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L’image d’un groupe dans un groupe hyperbolique

T. DELZANT

Introduction

Soit G un groupe de présentation finie et I' un groupe hyperbolique au sens de
M. Gromov [Gr2]; le but de cet article est de décrire I’ensemble des images de G
dans I

Le groupe I' est équipé d’un systéme de générateurs, partant de la métrique du
mot, notée |g|. On note T(G) le nombre minimum de relations d’une présentation
triangulaire de G, c’est-a-dire d’'une présentation dont toutes les relations sont de
longueur deux ou trois; si G est défini par des relations arbitraires, un argument de
triangulation montre que 7(G) est inférieur & la somme des longueurs de ces
relations.

THEOREME. Soit h : G — I' un homomorphisme. On a I’alternative suivante:

Soit W(G) est conjugué a un sous-groupe de I' engendré par des éléments
a,...,a dont la longueur vérifie Sup;|a;| <& T*G). (¢, est une constante ne
dépendant que de I').

Soit h se factorise a travers une somme amalgamée ou une extension HNN
au-dessus d’un groupe fini: il existe deux groupes A et B, un groupes fini F (distinct
de A et B dans le cas d’une somme amalgamée), une application surjective
§:Gr—>AxgB (ou s:Gr+ A x;) et un homomorphisme h':A *zB— T, (ou
h': A %z +— G), tels que h = h’os.

Rappelons qu’on dit d’'un groupe G qu’il satisfait la propriété FA de Serre si
toute action de G dans un arbre simplicial fixe un point; un quotient d’un tel groupe
ne peut étre un amalgame ou une extension HNN [Se]. Comme I n’a qu’un nombre
fini d’éléments de longueur donnée, on obtient:

COROLLAIRE. a) Soit G un groupe de présentation finie qui n’est ni une
somme amalgamée ni une HNN-extension au dessus d’un groupe fini. Si un groupe
I" est hyperbolique il ne contient qu'un nombre fini de classes de conjugaison de
sous-groupes isomorphes a G.
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268 T. DELZANT

b) Si G est un groupe de présentation finie satisfaisant la propriété FA et I" un
groupe hyperbolique, I" ne contient qu’un nombre fini de classes de conjugaisons de
quotients de G.

Remarques. L’énoncé de la partie a) du corollaire dans le cas ou G est sans
torsion est di & M. Gromov ([Grl]), théoréme 6.7, [Gr2] théoréme 5.3.C’). Une
démonstration en a été proposée par E. Rips et Z. Sela ((R-S1]). Dans le cas ou I’
est le groupe fondamental d’une variété hyperbolique compacte, et G celui d’une
surface, ce résultat est dii a W. Thurston ([Th]) pour 4 injective, et & A. Reznikov
pour & quelconque ([R]). Pour les groupes de surface, les démonstrations de [Th],
[Grl, 2] (avec j injective) et [R] (A quelconque) sont respectivement basées sur
’existence de surfaces plissées, minimales et d’applications harmoniques. La démon-
stration de [R-S1] s’appuie sur la théorie de E. Rips des groupes opérant dans les
arbres réels. Le cas des groupes ayant de la torsion nécessite une approche nouvelle.

On peut interpréter la partie a) du corollaire en terme de I’espace des monomor-
phismes modulo conjugaison au but et automorphisme a la source : si cet espace est
infini, alors G se scinde comme somme amalgamée ou HNN extension au dessus
d’un groupe fini. Dans le cas contraire, on a une borne effective sur son cardinal.
On précisera cela en 111.2.

Plan de la démonstration. Soit G un grouf)e de présentation finie; choisissons
une présentation de G. La donnée d’un homomorphisme 4 de G dans I' est la
donnée d’une solution a un systéme d’équations dans I'. On interpréte (paragraphe
I) les résultats de [R-S2] en termes topologiques. La géométrie hyperbolique de I
permet de construire (paragraphe II) sur le polyédre de van Kampen de G (associé
a cette présentation) un feuilletage mesuré A (plus précisement une lamination)
dont I’holonomie est bien comprise: si on réalise ’'homomorphisme /4 par une
application continue de ce polyédre dans H/I', ou H désigne un polyédre de
dimension deux simplement connexe sur lequel I" agit librement, I'image par A d’une
courbe contenue dans une feuille de A mais ne rencontrant pas de singularités est
homotope, a extrémités fixées, a courbe de H/I" de longueur uniformément bornée.
Un argument topologique, objet du dernier paragraphe, permet alors de conclure.
En appendice est détaillé, sur la suggestion du rapporteur, le calcul d’un exemple
simple montrant I'intérét d’introduire le feuilletage par tranche construit au para-
graphe I et II: cet exemple contient I'idée de la démonstration du théoréme.

I. Le feuilletage des triangles géodésiques

Rappelons d’abord la définition de la é-hyperbolicité au sens de M. Gromov
([Gr2], [CDP], [GH)).
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Le groupe I' est équipé d’un systéme de générateurs; la métrique du mot
invariante par translation a gauche en fait un espace métrique; cet espace métrique
est contenu dans le graphe de Cayley de I', not¢ Ca(I'), muni de la métrique
simpliciale. Ceci permet de parler de géodésiques de I

Dans cet espace métrique, la distance de deux points v et w est notée v — w; la
boule de centre v et rayon R est notée B(v, R).

Soit T un triangle géodésique de I" de cotés a, b, c. On dit que T est J-fin si tout
point de la géodésique a(b ou c) est a une distance inférieure & 6 d’un point de b ou
¢ (a ou ¢, a ou b); on dit que I est hyperbolique si tous ses triangles géodésiques
sont J-fins.

Si T est d-fin on peut découper chaque géodésique a, b, ¢ en deux intervalles
a=c,Ub,, b=c,va, et c =a,ub, de sorte que les longueurs de ¢, et ¢;, a, et a_,
b, et b, soient égales, et tout point de c, soit & une distance inferieure a 6 d’un point
de ¢, (Fig. 1).

T

T2

T3

Figure 1



270 T. DELZANT

Si T, T,, T, est une suite de triangles adjacents, on peut construire par
récurrence une application d’holonomie isométrique d’un sous-intervalle d’un coté
de T, dans celui d’un coté de T,, en suivant successivement les identifications des
cotés données par la définition de ’hyperbolicité (Fig. 1).

Malheureusement, il se peut trés bien qu’une partie du premier coté de T,
coincide avec une partie du dernier de T, mais que I’holonomie ainsi définie d’un
sous-intervalle d’un coté T, a valeur dans ce méme coté ne soit pas I'identité: en
voulant préserver la mesure ‘““naturelle” qui équipe chaque géodésique, on a été trop
exigeant. La méme difficulté apparait ([Gr2], 8.3D) quand on cherche a construire
le flot géodésique d’un groupe hyperbolique. Dans ce cas le probléme est d’identifier
deux-a-deux les géodésiques joignant deux points a l'infini dans I' de fagon
équivariante. Cela n’est pas possible en conservant la mesure naturelle de ces
géodésiques (sinon, par exemple, la norme stable des éléments de I' serait toujours
entiére), mais on peut le faire en changeant la mesure qui les équipe.

Le but de ce paragraphe est de construire une famille de triangles (remplagant
les triangles géodésiques) équipés d’un feuilletage, ou plus précisement d’une
lamination remédiant a cet inconvénient (Lemme II.1).

Dans le cas d’un groupe sans torsion, cette construction est la traduction
topologique de P’existence, due a E. Rips et Z. Sela, de représentants canoniques a
I’ensemble des solutions d’un systéme d’équations dans un groupe hyperbolique.

Nous reprenons, a quelques modifications mineures preés, le texte [R-S2] afin de
fixer les notions de “cylindre” et “tranche’ utilisées par la suite.

DEFINITIONS. Un cylindre d’un segment géodésique [p, g] = Ca(I') est un
sous-ensemble du 56-voisinage de ce segment et qui le contient. Pour tout point
v € C, une projection de v sur [p, q] désigne un point de [p, q] qui lui est 56-proche.

Un point v € C est dit étre d gauche (resp. a droite) de v, si la distance |v — v, |
est plus grande que 1000, et si une projection de v sur [p, gq] est & gauche (resp. a
droite) d’une projection de v,. On note L(v,, C) (resp. R(v,, C)) I’ensemble des
points situés a gauche (resp. a droite) de v,. Cette notion de position est un peu
délicate: en particulier un point p’ du segment [p, q] n’est “a droite” de p que si
|p — p’| = 1006.

Le décalage de deux points v, et v, de C est défini par la formule suivante:

d(v,, v,) = *(L(v,, C) — L(v,, C)) — *(L(v,, C) — L(v,, C))
+ #(R(U,, C) - R(Uo, C)) - #(R(Uo, C) - R(vl s C))

Par construction, le décalage 4 est un cocycle :

d(voa vl) + d(vls vo) = O d(vo9 vl) + d(Ul s UZ) + d(UZ, Uo) = 0
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On définit aussi la tranche tr(v,, C) d’un cylindre C contenant v,:
tr(v,, C) = {v € C/d(v,, v) = 0}

Il est important de noter que tr(v,, C) ne dépend que de C et pas de la géodésique
[p; q]. :

La fonction décalage ordonne les tranches d’un cylindre fixé: on dit que
tr(v,, C) < tr(vy, C) si d(v,, v,) <O0.

Enfin, deux tranches tr(v,, C) et tr(v,, C) sont consécutives si tr(v,, C) <
tr(v;, C), et 8’il n’existe pas d’élément w tel que tr(v,, C) < tr(w, C) < tr(v,, C).

On peut donc découper chaque cylindre C en une (unique) suite croissante
C =[T,, T, - - T,] de tranches consécutives. '

La encore, il convient d’insister sur le fait que deux points consécutifs sur la
géodésique [p, g] n’appartiennent pas nécessairement a des tranches consécutives; il
se peut méme qu’un point u situé a droite d’un point v (pour I'ordre ordinaire) se
retrouve dans une tranche d’indice inférieur.

Tout ceci est bien défini dans un espace métrique géodésique quelconque, et ces
tranches, ainsi que la relation d’ordre < vérifient des propriétés de localité (Fig. 2).

LEMME 1.1. a) Le diamétre de chaque tranche est inférieur a 200; la distance
entre la i-éme et la j-éme tranche est minorée par E(|i — j|/200) ot E désigne la partie
entiere.

b) Si deux tranches T et T’ sont consécutives, V(p,p)e T x T’, |p—p’| <
406 + 1 < 506.

c) Si les cylindres C et C’ de deux segments [p, q] et [p’, q’] coincident dans la
boule de centre v, et de rayon 2000, les tranches correspondantes sont égales:
tr(v,, C) =tr(v,, C).

R > 2005
Figure 2
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d) Supposons que |v, — v,| < 1005 et que Dintersection C N C’ contienne v,, v, et
que B(v,, 2000) n C = B(v,, 2006) n C’; alors:

Soit il existe un point situé a gauche de v, pour C qui est aussi G gauche de ce point
pour C’ et tr(v,, C) < tr(vy, C) = tr(v,, C’) < tr(v,, C").

Soit, il existe un point situé a gauche de v, pour C qui est a sa droite pour C’, et
tr(v,, C) < tr(v,, C) <= tr(v,, C") > tr(v,, C’).

e) Si veC, si B(v, R)nC coincide avec B(v, R)nC’, si C=[T, T, - T
(resp. C'=[T7-T5- - T)) est la décomposition de C (resp. C’) en tranches conséc-
utives, et si v € T; =T} alors:

Soit il existe un point situé a gauche de v, pour C et C’, et si [ (resp. m) désigne
le plus grand entier pour lesquel il existe veT;,_, (resp. T;,,) tel que
|w —v| < R — 2000, alors pour tout j de Iintervalle [—I,mlona T,,; =T} ;.

Soit il existe un point situé a gauche de v, pour C qui est a droite de v, pour C’,
et si | (resp. m) désigne le plus grand entier pour lesquel il existe w e T;_, (resp.
Tiym) tel que |w—v| <R —1008, alors pour tout j de Pintervalle [—1,m] on a
T,_;j=T; .

La démonstration de ce lemme élémentaire est laissée au lecteur. a

Soient g,, ..., g, une famille d’éléments de I'; on convient dans tout ce qui suit
que g_, = g; ! et que g, = Id est ’élément neutre de I'. Supposons que la famille de
(8:)—n<i<n sOit solution d’un systéme d’équations triangulaires w', ..., wP?, ou
w® g, g 8, = 1. Notons que comme g, = e certaines de ces équations triangulaires
peuvent en fait étre de longueur 2.

Pour des raisons qui apparaitrons clairement dans la suite, les inconnues g,
apparaissant dans ce systéme d’équations sont appelés les générateurs.

On définit (en suivant [R-S2] une constante c¢(I") ne dépendant que de I' en
posant ¢(I') = 2°2% -y + 2008, ou p, = 10532, et v,; est le cardinal de la boule de
I’ de centre e et de rayon 2.

Une fois donné une telle solution a un systéme d’équation, E. Rips et Z. Sela
montrent le:

THEOREME 1.2. ([R-S2)], Cor. 4.3 au Th. 4.2) Soit p = c(I')n. Il existe pour
chaque générateur g;, —n < i <n, un cylindre du segment géodésique |e, g;], noté
C(g;), vérifiant les propriétés suivantes:

— (invariance)C(g;) = 8,C(g_;) = &:C(g ")

—(stabilité) Si w: khg = 1 est I'une des équations du systéme étudié et si r(w) =
2(lg] + k| — [A],

C(g) [ Be, r(w) — p +2008) = C(k~") () Be, r(w) — p + 2006)
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De méme, en considérant les équations hgk = 1, khg =1, et en posant s(w) =
1/2(|n| + |g| — |k|), #(w) = 1/2(Jk|+ |h| — |g|). la propriété d’invariance montre:

C(g) ) B(g, s(w) — p + 2008) = gC(k) () B(g, r(w) — p + 2006)

Clk=") () B, t(w) — p +2008) = gC(h) () B(h~", t(w) — p + 2000)

(voir la Fig. 3).
(La propriété d’invariance est le Lemme 3.2 de [R-S2].)
Dans toute la suite, on fixe une famille de cylindres vérifiant ces propriétés.

La L-mesure des générateurs. Par définition, si g est I'un des générateurs
intervenant dans notre systéme d’équations, la L-mesure de g est le nombre de
tranches du cylindre C(g).

Pour chaque générateur g, on fixe une courbe c, : [0, L(g)] — Ca(I') telle que
¢, (i) soit un élément de la i-éme tranche de g. On peut choisir cette courbe de sorte
que c,—(L(g) —i) =g 'c,(i). Grice au lemme I1.b, on voit que |c (i) —
¢, (i + 1)| < 508. Donc, quitte & remplacer c, par la courbe géodésique par morceaux
qui joint ces points, on peut supposer que |c (i — 1/2) — ¢ (i + 1/2)| < 506. De plus
le théoréme II.1 dit que, si w:ghk =1 est 'une des équations et si r(w) =
1/2(|g| + |k| — |h]), alors C(g) N B(e, r(w) — p +2008) = C(k~") n Ble, r(w) —p
+ 2006). Donc, si I'on pose i, = Max(i/|c,(i)| < r(w) — p, |cx -1 (|k| — )| < r(w) — p),
on remarque (grice au lemme I.1.e) que, pour i <i,, la i-éme tranche de C(g)

AN
CHENE )

R=1/2( g +k - h)-p+2008 k
e

Figure 3
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coincide avec celle de C(k— ') :

Vi<i,,  tr(cg(i), C(8) = tr(ci-1(i), C(k ")) (%)
Dans ce cas on dit que c,(i) est le vis-a-vis de ¢ -1(i).

Remarque 1.1. (Cas ou I' est sans torsion.) Si une translation de I' laisse
invariante un ensemble fini, elle représente nécessairement un élément d’ordre fini
de ce groupe. Ainsi, si I" est sans torsion, on peut choisir de fagon équivariante un
point—appelé centre—dans chaque sous-ensemble fini (en particulier dans chaque
tranche) de I'. Dans ce cas, on peut définir c,(/) comme étant le “centre” de la
tranche tr(c,(i), C(g)). Cette courbe c, devient le représentant canonique de g au sens
de [R-S2], et (*) devient:

Vi< iws cg(i) = ck—l(i) (**)

Le feuilletage A,,. Pour chacune des équations de notre systéme, w: khg =1, on
considére un 2-simplexe 4,,; il se peut que que I’équation considérée soit de
longueur deux et dans ce cas 4,, est seulement un digone. Chaque coté de 4, est
marqué par g, h, et k puis est considéré comme segment de longueur L(g), L(h),
L(k).

On défini une lamination (la terminologie est celle de Thurston pour les surfaces)
A, de 4,, avec (au plus) une singularité de la fagon suivante (voir Fig. 4).

a) A, N [g] est constitué des L(g) points entiers de ce segment ; de méme pour
h et k.

b) si i<i,, c,(i) est le vis-a-vis de c¢,-1(i). Dans ce cas: tr(c(i),
C(g) = tr(c,-1()), C(k~1)), et I'on joint ces deux points par une feuille de 4,. On
procéde d’une fagon analogue pour les deux autres cotés.

Les feuilles ainsi construites sont, par définition, les feuilles réguliéres de A,,.

¢) On rajoute une singularité au centre de 4,, a laquelle on joint les points des
trois cotés qui n’ont pas encore de vis-a-vis. Les feuilles obtenues sont les feuilles
singulieres de A,,.

Remargque 1.2. La lamination ansi définie ressemble beaucoup au feuilletage
“horocyclique” de la Figure 1; au lieu de préserver la mesure géodésique, elle
préserve la L-mesure (en dehors des singularités). Il convient cependant de noter
que cette mesure ne satisfait pas en général I'inégalité triangulaire: si ghk =1 est
'une de nos équations, on n’a pas en général L(g) < L(h) + L(k). Une construction
analogue pour les géodésiques de longueur infinie a été faite par M. Gromov ([Gr2],
8.3.D), qui en déduit I'invariance topologique du flot géodésique. On peut d’ailleurs
remplacer dans ce qui précéde la fonction décalage de [R-S2], par la fonction L
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Figure 4

introduite par Gromov, en modifiant un peu ([Gr2], 8.3.C) pour tenir compte du
fait que le géodésiques sont de longueur finie.

Le graphe K,. Par définition, ce graphe (en pointillé sur la Fig. 4) est une
réunion d’arétes allant d’un bord de 4,, a 'autre de sorte que chaque composante
connexe de 4, — K contienne une et une seule composante connexe de A, et de
pointes (ou demi-arétes) séparant les feuilles singuliéres de A. Ainsi K,, n é4,, est
constitué des points & coordonnées demi-entiéres pour la L-mesure de chacun des
cotés de ce triangle.

Gréce au théoréme 1.2.a, on voit que le nombre de points d’un coté de 4,
n’ayant pas de vis-a-vis dans 'un des deux autres cotés n’excéde pas 206p. Le
graphe K, et la lamination A, satisfont donc:

LEMME 1.3. Dans le triangle A,, il y a au plus 3.20p9 feuilles singuliéres de A,,.

IL. Le polyédre feuilleté P

Soit G un groupe de présentation finie, et 4 : G — I' un homomorphisme.
Un argument de triangulation montre qu’il existe une présentation de G dont
toutes les relations sont de longueur trois, ou peut-étre deux s’il y a de la deux



276 T. DELZANT

torsion. Dans tout ce qui suit, une telle présentation: (G, ..., G,; wy, ..., w,,) est
fixée.

Soit P le polyédre de van Kampen de cette présentation: c’est le polyédre de
dimension deux dont le 0-sequelette est réduit a un point, le 1-squelette est
I’ensemble des générateurs, et le deux squelette est constitué de triangles (2-sim-
plexes) et digones (4,,); < ; < , correspondant aux relations de longueur deux et trois.
Son groupe fondamental est G.

Par définition, la famille des g; = ,,h(G;) forme une solution du systéme
d’équations w,- - - w, dans I', de sorte qu’on peut appliquer la construction précé-
dente: chaque face 4, de P est équipée d’une lamination A,, et d’'un graphe K,,.
Comme le long de deux faces adjacentes, A, et k, coincident, P est équipé d’un
graphe K et d’une lamination A.

Pour chaque triangle w, les feuilles de A, sont des segments tracés dans P; on
les appelle les arcs de A: ce sont les traces sur les triangles des feuilles de 4. On
distingue comme précédement les arcs réguliers des arcs singuliers. Ainsi, les feuilles
de A sont obtenues en mettant bout a bout les arcs de A.

Le groupe I' étant hyperbolique, il est de présentation finie, et ’on peut choisir
un polyedre de dimension deux simplement connexe H, équipé d’une action de I,
dont le 1-squelette est le graphe de Cayley de I', et tel que le quotient H/I” soit fini;
on note e € H 'origine naturelle de Ca(I'). On équipe H d’une métrique de longueur
I'-invariante a gauche qui donne la longueur 1 a chaque aréte du graphe de Cayley.

On realise ’homomorphisme 4 comme application continue (abusivement) notée
h:(P,s,) — (H/I', e) en prenant soin a ce que l'application relevée au revétement
universel (4 : P — H) satisfasse la condition suivante: si g = (G,) désigne un des
générateurs, et si [g] désigne le coté correspondant de P paramétré par Iintervalle
[0, L,)], hlg]) est la courbe ¢, (1) du graphe Ca(I') joignant e a g.e. Le prolongement
au 2-squelette de P est arbitraire (parmi les prolongements continus).

LEMME I1.1. a) Soient [, ..., 1, une famille composable d’ arcs réguliers de A.
A extrémités fixées, le chemin h(l, - - - 1,) de H|I" est homotope a chemin de longueur
inférieure a 20 - 9.

b) De méme, si c," - - ¢, sont des arétes composables du graphe K, h(c, - - - ¢,) est
homotope, a extrémités fixées, a un chemin de longueur inférieure a 100 - 4.

Démonstration. a) L’'image par A du revétement universel P de P est une famille
infinie de triangles (non géodésiques) de Ca(I") donc chaque coté est équipé d’un
cylindre. Relevons le chemin A(/, - - - /,) a travers le revétement universel H — H/I.
Soit e(h(l, - - - 1)) I'extrémité du chemin relevé A(l, - - - I,), et C; le cylindre du coté
du triangle de Ca(I') le contenant. En appliquant la propriété () du paragraphe I,
on remarque que la suite des cylindres C, et des points e(h(/;- - - [,)) vérifie:

tr(ehl, 1y - 1)), C;) = tr(eCh(l;_y - - 1)), Ci_y).
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Ainsi, si o désigne I'origine de A(/,), toutes les extrémités e(A(/; - - - /;)) sont dans
une méme tranche tr(C,, 0) qui est un sous ensemble de diamétre inférieur a 206 de
Ca(G) (lemme 1.1.)

En particulier, la distance dans H de e(A(l, - - - 1,)) & o est inférieure au diamétre
de la tranche tr(o, C,). Comme H est simplement connexe, on peut homotoper cette
courbe—a extrémités fixées—une géodésique de Ca(I') = H, qui est de longueur
inférieure au diamétre de la tranche. La projection dans H/I' de cette homotopie

homotope A(/; - - - [,) @ un chemin de longueur inférieure & 204 (le diameétre de la
tranche).

Pour b), il suffit de remarquer que la distance |c,(i) — c,(i + 1/2)| n’excéde pas
254. O

Remarque 11.1. Supposons de plus I' sans torsion, choisissons de fagon équivari-
ante un centre a chaque tranche comme a la remarque I.1, et prenons pour c,(i) le
centre de la tranche qui le contient; dans ce cas (**) dit que I'extrémité du chemin
e(A(l, - - - 1)) coincide avec son origine, et I’on peut renforcer la conclusion du a) du
lemme précédent: le lacet A(/,- - - /) de H/I" est homotope a zéro.

Malheureusement, cela est impossible a faire pour un groupe avec torsion, sinon
on arriverait 4 une contradiction (voir la remarque III.1).

III. Le graphe de groupe X

Dans ce paragraphe, on découpe le polyédre P suivant le graphe K, on montre
que pour chaque composante Q, le groupe h(n, (Q) est engendré par des €léments de
longueur bornée (en fonction de T(G)), et on applique le théoréme de van Kampen
pour conclure.

On garde les notations du paragraphes précédent. Pour chaque composante
connexe K, du graphe K, on note NK, un petit voisinage régulier de K, dans P. Les
composantes connexes de K sont de trois sortes:

Type I: K, ne contient pas de pointes et NK, — K, a deux composantes
connexes. Dans ce cas pour chacune des ces deux composantes N, K, et N,K,,
m(N:K,) = n,(NK,).

Type II: K, ne contient pas de pointes et NK, — K, est connexe. Dans ce cas,
n,(NK, — K,) est d’indice deux dans =;(NK,).

Type I1I: K, contient une pointe.

Le troisiéme cas mérite une étude un peu plus détaillée:

LEMME IIL1. Si K, contient une pointe, NK, — K, est connexe, et I’homomor-
phisme n,(NK, — K,) — n,(NK,) est surjectif.
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Démonstration. On veut homotoper toute courbe de NK, dans NK, a une courbe
de NK, — K,. Pour ce faire, il suffit d’éliminer successivement les intersections,
supposées transverses, de cette courbe avec K,. On peut le faire en poussant chaque
point d’intersection le long de K, pour ’amener jusqu’a une pointe; celle-ci permet
de la supprimer. O

Soit K’ =K — {K, - - K,} le graphe K privé de ses composantes a pointes.

Comme pour toute composante a pointe K, de K, NK, — K, est connexe, les
composantes connexes de P — K sont celles de P — K’.

En particulier, si Q est une composante connexe de P — K’, Q contient une
unique feuille 4, de la lamination A, et m;(A4) — n,(Q) est surjective: par construc-
tion du graphe K, P — K est un voisinage tubulaire de A, et enlever les composantes
a pointes ne change rien (a cause du Lemme III.1).

On considére alors le graphe de groupe Y (voir [Se], [S-W], [D-D]) dont les
sommets sont:

a) les composantes connexes de P — K’, marquées par leur groupe fondamental.
b) les composantes de type II de K marquées par n,(NK,).

Les arétes de Y sont: les composantes connexes de type I ou II de K, marquées
par le groupe fondamental n,(NK,) et n,(NK, — K,) respectivement; les homomor-
phismes d’attachement des arétes vers les sommets sont évidents. (Attention, les
homomorphismes d’attachements des groupes d’arétes dans les groupes de sommets
ne sont pas injectifs avec notre définition; si on préfére qu’ils le soient il convient de
remplacer les groupes fondamentaux intervenants dans la définition de Y par leurs
images dans G = =, (P).

Une composante connexe Q de P — K’ est dite réguliere, si A, ne contient pas
de singularité, singuliére sinon; le sommet correspondant est alors dit régulier ou
singulier. Les sommets de type b sont aussi considérés comme singuliers.

En appliquant le théoréme de van Kampen, on remarque que ’homomorphisme
canonique =,(Y, ¢,) — G ==n,(P, s,), ou n,(Y, o,) désigne le groupe fondamental
de ce graphe de groupe au sens de la théorie de Bass-Serre [S], [S-W], [D-D], et g,
la composante privilégiée de P — K contenant s,, est bijectif.

Enfin, le graphe de groupe X est le graphe obtenu en remplagant dans Y les
stabilisateurs de sommets et d’arétes par leurs images respectives dans le groupe
n,(H/h(G)) = I'. Notons que ce graphe posséde une origine s, privilégée, qui est la
seule composante contenant le seul sommet de P.

Par construction, ’lhomomorphisme 4 se factorise a travers n,(X, s,).

Le lemme suivant est la clef de la démonstration.
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LEMME II1.2. a) Si Q est une composante réguliére de P — K’, h(n,(Q)) est fini.
b) Les stabilisateurs d’arétes de X sont finis.

Démonstration. a) comme b) résultent immédiatement du lemme I1.2, et du fait
que 7,(A) — m,(Q) est surjective: 'image par h de toute courbe composée d’arcs
réguliers de A (ou d’arétes de K) est homotope a extrémités fixées & une courbe de
longueur bornée. En particulier si 4, ne contient que des arcs réguliers, I'image par
hs de son groupe fondamental est un sous-groupe borné, donc fini, de I.

La démonstration du a) du lemme suivant n’est pas sans rappeler celle, diie 4 M.
J. Dunwoody ([D-D], VI 4, VI 6), de I’accessibilité des groupes de présentation finie;
nous ne l'utiliserons que pour préciser le théoréme principal.

LEMME I11.3. a) Le graphe X a au plus T(G) + b,(G, Z,) sommets singuliers.

b) Si une aréte y ne sépare pas le graphe X, h se factorise a travers une
HNN-extension au dessus d’un groupe fini.

c) Si une aréte y sépare le graphe en deux morceaux X = X, v, X,, avec s, € X,,
alors soit h se factorise (non trivialement) a travers une somme amalgamée au dessus
d’un groupe fini, soit h(n,(X,, s,)), est conjugué a h(n,(X;, *)).

Démonstration. a) Chaque triangle de P contient au plus une singularité; il y a
donc au plus 7(G) sommets singuliers de type a.

Si s est un sommet singulier de type b, il est I'’extrémité d’une unique aréte, et
le stabilisateur de celle-ci est exacement d’indice deux; il existe donc un homomor-
phisme de G a valeur dans Z/2Z qui envoie tous les stabilisateurs des sommets sur
I’élément neutre, sauf celui de s, et qui envoie celui-ci surjectivement sur Z/2Z. Les
homomorphismes ainsi construits correspondants & des sommets distincts sont
indépendants sur Z/2. Ainsi leur nombre ne peut excéder b,(G, Z/2Z).

b) Soit y cette aréte; d’aprés le lemme I11.2, 'image par I’homomorphisme 4 de
n;(K,) est un groupe fini. Donc le graphe X a une aréte non-séparante 4 stabilisa-
teur fini; la théorie de Bass-Serre dit que le groupe fondamental de X est une
HNN-extension au dessus de ce groupe.

Pour ¢), on raisonne comme en b), mais on suppose maintenant que l’aréte
sépare le graphe. En notant C, le stabilisateur (fini) de cette aréte, C, = h(n,(K,)),
on distingue trois possibilités:

) n (X)) #C, et m(X) # G,
2) m(X,) = C,
3) mX,) =C,

Dans le premier cas ’homomorphisme se factorise & travers une somme amal-
gamee au dessus d’un groupe fini. Dans le second, A(n, (X, s,)) = h(n (X, s,)). Dans
le troisiéme, h(n,(X,)) est conjugué a h(n,(X, s,)) (s, ¢ X,). g



280 T. DELZANT
Fin de la démonstration

Pour montrer le théoréme de I'introduction, on suppose que ’homomorphisme
h étudié ne se factorise pas a travers une somme amalgamée ou une HNN extension
au dessus d’un groupe fini. Appliquant le lemme II1.3 a routes les arétes, on voit que
pour une composante Q, de P — K’, h(G) = h(n,(X, s,)) est conjugué a hx(n,(Q,)),
ce second groupe n’étant bien défini qu’a conjuguaison prés. Si A, désigne la
lamination de Q,, considérée maintenant comme graphe tracé dans Q,, A, contient
tous les arcs singuliers de 4, et il y en a au plus T(G) - p - 606 (a cause du Lemme
1.3). L’application =, (A,) — =;(Q,) étant surjective, pour démontrer le théoréme de
I'introduction, et compte tenu du lemme I1.1, il suffit de poser & = ¢(I") - 10* - §2, et
d’appliquer a A, le:

LEMME I11.4. Soit A un graphe connexe, L le 1-squelette de A, E un espace
métrique, et h : A — E une application continue. Supposons que:

1) pour toute aréte | de A h(l) est homotope, a extrémités fixées, a une courbe de
longueur inférieure a 200.

2) il existe un sous-ensemble fini L, de I’ensemble L des arétes tel que si l, - - -1,
est une suite d’arétes composables de L — L, alors I’image par h de I, -- -1, est
homotope, a extrémités fixées, a une courbe de longueur inférieure a 200.

Alors pour tout sommet s de A, hx(n,(A, s)) est engendré par des courbes de
longueurs inférieures a (47 L, + 3)206.

Démonstration. Soit T un arbre maximal tracé dans A; pour tout sommet s’ de
T le segment [s,s’] = T contient au plus * L, arétes de L,; donc son image est
homotope, a extrémités fixées, a une courbe de longueur inférieure a
(2# L, + 1)506. Or 7,(A, s) est le groupe libre engendré par les courbes de la forme
[s, sla[s”, s] ou [s, s'] et [s”, s] sont des segments de 7, et a une aréte n’appartenant

pas a T joignant s & s”. O

La démonstration que nous venons d’achever donne mieux que le résultat
annoncé dans l'introduction: partant d’un groupe de présentation finie G, et d’un
homomorphisme 4 de G dans I', nous avons produit un graphe de groupe X. Soit
X le graphe obtenu a partir de X de la fagon suivante: les sommets de X sont les
sommets non triviaux de X, ou I'on dit qu’un sommet est trivial s’il est régulier et
de valence un ou deux: dans ce cas, son stabilisateur est égal a celui des deux arétes
adjacentes. Les arétes de X sont les intervalles de X composés d’une suite y,,
Y.+ ¥ d’arétes composables de X telles que e(y,) =o0(y,), e(y,) =p(y3) - -
e(yr_1) =o(y,) soient des sommets triviaux. Ces arétes sont marquées par le
stabilisateur commun des y;.
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Ce graphe X = X(G, h) vérifie les propriétés suivantes.

— 11 existe deux homomorphismes s : G — =, (X) (surjectif) et 4" : n,(X) —T
tels que h = h'os.

— le nombre de sommets de X est majoré par T(G) + b,(G, Z/2Z)

— le nombre d’arétes de X est majoré par T(G) + b,(G, Z/2Z) + b,(G, Z).

— la restriction de A" au stabilisateur de chaque sommet et chaque aréte est un
isomorphisme sur son image qui est engendrée par des éléments de I dont la somme
des longueurs est bornée par ¢ T4(G).

— les stabilisateurs d’arétes sont finis.

L’ensemble des (classes d’isomorphismes) de graphes de groupes satisfaisant
cette propriété est fini. L’existence méme d’un graphe de groupe satisfaisant toutes
ces propriétés est un version raffinée du théoréme annoncé.

Supposons de plus I" sans torsion: dans ce cas, le groupe fondamental de X est
le produit libre des stabilisateurs de ses sommets et d’'un groupe libre. Ce cas
particulier est susceptible d’€tre décrit par un énoncé synthétique:

THEOREME I11.1. Soit G un groupe de présentation finie, I un groupe hyper-
bolique sans torsions, et L, le groupe libre de rang r. Il existe des sous-groupes
G,,...,G,deT, engendrés par des éléments de longueurs inférieurs a e - TXG), tels
que tout homomorphisme de G dans I' se factorise en un homomorphisme surjectif
5:G—> G, xxxG, xL,, k+r <rankG, et un homomorphisme h’:G; » * x G, *
L, — I dont la restriction a G, transforme ce groupe en I’un de ses conjugués.

Cet énoncé généralise le résultat principal de [R] sur la stratification de I’espace
des modules des solutions d’une équation quadratique (pour arriver & un énoncé
analogue, [R] supposait que G est un groupe de surface, et I" le groupe fondamental
d’une variété compléte a courbure majorée par une constante négative dont le rayon
d’injectivité tend vers zéro a I'infini).

Remarque 111.1. Notre raisonement montre a contrario 'impossibilité de trouver
des représentants canoniques (au sens de [RS2]) 4 un systéme d’équations dans un
groupe hyperbolique ayant de la torsion: si cela était possible, en raisonnant comme
a la remarque II.1, on montrerait que si une aréte de X est triviale, son stabilisateur
est trivial; ainsi, le groupe F de I'’énoncé du théoréme principal serait trivial. Il est
facile de faire un contre-exemple: si G =I = A * B, A, B, F étant tous trois finis
et sont tels que le commutant de F dans A4 et B est différent de F, alors le commutant
de F dans G contient un groupe infini cyclique: le groupe engendré par x = ba si
[b, F] =[a, F] = F. Les sous-groupes A *rx"Bx ~" de G =TI sont deux-d-deux non
conjugués et tous isomorphes a G: il existe donc une infinité d’homomorphismes
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injectifs de G vers I' deux-a-deux non conjugués, et aucun ne se factorise a travers
un produit libre.

IV. Appendice (Un exemple)

I1 est bien connu ([Gr], [CDP], GH]) que les sous-groupes abéliens d’un groupe
hyperbolique sans torsion I" sont les sous-groupes infinis cycliques. En particulier,
tout homomorphisme & : Z2+— I' se factorise a travers I'extension HNN 14; du

Cas n°1

/

/

N\\ /
) Casn°2 N

Figure 5
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groupe réduit & un élément par lui-méme. On peut le voir (méme si c’est une
démonstration trés peu naturelle de ce fait élémentaire) en utilisant le feuilletage A
introduit au paragraphe I et II. L’exemple ou I' = Z est le groupe libre de rang 1
équipé d’un systéme non libre de générateurs illustre la nécessité d’introduire A.
Dans cet exemple, G = Z?: {abc = bca = 1); le polyédre P n’est autre que le tore
T? I = Z engendré par u, et on défini A par h(a) = u?, h(b) = u°, h(c) =u~'2

Premier cas. Le groupe I' = Z est équipé d’un systéme de deux générateurs u,
v =u? Les écritures géodésiques de h(a), h(b), h(c) sont h(a) = uv, h(b) = wv?,
h(c) = v % Comme le montre la Figure 5, le feuilletage “horocyclique” induit sur
P par h n’est pas trés utile: son unique feuille non singuliére est une courbe
homotope a a*b~! dont I'image par A est non-nulle.

Second cas. Le groupe I' = Z est équipé de son générateur naturel (un seul
élément u). Dans ce cas h(a) = u>, h(b) = u°, h(c) = u~'? sont des écritures géodé-
siques; mais ce sont aussi des représentants canoniques au sens de [R-S2] (comme le
graphe de Cayley de I' est une droite, les triangles sont plats). Le feuilletage A a
trois composantes qui sont des courbes homotopes a b ~!g3. La structure de graphe
de groupes qu'acquiert Z2 est celle d’un cycle a trois sommets et arétes marqués
d’un méme infini cyclique Z qui est le noyau de Ah. Ainsi, A se factorise a travers le
groupe fondamental du graphe de groupes dont le graphe sous-jacent est le cycle a
trois sommets et tous les stabiliteurs de sommets et d’arétes sont triviaux.
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