; de la Figure 1; au lieu de préserver la mesure géodésique, elle

préserve la L-mesure (en dehors des singularités). Il convient cependant de noter
que cette mesure ne satisfait pas en général l&apos;inégalité triangulaire: si ghk 1 est
l&apos;une de nos équations, on n&apos;a pas en général L(g) ^ L(h) + L(k). Une construction
analogue pour les géodésiques de longueur infinie a été faite par M. Gromov ([Gr2],
8.3.D), qui en déduit l&apos;invariance topologique du flot géodésique. On peut d&apos;ailleurs

remplacer dans ce qui précède la fonction décalage de [R-S2], par la fonction L
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/ \
/ \

\
\\ \ &gt; /r \\ \ /

/ /
/

/ /
1 rv

/ / 7v/ /\
K

Figure 4

introduite par Gromov, en modifiant un peu ([Gr2], 8.3.C) pour tenir compte du
fait que le géodésiques sont de longueur finie.

Le graphe Kw. Par définition, ce graphe (en pointillé sur la Fig. 4) est une
réunion d&apos;arêtes allant d&apos;un bord de Aw à l&apos;autre de sorte que chaque composante
connexe de Aw — K contienne une et une seule composante connexe de Aw9 et de

pointes (ou demi-arêtes) séparant les feuilles singulières de A. Ainsi Kw n SAW est

constitué des points à coordonnées demi-entières pour la L-mesure de chacun des

cotés de ce triangle.
Grâce au théorème I.2.a, on voit que le nombre de points d&apos;un coté de Aw

n&apos;ayant pas de vis-à-vis dans l&apos;un des deux autres cotés n&apos;excède pas 205p. Le
graphe Kw et la lamination Aw satisfont donc:

LEMME 1.3. Dans le triangle Aw il y a au plus 3.20pô feuilles singulières de Aw.

IL Le polyèdre feuilleté P

Soit G un groupe de présentation finie, et h : G h+ F un homomorphisme.
Un argument de triangulation montre qu&apos;il existe une présentation de G dont

toutes les relations sont de longueur trois, ou peut-être deux s&apos;il y a de la deux
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torsion. Dans tout ce qui suit, une telle présentation: (Gx,... ,Gn; wx,..., wm) est

fixée.
Soit P le polyèdre de van Kampen de cette présentation: c&apos;est le polyèdre de

dimension deux dont le O-sequelette est réduit à un point, le 1-squelette est
l&apos;ensemble des générateurs, et le deux squelette est constitué de triangles (2-sim-
plexes) et digones (Aw)x ^t±n correspondant aux relations de longueur deux et trois.
Son groupe fondamental est G.

Par définition, la famille des gt= de/KGt) forme une solution du système
d&apos;équations ny • • wn dans F, de sorte qu&apos;on peut appliquer la construction précédente:

chaque face Aw de P est équipée d&apos;une lamination Aw, et d&apos;un graphe Kw.
Comme le long de deux faces adjacentes, Aw et kw coïncident, P est équipé d&apos;un

graphe K et d&apos;une lamination A,
Pour chaque triangle w, les feuilles de Aw sont des segments tracés dans P; on

les appelle les arcs de A: ce sont les traces sur les triangles des feuilles de A. On
distingue comme précédement les arcs réguliers des arcs singuliers. Ainsi, les feuilles
de A sont obtenues en mettant bout à bout les arcs de A.

Le groupe F étant hyperbolique, il est de présentation finie, et l&apos;on peut choisir
un polyèdre de dimension deux simplement connexe H, équipé d&apos;une action de F,
dont le 1-squelette est le graphe de Cayley de F, et tel que le quotient H/F soit fini;
on note e e H l&apos;origine naturelle de Ca(F). On équipe H d&apos;une métrique de longueur
F-invariante à gauche qui donne la longueur 1 à chaque arête du graphe de Cayley.

On réalise l&apos;homomorphisme h comme application continue (abusivement) notée
h : (P, s0) h* (H/F, e) en prenant soin à ce que l&apos;application relevée au revêtement
universel (fi : ?kH) satisfasse la condition suivante: si g h(Ga) désigne l&apos;un des

générateurs, et si [g] désigne le coté correspondant de P paramétré par l&apos;intervalle

[O, Lg)], fl[g]) est la courbe cg(t) du graphe Ca(F) joignant e à g.e. Le prolongement
au 2-squelette de P est arbitraire (parmi les prolongements continus).

LEMME II. 1. a) Soient lx,..., /„ une famille composable d9 arcs réguliers de A.
A extrémités fixées, le chemin h(ln • • /,) de H/F est homotope à chemin de longueur
inférieure à 20 • ô.

b) De même, si cy • • cn sont des arêtes composables du graphe K, h{cx • • cn) est

homotope, à extrémités fixées, à un chemin de longueur inférieure à 100 • ô.

Démonstration, a) L&apos;image par fi du revêtement universel P de P est une famille
infinie de triangles (non géodésiques) de Ca(F) donc chaque coté est équipé d&apos;un

cylindre. Relevons le chemin h(ln • • • /,) à travers le revêtement universel H h* H/F.
Soit eiR{lt • • • l{)) l&apos;extrémité du chemin relevé K(lt • • • lx), et Ct le cylindre du coté

du triangle de Ca(F) le contenant. En appliquant la propriété (*) du paragraphe I,
on remarque que la suite des cylindres Ct et des points e(fï(lt— • /,)) vérifie:
trie(R(lt, h _ •••/,)), Ct irMfl/, -, • • • h % Ct _,
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Ainsi, si o désigne l&apos;origine de /T(/, toutes les extrémités £(£(/, • • • /, sont dans

une même tranche tr{Cx, 6) qui est un sous ensemble de diamètre inférieur à 2O&lt;5 de

Ca(G) (lemme 1.1.)
En particulier, la distance dans H de e(fi(lt • • /„)) à o est inférieure au diamètre

de la tranche tr(o9 Ci). Comme H est simplement connexe, on peut homotoper cette

courbe—à extrémités fixées—une géodésique de Ca(F) c H, qui est de longueur
inférieure au diamètre de la tranche. La projection dans HjF de cette homotopie
homotope h(lx •••/„) à un chemin de longueur inférieure à 20(5 (le diamètre de la

tranche).
Pour b), il suffit de remarquer que la distance \cg(i) — cg(i + 1/2)| n&apos;excède pas

25&lt;5.

Remarque II. 1. Supposons de plus F sans torsion, choisissons de façon équivari-
ante un centre à chaque tranche comme à la remarque 1.1, et prenons pour cg(i) le

centre de la tranche qui le contient; dans ce cas (**) dit que l&apos;extrémité du chemin
e{R{lx - • • /„)) coïncide avec son origine, et l&apos;on peut renforcer la conclusion du a) du
lemme précédent: le lacet h(ln- • • /t) de H/F est homotope à zéro.

Malheureusement, cela est impossible à faire pour un groupe avec torsion, sinon

on arriverait à une contradiction (voir la remarque III. 1).

III. Le graphe de groupe X

Dans ce paragraphe, on découpe le polyèdre P suivant le graphe K, on montre

que pour chaque composante Q, le groupe h(nl (Q) est engendré par des éléments de

longueur bornée (en fonction de T(G)), et on applique le théorème de van Kampen

pour conclure.
On garde les notations du paragraphes précédent. Pour chaque composante

connexe Ka du graphe K, on note NKa un petit voisinage régulier de Ka dans P. Les

composantes connexes de K sont de trois sortes:

Type I: Ka ne contient pas de pointes et NKa — Ka a deux composantes

connexes. Dans ce cas pour chacune des ces deux composantes NxKa et N2Ka,

Type II: Ka ne contient pas de pointes et NKX - Ka est connexe. Dans ce cas,

7i1 (AT^ — Ka) est d&apos;indice deux dans n^NKJ.
Type III: Ka contient une pointe.
Le troisième cas mérite une étude un peu plus détaillée:

LEMME III.I. Si #a contient une pointe, NKa — Ka est connexe, et Vhomomor-

phisme n^NK^ - Ka) h-&gt; n^NKJ est surjectif.
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Démonstration. On veut homotoper toute courbe de NK^ dans NKa à une courbe
de NKa—Ka. Pour ce faire, il suffit d&apos;éliminer successivement les intersections,
supposées transverses, de cette courbe avec Ka. On peut le faire en poussant chaque

point d&apos;intersection le long de Ka pour l&apos;amener jusqu&apos;à une pointe; celle-ci permet
de la supprimer.

Soit K&apos; K — {Kx • • • Kp) le graphe K privé de ses composantes à pointes.
Comme pour toute composante à pointe Ka de K, NKa — Kx est connexe, les

composantes connexes de P — K sont celles de P — K&apos;&apos;.

En particulier, si Q est une composante connexe de P — K\ Q contient une

unique feuille AQ de la lamination A, et 7ti(A) h-? nx(Q) est surjective: par construction

du graphe K, P — K est un voisinage tubulaire de A, et enlever les composantes
à pointes ne change rien (à cause du Lemme III. 1).

On considère alors le graphe de groupe Y (voir [Se], [S-W], [D-D]) dont les

sommets sont:

a) les composantes connexes de P — K\ marquées par leur groupe fondamental.
b) les composantes de type II de K marquées par nx(NKa).

Les arêtes de Y sont: les composantes connexes de type I ou II de K, marquées

par le groupe fondamental nx(NKlx) et n^NK^ — KJ respectivement; les homomor-
phismes d&apos;attachement des arêtes vers les sommets sont évidents. (Attention, les

homomorphismes d&apos;attachements des groupes d&apos;arêtes dans les groupes de sommets

ne sont pas injectifs avec notre définition; si on préfère qu&apos;ils le soient il convient de

remplacer les groupes fondamentaux intervenants dans la définition de Y par leurs

images dans G nx{P).
Une composante connexe Q de P — K&apos; est dite régulière, si AQ ne contient pas

de singularité, singulière sinon; le sommet correspondant est alors dit régulier ou
singulier. Les sommets de type b sont aussi considérés comme singuliers.

En appliquant le théorème de van Kampen, on remarque que l&apos;homomorphisme

canonique nx(Y9 ao) i~&gt; G nx(P, so), où nx(Y, ao) désigne le groupe fondamental
de ce graphe de groupe au sens de la théorie de Bass-Serre [S], [S-W], [D-D], et &lt;ro

la composante privilégiée de P — K contenant so9 est bijectif.
Enfin, le graphe de groupe X est le graphe obtenu en remplaçant dans Y les

stabilisateurs de sommets et d&apos;arêtes par leurs images respectives dans le groupe
nx{Hlh(G)) c= F. Notons que ce graphe possède une origine so privilégée, qui est la

seule composante contenant le seul sommet de P.

Par construction, l&apos;homomorphisme h se factorise à travers nx (X, so).

Le lemme suivant est la clef de la démonstration.
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LEMME III.2. a) Si Q est une composante régulière de P -K\ h(nx(Q)) estfini
b) Les stabilisateurs d&apos;arêtes de X sont finis.

Démonstration, a) comme b) résultent immédiatement du lemme II.2, et du fait
que nx(A) y-+nx(Q) est surjective: l&apos;image par h de toute courbe composée d&apos;arcs

réguliers de A (où d&apos;arêtes de K) est homotope à extrémités fixées à une courbe de

longueur bornée. En particulier si AQ ne contient que des arcs réguliers, l&apos;image par
A* de son groupe fondamental est un sous-groupe borné, donc fini, de F.

La démonstration du a) du lemme suivant n&apos;est pas sans rappeler celle, due à M.
J. Dunwoody ([D-D], VI4, VI6), de l&apos;accessibilité des groupes de présentation finie;
nous ne l&apos;utiliserons que pour préciser le théorème principal.

LEMME III.3. a) Le graphe X a au plus T(G) + bx(G, Z2) sommets singuliers.
b) Si une arête y ne sépare pas le graphe X, h se factorise à travers une

HNN-extension au dessus d&apos;un groupe fini.
c) Si une arête y sépare le graphe en deux morceaux X Xx \jyX2, avec so e Xx,

alors soit h se factorise (non trivialement) à travers une somme amalgamée au dessus

d&apos;un groupe fini, soit h(nx(XX9so)), est conjugué à h(7tx(X2, *)).

Démonstration, a) Chaque triangle de P contient au plus une singularité; il y a

donc au plus T(G) sommets singuliers de type a.

Si s est un sommet singulier de type b, il est l&apos;extrémité d&apos;une unique arête, et
le stabilisateur de celle-ci est exacement d&apos;indice deux; il existe donc un homomor-
phisme de G à valeur dans Z/2Z qui envoie tous les stabilisateurs des sommets sur
l&apos;élément neutre, sauf celui de s, et qui envoie celui-ci surjectivement sur Z/2Z. Les

homomorphismes ainsi construits correspondants à des sommets distincts sont

indépendants sur Z/2. Ainsi leur nombre ne peut excéder bx(G, Z/2Z).
b) Soit y cette arête; d&apos;après le lemme III.2, l&apos;image par l&apos;homomorphisme h de

nx(Ky) est un groupe fini. Donc le graphe X a une arête non-séparante à stabilisateur

fini; la théorie de Bass-Serre dit que le groupe fondamental de X est une
HNN-extension au dessus de ce groupe.

Pour c), on raisonne comme en b), mais on suppose maintenant que l&apos;arête

sépare le graphe. En notant Cy le stabilisateur (fini) de cette arête, Cy h(nx(Ky))9
on distingue trois possibilités:

2) nx(X2) Cy
3) nx(Xx) Cy

Dans le premier cas l&apos;homomorphisme se factorise à travers une somme
amalgamée au dessus d&apos;un groupe fini. Dans le second, h(nx(Xuso)) h(nt(X9 so)). Dans
le troisième, h(nx(X2)) est conjugué à h(nx(X, so)) (so 4 X2). D
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Fin de la démonstration

Pour montrer le théorème de l&apos;introduction, on suppose que l&apos;homomorphisme

h étudié ne se factorise pas à travers une somme amalgamée ou une HNN extension

au dessus d&apos;un groupe fini. Appliquant le lemme III.3 à toutes les arêtes, on voit que

pour une composante Qs de P — K&apos;, h(G) h(nx(X,so)) est conjugué à h*(nx(Qs)),
ce second groupe n&apos;étant bien défini qu&apos;à conjuguaison près. Si As désigne la
lamination de Qs, considérée maintenant comme graphe tracé dans Qs, As contient
tous les arcs singuliers de A, et il y en a au plus T(G) • p • 6O&lt;5 (à cause du Lemme
1.3). L&apos;application nx(As) h* nï(Qs) étant surjective, pour démontrer le théorème de

l&apos;introduction, et compte tenu du lemme II. 1, il suffit de poser er c(F) • 104 S2, et
d&apos;appliquer à As le:

LEMME III.4. Soit A un graphe connexe, L le l-squelette de A, E un espace

métrique, et h : A \-+ E une application continue. Supposons que:
1) pour toute arête l de A h(l) est homotope, à extrémités fixées, à une courbe de

longueur inférieure à 2O&lt;5.

2) il existe un sous-ensemble fini Lo de Vensemble L des arêtes tel que si lx- • • /„
est une suite d&apos;arêtes composables de L — Lo alors l&apos;image par h de lx • • • /„ est

homotope, à extrémités fixées, à une courbe de longueur inférieure à 20&lt;5.

Alors pour tout sommet s de A, h*(nx{A, s)) est engendré par des courbes de

longueurs inférieures à (4#LO + 3)2O&lt;5.

Démonstration. Soit T un arbre maximal tracé dans A; pour tout sommet s&apos; de

T le segment [s, s&apos;] c T contient au plus #LO arêtes de Lo\ donc son image est

homotope, à extrémités fixées, à une courbe de longueur inférieure à

(1*Lo -h 1)505. Or nx(A, s) est le groupe libre engendré par les courbes de la forme
[s, s&apos;]a[s&quot;, s] où [s, s&apos;] et [s&quot;, s] sont des segments de T, et a une arête n&apos;appartenant

pas à T joignant s&apos; à s&quot;.

La démonstration que nous venons d&apos;achever donne mieux que le résultat
annoncé dans l&apos;introduction: partant d&apos;un groupe de présentation finie G, et d&apos;un

homomorphisme A de G dans F, nous avons produit un graphe de groupe X. Soit
ÎC le graphe obtenu à partir de X de la façon suivante: les sommets de X sont les

sommets non triviaux de X, où l&apos;on dit qu&apos;un sommet est trivial s&apos;il est régulier et

de valence un ou deux: dans ce cas, son stabilisateur est égal à celui des deux arêtes

adjacentes. Les arêtes de X sont les intervalles de X composés d&apos;une suite yx,

JV * * ïk d&apos;arêtes composables de X telles que e(yx) =o(y2)9 e(y2) =p(y3) &apos; &apos; &apos;

e(yk-i) ==^(j;Ar) soient des sommets triviaux. Ces arêtes sont marquées par le

stabilisateur commun des yt.
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Ce graphe X X{G, h) vérifie les propriétés suivantes.

- Il existe deux homomorphismes s : G i-&gt; %\{X) (surjectif) et h&apos; : nx{X) h» T
tels que h h&apos;os.

- le nombre de sommets de X est majoré par T(G) +bl(G, Z/2Z)
- le nombre d&apos;arêtes de X est majoré par T(G) + bx(G, Z/2Z) -h 6i(G, Z).
- la restriction de W au stabilisateur de chaque sommet et chaque arête est un

isomorphisme sur son image qui est engendrée par des éléments de T dont la somme
des longueurs est bornée par srT2(G).

- les stabilisateurs d&apos;arêtes sont finis.
L&apos;ensemble des (classes d&apos;isomorphismes) de graphes de groupes satisfaisant

cette propriété est fini. L&apos;existence même d&apos;un graphe de groupe satisfaisant toutes
ces propriétés est un version raffinée du théorème annoncé.

Supposons de plus F sans torsion: dans ce cas, le groupe fondamental de X est

le produit libre des stabilisateurs de ses sommets et d&apos;un groupe libre. Ce cas

particulier est susceptible d&apos;être décrit par un énoncé synthétique:

THÉORÈME III. 1. Soit G un groupe de présentation finie&apos;, F un groupe
hyperbolique sans torsions, et Lr le groupe libre de rang r. Il existe des sous-groupes
Gx Gn de F, engendrés par des éléments de longueurs inférieurs à sG • T2(G), tels

que tout homomorphisme de G dans F se factorise en un homomorphisme surjectif
s : G i—? Glx * * * Glk * Lr, k + r ^ rankG, et un homomorphisme h&apos; : Glx * * * Gik *
Lr h-? T dont la restriction à Gt transforme ce groupe en Vun de ses conjugués.

Cet énoncé généralise le résultat principal de [R] sur la stratification de l&apos;espace

des modules des solutions d&apos;une équation quadratique (pour arriver à un énoncé

analogue, [R] supposait que G est un groupe de surface, et F le groupe fondamental
d&apos;une variété complète à courbure majorée par une constante négative dont le rayon
d&apos;injectivité tend vers zéro à l&apos;infini).

Remarque III. 1. Notre raisonement montre a contrario l&apos;impossibilité de trouver
des représentants canoniques (au sens de [RS2]) à un système d&apos;équations dans un

groupe hyperbolique ayant de la torsion: si cela était possible, en raisonnant comme
à la remarque II. 1, on montrerait que si une arête de A&apos;est triviale, son stabilisateur
est trivial; ainsi, le groupe F de l&apos;énoncé du théorème principal serait trivial. Il est

facile de faire un contre-exemple: si G F A *F B, A, B, F étant tous trois finis
et sont tels que le commutant de F dans A et B est différent de F, alors le commutant
de F dans G contient un groupe infini cyclique: le groupe engendré par x ba si

[b, F] [a, F] F. Les sous-groupes A *FxnBx~n de G F sont deux-à-deux non
conjugués et tous isomorphes à G: il existe donc une infinité d&apos;homomorphismes
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injectifs de G vers F deux-à-deux non conjugués, et aucun ne se factorise à travers
un produit libre.

IV. Appendice (Un exemple)

II est bien connu ([Gr], [CDP], GH]) que les sous-groupes abéliens d&apos;un groupe
hyperbolique sans torsion F sont les sous-groupes infinis cycliques. En particulier,
tout homomorphisme h :Z2\-+F se factorise à travers l&apos;extension HNN l*j du

Casn°l

A

Casn°2

Figure 5
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groupe réduit à un élément par lui-même. On peut le voir (même si c&apos;est une
démonstration très peu naturelle de ce fait élémentaire) en utilisant le feuilletage A

introduit au paragraphe I et II. L&apos;exemple où F Z est le groupe libre de rang 1

équipé d&apos;un système non libre de générateurs illustre la nécessité d&apos;introduire A.
Dans cet exemple, G Z2 : (jabc bca 1&gt;; le polyèdre P n&apos;est autre que le tore
T2; F Z engendré par w, et on défini h par h(à) w3, h{b) w9, h(c) u~12.

Premier cas. Le groupe F Z est équipé d&apos;un système de deux générateurs w,

v m2. Les écritures géodésiques de /i(a), A(è), h(c) sont /i(a) wt&gt;, h(b) m?4,

//(c) v~6. Comme le montre la Figure 5, le feuilletage &quot;horocyclique&quot; induit sur
P par h n&apos;est pas très utile: son unique feuille non singulière est une courbe

homotope à a4b ~l dont l&apos;image par h est non-nulle.

Second cas. Le groupe F Z est équipé de son générateur naturel (un seul

élément u). Dans ce cas h(a) w3, h(b) w9, A(c) u~~12 sont des écritures
géodésiques; mais ce sont aussi des représentants canoniques au sens de [R-S2] (comme le

graphe de Cayley de F est une droite, les triangles sont plats). Le feuilletage A a

trois composantes qui sont des courbes homotopes à b~la3. La structure de graphe
de groupes qu&apos;acquiert Z2 est celle d&apos;un cycle à trois sommets et arêtes marqués
d&apos;un même infini cyclique Z qui est le noyau de h. Ainsi, h se factorise à travers le

groupe fondamental du graphe de groupes dont le graphe sous-jacent est le cycle à

trois sommets et tous les stabiliteurs de sommets et d&apos;arêtes sont triviaux.
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