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Stability problems in a theorem of F. Schur

I. G. NlKOLAEV

Abstract. Schur&apos;s theorem states that an isotropic Riemannian manifold of dimension greater than two
has constant curvature. It is natural to guess that compact almost isotropic Riemannian manifolds of
dimension greater than two are close to spaces of almost constant curvature. We take the curvature
anisotropy as the discrepancy of the sectional curvatures at a point. The main resuit of this paper is that
Riemannian manifolds in Cheeger&apos;s class 9î(w, d, V, A) with Lx -small intégral anisotropy hâve Lp -small
change of the sectional curvature over the manifold. We also estimate the déviation of the metric tensor
from that of constant curvature in the W2p -norm, and prove that compact almost isotropic spaces inherit
the differential structure of a space form. Thèse stability results are based on the generalization of Schur&apos;

theorem to metric spaces.

1. Introduction

1.1. Stability results

A classical theorem of F. Schur asserts that a Riemannian space of dimension

greater than two that is isotropic at ail its points is a space of constant curvature.
Let &lt;Af, g} be an «-dimensional C°°-Riemannian manifold. Dénote by Ka(P)

the sectional curvature at the point P in the direction of the plane élément a a MP.
In what follows S(P) is the scalar curvature at P. The function eg9

S(P)
sup

&apos; &quot; &apos;m

: MP n(n —

is said to be the curvature anisotropy of {M, g} at the point P. Assume that

Vol(M) # oo and the average scalar curvature of &lt;M, g}, i.e.,

Mathematics Subject Classification (1991): 53C20, 53C21, 53C45.
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Stability problems in a theorem of F. Schur 211

is finite. Then the function

is called the curvature oscillation,

Thus, Schur&apos;s Theorem says that Riemannian manifolds of dimension greater
than 2 with zéro curvature anisotropy hâve zéro curvature oscillation. It is natural
to conjecture that a Riemannian manifold with small anisotropy has small oscillation

of the curvature (metric stability). This conjecture was stated by Yu. G.
Reshetnyak in 1969.

Another aspect of the problem of stability in Schur&apos;s Theorem is topological
stability: Does the smallness of the curvature anisotropy of a Riemannian manifold
imply that the manifold is dijfeomorphic to a space forml

Note that the diffeomorphism problem in the Sphère Theorem can be viewed as

the problem of topological stability in Schur&apos;s theorem in the class of positively
curved manifolds. Consequently, well-known works by R. S. Hamilton (1982) [14],
E. Ruh (1982) [26] and G. Huisken (1985) [15] solve the problem of topological
stability for positively curved manifolds. In the récent work by R. Ye (1989) [30],

topological stability was also proved for negatively curved manifolds. In this work
the small of the curvature anisotropy in the uniform norm was replaced by small of
anisotropy in the L2-norm.

We présent hère the following results.

We use the L^norm to measure anisotropy, namely, a compact Riemannian

manifold &lt;M, g} has ô-small intégral anisotropy if

Let 9t(«, V, k) be the class of compact C°°-Riemannian manifolds &lt;M, g&gt; with

dim M n, Vol(M) £ V &gt; 0, and diam2(M) \Kg \coiM) ^ *-

THEOREM A. Let n ^ 3. Then there is a positive constant ô(n, V, k) such that

any Riemannian manifold in class 0l(n, V, k) with ô-small intégral anisotropy and

0^0 &lt;&gt; ô(n, V, k) is diffeomorphic to a space form.

The example by M. Gromov and W. Thurston [13] shows that at least for n £ 4

the restriction on volume or diameter cannot be removed.

Note that our method is based on différent approach. In contrast to [30] the

sign of the curvature in Theorem A may be arbitrary and we use a weaker norm to
measure anisotropy. However, the constant ô(n, V, k) is not estimated explicitly.
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In 1980 I. Gribkov [10] showed that for an arbitrary small anisotropy of the

curvature of an open manifold the oscillation can be arbitrary large (see also [11]).
A compact example with this curvature behaviour was constructed by R. J. Currier
[7]-

Our principal resuit is Theorem B that solves the problem of metric stability.
First we recall the définition of Cheeger&apos;s class 9t(«, d, F, A), which consists of
compact n-dimensional C°°-Riemannian manifolds &lt;M, g&gt; for which the following
conditions hold:

dim M n, diam(M) &lt;L d, Vol(M) ;&gt; V &gt; 0, \Kg | £ A.

We claim that the Lp-norm of the curvature oscillation converges to 0 as

anisotropy goes to 0, i.e., the curvature of an almost isotropic space is almost
constant in the Lp -class:

THEOREM B. Let n^3 and 1 ^ p &lt; + oo. Then given v &gt; 0 there is a positive
constant ô(n9 d, V, A, p, v) such that the curvature oscillation of any Riemannian

manifold &lt;M, g} in Cheeger&apos;s class 9t(«, d, V, A) with ô-small intégral anisotropy and
0&lt;&gt; ô &lt; ô(n, d, V, A, p, v) satisfies

Note that an a priori estimate for the déviation of the metric tensor of an almost

isotropic Riemannian manifold from that of a space of constant curvature was
known only in the class of multidimensional conformally flat metrics ([28]); the

anisotropy was measured in the Lp -norm for p &gt; 1 and the déviation was measured

in the L^-norm.
Theorem B yields the resuit that the metric tensor of the Riemannian manifold

with small intégral anisotropy is close to the metric tensor of constant curvature in
the W2P and consequently in the Cla-norm for p e [1, +oo) and a g (0, 1). The

ïf^-norm is defined w.r.t. harmonie coordinates, see Subsec. 4.3.

We say that the metric tensor g is v-close to the metric tensor of a space of
constant curvature in the W^ -norm is there exists a metric tensor gc of constant
curvature c on M such that

THEOREM C. Let n £ 3 and 1 £ p&lt; + oo. Then given v &gt; 0 there is a positive
constant S(n9 d, V, A9 p, v) such that the metric tensor of any Riemannian manifold
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&gt; in Cheeger&apos;s class 9t(w, d, V, A) with ô-small intégral anisotropy and
0&lt;&gt;ô&lt;$(n,d, V,A,p,v) is v -close to the metric tensor of a space of constant
curvature in the W2p-norm.

Note that similar results can be obtained for almost Einstein manifolds. The
author plans to présent thèse results elsewhere.

1.2. Generalization of Schur&apos;s theorem to metric spaces

It is not difficult to define the idea of isotropicity in terms of distances only, see

Subsec. 2.4. In 1982 A. D. Aleksandrov conjectured that Schur&apos;s theorem can be

proved for metric spaces, i.e., it is not necessary to assume that the space is a

smooth Riemannian manifold or even a topological manifold. The following
theorem, which is the foundation of our stability results, gives the affirmative
answer on Aleksandrov&apos;s conjecture.

GENERALIZED SCHUR&apos;S THEOREM. Suppose that (M,p) is a (locally
compact) geodesically complète isotropic metric space {with intrinsic metric) of
Urysohn-Menger dimension ([16]) greater thon two. Then (M,p) is isometric to a
Riemannian manifold of constant curvature.

Note that our resuit is new even for C2-smooth Riemannian manifolds; the

Bianchi identities that are the basis of the classical proof require at least three

derivatives of the metric tensor.
As a direct corollary we answer an old question from Distance Geometry (see

[20] and [18]).

THEOREM D. Let (M,p) be a locally compact geodesically complète metric

space with intrinsic metric and of Urysohn-Menger dimension greater than two.
Assume that the Wald curvature KW(P) (see Subsec. 2.5) exists at each point P e M.
Then (M, p) is isometric to a Riemannian manifold of constant curvature.

We prove generalized Bianchi identities in order to bring into considération the

derivatives of the metric tensor of order not greater than 2. In addition, the proof
of the generalized Schur&apos;s theorem is based on the approximation of spaces of
bounded curvature by Riemannian manifolds with controlled bounds of sectional

curvatures and hard technical resuit, Theorem 2.1 in [25] (see Subsec. 2.1).
The Generalized Schur&apos;s theorem was announced in [23].
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1.3. Outline of the proof of stability results

The basic idea of our method is to prove the stability results as corollaries of
the Generalized Schur&apos;s Theorem.

To prove Theorems A, B we make use of the standard method of application
of Cheeger&apos;s finiteness and Gromov&apos;s compactness theorems, see Subsec. 2.1.

Namely, if Theorem A does not hold, there exists a séquence {&lt;Mm, gm }}m 1,2,..
in class 9l(n, V, k) such that Ifi^Ji,,^)-&gt;0 as m -? 00 but for sufficiently large m
the manifold Mm carries no metric of constant curvature. Without loss of general-

ity (changing the metrics by a scalar factor if necessary) we may assume that the

manifolds Mm, m 1, 2,... are in class 5R(«, 1, V, k). Gromov&apos;s theorem is used

to yield the limit space M^, which is an Aleksandrov&apos;s space of bounded curvature.

Assuming that the curvature anisotropy of the limit space is zéro we

immediately arrive at a contradiction, since by the Generalized Schur&apos;s Theorem
the limit space is isometric to a space form and by Cheeger&apos;s finiteness theorem it
is diffeomorphic to Mm9 for sufficiently large m. Therefore, to prove Theorem A
we need a statement on convergence of the second derivatives of the metric
tensors. Below we give an example of a séquence of Riemannian manifolds in
Cheeger&apos;s class for which the séquence of curvature tensors of each subsequence
has no limit even almost everywhere. Instead we prove the weak convergence of
the curvature tensors. This is enough to prove that the limit space has zéro

anisotropy.
Similar method is applied to prove Theorem B. Note that to apply Gromov&apos;s

compactness theorem we need to improve the weak convergence of the curvature
tensors of Riemannian manifolds &lt;MW, gm &gt; to Lp -convergence. We apply the ideas

from the work by E. Ruh [26] to prove that the Lx -convergence to zéro of the

curvature anisotropies implies the Lp -convergence of the curvature tensors.

2. Generalized Schur&apos;s Theorem

2.1. Spaces of bounded curvature

For metric spaces, the concepts of géodésie segment (or shortest géodésie),

(upper) angle between geodesics, and triangle made up of géodésie segments make

sensé ([1]).
Thelarea s(T) of a triangle T in a metric space is defined to be equal to the area

of a Euclidean triangle of the same edge lengths. The excess ô(T) of the triangle T
is understood to be the sum of the angles at the vertices T minus n.
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Define the upper and lower curvatures R{T) and K(T) as follows. If s(T) / 0,
then

For a degenerate triangles (Le., s(T) 0), set

f+co if&lt;5(D&gt;0 Ir/^_f+oo iîô(T)*0
-oo if^(T)&lt;0.

The upper and lower curvatures of a locally compact metric space M with
intrinsic metric p at a point P e M are

tfM(/&gt;) lim sup{R(T)}9 KM(P) lim inf{£(r)}; T- /&gt;.

A locally compact, geodesically complète metric space M with intrinsic metric p
is called a .space ofbounded curvature if for each point P € M the upper and lower
curvatures at P satisfy the inequalities: KM{P) &lt; +oo and KM(P) &gt; -oo.

SMOOTHNESS THEOREM ([21], [22]). In a space of bounded curvature
(M, p) it is possible to introduce the structure of a Riemannian manifold with the help

of local harmonie coordinates, which form an atlas 3 of smoothness C3f0C, and the

metric tensor in the harmonie coordinates belongs to least to W2pnClA for each

pe[l, + oo) and oc e(0, 1).

We recall that a System of coordinates x : U cM ~&gt;Rn in a Riemannian
manifold &lt;M, g} is said to be harmonie if Agx 0. We dénote by W\ Sobolev&apos;s

class of functions having second generalized derivatives summable to the power p.
The most important applications of spaces of bounded curvature are connected

with Cheeger&apos;s finiteness [6] and Gromov&apos;s compaetness [12] theorems. By
Cheeger&apos;s finiteness theorem there are only finitely many diffeomorphism types of
manifolds in class 9l(«, d, V, A). Gromov&apos;s compaetness theorem states that
Cheeger&apos;s class is relatively compact w.r.t. Lipschitz distance, that is, from any
séquence {(Mk,gk}} in 9{(n,d9V,A) one can extract a Lipschitz convergent
subsequence. Limit spaces in Gromov&apos;s theorem turn out to be spaces of bounded

curvature. Moreover, the completion $(«, d9 V, A) of Cheeger&apos;s class consists of
compact H-dimensional Aleksandrov&apos;s spaces of bounded curvature with the same

restrictions on dimension, diameter, volume and (upper and lower) curvatures as in
Gromov&apos;s compaetness theorem and is compact space w.r.t. Lipschitz distance [24],
[25].
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For further détails concerning spaces of bounded curvature, see surveys [2] and

[3].

2.2. Formai curvature tensor

The Smoothness Theorem enables us to define the formai curvature tensor almost
everywhere (a.e.) in M. Namely, let x : U c M -+G czRn (xl xl(X)) be a
harmonie System of coordinates in a neighborhood U of a point P in a space of
bounded curvature M. We let {gtJ }tJ« u 2, *, dénote the components of the metric
tensor w.r.t. a harmonie System of coordinates (jc1, xn). We get formai équivalents

of several standard notions of Riemannian geometry. The metric tensor {gtJ}
defines the Christoffel symbols {/&quot;£}, which détermine the covariant derivative

operator V.

By the Smoothness Theorem one can introduce a.e. in G the formai Riemannian

curvature tensor {RJtrq} and define the formai sectional curvature Ka in the direction

of the plane élément a given by a nonzero bivector. Then Rljrq glkRkrq ;

Rl}q =glkRJkrq. the (formai) Ricci curvature RtJ and the scalar curvature S are the
contractions RtJ Rkjk, S glJRtJ.

By the Smoothness Theorem

giJ 6 W*(G) n Cl%G); r* e Wlp(G) n C°&gt;&quot;(G); i,j, h 1, 2,..., n

for any p e [1, + oo), a € (0,1). The Smoothness Theorem also yields that components

of the curvature tensor are summable to an arbitrary large finite power p. In
[25] (Theorem 2.1) we proved that a.e. the formai sectional curvature can be

computed by means of limits of ratios ô(T)/s(T). In particular this implies that

We dénote by Apmn(G) the set of differential forms of degree p with values in the

space of (m, n)-tensor fields. The operator F produces Cartan&apos;s absolute exterior
differential D, which assigns to a differentiable form in Apmn(G) a form in Apn^nl(G).

The absolute exterior differential of a smooth form &lt;P {&lt;PlJ} in A\Q(G) is given by

D&lt;PlJ d$tJ -h &lt;Pkj A û&gt;1 + #* A û&gt;i» (J)

where œk rktj dxJ.

We define the (formai) curvature form Q {^}IJ==1&gt;2&gt;
&gt;n

in A2XA(G) by

l
Qv g*Qi=^Ryqdxr f\dx«.
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2.3. Generalized Blanchi identifies

To motivate our generalization of the classical Bianchi identities we first assume
that the components of the metric tensor {gtJ} belong to class C°°. For smooth
Riemannian manifolds the Bianchi identities are

(see [5], Sec. 191).

Let p e [ 1, + oo). We dénote by LpAjt0(G) the set of forms # {$iJ} in AlQ(G)
for which $lJq e Lp{G\ ij, r, q 1, 2,..., n (** $% dxr a dxq). We dénote by
A™(G) the set of C^-smooth scalar differential forms x of degree m, which are

compactly supported in the domain G.

Any forai # e LpAlfo(G) defines a tensor current in G, namely

f *v A x5(#, x) {(#v, z)}; (^

We define the absolute exterior diflferential (/)$, x) {(JD*^ x)} as

-^^ A rfX + (^&quot;7 A *lk + ^&apos;&quot; A û&gt;t) A

Intégration by parts and Eq. (1) show that in the case of C°°-Riemannian
manifolds the Bianchi identities can be rewritten as

(DQ, x) 0, for every x e ^o&quot; 3(^)-

Now we turn to the case of a space of bounded curvature. We will need the

construction of Sobolev&apos;s averaging operator ([8]). Recall that the C°°-function
q&gt; : Rn -? R+ is the averaging kernel if the support of q&gt; is contained in the unit bail

B(0,1) c R» and J^ &lt;?)(t/) rfw 1. Consider a domain G&apos; ^&gt;G and for the sake of
simplicity assume that G is a bounded domain in Rn. Then for sufficiently small e

the operator Ae : Lp(&amp;&apos;) -&gt; C°°(G),

is well defined.
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LEMMA 2.1 (Generalized Bianchi identities). Eq. (2) holds in a space of
bounded curvature.

Proof. Let x : U c M -* G a Rn be a harmonie System of coordinates in a space
of bounded curvature (M, p). Consider x e Aq~3(G) and a domain Go such that
supp x c Go c= G. Sobolev&apos;s averaging operator Ae : L/,(G0)-^Coo(G0) is used to
construct the averaged metric tensor {g*7}ÏJ=i,2, ,n in Goigïj K(gij))- The
Smoothness Theorem and elementary properties of the operator Ae (see [8])
yield

\gtj -guIci^Go)» \8Ïj ~Ztj\w2(GQ) -&gt;0 as e -? 0 + (a e (0, 1),p e [ 1, + oo)).

Then the differential forms œetJ and OfJ, /,y 1, 2,..., w, computed by metric
tensor {g*tJ} satisfy the following estimâtes

lûf-Oîlvoo)^0 ase-^0+. (3)

Since &lt;G0,^&gt; is C°°,

(i)eOe, x) 0, for every x e ^S &quot; 3(G0).

By (3) the limit of the above équation as e -?0 is Eq. (2).

2.4. Isotropic metric spaces

Recall that a neighborhood of a point in a metric space is linear if it is isometric
to a straight line.

We say that isotropic curvature K(P) exists at the point P of a locally compact
metric space M with intrinsic metric p if no neighborhood of P is linear and

KM{P) KM(P) # oo. The isotropic curvature at a point of a Riemannian manifold
exists if and only if the sectional curvature at the point does not dépend on plane
éléments.

A locally compact metric space M with intrinsic metric p is said to be isotropic
if the isotropic curvature exists at each point of M.

Note that existence of the isotropic curvature at each point implies continuity of
the function K(P). We will also use the obvious fact that a geodesically complète
isotropic space is a space of bounded curvature.
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2.5. Wald&apos;s curvature

In Distance Geometry (see [4]), a large rôle is played by Wald&apos;s curvature [29],
[20]. Wald&apos;s définition is équivalent to the following:

A quadruple of points in a metric space has embedding curvature equal to k if
it is isometric to some quadruple of points on the simply connected surface of
constant curvature k. A triple of points is called linear if it is isometric to a triple
in the straight Une. Let (M, p) be a locally compact metric space with intrinsic
metric p in which no neighborhood is linear. Then (Af, p) has Wald&apos;s curvature
Kw(p) at P if for each e &gt; 0 there is a a &gt; 0 such that each quadrupole Q of points
that contains a linear triple of points and is in the bail of radius a about P has

embedding curvature k(Q) admitting the estimate

(Wald&apos;s curvature can also be defined equivalently in ternis of embedding of
quadruples in 3-dimensional spaces of constant curvature.) After this définition was
introduced, it was developed in a two-dimensional theory. It was conjectured to
apply to more gênerai spaces than those of constant curvature in dimensions greater
than two [18]. In fact, as follows from Theorem D, constant curvature spaces are
the only higher-dimensional spaces possessing Wald&apos;s curvature.

Note that by Theorem 3.1 in [18]

whenever one of thèse curvatures exists. Thus, the class of isotropic spaces coïncides
with the class of spaces possessing Wald&apos;s curvature.

2.6. Proof of the Generalized Schuss theorem

Observe that (M, p) is a space of bounded curvature. By isotropicity and
Theorem and 2.1 in [25],

QlJ=-K(x)dxl

Lemma 2.1 yields that for ij - 1, 2,..., n, i #y, and each % e Al~\G)

f *(*)[-&lt;&amp;&apos;A^&apos;A*+^
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We specify the form x as follows

where k e {1, 2,...,«}/{/,;}; feA%{G\ the notation Je&apos; etc. means that x1 is

missed.

Observe that

Then Eq. (4) for the specified choice of x becomes

f£-(x)dx=0; fc l,2,...,«; feA&amp;G).

The latter équation means that the generalized derivatives of the distribution
f-*$GK(x)f(x)dx vanishes and therefore K(x) equals a constant c a.e. As men-
tioned above the function K(x) is continuous and consequently equals c everywhere
in G. Then by [1] (Af, p) is isometric to a Riemannian manifold of constant
curvature.

Remark 2.1. Let (M, p) be a space of bounded curvature with isotropic formai
sectional curvature. Making use of results in [27] it is not difficult to show that the

formai sectional curvature can be extended to a continuous function and we
conclude that (M, p) is isometric to a space of constant curvature.

3. Weak convergence of curvatures in class *R(n9 d9 V, A)

3.1. Example

Consider the séquence of C°°-Riemannian metrics

ds2k » exp(4(*, y))(dx2 -h dy\ k 1, 2,...,

k, y) » 73 (°°s nkx + cos
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Observe that the séquence {&lt;&amp;*}* »i,2, converges to dsl~dx2 + dy2 in the
C1&lt;x-norm for every a g (0, 1). A direct compilation shows that

K(ds\) — exp( —73 (cos nkx + cos nky) Vcos nkx + cos nky).
2 \ k J

Since Àk(x,y), k 1,2,..., are periodic functions of variables x and y, the
above metrics can be realized on a torus T2. Clearly the séquence {|i£(dy*)|} is

uniformly bounded. The séquence of Riemannian manifolds {&lt; T2, ds\ &gt;}* » lf 2, is
C1 &quot;-convergent to &lt;T2, dsl} and consequently the manifolds &lt;T2, dsl} are in the
class 91(2,2, \92n2) for sufficiently large k. At the same time the séquence
{K(dsl)}k=s i&gt;2, converges to zéro in the weak sensé and there is no subsequence
converging to zéro almost everywhere (in particular, in the Lp-norm).

3.2. The Cl°&apos;-convergence of metrics in Cheeger&apos;s class

We will need the following spécifie results on harmonie coordinates and

convergence of metrics in the class 9î(n, d, F, A).
(I) [17]. Let &lt;Af, g} € 5R(n, d, F, A) Then there is a subatlas 3&apos; in the atlas 3 of

harmonie coordinates in M such that any harmonie System of coordinates
x : U a M -» Rn in 3&apos; is defined on the bail U of the radius r r(n, d9 K, A) &gt; 0 and
for each a e (0, 1), the contravariant and covariant components of the metric tensor

g w.r.t. arbitrary System of coordinates x in g&apos; satisfy the following a priori
estimate:

\gu\c^ \gtJ |cm ^ C(«, &lt;/, K, A, a), i,y 1, 2,..., n.

(II) [9]. Let «M*, g*&gt;}*» 1,2, be a séquence in &lt;R(n, rf, F, A), which is Lips-
chitz convergent to &lt;Af, g), where M is a C°°-smooth differentiable manifold. Then
there is a subsequence {&lt;M*m, g*m &gt;}m „ u 2, an^ f°r anY w 1,2,..., there exists

a diffeomorphism im: M-* Mkm such that

(i) for every pair of Systems of coordinates x :U &lt;=:M-&gt;Rn in 3W) and
rFcM-^i?&apos;1 in 3W*m) (FciM(l/)) the coordinate functions yq~iqm{x\
x2,..., x&quot;) satisfy the following estimate for any a 6 (0,1):

\ x\ jc&quot;)|C2,« £ C(n, d, F, ^, a) (6)

(estimate (6) holds also for the inverse map i~!);
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(ii) given any point P e M, there is an open set U c M containing P and a local
coordinate chart x&apos;. U&lt;zM-+G cRn in 3&apos;(M) such that

lim |£?y*-gJCM(G)=0, (7)

where gkm **£*„, and {ê%m) %t)-1,2, ,* are components of the metric tensor g^
w.r.t. the System of coordinates x :U-+G.

In what follows we will refer to the séquence (Mkm,gkm} as Cïlx-convergent.

Remark 3.1. It is possible to improve estimate (6) to a C3a-bound. The proof of
(6) in [9] was based on the following estimate. Let xl:VlczM-*Rn9
l as 1, 2,..., N, be harmonie coordinates in M. Assume that V^ n Vv # 0. Then
the functions yq y%(x\ x2,..., x% ju, v 1, 2,..., N {y^ xv ° x&quot;1) satisfy
the elliptic équation

On account of (I), (8) and usual Schauder-estimates argument, \yq\C2,« is

bounded by a constant depending only on n, d, V, A and a.

It is well-known that a System of coordinates xl : Vt cz M -^ Rn is harmonie if

(see Eq. (1) in [27]). Then Eq. (8) takes the form

By (I) and Schauder estimâtes we conclude that the C3a-norm of the functions

yq(x\ x2,..., xn) is bounded by a constant depending only on «, d, V, A and a.

Then by following arguments in [9] (see p. 133) we improve the bound (6) to the
C3&apos;a-norm.

3.3. Weak convergence of curvatures

Let &lt;M, gk &gt;*« 1,2, be a séquence in the class 9t(n, d, V, A). Assume that

lim gk=g.
k-*ao
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Consider a domain U a M. A pair of smooth vector fields X&gt; Y on U is called
admissible if

v v(X, Y) inf {(\X\2\Y\2) - &lt;*, Y&gt;%} &gt; 0.
Pe U

w.r.t. the scalar product given by g.
In what follows a\P means the plane élément defined by the bivector X a Y\p.
The séquence {K(gk)}kmt u2, is said to be weakly convergent to K(g) (notation:

K{gk) -? K(g)) if for any point P e M there is a neighborhood U c M of the point
P and a coordinate chart x : U -&gt;G c Rn in % with the following property:

For every admissible pair of vector fields X, Y on U and for every smooth

compactly supported function f ç A%{G)

lim f [Ka(gk) - *,(*)] LA*) dx 0.
fc-oo JG

LEMMA 3.1. Let {&lt;M,g*&gt;}*=12&gt; be a séquence in 5R(«,d, V, A) that is

ClA-convergent to a compact space of bounded curvature &lt;Af, g). Then

Proof. Consider the coordinate chart x : U -*G &lt;=¦ R&quot; defined in (ii). Let Rk be

the curvature tensor of the Riemannian manifold {M, gk &gt;. Then

»*(*) [&amp;(*, X)gk{Y, Y) -gk(X, Y)%, xeG.

Let v(x) [g(X, X)g(Y, Y) -g{X, Y)%. Observe that vk(x) ^p/2&gt;0 for suffi-

ciently large k and consequently lim*,,,»:, vkl(x) v(x)~l. We conclude that

lim !&lt;*,(*, Y)Y, Xyvk&apos;-{Rk(X, Y)Y, *&gt;~ W&gt;
A:-» oo

So, to prove the lemma we need to establish that

Y)Y, X} - &lt;R(X9 Y)Y9 Xy,\J^- 0.lim f
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It is enough to show that

lim f (R&lt;%q-Rrjpq)(f&gt;(x)dx 0

for every smooth function &lt;j&gt; compactly supported in G.

Intégration by parts yields

- rlJprlrq)&lt;t&gt; - (r™r$ - rlrprJlq)&lt;i&gt;
1 dx.

The Cla-convergence ensures that the limit of the right hand-size equals zéro.
This complètes the proof of the lemma.

The weak convergence of the scalar curvature is defined similarly.

COROLLARY 3.1. S(gk) -*&gt; S(g) ask-+oo.

3.4. Proof of Theorem A

By Subsec. 1.3., Theorem A is a direct corollary of the following lemma.

LEMMA 3.2. Let {(M,gky}k=ïf2, be a séquence in 5R(«, d, V,A) that is

Clt(X-convergent to &lt;M, g&gt;. Assume that the curvature anisotropies egk satisfy

lim f egk(P)&lt;t&gt;(P)dVolgk(P)=0 (9)
M

for every smooth compactly supported function &lt;f&gt; on M. Then {M, g} is a space of
constant curvature.

Note that Lx -convergence, i.e.

lim f egk(P)dVo\gk(P)=09

implies (9).
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Proof. Let x:U czM-+G^Rn be a coordinate chart in 3&apos;. Assume that
supp 0 a U. Consider a pair of admissible vector fields X and Y and the plane
élément a defined by the bivector X a Y. We integrate the inequality

Observe that the fonction

x-w

is smooth and compactly supported in G for any x eG and rç &gt;0. Hypothesis (9)
ensures that for any x eG and rj &gt;0 the limits of both sides of inequalities (10)
equal zéro. On the other hand, Lemma 3.1 and Corollary 3.1 yield that

Consider the limit of the right-hand side of the above équation w.r.t. t\ and

observe that

for almost ail x eG. Since the fonction \g(x)\ is positive, we conclude that

eg(x) 0 a.e.

The Generalized Schur&apos;s Theorem together with Remark 2.1 ensure that the

limit manifold (M, g} is a space of constant curvature.
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4. Metric stability

4.1. Lp -bounds connected with scalar curvature

Let &lt;M,g} be a Riemannian manifold in 5R(w,d9 F, A), r&gt;0 and

x : U cM-*B(6r) c R&quot; be a harmonie System of coordinates in 3&apos; satisfying (5).

c, i.e.

i r /x — u\
S(x) — q&gt;[ \S(u) du, x e B(r).

r JB(5r) \ r /
Consider a C°°-smooth cut-off function 6 : Rn-+R such that

(i) supp 6 c B(2r).
(ii) 0(z) 1 for z € B(r).

Hereafter n ^ 3. We specify the function Q(x) as follows.

Cn jBOr)
x €

where cn —n(n — 2)kn and A:w equals the volume of the unit bail in Rn.

We will need the following modifications of Lemmas 1, 2 in [26], which one can
easily get from [26].

LEMMA 4.1. Let 1 &lt;p &lt; +00. Then

max
1,2, ,n ^&apos; dxJ LpiBir))

,d, V9A9p9r)\sg\Lp{M).

Dénote by A the Laplace operator d2/dxl2 + d2/dx22 + • • • + ô2/dxn2.

LEMMA 4.2. Let l &lt;&gt;p &lt;&gt; +00. Then

\AQ-(S-S)\himn &lt;&gt;C(n,d, V9A9p9r)\e8\LpiM).

COROLLARY 4.1. \S- S\Lp(M) £ C\n9 d, V, A9p, r)\eg\LpiM}.

Note that in contrast to [26] we will apply Corollary 4.1 for fixed r.
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4.2. Proof of Theorem B

Let &lt;Af, g) be a C^Riemannian manifold and 1 &lt;&gt;p £ + oo. Recall that the set

of measurable functions ij/ : M -&gt; R for which

&lt; +00,

forms the class LJM). For p +oo we require that

We argue by contradiction. Let 1 &lt;&gt;p &lt; + oo. Assume that there is v &gt;o and
there exists a séquence of Riemannian manifolds {(Mk,gky}kwtU2t in the class

n, d, V, A) such that,

(i) lim^^oo|e^|Ll(M&amp;)=0.

(ii) \S^(P) - S&lt;£\{M) ^ v, A: 1, 2,...

Because of Cheeger&apos;s theorem we may assume that Mk M for fc 1, 2,...
Then Theorem B immediately follows from:

LEMMA 4.3. Let 1 £/&gt; &lt; +oo, n^3 anrf {&lt;^&gt;^&gt;}*-i,2, ^ fl séquence in

the class 9i(n, d, F, vl) for which (/) w satisfied. Then there exists a subsequence

{&lt;M,gkm&gt;}m=h2t such that

lim
m-* oo

/. We begin with the following remark. Let [fk : M-+R)km.Xtlt be a

séquence of uniformly bounded measurable functions on M, which is Lx -convergent
to the function /, namely,

- f

1,2,...

On account of bound (5) the Lj-norm defined w.r.t. gk is équivalent to the

w.r.t. a fixed metric gko. Then Lx-convergence ensures that there is a
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subsequence {fkm} such that

lim fk (x) =/(jc) a.e. in M
m-KX&gt;

m

Since M is compact and the séquence {fkm}m \,2, îs uniformly bounded,
Lebesgue&apos;s theorem is applied to yield that for each 1 ^ p &lt; + oo

Thus, without loss of generality we may assume that the Lx -norm in (i) can be

replaced by the Lp-norm for p g (1, H-oo). This remark will allow us to apply the

results of Subsec. 4.1.

Consider S(fc\x) Ar(Sik%, k 1, 2,... Then

f
B(5r)

?A&lt;kXu, xeB(r),

where we put S(u) 0 outside the bail 2?(5r).

Observe that

Gromov&apos;s compactness theorem, (II), Corollary 3.1 and Lemma 3.2 ensure that
there is a subsequence {(M,gkm}}m==h2, witk the following properties:

(a) The séquence «M, gA.m&gt;}w 1&gt;2, Cla-converges to a space of constant
curvature &lt;M, g&gt;.

(b) S«»&gt;Xx)-*Sa.

Since the séquence {S(am)}m=sh2, is uniformly bounded, without loss of
generality we may assume that

(c) lim^S^-S,.
Note that for each x in the bail B(r) the function ^(w) cp ((jc — u)/r) is

C°°-smooth and compactly supported in Rn. Because of (b) we conclude that the

operator, Ar transforms the weakly convergent séquence {Sikm\x)}m ^h2, into the

point-wise convergent séquence {Sikm\x)}mamU2, » namely,

lim S&lt;*»\x) * Sa Ar(Sa) Sa9 xe B(r).
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It is well-known that

Thus, we conclude that the séquence {I^^^^Jm-1,2, ls uniformly bounded.
Then Lebesgue&apos;s theorem yields that

lim \S(km\x) - Sa\L 0, 1 £p &lt; 00.

By the triangle inequality

Let 1 &lt;p &lt; +00. By (i) and Corollary 4.1 we obtain that

lim \SP-\x) - S&lt;*-Xx)\L =0,

and we prove 11) for p &gt; 1. We apply the remark at the beginning of the proof to
find a subsequence of the séquence «M,gkm)}m-i,2, » f°r which (11) can be

improved to p 1. This complètes the proof of the lemma.

4.3. Proof of Theorem C

Let &lt;M, g} e 9l(n, d, F, A). Consider a metric tensor g on M. Then

sup max {\gtJ\W2p{G)}, l£p
1,7= 1,2, n

where sup is taken over the set 3&apos;(&lt;^ g}) of harmonie Systems of coordinates

x:UczM-+G^Rn9 U B(r(n, d, F, /l)/2) (12)

and {giy} are components of the metric tensor g in the coordinate chart (12).

LEMMA 4.4. Let 1 &lt;&gt;p &lt; +oo. T/iere ft a constant C(n,d, V9Â,P) &gt;0

/or ^er.y &lt;M, ^&gt; //i «(«, rf, V, A)
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Proof. It is well-known that components of the metric tensor in harmonie
coordinates satisfy the following elliptic équation

iJ=

where I(g) dépends only on gtJ and their first derivatives, see Eq. (7) in [27].
Consider a C°°-cut-off function ç(P) that is compactly supported in the bail
B(r(n, d, F, A)) and equals 1 on U. Components of the tensor ç(P)g(P) vanish on
the boundary of the bail B(r(n, d, V, A)). Meanwhile, components of çg satisfy an

elliptic équation similar to (13) with the right-hand side depending in addition on
derivatives of ç. By (5), Theorem 15.1 in [19] yields the ^-bound of the metric
tensor g. D

Now we turn to the proof of Theorem C. Again, we argue by contradiction. Let
1 ^ p &lt; + oo. Assume that there is v &gt; o and a séquence of Riemannian manifolds

{{Mk, gk &gt;}a;
1,2, *n the class 9t(«, d, V, A) such that (i) holds and

(ii)&apos; There is no constant curvature metric g% on Mk, k 1, 2,... such that the

following inequality does hold

Then Theorem C immediately follows from:

LEMMA 4.5. Let l^/&gt;&lt;+oo,n^3 and {{Mk, gk &gt;} be a séquence in the class

5R(n, d, V, A) for which {ï) is satisfied. Then there is a subsequence {(Mkm, gkm &gt;} such

that for any m 1, 2,..., there exists a metric of constant curvature gckm on M with
the following property:

lim \gkm-gckm\wHMkm*S- (14)
tft —? 00

Proof. Let 1 ^p &lt; +oo. Gromov&apos;s compaetness theorem, (II) and Theorem B

ensure that there is a subsequence {^Mkmgk &gt;}m=B
1&gt;2, with the following proper-

ties:

(a) The séquence {&lt;M*m,g*m&gt;}m3xl&gt;2, C1 &quot;-converges to a space of constant
curvature &lt;Af, gc}.

(b) The séquence of the scalar curvatures {S(km\gkm)} is Lp-convergent to the

constant c.

Hère we keep the notation of Subsec. 3.2.
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Consider a coordinate chart (12) in 3&apos;(&lt;M,gc». We claim that

lim \giï&quot;)-geu\
m* 00

As in the proof of Theorem B we may assume that p is sufficiently large.
Let &lt;M, g&gt; e 9t(w, d, F, A) and lg be the following differential operator

Let ç(P) be the cut-ofF function that was defined in Lemma 4.4. We also

introduce the notation: G&apos; x(B(r, n, d, F, A)/2) so that ç(x) 1 for x € G&apos; and

supp çcG.We let u(x) be ç(x)v(x); v(x) g/y(x), a: e G. By (13)

/f (11) 2çHv + çl(g) + /f (ç)i? + /, (ç, »), (16)

where

&apos;.&lt;—&quot;££¦

We introduce the following notation:

hkm~l*&quot;* lgc — 1,

vm(x) gfjm \ ujx) ç(xKW,

vo(x) gfy, w0W ç(x)vo(x), xeG, m 1, 2,....

Let Am(x) um(x) - uo(x). Then

Khm) [/m(nm) - /(«)] - (/m - /)(ww). (17)

On account of (a) and Lemma 4.4,

lim |(/m-/X««)|M*)»0.

On the other hand, due to Eq. (16),

lm(um) - /(»)

- /(Ç)f] + K»(Ç, »„) - &apos;(Ç, »)]•
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Because of (a) the limits of the Lp-norms

WiëkJ - /teOlU/G), |/m(Ç&gt;« - KÇ)v\Lp{G), |/m(ç, Vm) - /(Ç, v)\Lp(G)

are zéro.
As in the proof of Lemma 4.3 we may assume that the convergence in (i) can

be improved to the Lp-convergence for arbitrary p&gt;\. This together with (b)
ensures that

lim
m—* oo

Finally we conclude that the séquence {|/(Am)|jL (G)} converges to zéro as m -? oo

and consequently the right-hand side of Eq. (17) converges to zéro in the Lp-
norm. In other words, the functions hm(x, y), m — 1, 2,... satisfy the following
équation:

l(hm) &lt;Pm, where lim |#mL(G)=0 and hm(x)=0, xedG.
m-* ce y

In addition the property of the C1&gt;a-convergence ensures that

lim |AW |C(G) 0-
m-* oo

Then Eq. (15) follows from a priori bound (11.8) of Ch. III in [19].
Observe that due to the improved bound (6) (see Remark 3.1), (14) follows

from (15) if we put

This complètes the proof of Lemma 4.5.
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