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Lemmes de multiplicités et intersections

Laurent Denis

Résumé. Dans [PI] P. Philippon a démontré un lemme de multiplicités sur un
groupe algébrique en employant des méthodes d&apos;algèbre commutative. On introduit
ici la théorie de l&apos;intersection pour enlever une constante 2 qui apparaissait dans le
résultat final de [PI].

1. Enoncé des résultats

Soit G un groupe algébrique commutatif connexe de dimension g défini sur C.
On peut écrire une suite exacte:

0—&gt;H—+G-^A—+ 0

où H est le sous groupe linéaire maximal de G et A est une variété abélienne. En
désignant par Ga (resp. Gm) le groupe additif (resp. multiplicatif), on sait que H est
de la forme (Ga)r x (Gm)m, et nous poserons h dimH~r + m, a~dim A. On
dira que G est de type (r, w, a).

On se place dans le plongement projectif W : G &lt;+ Pk considéré dans [S]. Le

groupe G est alors compactifié en une variété lisse et complète G, et il est muni d&apos;un

diviseur très ample L de la forme suivante:

où M est le diviseur de G considéré dans [5] relatif à (Ga)r9 N est de même le

diviseur attaché à (Gm)m, et R =p*(LA) est l&apos;image réciproque par la projection
p : G -+ A, d&apos;un diviseur très ample symétrique de A (voir plus loin pour des rappels
plus précis).

Pour toute variété X de Pk9 on désigne par deg X son degré, rappelons que si X
est quasi-projective de clôture £ par définition deg X « deg 2. On suppose donné
un sous-ensemble fini F de G contenant son élément neutre et on pose pour tout
entier i ^ 0 : F(/) {j^ + • • • + x,/xy ef} avec la convention F(0) « {0}.

235



236 LAURENT DENIS

On désigne par tG l&apos;espace vectoriel tangent à G en son origine, par expG son
application exponentielle et par W un sous-espace-vectoriel de tG. On identifiera tG

avec C* via l&apos;application:

représentée par des fonctions analytiques (£0(w), • • •, £*(w))-

On désigne par A l&apos;algèbre des opérateurs différentiels invariants sur G engendrée

par W (cf. [M]) par ul9... ,un une base de W et par Dx,..., Dn les opérateurs
différentiels correspondant. Un élément ô de A est d&apos;ordre t, s&apos;il est combinaison
linéaire de termes {Dx)ei ° • • • ° (Dn)e&quot; où ex + • • • H- en t (on vérifie que cette
définition ne dépend pas de la base choisie). Cet ordre fait de A une algèbre graduée
dont AT désigne l&apos;ensemble des éléments d&apos;ordre t.

Soient maintenant T un entier ^ 0, / une fonction rationnelle sur G, on dit que
/s&apos;annule avec multiplicité T en un point y eG le long de W si/est régulière en y,
et si pour tout opérateur différentiel ô dans A d&apos;ordre inférieur ou égal à

T:&lt;5o/(y+J*O=0(cf. [M] p. 105).
L&apos;ordre d&apos;annulation d&apos;un polynôme homogène P sera celui de la fonction

rationnelle hP déduite de P par déshomogénéïsation relativement à un hyperplan
ne passant pas par y. Il est usuel, pour les applications du résultat à la transcendance

de partir d&apos;un polynôme P d&apos;un degré donné d, en terme de section, on
considérera la section de O(d(L)) qu&apos;il définit. Le résultat se traduit alors comme
suit:

THEOREME 1. Soit P une section de @(d(L)), s&apos;annulant sur T(g) à un ordre

^ gT + 1 le long de W mais non identiquement nul sur G. Alors il existe un

sous-groupe G&apos; de G, différent de G, de type (r\ m\ a&apos;) d&apos;espace tangent à l&apos;origine

tG- tel que:

deg&lt;/(rf)dim(G/G).

Ce résultat améliore une version homogène du théorème principal de [PI], où 2d

apparaît à la place de d dans le terme de droite de cette inégalité. Plus généralement,

on améliore la version sur les extensions établie dans [P3] qu&apos;il est plus commode
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d&apos;énoncer sous forme homogène, mais qu&apos;on peut établir de manière similaire pour
avoir le résultat multihomogène analogue du théorème 2.1 de [PI] (voir remarque
finale).

Il a été démontré dans [D2] dans le cas des variétés abéliennes. La démonstration

de nature plus géométrique que celle de [PI] (on pourra comparer aussi avec

[Mo]), s&apos;appuie comme dans [Dl] sur la théorie de l&apos;intersection. L&apos;argument de

Moreau sur l&apos;invariance du polynôme de Hilbert par translation ne suffisait pas

pour enlever le facteur 2 dans le résultat de Philippon, notamment à cause de la
définition des opérateurs de dérivations (comme Philippon le remarque page 375 de

[PI]). On commence donc par représenter les dérivées du polynôme P par des

polynômes dont le sous-schéma des zéros sera linéairement équivalent sur G à

dM + dN + d&quot;R où d&quot; est un entier &lt;&gt;d + gT &lt;/&apos;, puis on utilise une astuce de

type Landau pour conclure (notons que cette astuce avait aussi été utilisée dans

[W]).
Bien que le résultat final permette d&apos;enlever une puissance de 2 dans certaines

constantes apparaissant dans les résultats effectifs de transcendance (en particulier
ceux faisant appel à la méthode de Baker (cf. [Da])), nous espérons que la méthode
utilisée et l&apos;introduction de la théorie de l&apos;intersection amèneront des progrès
nouveaux sur ces questions.

2. Préliminaires

Commençons par rappeler les définitions de M, N, R (cf. [S]). On sait que H se

décompose en H Hr x Hm, où Hr est produit de groupes isomorphes au groupe
additif Ga et Hm est produit de groupes isomorphes au groupe multiplicatif Gm. On
note H nHa où les Ha sont égaux à Ga ou à Gw.

On désigne par ffa l&apos;unique courbe lisse complète et connexe contenant Ha. On
a #a - #a {oo} si Hx Ga9 ffa-Ha {0, oo} si Ha Gm. On compactifie H en

H n0lHa. Soit Hco H-H U(H0l)co avec (HJ00 (5a)i7^#a^. La projection

canonique n : G -? A fait de G un espace fibre principal de base A et de groupe
structural H. La compactification G de G est alors l&apos;espace fibre GHR associé à

l&apos;espace fibre principal G et de fibre type B. Chacun des (//a)°° définit un
sous-schéma de codimension 1 de G : (GJ00 G^/f.)00. On pose M £/(Ga)°° où
l&apos;union porte sur les a tels que Ha Ga et iV= f/(Ga)°° où les a sont tels que
Ha Gm, M et N sont donc des diviseurs effectifs de G. Enfin, on choisit un
diviseur LA très ample et symétrique de A et on pose R ~p*(LA) où p désigne la

projection de G sur A, Pour tout triplet d&apos;entiers strictement positifs fixés a, b, c, le

diviseur aM + bN + cR est un diviseur très ample sur G (cf. [S]). Pour toute
famille finie de quadruplets d&apos;entiers &gt;0, (xh y{9 zi9 tt)x * ts u tels que tx H h tu
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dimG, on notera (jc,M-f yxN + zlR)&apos;1G G(xuM + yuN + zuR)&apos;u le degré du cycle
obtenu comme intersection sur G des sous-schémas xtM + ytN + ztR chacun pris tt
fois.

On se fixe dans toute la suite trois entiers strictement positifs a, b, c. On va
d&apos;abord établir le résultat suivant:

PROPOSITION 1. Soit le diviseur très ample Z aM + bN + cR et f une
section de G(Z\ passant par F(g) à un order ^gT + 1 le long de W mais non
identiquement nulle sur G. Alors il existe un sous-groupe G&apos; de G, différent de G (dont
on note tG&gt; Vespace tangent à l&apos;origine), de codimension q =g —g&apos; &gt;0 dans G et de

type (r\ m\a&apos;) tel que:

\)R)%MrNmRa
r&apos;m&apos;\a&apos;\

avec c&apos; c 4- gT. (le degré étant toujours relatif au plongement défini par L).

On va utiliser des représentations des dérivations différentes de celles de [PI].
Celles-ci proviennent des lemmes techniques de [Da](§2-3-7), on a:

LEMME 1. // existe une famille finie d&apos;opérateurs différentiels Afitl l&apos;indice /? g B
ensemble des éléments du système linéaire associé à R transformant les sections de

O(aM + bN + cR) en sections de (9(aM + bN + (c + l)R) et représentant la dérivation

par rapport à la variable ut.

Preuve, Ce résultat est explicité dans [Da](§2-3-7), un résultat similaire (publié)
se trouve dans [P2] (lemme 1.2) avec c + 1 remplacé par c + a où a est un réel fixé.
Ce résultat suffirait encore pour la suite de nos démonstrations.

Comme nous l&apos;a signalé l&apos;arbitre, une formulation avantageuse de ce résultat est

la suivante. Pour tout RQ dans la classe d&apos;équivalence linéaire de R, les sections de

6(aM 4- bN -H cR0)) s&apos;identifient aux fonctions rationnelles / régulières hors de

M + N + Rq avec pôles d&apos;ordre contrôlés. Pour tout opérateur différentiel invariant
S, d&apos;ordre 1, «5/a alors un pôle d&apos;ordre &lt;&gt;c -f-1 le long de Rq et £a le long de M
et b le long de N (car ces derniers sont G-stables). Par conséquent ôf s&apos;identifie à

une section de O(aM + bN + (c + \)Rq). On a ainsi obtenu notre famille d&apos;opérateurs

indexés par les éléments du système linéaire associé à R.

Soit / une section de (P(aM -f- bN + cR) et à un opérateur dans A d&apos;ordre

— l)r, le lemme précédent fournit des sections Apô(f) de 6)(aM + bN +
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(c + (k — l)T)R)) dont le sous-schéma des zéros est linéairement équivalent â

aM + bN + c&quot;R, c&quot; ^c + {k- \)T. Quitte à multiplier chaque A^6{f) par une
section convenable d&apos;un diviseur linéairement équivalent à un multiple de R, on
peut supposer que le sous-schéma des zéros de Afitâ(f) est linéairement équivalent
à aM + bN + c&apos;R où c&apos; c + gT.

Comme dans [PI], on va construire une suite décroissante de sous-schémas de

G. Rappelons d&apos;abord que dans le plongement considéré, l&apos;addition sur G se

prolonge en un morphisme de G x G -? G. Pour toute section g, on note Z(g) le

sous-schéma dont les composantes primaires rencontrent G associé au schéma des

zéros de g. Le translaté par un point x de G du sous-schéma précédent sera noté

Z(g) + x. On considère alors la suite décroissante de sous-schémas de G:

Jfo Z(/),.. Xk Z(f)n(n(Z(Aêtfi(f)) -y), fi e B, ordre (S) ZkT,ye f(fc)).

La translation étant un isomorphisme analytique local Xk passe encore à l&apos;ordre

(g-k)T en chaque point de F{g — k). Soit dt dim Xn on a:

do g -1 £ dx ;&gt; • • • * dt ;&gt; dt+l ;&gt; • • ;&gt; dg * o.

Il existe donc un indice r et une composante irréductible V de dimension dr

commune à Xr et Xr+{. Notons Yred le sous-schéma réduit d&apos;un schéma F, et
considérons:

*d^y+ V) (f]ve v({Xr)^ - t;))red.

Le stabilisateur G&apos; de V agit sur H. Pour y e T, (A;)red - y z&gt; (A&apos;^ ,)rcd 3 K, d&apos;où:

Ainsi H =5 uxe(r + c?0/cr((j&apos; -h x). Rappelons quelques définitions avant de regarder
les multiplicités.

DEFINITION 1. ([H] exercise 5.10, p. 125) - Soit S C[*o, ...,xk] l&apos;anneau

affine des coordonnées de P*. Si Y est un sous-schéma de P*, l&apos;ensemble des idéaux
associés à Y (définissant Y) possède un élément maximal pour l&apos;inclusion appelé
l&apos;idéal associé à Y. Cet idéal est le saturé de tout idéal associé à F et sera noté Jr.

DEFINITION 2. Soit / l&apos;idéal associé à un sous-schéma de G défini dans G par
des polynômes (P,,..., Pr), on définit A TI comme dans [PI] (définition 4.2): c&apos;est

l&apos;idéal saturé associé à l&apos;intersection des composantes primaires rencontrant G de
l&apos;idéal engendré par (AxPh ...,AxPr, /(G)), * T * r, où /(G) est l&apos;idéal de définition
de G dans P*.
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Un schéma Xde G est dit passé à un ordre ^ rie long de JFpar un sous-schéma
réduit F de G si l&apos;idéal Ix associé à X est tel que IY =&gt; A TIx-

Remarque. Si Y est un point fermé y de coordonnées (1, yl9... ,yk) l&apos;idéal

associé est ((Xi — yl XQ),..., {Xk —ykXo)). Le sous-schéma des zéros d&apos;une fonction
rationnelle / homogénéisée d&apos;un polynôme P a pour idéal associé (X0)degPP(Xl/

X09..., Xk/X0)). La formule de Taylor montre alors que ce sous-schéma passe par
y le long de W à l&apos;ordre T si et seulement si la fonction rationnelle /passe par y le

long de W à l&apos;ordre T au sens de notre définition page 3. Les définitions sont donc
bien compatibles. On va avoir besoin du lemme de Wûstholz (cf. [PI], prop. 4.7).

Rappelons qu&apos;une sous-variété F de G est incomplètement définie par un idéal / si

toutes les composantes de V sont des composantes de l&apos;intersection de G avec
l&apos;ensemble des zéros des éléments de / (cf. [PI], déf. 3.5):

LEMME (Wûstholz). Si I est un idéal homogène de S définissant incomplètement

x + G&apos; et si pour un entier naturel T, Vidéal A TI définit incomplètement x + G&apos; alors

I définit incomplètement x + G&apos; avec une multiplicité ^ (T + s)\/T\s\ où s

dim (W/WntG&gt;), c&apos;est à dire la longueur de chaque composante primaire de

dimension maximale est minorée par (T + s)\/T\s\.

Comme dans [PI], on voit que Ixr+i et ATIxr ont les mêmes composantes
primaires et donc que Xr — v passe à un ordre ^ T par V — v (et ses translatés sous

F) le long de W. Le sous-schéma H&apos; nFe v(Xr — t;) est de même dimension et passe

par (Jxe(r + G&apos;)/G&apos;(G&apos; + x) avec une multiplicité contrôlée par le lemme de Wûstholz.
On peut donc affirmer:

Désignons par H&quot; l&apos;adhérence de Zariski du sous-schéma de H&apos;, de même degré

que H&apos;, associé à ses composantes primaires isolées de dimension maximale
recontrant G. On a en fait également démontré l&apos;inégalité précédente avec H&apos;

remplacé par H&quot;.

3. Intersections

On va maintenant faire appel à la théorie de l&apos;intersection pour majorer deg H&quot;.

On se sert des propriétés rappelées dans [Dl] et démontrées dans [F].
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Si K est un hyperplan de P*, on note Kq un cycle de G représentant la classe

i*(K) où i : G c* P* est le plongement associé à M 4- N + R. On sait que K&amp; est
linéairement équivalent à M + N + R.

DÉFINITION. Soient C et C, deux cycles de G de même codimensiott dans G.
On dira que C&quot; domine C numériquement si pour tout cycle Z de G de la forme
(xxM + yxN + zlR)tlG G(xuM + yuN + zuR)tu{xJ&gt;ypzj&gt;0) et de codimension
complémentaire on a:

deg CGZ &lt;: deg C&apos;GZ

On dira que C et C&quot; sont numériquement équivalent si on a l&apos;égalité dans
l&apos;expression précédente.

Remarque. Le fait que xM + yN H- zN soit ample (x, y, z &gt; 0) entraîne que si

deux schémas sont de même dimension et inclus l&apos;un dans l&apos;autre alors le plus grand
domine le plus petit.

On aura besoin des lemmes suivants:

LEMME 2. Soient deux triplets d&apos;entiers &gt;0, (x9y, z), (*&apos;,&gt;&gt;&apos;, z&apos;) et Y un
sous-schéma fermé de G on a:

a) Y- (xM +yN + zR){x&apos;M + y&apos;N + z&apos;R) est dominé numériquement par
Y - (max (x, x&apos;)M + max (y, y&apos;)N + max (z, z&apos;)R)2.

b) Si x £ x\ y ^ y\ z ^ z&apos; alors Y • (xM -hyN + zR) est dominé numériquement

par Y-(x&apos;M+y&apos;N + z&apos;R).

Preuve. On revient à la définition en calculant Y • (xM +yN + zR) contre un
cycle de dimension complémentaire, on développe les expressions polynômiales et le

lemme vient du fait que les polynômes obtenus sont à coefficients positifs. En effet,
xM + yN + zR est ample sur G dès que x, y et z sont strictement positifs, donc
deg Y Y - (xM +yN + zR)dim Y est positif.

LEMME 3. Soient u, v, w des entiers naturels tels quejA + v -H w dim G où G&apos;

est un sous-groupe algébrique de G de type (r, w, a) alors G&apos; • MUNVRW # 0 entraîne

u r, v w, w a.

Preuve. Le degré_de G&apos; dans un plongement défini par aM + bN + cR (pour
a, è, c fixés &gt;0) est G&apos; • (aM + WV 4- c*)dunG&apos;.

Le théorème 1 de [Ll] nous dit que ce degré est le produit (à une constante
multiplicative C près, ne dépendant que de r, w, a) des degrés de Hr9 Hm et ^4 dans
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les plongements associés à aM, bN et cR. D&apos;où l&apos;on déduit l&apos;égalité entre polynômes
homogènes (aM + bN + cR)dim

G&apos; CarbmcaMrNmRa. Ce qui entraîne bien la
conclusion du lemme 3.

Remarque. Le résultat du lemme est suffisant pour nos applications. Il revient à

dire que Mk 0 si k&gt;r9Nk 0 si k &gt; m et Rk 0 si k&gt;a, où les égalités
s&apos;entendent modulo l&apos;équivalence algébrique.

LEMME 4. Soit [ri] le prolongement à G de la multiplication par n sur G:

[n]*(M + N + R) M + |#i|iV + n2R, où l&apos;égalité est prise dans Pic (G).

Preuve. [S] (corollaire 1).

LEMME 5. Un diviseur W de G algébriquement équivalent à zéro dont le fibre
associé admet une action de H est linéairement équivalent à un diviseur de la forme
p*((LA -h m) — LA) où u est dans A.

Preuve. D&apos;après le théorème 2.1 de [K-L] Pic^ (G) =/r + m 0 Pic (,4), W est

donc de la forme p*(WA) où WA est algébriquement équivalent à zéro sur A. Le
diviseur LA étant très ample, on sait que tous les diviseurs algébriquement triviaux
sont de la forme (LA + u) — LA.

On pose c&apos; c + gT et on rappelle:

où les sous-schémas de codimension 1 de G, (Z(Aôp(f)) —y—v) sont les translatés

par y -H v de zéros de dérivées de /, ord (ô) &lt;&gt;rT,y e F(r) (r ^ g) et v e F.

Prouvons maintenant l&apos;analogue du lemme 2 de [Dl] et [D2]. On rappelle
d&apos;abord que dans le plongement considéré, l&apos;addition sur G se prolonge en un
morphisme de G x G -? G, et donc que la clôture de Zariski d&apos;un sous-schéma de G
est algébriquement équivalente à un de ses translatés.

LEMME 6. H&quot; est dominé numériquement par le cycle (aM + bN + (c&apos; + l)R)q
où q dim G — dim H&quot;.

Preuve. Par noethérianité, et d&apos;après l&apos;expression de H&apos; rappelée ci-dessus, il
existe un nombre fini w de sections ft (de la forme Aôp(f)) et de points vt (de
la forme y + v) de telle sorte que H&quot; soit composante de l&apos;intersection

(\\&amp;i&lt;.w(Z(fi) —Vi)- Les diviseurs (Z(ft) —vt) étant tous algébriquement équivalents

à Z aM + bN + c&apos;R on écrit (Z(ft) - vt) Z + Wt où FF, est algébriquement

équivalent à zéro. Tous les diviseurs Wt sont algébriquement équivalents à
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zéro et sont des différences de translatés de Z, donc on peut écrire d&apos;après le lemme
5, ^, =/&gt;?((!*+h,)-I*).

Comme LA est un diviseur très ample de A, pour tout i, le diviseur
LA + Zj¥sl[(LA +ui) — LA] est linéairement équivalent à un diviseur de la forme
LA + (LA +u) -LA= (LA + m), il est donc très ample comme translaté d&apos;un très

ample.
On note \LA +Zj + ,[(LA + ut) — LA]\ le système linéaire complet associé. Le

schéma H&quot; est toujours inclus dans:

car on a seulement ajouté des diviseurs effectifs. Si H&quot; n&apos;était plus composante de

cette intersection, cela entraînerait que la projection sur A d&apos;une composante de H&quot;

est inclue dans l&apos;ensemble des points base d&apos;un système linéaire complet
\LA + Zf9tl[(LA + «,) — LA]\9 ce qui contredit l&apos;amplitude.

Par construction tous les diviseurs de la forme Z + Wt +p*\LA -f ZJikl[(LA +
ut) — LA]\ sont linéairement équivalents à un même diviseur effectif dans la classe

d&apos;équivalence linéaire de Z + R + Zt IV,. Le lemme d&apos;évitement des idéaux premiers
nous permet comme dans [PI] d&apos;extraire une suite régulière de sorte que H&quot; soit
union de composantes de l&apos;intersection de q codimG H&quot; diviseurs du type précédent.

Cette intersection est alors localement intersection complète donc de Cohen-

Macaulay. Ces diviseurs sont tous très amples et algébriquement équivalents à

aM + bN + (c&apos; + \)R d&apos;où l&apos;on tire que H&quot; est dominé numériquement par
(aM + bN + (c&apos; + l)R)q.

On va maintenant majorer le degré de //&quot;. La variété (#&quot;)red est une union finie
de translatés d&apos;un groupe G&apos; de type (r\ m\ a&apos;). En conservant les notations du

paragraphe 2, rappelons que a&apos; est la dimension de n(G% que r dim (Hr n G&apos;), que
m&apos; dim(HmnG&apos;), posons g&apos; r&apos; + m&apos; + a&apos; de manière à avoir q=g-g&apos;. Le
lemme suivant conclut la preuve de la proposition 1:

LEMME 7. Le degré de H&apos; est majoré par le degré du cycle:

r^wl {aM + bN + {c&apos; + \)R)qàMr&apos;NmRa.

Preuve. Le degré de H&quot; est par définition celui du cycle H&quot; &apos;(M + N +
jiy + m&apos; + a- et est jonc aussi égal à celui du cycle (voir la preuve du lemme 3):

,/&apos;
,H&quot;àMrNmRa.

r&apos;im&apos;la&apos;l G
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D&apos;après le lemme précédent le degré de H&quot; est donc inférieur à:

*! „ (aM + bN + (c&apos; + l)R)%Mr N™ Ra.
r \m\a\ °

4. Conclusion

Sous les hypothèses de la proposition 1, on a une inégalité:

£ ; „ (aM + bN + (c&apos; -h 1)/*)? Mr&apos;Nm&apos;Ra&apos;.

r Im a G

(où c&apos; c+gr).
Soit/une section de (9(dL), identifiée à une application rationnelle, l&apos;application

/° [n] fournit une section de (9([n]*(dZ)). D&apos;après le lemme 4, [n]*(dZ) est linéairement

équivalent à dM + ndN + n2dR. L&apos;application/0 [n] s&apos;annule sur [n]*[F)(g).
On applique alors la proposition 1 à / ° [n] et au triplet de diviseurs

(dM, ndN, n2dR) et on obtient un sous-groupe algébrique Gn de G de codimension
&lt;ln g - gn et de type (rn, mn, an) tel que:

(«2rf -h gT + l)R)%Mr»Nm»Ra».

On déduit immédiatement du lemme 3:

+ («2rf + gT + l)R)%MrnNm&quot;Ra» a(«, d, T)MrNmRa.

où a(«, rf, T) est un polynôme en les variables n, d, t de degré en n exactement

m-mn+2(a- an).

La suite (qn9 rn,mn,an) est bornée, et quitte à extraire une sous-suite de valeurs
de n, on peut supposer qu&apos;elle est constante et égale à (q, r&apos;, m&apos;, a&apos;) où q g — g&apos;.

- Si on écrit alors:

{dM + dN + dR)%MrNmRa &lt;x(d)MrNmRa.
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nous avons a(rf) dq{g - g&apos;)\/[(r - r&apos;)\(m - m&apos;)\(a - a&apos;)!] et:

Un calcul similaire à celui de [Dl](§2) (à comparer avec les formules de degré
d&apos;images réciproques de [n] données dans [Hi] lemme 6) donne:

Card (([n]*(r) + Gn)IGn)) „»¦—»/,«&lt;-&quot;»&gt; Card (((F) + Gn)/Gn)).

L&apos;inégalité obtenue précédemment s&apos;écrit donc encore:

(T + dim (W/(WntGn))\ „.„„,-,..„.. „ „ a(n, d, T)MrNmR&quot;g&apos;\

V dim(^/(^n^))

Le terme de gauche est toujours un entier et le terme de droite tend vers un entier

quand n tend vers l&apos;infini. Il existe alors un n ^ n0 tel que l&apos;on ait:

Grâce à (1) on obtient:

\ dimT^n?Jy)))}Card((r + G»)IGn) dCg°n

r&apos;m&apos;\a\r - r&apos;)(m - m&apos;)\{a - a&apos;)\ g\

Ce qui conclut la preuve du théorème, en choisissant G&apos; GnQ.

Remarque 1. On peut remplacer, dans l&apos;énoncé du théorème, le plongement
M + N + R par aM + bN + cR (où a,b9c sont des entiers &gt;0). Ceci permet
d&apos;avoir un résultat non homogène, parfois utile dans les applications (cf. [P3]).

Remarque 2. Il peut également être utile d&apos;avoir un résultat dans le cas d&apos;un

produit de plusieurs groupes algébriques. On part de Gl9... ,GP des groupes
algébriques donnés comme extensions de variétés abéliennes par des groupes
linéaires. Chaque Gt(l &amp;i£p) est plongé dans un espace projectif P*&lt; par un
diviseur très ample Lt Mt + Nt -h Ri9 à la manière du paragraphe 1. Le produit
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G Gx x • • • x Gp est alors naturellement plongé dans un espace multiprojectif par
le diviseur L\ + • • • +Lp, où L&apos;, =Ltx nj¥llPkJ. Le résultat multihomogène
s&apos;énonce alors comme suit (en conservant les notations du paragraphe 1): soit P un
polynôme multihomogène de multidegré £(dl9... 9 dp), s&apos;annulant sur F(g) à un
ordre ^gT+ 1 le long de Ornais non identiquement nul sur G. Alors il existe un

sous-groupe G&apos; de G, différent de G, d&apos;espace tangent à l&apos;origine tG&gt; tel que:

^; (l; + • • • + z,;)dimG&apos;.

Pour obtenir ce résultat, notons qu&apos;on emploie encore l&apos;homogénéité et la multilica-
tion par n sur G. Il convient de noter que les intersections sont toujours prises sur
G et que le résultat n&apos;est de formulation semblable à notre théorème 1 que si on
prend soin de refaire les calculs avec chaque Lt décomposé en Mt + Nt + Rt et que
les sous-groupes G&apos; de G sont de la forme G\ x • • • x Gp où G\ est un sous-groupe
de G,.
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