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Remarks on approximate harmonie maps

Yumnei Chen* and Fang Hua Lin**

§1. Introduction

The analytical difficulties in the study of harmonie maps corne from the fact that
the maps take their values in a curved, compact Riemannian manifold N. One
natural way to tackle such a problem is to use a so called penalty approximation,
that is, to relax this nonlinear, nonconvex constraint. Roughly speaking, one
studies, instead of the standard Dirichlet intégrais, the following variational intégral

(1.1)

where M is a compact, Riemann manifold with (or without boundary) dM9 and
U : M -? Uk. Hère we view, via Nash&apos;s isometric embedding, AT as a compact
submanifold of Rk, and d(U, N) dénotes the distance from U to N.

The above approach has been employed successfully by Chen and Struwe [CS]
in establishing the global existence of weak solutions to the heat flow of harmonie

maps. Moreover, to study such approximate energy functional (1.1) may also be

natural in the Ginzburg-Laudau&apos;s approach to various physical problems, see, e.g.,

[BBH] and références therein.

The présent note is bought out by our previous work [CL] on the évolution of
harmonie maps with Dirichlet boundary conditions. We shall establish hère first the
Schoen-Uhlenbeck&apos;s Theorem, or &quot;small energy regularity theorem&quot;, for energy
minimizing maps. The problem is essentially reduces to obtain an a priori estimate

for a family of smooth approximate solutions with small energy. As an application
of our method we shall also prove one of the main results of [BBH2] concerning
asymptotic limits for the Ginzburg-Landau model of scalar fields.
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162 YUNMEI CHEN AND FANG HUA LIN

Next we shall consider the uniqueness of suitable weak solutions to the heat

flow of harmonie maps. As a first step we show that the weak solutions obtained in
[CS] and [CL] coincide with the classical solution whenever the latter exist. This
resuit is rather similar to the uniqueness theorem of J. Serrin [S] for the Navier-
Stokes équations.

Uniqueness of weak solutions to the heat flow of harmonie maps fails in gênerai
as was shown by J. M. Coron et al. [C]. It remains an interesting open question
whether certain suitable weak solutions (such as whose constructed in [CS] and

[CL]) will be unique.

§2. Regularity of energy minimizing maps

Let N be a compact smooth Riemannian submanifold of Rk. As we shall discuss

only the regularity of energy minimizing maps into N, the metric on the domain
manifold does not play an important rôle (as long as one assumes a certain minimal
smoothness). To simplify the présentation we therefore assume that the domain of
our maps is the unit bail B™ {x e Um |jc| &lt; 1} in Rm, m ^ 2, with the standard
Euclidean metric.

The well-known Schoen-Uhlenbeck Theorem states that

THEOREM. [SU], Let U : B™^&gt;N be an energy minimizing map. Then there is

an e0 £0(w&gt; N) &gt;0 such that, if \B{ \VUf- dx e &lt; e0, then

sup \VU\2^C(m,N)s. (2.1)

Hère we shall give an alternative proof of the above statement. To do so we
consider a family of approximate solutions Uô9 à s (0, 1) where Uô B™-+ UK be

defined as follows

where Vâ minimizes

\VV\2 + ~d2(V,N)]dx (2.3)
° J

subject to the Dirichlet boundary conditions V U on ô(Bl\Bl/2).
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Since IÔ(VÔ) &lt; IÔ(U) $Bi\Bï/2 \VU\2 dx, we may choose a séquence of &lt;5, J,0
such that JJl Uài converges to some U+ weakly in H\BX,N) and converges
strongly to U* in L2(BX,N). Moreover $Bï \7U*\2dx &lt;&gt; \B{ \VU\2 dx by lower
semicontinuity of the energy.

Since U is an energy minimizing map, we see £/* must also be energy minimiz-
ing. Moreover, U^U* in H\BUN) by Fatou&apos;s Lemma. Finally, for ail / suffi-

ciently large, Iôi{Vô) &lt; e &lt; e0.

Next, we let eô(V) \VV\2 + I/o2d\V, NIO&lt;Ô&lt;\. Then from [CS] (see also

[CL]) we hâve the monotonicity inequality for Và :

&lt;f&gt;(r, x) &lt; &lt;*&gt;(p, x) (2.4)

for ail x e BX5lxe\B9lX6^&lt;r &lt; p &lt;disî(x,d(B{\Bxl2)). Hère &lt;P(r9 x) r2~n ^Br(x)

x - exp(cr). Also we hâve the Bochner-type inequality:

Ae &gt; -ce{\ +e) in ^,\^1/2 (2.5)

where e=eô{Vô).
By (2.4) and (2.5) and since ^Bl\Bl/2edl(^sl) dx ^ e, we hâve the following

estimate as in [CS]:

sup eôi(Vô)(x) &lt; C(m, N)e (2.6)

provided s &lt; eo(m, N).
Let /-&gt;oo. we obtain, in particular, that

OSC U* &lt;: Cy/s &lt; Cj7o (2.7)

Since U* is an energy minimizing map, U*(By4) is contained in bail B2Cyfe(p) for

some p e N.

To see this, we let p0 U*(x0), for some x0 e dB3/4. Let B2Cy/-e(p0) be the bail of
radius ic^Jl in R* so that U*(dB3/4) c Bc^re(p0). Let tt : IR^-^^^C^o) be the

retraction map, i.e., n(x) x if x e B2cjB(Po), and n(x) 2cx/ê (x -po)/\x -pQ\ if
jc £ B2cj-e(pq). Since ^/ë ^ v^ is very small, and TV is a smooth submanifold,

poeN, we see the nearest point projection map dB2Cy/rE(p0)
—^&gt; NnBÔCs/~(p0) is

well-deflned and is distance decreasing map from dB2csJrE(Po) to N n B2cy-e(p0).

Now, if t/* is energy minimizing with U*(dB3/4) c 5£v^(/?0), then
Û nN on o u*\ B3/4-? iVis also energy minimizing with C/ £/* on 5J53/4. In fact,

Jb3/4 |^^|2 rfx: ^ J53/4 |F£/*p ^ and the equality is valid if and only if U*(B3/4) a
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Having seen U*{B3j4) &lt;=^ B2c^i(p0) n N, the regularity of U* on Bl/2 follows
from the standard elliptic theory (See e.g. [J]). By our définition of U*, U* — U on
Bip, we, in particular, obtain that

Jfl,
(2.8)

Q.E.D.

§3. A theorem of Bethuel-Brezis-Helein

Let Q e U2 be a smooth bounded connected domain. Consider the functional

I)2 (3.1)
Je ^ Je

which is defined for maps U g Hl(Q9 C), we let g : 5O -»C be a smooth map with
|g(x)| 1, Vjc e 5O. We also assume that deg(g, dQ) 0 and hence there is a smooth
extension of g* : Q -&gt; S1 with g* g on dQ.

By a theorem of C. B. Morrey, there is a map U0:Q^Sl which minhnizes
\Q \VU\2 dx over the set Hlg(Q, S1) {Ue H\Q, C) : u =g on dG}. Moreover, C/o

is smooth. When Q is simply connected, a simple lifting argument shows that
U0 et&lt;f&gt;0. Hère 0O is the harmonie extension of &lt;£, el4&gt; =g on SO.

Hère we want to show a uniform estimate for the minimizers Ue of (3.1) for
0 &lt; e &lt; 1 under the hypothesis that deg(g9 dQ) 0.

To do so, we note first that

fE£(Ue) ^ I \VU0\2 dx, for ail 0 &lt; e &lt; 1. (3.2)

For any séquence e, -»0, there is a subsequence of UBi which converges weakly in H1

and strongly in L2 to some U*e Hl(Q, S1). Moreover, U*=g on dQ, and

J« |P^*|2 dx ^ Ja |PC/0|2 rfx. By the minimizing property of l/0, we see (7* again is

a minimizer of Jfl \VU\2 dx over Hlg(Q, S1). In particular, £/* is smooth. Moreover,
it follows from (3.2) that U€i converges strongly to U*. We therefore obtain the

following

LEMMA. For any s0 &gt; 0, there is an r0 &gt; 0 depending only on dQ and g such that

if Ue is a minimizer of (3.1) then

^^^ (3.3)

for ail x e Q provided 0 &lt; e ^ £%(r0, e0).
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Proof. Let F dénote the set of energy minimizing maps over the set Hlg{Q, S1).
Then it is easy to see that F is compact in Hl(Q9Sl). Moreover, by Morrey&apos;s

theorem, one has for any e0 &gt; 0, U+ g F

I \VU*\2dx&lt;e0/2 (3.4)
JQoB(x, r)

for ail x g Q and 0 &lt; r &lt; r0 provided that r0 is chosen to be suitably small.
Now we apply the convergence argument above to conclude that (3.3) is valid

for ail minimizers Ue whenever 0 &lt; e ^ e*. Note that l/e2 Jo (\UB \2 — l)2 dx -*0 is

THEOREM. Let Ue be a minimizer of (3.1) over the set Hlg(Q,C) with

deg(g, dQ) 0. Then

(3.5)

for ail 0&lt;e &lt; 1.

Proof It is obvious, by the maximum-principle, that \Ue\£ 1 on Q. Thus

\Ue\(l - \Ue\2)l/s2 ^ l/e2 &lt;: \/el whenever e ^ e* e+(g) &gt; 0. It follows that (3.5)
is true whenever e ^ e*.

For 0 &lt;£&lt;£*, we use the estimate (3.3). It follows from the identical
arguments as in the previous section, that one obtians the interior estimate

P|£| ^(|^|j (3.6)

for ail 0&lt;e &lt;£*.

For the estimate near the boundary of O, we refer to [CL]. We should point out
that the monotonicity inequality in the présent situation is automatically valid.

Combining (3.6) with the boundary estimate one concludes

sup

for ail 0 &lt;e ^ e*.

Remark. When Q is, in addition, simply connected, the energy-minimizer over

S1) is also unique. In this case, one can show that Ue-+U* energy-minim-
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izer uniformly and strongly in H\Q, C). Moreover, as in [BBH2], one has, for

^C,, forallO&lt;£^e*,
ku o

(3-8)

Let x0 g Q be such that ij/e(x0) maxxeâ ^e(x) &gt; 0, then A\l/e(x0) &lt; 0, and thus

(3.9)

From (3.9) we obtain ||JJ7e||L«,(O) £ C1? and UE-&gt;U0 in CU(Q), Va &lt; 1, fol-
lows.

§4. Uniqueness problems

Let M be a compact Riemannian manifold with possible nonempty boundary
dM, and let N be as before. The équation for harmonie maps U : M -&gt;N can be

written as

AU + A(U)(VU,VU)=0 (4.1)

where A is the Beltrami-operator on M, and A(U) is the second fondamental form
of N at U. Thus the corresponding équations for the heat flow are

^ - AU A(U)(VU9 VU), (x, t) g M x (0, oo). (4.2)

Given initial data Uo : M -+ N, one then is interested in solving (4.2) with

U(x, 0 U0(x) for (x, 0 g (M x {0}) u(dM x (0, oo)). (4.3)

Suppose Uo, M, dM and N are smooth. It is well-known (see, e.g. [J]) that the

problem (4.2) (4.3) has a unique smooth solution U(x91)9 (x, t) e M x [0, T], for
some T &gt; 0 which may dépend on the various data mentioned. On the other hand,
it was shown in [CS] (for the case ôM &lt;/&gt;) and [CL] that (4.2), (4.3) has a global
weak-solution which is smooth off a relatively small closed subset of M x (0, oo).

One of the natural question is that whether such suitable weak solutions obtained
in [CS] and [CL] are unique.

Hère we want to show that the weak solution obtained in [CS] and [CL] must
coincide with the classical solution on the time interval [0, T*]9 hère 0 &lt; T* ^ oo is
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the first time of blow-up for the classical solution. The latter means that there is a
smooth solution U of (4.2), (4.3) on the time interval [0, r*) and that

|£|L
For this purpose, we adopt the same notations as that in [CS] and [CL].

Consider a séquence of approximate solutions Uk such that

| U* - AUk + kX&apos;{d\U\ N)) £(^ *°) 0 (4.4)

in M x (0, oo),

Uk(x, t) (E/0(jc), on (M x {0}) u (dM x (0, oo)). (4.5)

We claim there are positive constant Co, To depending only on £/0, dM9 M, N
such that

sup e(Uk) &lt; Co, for k 1, 2,... (4.6)
m x [o, r0]

where e(Uk) \VUk\2 + (k/2)x(d2(Uk, N)).
In fact, for any x0 e M, 0 &lt; t0 &lt; RM (RM is the injectivity radius of M) and

r ^JJq, one has that (we adopt the same notations as that in [CS] and [CL])

r, U\ (x0910)) *j e(Uk)G(XoJo) |r 0 &lt;t&gt;\\* ~ xo\) dx

+ f

if e &lt; 2/m and t0 is suitably small. Then, (4.6) follows from the small energy

regularity theorems in [CS] and [CL].
By the définition of x(d2) and (4.6) (cf. [CL]), one has x(d2(Uk, N)) d2(Uk9 N)

for ail large k&apos;s. We claim that (4.6) implies that Uk converges to the classical

solution Û in W2/(M x (0, To)) &lt;isk-+oo. Hère

Wf(M x (0, To)) {V:V, DXV, D2XV, Vt g Lp(M x (0, To))}, 1 &lt;p &lt; oo.

Suppose, for the moment, that the above claim is true. Then we want to show

the weak solution obtained in [CS] and [CL] coincides with the classical solution on
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[0, T*). To do so, we let 0 &lt; T? ^ T* be such that

T* Sup{r g [0, T) : lim Uk 0}. (4.8)
k-*oo

Hère the limit is taking in W2p \M x (0, i)), (p ^ m + 1). If TJ &lt; T*, then for
s0 &gt; 0, then is an r0 &gt; 0, such that Cmr2 J^k^o) |F^|2(&apos;o) àx &lt; fc0, for ail 0 &lt; r &lt; r0,
and (jc0, t0) e M x [0, TJ]. We let tx &lt; TJ be such that T$-tx4. r%. Then smce

Uk( &apos; iU) -*U( &apos; ,ti) in W2*P(M) as A: -? oo, we may assume, for ail large &amp;&apos;.?, that

\VUk\2(tx)dx&lt;eo.

Then by small energy regulanty theorem of [CS] and [CL], one has, as above,
Uk-*Ûm W2p\tx, tx + r0). This contradicts the définition of rj.

Finally we would like to prove the above claim.

Let ij/k d(Uk, N), then by a simple calculation (cf. [CL], (4.18)]), one has, by
(4.5)-(4.6), that

inMx[0Jo] (4 9)
0 on (M x {0}) u(dM x [0, TQ]).

In deriving (4.9), we hâve used the fact that d(Uk9 N) -&gt;0 uniformly as k -+ oo.

(cf. (4.6)). Again, by the maximum prmciple, one has

max il/k^r rnax \VUk\2 ^ |c0. (4.10)
(xj) e M x [0,r0] K (jc,0 e M x [0 T0] k

Hence from (4.4), (d/ôt)Uk - AUk e L°°(M x [0, r0]), and our claim follows from
the standard ZAtheory for parabolic Systems [LSU].
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