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Remarks on approximate harmonic maps

YUMNEI CHEN* AND FANG HuA LIN**

§1. Introduction

The analytical difficulties in the study of harmonic maps come from the fact that
the maps take their values in a curved, compact Riemannian manifold N. One
natural way to tackle such a problem is to use a so called penalty approximation,
that is, to relax this nonlinear, nonconvex constraint. Roughly speaking, one
studies, instead of the standard Dirichlet integrals, the following variational integral

f [IVU|2+8—15d2(U, N)] dx, (1.1)

where M is a compact, Riemann manifold with (or without boundary) M, and
U: M - R Here we view, via Nash’s isometric embedding, N as a compact
submanifold of R*, and d(U, N) denotes the distance from U to N.

The above approach has been employed successfully by Chen and Struwe [CS]
in establishing the global existence of weak solutions to the heat flow of harmonic
maps. Moreover, to study such approximate energy functional (1.1) may also be
natural in the Ginzburg—Laudau’s approach to various physical problems, see, e.g.,
[BBH] and references therein.

The present note is bought out by our previous work [CL] on the evolution of
harmonic maps with Dirichlet boundary conditions. We shall establish here first the
Schoen—Uhlenbeck’s Theorem, or ‘“‘small energy regularity theorem”, for energy
minimizing maps. The problem is essentially reduces to obtain an a priori estimate
for a family of smooth approximate solutions with small energy. As an application
of our method we shall also prove one of the main results of [BBH2] concerning
asymptotic limits for the Ginzburg—Landau model of scalar fields.

* The research is partially supported by the NSF-grant DMS # 9123532,
7" The research is partially supported by the NSF-grant DMS # 9149555.
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162 YUNMEI CHEN AND FANG HUA LIN

Next we shall consider the uniqueness of suitable weak solutions to the heat
flow of harmonic maps. As a first step we show that the weak solutions obtained in
[CS] and [CL] coincide with the classical solution whenever the latter exist. This
result is rather similar to the uniqueness theorem of J. Serrin [S] for the Navier—
Stokes equations.

Uniqueness of weak solutions to the heat flow of harmonic maps fails in general
as was shown by J. M. Coron et al. [C]. It remains an interesting open question
whether certain suitable weak solutions (such as whose constructed in [CS] and
[CL]) will be unique.

§2. Regularity of energy minimizing maps

Let N be a compact smooth Riemannian submanifold of R*. As we shall discuss
only the regularity of energy minimizing maps into N, the metric on the domain
manifold does not play an important role (as long as one assumes a certain minimal
smoothness). To simplify the presentation we therefore assume that the domain of
our maps is the unit ball BT = {x € R” =|x| < 1} in R™, m 2 2, with the standard
Euclidean metric.

The well-known Schoen-Uhlenbeck Theorem states that

THEOREM. [SU]. Let U : By — N be an energy minimizing map. Then there is
an & = gy(m, N) > 0 such that, if [ |VU|* dx =¢ < &, then

sup |[PUP < C(m, Ne. (2.1)
By2(0)

Here we shall give an alternative proof of the above statement. To do so we
consider a family of approximate solutions Uj, 6 € (0, 1) where Us = BT — RX be
defined as follows

U(x) if x € B7,(0)

= 2.2
Ustx) {Va(x) ifL<|x|<1 (2.2)
where V; minimizes
1
L) = {]VVP + = d¥(V, N)]dx (2.3)
\ B\\B;; 0

subject to the Dirichlet boundary conditions V' = U on 0(B;\B,,).
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Since I;(Vs) < I;(U) =fa,\3,,2|VU|2 dx, we may choose a sequence of &, | 0
such that U; = U;, converges to some U, weakly in H'(B,, N) and converges
strongly to Uy in L*B,, N). Moreover [, |[FUy|*dx <[, |[FU[dx by lower
semicontinuity of the energy.

Since U is an energy minimizing map, we see U, must also be energy minimiz-
ing. Moreover, U;— U, in H'(B,, N) by Fatou’s Lemma. Finally, for all i suffi-
ciently large, I; (V) <& <¢&.

Next, we let e;(V) = |VV|* + 1/6>d*(V, N),0 < < 1. Then from [CS] (see also
[CL]) we have the monotonicity inequality for V:

&(r, x) < D(p, x) (2.4)

for all x € Bys;6\Bojis, 0 <r < p <dist(x, d(B,\B,;;)). Here &(r,x)=r>""{g,
es(Vs) dx - exp(cr). Also we have the Bochner-type inequality:

de > —ce(1+e) in B\B,, (2.5)

where e = ez (V).
By (2.4) and (2.5) and since IB,\BW es5,(Vs) dx <e, we have the following
estimate as in [CS]:

sup €5 (Vs,)(x) < Cm, N)e (2.6)

5
851x|<6

provided ¢ < gy(m, N).
Let i — c0. we obtain, in particular, that

0SC U, < C/e < C\ /% (2.7)

0B 34

Since U, is an energy minimizing map, Uy(Bs;,) is contained in ball B, /(p) for
some p € N.

To see this, we let p, = U x(x,), for some x, € 0B;,4. Let By, /;(po) be the ball of
radius 2c./¢ in RX so that U(0Bs,) < B, z:(po). Let m:RX— B, .(p,) be the
retraction map, i.e., n(x) = x if x € B, /;(p,), and n(x) = 2c\/— (x —po) /[x pol if
x ¢ B, /;(po)- Since \/é < \/8—0 is very small, and N is a smooth submanifold,
Po € N, we see the nearest point projection map 0B,. /;(po) 4N N B, /:(po) is
well-defined and is distance decreasing map from 0B, /;(po) to N N B, /:(po)-

Now, if U, is energy minimizing with U *(QB:,/,,,) < B, /;(po), then
O=nyonoU,: By, — N is also energy minimizing with U = U, on 8Bs,. In fact,
[P VO dx < [5, [P U«[* dx and the equality is valid if and only if Ux(Bys) =

Bzc\/E(Po) NN.
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Having seen U,(Bs4) < B, /:(po) NN, the regularity of U, on B, follows
from the standard elliptic theory (See e.g. [J]). By our definition of U,, U, = U on
B,),, we, in particular, obtain that

sup [FUPP<C j [VUP = ce. (2.8)
By B,
QED.

§3. A theorem of Bethuel-Brezis—Helein

Let Q@ < R? be a smooth bounded connected domain. Consider the functional

EU) = J WUP+ - f (UP = 1y? G.1)
fo) 2e% Jo

which is defined for maps U € H'(Q, C), we let g : 0Q — C be a smooth map with
lg(x)| = 1, Vx € 8Q. We also assume that deg(g, Q) = 0 and hence there is a smooth
extension of g*: Q —» S' with g* =g on Q.

By a theorem of C. B. Morrey, there is a map U,: Q - S' which minimizes
fo [PU| dx over the set H (2, S') ={U € H'(2, C) : u = g on 0Q}. Moreover, U,
is smooth. When @ is simply connected, a simple lifting argument shows that
U, = e'%. Here ¢, is the harmonic extension of ¢, e’ =g on 0%.

Here we want to show a uniform estimate for the minimizers U, of (3.1) for
0 < & <1 under the hypothesis that deg(g, 0Q) = 0.

To do so, we note first that

E.(U.) SJ |V U, dx, for all 0 <eg < 1. (3.2)
Q

For any sequence &; — 0, there is a subsequence of U, which converges weakly in H'
and strongly in L? to some U, e H'(Q,S'). Moreover, U,=g on 9Q, and
o [PU & dx < [o [VU,[* dx. By the minimizing property of U,, we see U, again is
a minimizer of [, |VUJ? dx over Hy(R, S"). In particular, Ux is smooth. Moreover,
it follows from (3.2) that U, converges strongly to U,. We therefore obtain the
following

LEMMA. For any g, > 0, there is an ry > 0 depending only on 0S2 and g such that
if U, is a minimizer of (3.1) then

1
IPUP+=— (U,P = 1)? |dx < ¢ (3.3)
QnB(x,rg) 28

for all x € Q provided 0 < & < £4(ry, &)-
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Proof. Let F denote the set of energy minimizing maps over the set H (2, S').
Then it is easy to see that F is compact in H!(Q, S'). Moreover, by Morrey’s
theorem, one has for any ¢, >0, Uy e F

L B )|VU*|2dx < g2 (3.4)

for all x € Q and 0 <r < r, provided that r, is chosen to be suitably small.

Now we apply the convergence argument above to conclude that (3.3) is valid
for all minimizers U, whenever 0 <¢ < ¢,. Note that 1/e? [, (|U,|* —1)*dx >0 is
e—0". '

THEOREM. Let U, be a minimizer of (3.1) over the set Hy(Q, C) with
deg(g, 0Q2) =0. Then

sup [ vU,|? + (Iu P—1) :l < C(g), (3.5)

for all 0 <e < 1.

Proof. 1t is obvious, by the maximum-principle, that |U,[<1 on . Thus
U, |(1 —|U,[)1/e* < 1/e? < 1/e whenever € 2 &, = e4(g) > 0. It follows that (3.5)
is true whenever & = ¢,.

For 0 <& <e&,, we use the estimate (3.3). It follows from the identical argu-
ments as in the previous section, that one obtians the interior estimate

sup []VU s (1 —|U.p ] < C(g, Q) (3.6)
ul

for all 0 <& <e¢,.

For the estimate near the boundary of £, we refer to [CL]. We should point out
that the monotonicity inequality in the present situation is automatically valid.
Combining (3.6) with the boundary estimate one concludes

sup [[VU |2+ s(1 -0 ] < Cleg, o) 3.7

for all 0 <& < ¢e,.

Remark. When Q is, in addition, simply connected, the energy-minimizer over
H(Q, S") is also unique. In this case, one can show that U, —» U, energy-minim-
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izer uniformly and strongly in H'(Q, C). Moreover, as in [BBH2], one has, for
we = 1/82(1 - erIZ) = 09

{2824!‘/’5‘"'#52 —4|VU5|22 ——Cl, forall0<e < €y (3 8)

!/la |6(2 =0

Let x, € 2 be such that {,(x,) = max, .5 V¥.(x) >0, then 4y,(x,) <0, and thus

Y.(x) < C,. (3.9)

From (3.9) we obtain [|4U, || w@ < C;, and U, - U, in C'%(R),Va < 1, fol-
lows.

§4. Uniqueness problems

Let M be a compact Riemannian manifold with possible nonempty boundary
0M, and let N be as before. The equation for harmonic maps U : M — N can be
written as

AU+ AWU)VU,VU) =0 (4.1)

where 4 is the Beltrami-operator on M, and A(U) is the second fundamental form
of N at U. Thus the corresponding equations for the heat flow are

%l?] — AU = AWU)(VU,VU), (x,) € M x (0, ). (4.2)

Given initial data U, : M — N, one then is interested in solving (4.2) with
U(x, 1) = Uy(x) for (x, 1) e (M x {0}) U(OM x (0, 0)). (4.3)

Suppose U,, M, M and N are smooth. It is well-known (see, e.g. [J]) that the
problem (4.2) (4.3) has a unique smooth solution U(x, ?), (x, ) e M x [0, T], for
some 7 > 0 which may depend on the various data mentioned. On the other hand,
it was shown in [CS] (for the case M = ¢) and [CL] that (4.2), (4.3) has a global
weak-solution which is smooth off a relatively small closed subset of M x (0, o).
One of the natural question is that whether such suitable weak solutions obtained
in [CS] and [CL] are unique.

Here we want to show that the weak solution obtained in [CS] and [CL] must
coincide with the classical solution on the time interval [0, T*], here 0 < T* < o0 is
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the first time of blow-up for the classical solution. The latter means that there is a
smooth sohition U of (4.2), (43) on the time interval [0, T*) and that
Hm, , 7+ |[VU| Lo ) = + .

For this purpose, we adopt the same notations as that in [CS] and [CL].
Consider a sequence of approximate solutions U* such that

0 d (d*U* N)\-

= US— AU+ ky (U N) = (—~—(—~5——)) =0 (4.4)
in M x (0, o),

Uk(x, 1) = (Uy(x), on (M x {0}) u(OM x (0, o0)). (4.5)

We claim there are positive constant C,, T, depending only on U,, M, M, N
such that

sup e(UX < C,, fork=1,2,... (4.6)

M x [0, Tol

where e(U*) = |VU** + (k/2)x(d*(U*, N)).
In fact, for any x,e M,0<t,< R,, (R, is the injectivity radius of M) and
¥ o= \/g, one has that (we adopt the same notations as that in [CS] and [CL])

e(Uk)G(xO,ro) |I=O ¢2( lx - xoD dx

R

/4
< —29 (j +J >e(U‘<)G(X0, o =0 93(|x — xo)) dx
3'81_2)/2 Rm\Blgl—z)/z

< Cty= P | Up|lcray + Cty~ ™2 e~ VOEU,) < g,  (4.7)

o(r, U*%, (xo, ty)) = %J-

if ¢ <2/m and ¢, is suitably small. Then, (4.6) follows from the small energy
regularity theorems in [CS] and [CL].

By the definition of y(d?) and (4.6) (cf. [CL]), one has y(d*(U*, N)) = d*(U*, N)
for all large k’s. We claim that (4.6) implies that U* converges to the classical
solution U in W2\ M x (0, Tp)) as k — co. Here

W2I(M x (0, Ty)) = {V : V, D,V, D3V, V,e L"(M x (0, T,))}, 1<p<w.

Suppose, for the moment, that the above claim is true. Then we want to show
the weak solution obtained in [CS] and [CL] coincides with the classical solution on



168 YUNMEI CHEN AND FANG HUA LIN
[0, T*). To do so, we let 0 < T < T* be such that
T* =sup{t €[0, T): lim U*=U}. (4.8)
k — o0

Here the limit is taking in W2'(M x (0,1),(p 2m+1). If T§ <T*, then for
g > 0, then is an ry > 0, such that C,,r* [, VU (t,) dx < &, for all 0 <r < r,,
and (xy, f,) € M x [0, T¥]. We let ¢, <T¥ be such that T¥ —t, <r?. Then since
Uk( -, 1) —+(7'( -, 4y in W*P(M) as k - oo, we may assume, for all large ks, that

Cmr%""§ [V UX(t,) dx < &.
BZro(xo)

Then by small energy regularity theorem of [CS] and [CL], one has, as above,
U*— U in W2'(t,, t, +1,). This contradicts the definition of T¥.

Finally we would like to prove the above claim.

Let Y, = d(U*, N), then by a simple calculation (cf. [CL], (4.18)]), one has, by
(4.5)—(4.6), that

0 )
5?"0" — Ay, £ —kY, + VU in M %[0, T,] (4.9)

Ye=0 on (M x {0})u(@M x [0, T,)).

In deriving (4.9), we have used the fact that d(U*, N) — 0 uniformly as k — oo.
(cf. (4.6)). Again, by the maximum principle, one has

1 1
max Y, <-  max |VU"|2SECO. (4.10)

k
(x.0) € M x [0,T] Kk (x;ye M x[0,T]

Hence from (4.4), (8/00)U* — AU* € L*(M x [0, T,]), and our claim follows from
the standard L”-theory for parabolic systems [LSU].
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