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Lemmes de multiplicités et intersections

LAURENT DENIS

Résumé. Dans [P1] P. Philippon a démontré un lemme de multiplicités sur un
groupe algébrique en employant des méthodes d’algébre commutative. On introduit
ici la théorie de 'intersection pour enlever une constante 2 qui apparaissait dans le
résultat final de [P1].

1. Enoncé des résultats

Soit G un groupe algébrique commutatif connexe de dimension g défini sur C.
On peut écrire une suite exacte:

0—H—G—A—0

ou H est le sous groupe linéaire maximal de G et A4 est une variété abélienne. En
désignant par G, (resp. G,,) le groupe additif (resp. multiplicatif), on sait que H est
de la forme (G,)" x (G,,)™, et nous poserons # =dim H =r +m, a =dim 4. On
dira que G est de type (r, m, a).

On se place dans le plongement projectif ¥ : G ¢ P* considéré dans [S]. Le
groupe G est alors compactifié en une variété lisse et compléte G, et il est muni d’un
diviseur trés ample L de la forme suivante:

L=M+N+R

ou M est le diviseur de G considéré dans [S] relatif 4 (G,)", N est de méme le
diviseur attaché a (G,,)™, et R =p*(L,) est I'image réciproque par la projection
P : G- A, d’un diviseur trés ample symétrique de 4 (voir plus loin pour des rappels
plus précis).

Pour toute variété X de P, on désigne par deg X son degré, rappelons que si X
est quasi-projective de cloture X par définition deg X = deg X. On suppose donné
un sous-ensemble fini I' de G contenant son élément neutre et on pose pour tout
entier i 20: I'(i) = {x, + - - + x;/x; eI'} avec la convention I'(0) = {0}.
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236 LAURENT DENIS

On désigne par t; I’espace vectoriel tangent & G en son origine, par exp; son
application exponentielle et par W un sous-espace-vectoriel de ¢;. On identifiera ¢,
avec C# via l’application:

¥ o expg : C2— P¥(C)

représentée par des fonctions analytiques (&,(w), . . ., & (4)).
On désigne par 4 I'algebre des opérateurs différentiels invariants sur G engen-
drée par W (cf. [M]) par u,, .. ., u, une base de Wet par D,, ..., D, les opérateurs

différentiels correspondant. Un élément 6 de 4 est d’ordre 7, §’il est combinaison
linéaire de termes (D,)¢ °---°(D,)’ ou e;+ --+e,=1 (on vérifie que cette
définition ne dépend pas de la base choisie). Cet ordre fait de 4 une algébre graduée
dont 4° désigne I’ensemble des éléments d’ordre .

Soient maintenant T un entier =0, f une fonction rationnelle sur G, on dit que
f s’annule avec multiplicité 7 en un point y €G le long de W si f est réguliére en 7,
et si pour tout opérateur différentiel 6 dans 4 d’ordre inférieur ou égal a
T:6of(y + X) =0 (cf. [M] p. 105).

L’ordre d’annulation d’un polyn6me homogéne P sera celui de la fonction
rationnelle #P déduite de P par déshomogénéisation relativement 4 un hyperplan
ne passant pas par y. Il est usuel, pour les applications du résultat a la transcen-
dance de partir d’'un polynéme P d’un degré donné d, en terme de section, on
considérera la section de O(d(L)) qu’il définit. Le résultat se traduit alors comme
suit:

THEOREME 1. Soit P une section de O(d(L)), s’annulant sur I'(g) a un ordre
2gT+ 1 le long de W mais non identiquement nul sur G. Alors il existe un
sous-groupe G’ de G, différent de G, de type (r',m’, a’) d’espace tangent a I’origine
tg tel que:

(T +dim (W/(W nts))

dim (W/(W 1) ) Card (I' + G")/G’) deg G’

(r>(m)<a)

< NN oo G(d)dim @19,
g
(g’)

Ce résultat améliore une version homogéne du théoréme principal de [P1], ou 2d
apparait a la place de d dans le terme de droite de cette inégalité. Plus généralement,
on ameéliore la version sur les extensions établie dans [P3] qu’il est plus commode
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d’énoncer sous forme homogeéne, mais qu’on peut établir de maniére similaire pour
avoir le résultat multihomogene analogue du théoréme 2.1 de [P1] (voir remarque
finale).

Il a été démontré dans [D2] dans le cas des variétés abéliennes. La démonstra-
tion de nature plus géométrique que celle de [P1] (on pourra comparer aussi avec
[Mo]), s’appuie comme dans [D1] sur la théorie de I'intersection. L’argument de
Moreau sur l'invariance du polyndme de Hilbert par translation ne suffisait pas
pour enlever le facteur 2 dans le résultat de Philippon, notamment & cause de la
définition des opérateurs de dérivations (comme Philippon le remarque page 375 de
[P1]). On commence donc par représenter les dérivées du polynéme P par des
polynémes dont le sous-schéma des zéros sera linéairement équivalent sur G a
dM + dN +d"R ou d” est un entier <d +gT =d’, puis on utilise une astuce de
type Landau pour conclure (notons que cette astuce avait aussi été utilisée dans
[WD).

Bien que le résultat final permette d’enlever une puissance de 2 dans certaines
constantes apparaissant dans les résultats effectifs de transcendance (en particulier
ceux faisant appel a la méthode de Baker (c.f. [Da])), nous espérons que la méthode
utilisée et l'introduction de la théorie de I'intersection ameéneront des progrés
nouveaux sur ces questions.

2. Préliminaires

Commengons par rappeler les définitions de M, N, R (c.f. [S]). On sait que H se
décompose en H = H, x H,,, ou H, est produit de groupes isomorphes au groupe
additif G, et H,, est produit de groupes isomorphes au groupe multiplicatif G,,. On
note H = ITH, ou les H, sont égaux a G, ou a G,,,.

On désigne par H, I'unique courbe lisse compléte et connexe contenant H,. On
a H,— H, = {0} si H,=G,, H,— H, ={0, ©} si H, =G,,. On compactific H en
A=1,H,. Soit H* = A — H = U(H,)* avec (H,)® =(H,)1;,.,Hs. La projec-
tion canonique 7 : G — A4 fait de G un espace fibré principal de base A4 et de groupe
structural H. La compactification G de G est alors 'espace fibré G¥H associé 4
espace fibré principal G et de fibre type A. Chacun des (H,)® définit un
sous-schéma de codimension 1 de G : (G,)® = G¥(H,)*. On pose M = U(G,)*® ou
I'union porte sur les a tels que H, =G, et N =U(G,)® ou les a sont tels que
H,=G,, M et N sont donc des diviseurs effectifs de G. Enfin, on choisit un
diviseur L, trés ample et symétrique de A et on pose R = p*(L,) ou p désigne la
projection de G sur A. Pour tout triplet d’entiers strictement positifs fixés a, b, c, le
divisesur aM + bN + cR est un diviseur trés ample sur G (c.f. [S]). Pour toute
famille finie de quadruplets d’entiers >0, (x;, ¥;, 2;, t;)1 < s  telsque ty + -+ 1, =
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dim G, on notera (x,M + y,N + z; R)"¢... ¢(x,M + y,N + z,R)"* le degré du cycle
obtenu comme intersection sur G des sous-schémas x;M + y;N + z;R chacun pris ¢,
fois.

On se fixe dans toute la suite trois entiers strictement positifs a, b, c. On va
d’abord établir le résultat suivant:

PROPOSITION 1. Soit le diviseur trés ample Z =aM + bN + cR et f une
section de O(Z), passant par I'(g) a un order 2gT + 1 le long de W mais non
identiquement nulle sur G. Alors il existe un sous-groupe G’ de G, différent de G (dont
on note t; l’espace tangent a I’origine), de codimension ¢ =g — g’ > 0 dans G et de
type (r’,m’, a’) tel que:

T +dim (W/(WnTs)) - ,
( dim (W/(W 0 To)) Card (I' + G")/G") deg G
g,! ’ rarm' pa’
S o= (@M +bN + (¢’ + DRIEMN™R

avec ¢’ =c + gT. (le degré étant toujours relatif au plongement défini par L).

On va utiliser des représentations des dérivations différentes de celles de [P1].
Celles-ci proviennent des lemmes techniques de [Da](§2-3-7), on a:

LEMME 1. Il existe une famille finie d’opérateurs différentiels Ag; I'indice p € B
ensemble des éléments du systéme linéaire associé a R transformant les sections de
O(aM + bN + cR) en sections de O(aM + bN + (c + 1)R) et représentant la dériva-
tion par rapport a la variable u.

Preuve. Ce résultat est explicité dans [Da](§2-3-7), un résultat similaire (publié)
se trouve dans [P2] (lemme 1.2) avec ¢ + 1 remplacé par ¢ + a ou a est un réel fixé.
Ce reésultat suffirait encore pour la suite de nos démonstrations.

Comme nous I’a signalé P’arbitre, une formulation avantageuse de ce résultat est
la suivante. Pour tout R, dans la classe d’équivalence linéaire de R, les sections de
0O(aM + bN + cR,)) s’identifient aux fonctions rationnelles f réguliéres hors de
M + N + R, avec poles d’ordre controlés. Pour tout opérateur différentiel invariant
o, d’ordre 1, of a alors un pole d’ordre <c + 1 le long de R, et <a le long de M
et b le long de N (car ces derniers sont G-stables). Par conséquent Jf s’identifie a
une section de 0(aM + bN + (¢ + 1)R,). On a ainsi obtenu notre famille d’opéra-
teurs indexés par les €léments du systéme linéaire associ¢ a R.

Soit f une section de O(aM + bN +cR) et 6 un opérateur dans 4 d’ordre
<(k —1)T, le lemme précedent fournit des sections 4d,z;(f) de O(aM + bN +
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(c +(k —1)T)R)) dont le sous-schéma des zéros est linéairement équivalent &
aM +bN +c"R, ¢”" < c +(k —1)T. Quitte & multiplier chaque 4;;(f) par une
section convenable d’un diviseur linéairement équivalent & un multiple de R, on
peut supposer que le sous-schéma des zéros de 4,;(f) est linéairement équivalent
aaM +bN +c’Rouc’ =c+gT.

Comme dans [P1], on va construire une suite décroissante de sous-schémas de
G. Rappelons d’abord que dans le plongement considéré, I’addition sur G se
prolonge en un morphisme de G x G — G. Pour toute section g, on note Z(g) le
sous-schéma dont les composantes primaires rencontrent G associé au schéma des
zéros de g. Le translaté par un point x de G du sous-schéma précédent sera noté
Z(g) + x. On considére alors la suite décroissante de sous-schémas de G:

Xo=Z(f), .. , X =Z(f)(N(Z(455(f)) —7), B € B, ordre (9) < kT, y € I'(k)).

La translation étant un isomorphisme analytique local X, passe encore a 1’ordre
(g—-k)T en chaque point de I'(g — k). Soit d; = dim X}, on a:

d0=g_12d12"'2di2‘1i+]2"'2d320.

Il existe donc un indice r et une composante irréductible V' de dimension d,
commune 4 X, et X,,,. Notons Y™ le sous-schéma réduit d’un schéma Y, et
considérons:

H={yeG/X,)*>y+V}=(Ner((X,)™ =)™,
Le stabilisateur G’ de V agit sur H. Pour y e I', (X,)™ —y o (X, , )™ > V, d’ot:
("lr)rCd > (Xr+ l)md + ‘y > V + y

Ainsi H © U, .1+ ¢7¢ (G’ + x). Rappelons quelques définitions avant de regarder
les multiplicites.

DEFINITION 1. ([H] exercise 5.10, p. 125) — Soit § = C[x,, . .., x;] 'anneau
affine des coordonnées de P*. Si Y est un sous-schéma de P*, I'ensemble des idéaux
associés a Y (definissant Y) posséde un élément maximal pour l'inclusion appelé
P'idéal associé a4 Y. Cet idéal est le saturé de tout idéal associé a Y et sera noté /.

DEFINITION 2. Soit I I'idéal associé & un sous-schéma de G défini dans G par
des polynémes (P, . .., P,), on définit 471 comme dans [P1] (définition 4.2): c’est
I'idéal saturé associé a l'intersection des composantes primaires rencontrant G de
I'idéal engendré par (4°P;,...,4°P,, J(G) <. < » 00 J(G) est I'idéal de définition
de G dans P~
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Un schéma X de G est dit passé a4 un ordre = T le long de W par un sous-schéma
réduit Y de G si 'idéal I, associé 4 X est tel que I, o 471,.

Remarque. Si Y est un point fermé y de coordonnées (1,y,,...,y,) lidéal
associé est (X; — y,Xp), . . ., Xk — ¥ Xp)). Le sous-schéma des zéros d’une fonction
rationnelle / homogénéisée d’un polynéme P a pour idéal associé (X,)%e&7P(X,/
Xy, - . . » Xi/X,)). La formule de Taylor montre alors que ce sous-schéma passe par
y le long de W a 'ordre T si et seulement si la fonction rationnelle f passe par y le
long de W a I'ordre T au sens de notre définition page 3. Les définitions sont donc
bien compatibles. On va avoir besoin du lemme de Wiistholz (cf. [P1], prop. 4.7).
Rappelons qu’une sous-variéte ¥ de G est incomplétement définie par un idéal I si
toutes les composantes de V sont des composantes de I'intersection de G avec
I’ensemble des zéros des éléments de 7 (cf. [P1], déf. 3.5):

LEMME (Wiistholz). Si I est un idéal homogéne de S définissant incomplétement
x + G’ et si pour un entier naturel T, I’idéal ATI définit incomplétement x + G’ alors
I définit incomplétement x + G’ avec une multiplicité = (T + s)!/T's! ou s =
dim (W/W ntg), c’est a dire la longueur de chaque composante primaire de
dimension maximale est minorée par (T + s)!/T!s!.

Comme dans [P1], on voit que I,.: et ATI,r ont les mémes composantes
primaires et donc que X, — v passe a4 un ordre =7 par ¥V — v (et ses translatés sous
I') lelong de W. Le sous-schéma H' = n,, . (X, — v) est de méme dimension et passe
par Us e (r + 676 (G’ + x) avec une multiplicité contr6lée par le lemme de Wiistholz.
On peut donc affirmer:

T +dim (W/(W nts))
. Card (I' + G')/G") deg G’ < deg H'.
( dim (W/(W n 1)) ard (I' + G')/G’) deg eg
Désignons par H” I'adhérence de Zariski du sous-schéma de H’, de méme degré
que H’, associé a ses composantes primaires isolées de dimension maximale
recontrant G. On a en fait également démontré I'inégalité précédente avec H’
remplacé par H".

3. Intersections

~

On va maintenant faire appel a la théorie de I'intersection pour majorer deg H”.
On se sert des propriétés rappelées dans [D1] et démontrées dans [F].
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Si K est un hyperplan de P*, on note K un cycle de G représentant la classe
i*(K) ol i: G o P* est le plongement associé & M + N + R. On sait que K est
linéairement équivalent 4 M + N + R.

DEFINITION. Soient C et C’, deux cycles de G de méme codimensiogx dans G.
On dira que C’ domine C numériquement si pour tout cycle Z de G de la forme
;M +yN+z2R)"...¢(x,M+y,N+2z,R)x;,y;,z,>0) et de codimension
complémentaire on a:

deg CeZ <deg C'Z

On dira que C et C’ sont numériquement équivalent si on a I’égalité dans
I’expression précédente.

Remarque. Le fait que xM + yN + zN soit ample (x, y, z > 0) entraine que si
deux schémas sont de méme dimension et inclus I'un dans 1’autre alors le plus grand
domine le plus petit.

On aura besoin des lemmes suivants:

LEMME 2. Soient deux triplets d’entiers >0, (x,y,2), (x’,y’,2") et Y un
sous-schéma fermé de G on a:

a) Y- (xM +yN +zR)(x’M +y'N+z'R) est dominé numériguement par
Y - (max (x, x")M + max (y, y’)N + max (z, z')R)%.

b) Six<x',y<y,z<z alorsY -(xM + yN + zR) est dominé numériquement
par Y - (x’M + y’N + z'R).

Preuve. On revient a la définition en calculant Y - (xM + yN + zR) contre un
cycle de dimension complémentaire, on développe les expressions polynomiales et le
lemme vient du fait que les polynomes obtenus sont a coefficients positifs. En effet,
xM + yN + zR est ample sur G dés que x, y et z sont strictement positifs, donc
deg Y =Y - (xM + yN + zR)%™ Y est positif.

LEMME 3. Soient u, v, w des entiers naturels tels que u +v +w =dim G ot G’
est un sous-groupe algébrique de G de type (r, m, a) alors G’ - M“N*R" # 0 entraine
u=r,v=mw=a.

Preuve. Le degré de G’ dans un plongement défini par aM + bN + cR (pour
a, b, c fixés >0) est G’ - (aM + bN + cR)4™ Y,

Le théoréme 1 de [L1] nous dit que ce degré est le produit (& une constante
multiplicative C prés, ne dépendant que de r, m, a) des degrés de H,, H,, et A dans
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les plongements associés & aM, bN et cR. D’ou ’on déduit 1’égalité entre polynémes
homogénes (aM + bN + cR)¥™ % = Ca’b™c*M"N™R°. Ce qui entraine bien la con-
clusion du lemme 3.

Remarque. Le résultat du lemme est suffisant pour nos applications. Il revient a
dire que M*=0 si k>r,N*=0 si k>m et R*=0 si k >a, ou les égalités
s’entendent modulo ’équivalence algébrique.

LEMME 4. Soit [n] le prolongement @ G de la multiplication par n sur G:
[7)*(M + N + R) = M + |n|N + n?R, ou I’égalité est prise dans Pic (G).

Preuve. [S] (corollaire 1).

LEMME 5. Un diviseur W de G algébriquement équivalent a zéro dont le fibré
associé admet une action de H est linéairement équivalent a un diviseur de la forme
p*((L, +u) —L,) ou u est dans A.

Preuve. D’aprés le théoréme 2.1 de [K-L] Pic, (G) =Z"*" @ Pic (4), W est
donc de la forme p*(W,) ou W, est algébriquement équivalent a zéro sur A. Le
diviseur L, étant trés ample, on sait que tous les diviseurs algébriquement triviaux
sont de la forme (L, +u) — L,.

On pose ¢’ =c + gT et on rappelle:
H =(~(Z(455(f)) —y —v) > H",

ou les sous-schémas de codimension 1 de G, (Z(4,4(f)) —7 — v) sont les translatés
par y + v de zéros de dérivées de f, ord (0) <rT,yeI'(r) (r <g)etveV.

Prouvons maintenant 'analogue du lemme 2 de [D1] et [D2]. On rappelle
d’abord que dans le plongement considéré, I’addition sur G se prolonge en un
morphisme de G x G — G, et donc que la cloture de Zariski d’un sous-schéma de G
est algébriquement équivalente & un de ses translatés.

LEMME 6. H" est dominé numériquement par le cycle (aM + bN + (¢’ + 1)R)?
ou q =dim G — dim H".

Preuve. Par noethérianité, et d’aprés I’expression de H’ rappelée ci-dessus, il
existe un nombre fini w de sections f; (de la forme 4;4(f)) et de points v, (de
la forme y+v) de telle sorte que H” soit composante de I'intersection
My <i<w(Z(f:) —v;). Les diviseurs (Z(f;) —v;) étant tous algébriquement équiva-
lents & Z =aM + bN + ¢’R on écrit (Z(f;) —v,) =Z + W, ou W, est algébrique-
ment équivalent & zéro. Tous les diviseurs W, sont algébriquement équivalents a
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zéro et sont des différences de translatés de Z, donc on peut écrire d’aprés le lemme
5, Wi=p*(Ly +u;) — L,).

Comme L, est un diviseur trés ample de A4, pour tout i, le diviseur
Ly+2;.,[(Ly+u)—L,] est linéairement équivalent & un diviseur de la forme
L,+Ly+u)—L,y=(L,y+u), il est donc trés ample comme translaté d’un trés
ample.

On note |L, +Z;,,[(L, +u)— L,]| le systéme linéaire complet associé. Le
schéma H" est toujours inclus dans:

nl <iswZ + W, +P*|LA + 2. (L +u) —'LA]I

car on a seulement ajouté des diviseurs effectifs. Si H” n’était plus composante de
cette intersection, cela entrainerait que la projection sur A d’'une composante de H”
est inclue dans l'ensemble des points base d’un systéme linéaire complet
|ILy+ Z; . (Ly +u;) — L,]|, ce qui contredit 'amplitude.

Par construction tous les diviseurs de la forme Z + W, + p*|L, + Z,. (L, +
u;) — L,]| sont linéairement équivalents & un méme diviseur effectif dans la classe
d’équivalence linéaire de Z + R + 2, W,. Le lemme d’évitement des idéaux premiers
nous permet comme dans [P1] d’extraire une suite réguliére de sorte que H” soit
union de composantes de 'intersection de g = codimg H” diviseurs du type précé-
dent. Cette intersection est alors localement intersection compléte donc de Cohen-
Macaulay. Ces diviseurs sont tous trés amples et algébriquement équivalents a
aM +bN + (¢’ + 1)R d’ou l'on tire que H” est dominé numériquement par
(aM + bN + (¢’ + 1)R)“.

On va maintenant majorer le degré de H”. La variété (H”)™ est une union finie
de translatés d’un groupe G’ de type (r', m’, a’). En conservant les notations du
paragraphe 2, rappelons que a’ est la dimension de n(G"), que r = dim (H, nG’), que
m’ =dim (H,,nG’), posons g’=r"+m’ +a’ de maniére 4 avoir g =g —g’. Le
lemme suivant conclut la preuve de la proposition 1:

LEMME 7. Le degré de H’' est majoré par le degré du cycle:

g’ / o
Pimian @M + BN+ + DR M N™ R

Preuve. Le degré de H” est par définition celui du cycle H"- (M + N +
R)"+m +4 et est donc aussi égal a celui du cycle (voir la preuve du lemme 3):

g’

” ram pa’
r'im’la’! Ut
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D’apres le lemme précédent le degré de H” est donc inférieur a:

4

ima’l (aM + bN + (¢’ + l)R)‘(’.;M'N”‘ R<.

4. Conclusion

Sous les hypothéses de la proposition 1, on a une inégalité:

T +dim (W/(W nig)) I ,
( dim (W/(W 0 15) )Card (' +G)/G") deg G
4
<=5 (aM + BN + (¢’ + DR)LM"N™R”.
rma:

(ou c'=c+gT).

Soit f une section de ()(dL), identifiée a une application rationnelle, I'application
S © [n] fournit une section de O([n]*(dZ)). D’aprés le lemme 4, [n]*(dZ) est linéaire-
ment équivalent & dM + ndN + n?dR. L’application f ° [n] s’annule sur [n]*[I")(g).
On applique alors la proposition 1 a f°[n] et au triplet de diviseurs
(dM, ndN, n’dR) et on obtient un sous-groupe algébrique G, de G de codimension
q,. =g — g, et de type (r,, m,, a,) tel que:

(T +dim (W/(W 1))

dim (W/(W nt5,)) ) Card (([n]*[I'] + G,)/G,) deg G,

]
< —Té'L (M + ndN + (n%d + gT + 1)R)% M"=N"™ R4,
r,'m,\a,! G

On déduit immédiatement du lemme 3:

(M +ndN + (n’d +gT + DR)& M’ ,N™"R = a(n, d, T)M'N"R".
ou a(n,d, T) est un polynOme en les variables n,d, t de degré en n exactement
m—m, +2(a — a,).

La suite (¢,, r,, m,, a,) est bornée, et quitte a extraire une sous-suite de valeurs

de n, on peut supposer qu’elle est constante et égale a (¢,r’,m’,a’)ou g=¢g —g’.
Si on écrit alors:

(@M + dN + dR)&M"N™ R = «(d)M'N"R".
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nous avons a(d) =d(g —g")!/[(r —r)/(m —m’)(a —a’)!] et:

a(n,d, T)
m-m,,+2(a—a,,)=a(d)' (1)

lim

n—-oo N

Un calcul similaire a celui de [D1](§2) (& comparer avec les formules de degré
d’images réciproques de [n] données dans [Hi] lemme 6) donne:

Card (([n]*(I) + G,)/G,)) = n™~"n?@=%) Card (I') + G,)/G,)).
L’inégalité obtenue précédemment s’écrit donc encore:

o(n,d, TYM"N™R°g’!

m=my +2@=a)p'im’lg’’

T +dim (W/(W ntg)
( dim (W/(W ntg ) ) Card (I' + G,)/G,) deg G, < n

Le terme de gauche est toujours un entier et le terme de droite tend vers un entier
quand » tend vers linfini. Il existe alors un n > n, tel que I’on ait:

’

) Card (T + G,)/G,) deg G, < —2—— a(d)M"N™R".

T +dim(W /(W n )
r''m’a’l

dim (W/(W ntg))
Grace a (1) on obtient:

(T +dim (W/(W ntg,))

dim (W/(W n15.) ) Card (I" + G,)/G,) deg G,

g (g—g)! rimla! ddim (G/6x) deg G.
rm’la’(r—r)m-—m)la—-a’)! g!

Ce qui conclut la preuve du théoréme, en choisissant G’ =G, .

Remarque 1. On peut remplacer, dans 1’énoncé du théoréme, le plongement
M+ N+ R par aM + bN + cR (ou a,b,c sont des entiers >0). Ceci permet
d’avoir un résultat non homogéne, parfois utile dans les applications (c.f. [P3]).

Remarque 2. 11 peut également étre utile d’avoir un résultat dans le cas d’un
produit de plusieurs groupes algébriques. On part de G,,...,G, des groupes
algébriques donnés comme extensions de variétés abéliennes par des groupes
linéaires. Chaque G,(1 <i <p) est plongé dans un espace projectif P* par un
diviseur trés ample L, = M; + N; + R,, 4 la maniére du paragraphe 1. Le produit
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G =G, x - -+ x G, est alors naturellement plongé dans un espace multiprojectif par
le diviseur Li+---+L,, ou L;=L,xII,,,P5% Le résultat multihomogéne
s’énonce alors comme suit (en conservant les notations du paragraphe 1): soit P un
polyndme multihomogéne de multidegré <(d,, ..., d,), s’annulant sur I'(g) 4 un
ordre 2gT + 1 le long de W mais non identiquement nul sur G. Alors il existe un
sous-groupe G’ de G, différent de G, d’espace tangent a I'origine 5 tel que:

(T +dim (W/(W ntg))

dim (W/(W ntg)) ) Card (I +G)/G)G" - (L1 +---+ L;,)dim G’

< (dl ,l+ . .+dpL1")dim(G/G’) . (L’l + - '+L;,)dimG’.

Pour obtenir ce résultat, notons qu’on emploie encore ’homogénéité et la multilica-
tion par n sur G. Il convient de noter que les intersections sont toujours prises sur
G et que le résultat n’est de formulation semblable & notre théoréme 1 que si on
prend soin de refaire les calculs avec chaque L; décomposé en M; + N; + R; et que
les sous-groupes G’ de G sont de la forme G| x - - - x G, ou G; est un sous-groupe
de G,.
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