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Mise en position optimale de tores par rapport à un flot d&apos;Anosov

Thierry Barbot

Abstract Let &lt;P&apos; be an Anosov flow on a (non atoroidal) 3-manifold M We say that an incompressible
torus T embedded in M admits an optimal position with respect to &lt;Pl if ît îs isotopic to a torus
transverse to &lt;Pl outside a finite number of penodic orbits contained in r(there&apos;s an additional condition
we don&apos;t mention hère) The first remark îs that such an optimal position îs quasi unique, î e we prove
that tf two ton in optimal position are homotopics in M, then they are homotopics along the flow Then
we give some sufficient condition for a torus admiting an optimal position Eventually, we show that if
a finite collection of disjoint ton îs such that each torus admits an optimal position, then thèse optimal
positions can be chosen disjoints one from each other

1. Introduction

Soit &amp;&apos; un flot d&apos;Anosov sur une variété fermée M orientée de dimension 3. Sauf
indication contraire, nous supposerons toujours que M est orientée et qu&apos;elle

n&apos;admet pas de plongement incompressible de la bouteille de Klein. Nous supposerons

également que les divers feuilletages forts et faibles associés au flot d&apos;Anosov

sont orientés (pour toutes ces notions, voir [1]).
Notre projet à long terme est d&apos;étudier ces flots en utilisant un programme

analogue à celui de [18], i.e., découper un flot d&apos;Anosov en parties élémentaires le

long de tores incompressibles en bonne position par rapport au flot. Nous ne nous
intéressons dans cet article qu&apos;au problème de la mise en bonne position des tores
de découpage. Nous devons pour ce faire convenir de ce qu&apos;est un tore en bonne

position. La première idée qui vient à l&apos;esprit est convenir qu&apos;un tore est en bonne

position dès qu&apos;il est transverse au flot. Cette idée est d&apos;autant plus naturelle que
nous montrerons ici:

THÉORÈME A. Deux tores plongés dans M de manière incompressible et

transverse à &lt;P* sont homotopes si et seulement si ils sont homotopes le long des orbites
de #&apos;.

Précisons le sens de cet énoncé: deux tores T et T sont dits homotopes le long
des orbites de &lt;Pt s&apos;il existe une application continue u : T-+ M telle que l&apos;application
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114 THIERRY BARBOT

x h» 0u(x)(x) envoie homéomorphiquement T sur T. Nous nous posons donc la

question:

QUESTION. A quelle condition Tpeut-il être isotope en un tore transverse à &lt;P&apos;1

Une première résponse possible est donnée par le critère de Schwartzman (cf.
[16]) selon lequel il suffit que le nombre d&apos;intersection homologique de T avec
chaque orbite périodique de &amp;l soit strictement positif. Ce cas de figure à l&apos;inconvénient

majeur d&apos;être très particulier: il ne se présente que lorsque &lt;Pl est (topologique-
ment équivalent à) la suspension d&apos;un difféomorphisme linéaire hyperbolique du
tore. Dans ce cas, il s&apos;avère même que tout tore plongé est isotope à un tore
transverse. Nous nous proposons d&apos;établir ici un autre type de résultat de nature
complètement différente:

THÉORÈME B. On suppose l&apos;existence de deux lacets fermés cx et c2 dans T tels

que:

• c, et c2 ne sont pas homologues dans T,

m chaque cx (i 1, 2) est librement homotope dans M à une orbite périodique de
&amp;&apos;.

Alors, T est isotope à un tore transverse à 0&apos;.

Nous montrerons en fait un peu mieux. Comme le nouveau tore T isotope à T
est transverse à #&apos;, il l&apos;est également avec chacun des deux feuilletages faibles.
Ceux-ci induisent donc sur T deux feuilletages transverses l&apos;un par rapport à

l&apos;autre. Il découlera de la preuve du théorème B que ces deux feuilletages sont de

type morse-smale, sans composante de Reeb, admettent chacun un nombre pair de

feuilles fermées, que les feuilles fermées de l&apos;un sont homologues à cx et que celles

de l&apos;autre sont homologues à c2 (étant entendu que ces homologies sont au signe

près). Une bonne illustration de ca cas de figure est donnée par l&apos;exemple de ce

Bonatti-Langevin (cf. [14]).
Il ne serait guère intéressant de se limiter au seul cas des tores transverses. En

effet, nombre de flots d&apos;Anosov sur des variétés non-atoroïdales n&apos;admettent pas de

tore transverse. Tel est le cas par exemple des revêtements finis des flots géodésiques
des surfaces riemanniennes à courbure négative, et, de manière plus générale, de

tous les flots d&apos;Anosov produits sans section globale (voir [3]). Dans le cas des flots

géodésiques et de leurs revêtements finis, il est facile de voir que tout tore
incompressible est isotope à un tore tangent à un nombre fini d&apos;orbites périodiques,
et transverse au flot en dehors de ces orbites périodiques. Un tel tore s&apos;obtient par
recollements &quot;d&apos;anneaux de Birkhoff élémentaires&quot; (pour plus de précision, le

lecteur peut se reporter à la discussion préliminaire de [12]).
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Nous appelons anneau de Birkhoff tout anneau plongé dans M, d&apos;intérieur

transverse à #&apos;, et dont le bord consiste en deux orbites périodiques de &lt;&amp;&apos;. Il s&apos;agit

du prototype le plus simple de section de Birkhoff locale au sens de [10] ou de [7].
Un tel anneau est toujours transverse aux deux feuilletages faibles du flot. Ceci le

munit naturellement de deux feuilletages de dimension un, transverses l&apos;un par
rapport à l&apos;autre à l&apos;intérieur de l&apos;anneau, et tangents au bord. Lorsque ces deux
feuilletages sont sans composante de Reeb et ont pour seules feuilles fermées celles

que constituent le bord, l&apos;anneau de Birkhoff est dit élémentaire (voir figure 1).

Cette terminologie est justifiée par le fait que, à homotopie près le long des orbites
de &lt;P\ tout anneau de Birkhoff s&apos;obtient en perturbant légèrement une union finie
d&apos;anneaux de Birkhoff élémentaires (voir corollaire 5.6).

Nous appelons tore quasi-transverse tout tore plongé dans M décomposable en

une union finie d&apos;anneaux de Birkhoff élémentaires et tel que le flot &lt;Pl soit
alternativement rentrant et sortant sur ces anneaux (De manière plus précise, ceci

signifie que si séx et sé2 sont deux anneaux de Birkhoff contenus dans T et

adjacents, et que Test muni d&apos;une orientation transverse, alors l&apos;orientation de $&apos;

ne peut coïncider simultanément sur séx et sur sé2 avec cette orientation transverse).
Un tel tore est transverse à $&apos; en dehors d&apos;un nombre fini (pair) d&apos;orbites

périodiques, et il est transverse aux deux feuilletages faibles. Comme les anneaux de

Birkhoff qui le constituent sont élémentaires, les seules feuilles fermées des traces de

feuilletages faibles sont les orbites périodiques, et ces traces n&apos;admettent pas de

composante de Reeb. Nous avons là encore:

THÉORÈME A&apos;. Deux tores plongés dans M de manière incompressible et

quasi-transverses à &lt;P* sont homotopes si et seulement si ils sont homotopes le long des

orbites de &lt;Pl&apos;.

Figure 1. Anneau de Birkhoff élémentaire.
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L&apos;abondance de tores quasi-transverses est illustrée par le théorème suivant:

THÉORÈME C. Si $* est produit et non topologiquement équivalent à une
suspension, alors tout tore plongé de manière incompressible dans M est isotope à un
tore quasi-transverse. De plus, ce tore quasi-transverse est unique à homotopie le long
des orbites de &lt;P* près.

Rappelons que l&apos;hypothèse produit signifie que les relèvements dans le revêtement

universel de M des feuilletages faibles sont conjugués l&apos;un comme l&apos;autre au
feuilletage produit de IR3 par plans horizontaux IR2 x {*} (cf. [3]). Elle ne constitue

pas le point crucial du théorème C&apos;. Celui-ci doit être compris comme un corollaire
d&apos;un résultat plus général dont le principe consiste à déceler la présence de tores
quasi-transverses à partir d&apos;indices à rechercher dans &quot;l&apos;espace transverse au flot&quot;.

Cet &quot;espace transverse&quot; est plus précisément l&apos;espace des orbites tel qu&apos;il est
défini dans [3], Rappelons en brièvement la définition: soit &amp;&apos; le relevé de &lt;£&apos; dans
le revêtement universel M de M. Le quotient de M par la relation d&apos;équivalence

&quot;être sur le même orbite de $&apos;&quot; est noté Q0 et appelé espace des orbites.
L&apos;application passage au quotient est notée n* : M-+Q0. D&apos;après [3], Q* est

homéomorphe à IR2, et n* est une fibration (localement) triviale. L&apos;action par
automorphismes de revêtement du groupe fondamental F de M sur M passe au
quotient en une action sur Q* pour laquelle ti* est équivariante. Les relevés dans

M des feuilletages faibles se projettent par rc* en deux feuilletages par droites (ês et
&lt;&amp;u. Le théorème 3.4 de [3] énonce que la donnée à équivalence topologique près de

(M, 4&gt;*) équivaut à celle de l&apos;action de F sur Q* à équivariance topologique près.
Si S est une surface plongée dans M, nous appelons trace transverse de S toute

7c*-projection dans g* de n&apos;importe quel relevé dans M de S. La trace transverse
est unique à l&apos;action de F près. En guise d&apos;exemple, la trace transverse d&apos;un tore
plongé transverse au flot est un ouvert de g* homéomorphe à IR2 et invariant par
un sous-groupe libre abélien de rang deux de F: celui provenant du groupe
fondamental du tore1. Le fait essentiel sur lequel repose cet article est qu&apos;il est

possible de caractériser les traces transverses des anneaux de Birkho^ élémentaires:

il s&apos;agit des losanges simples.
La notion de losange a été introduite par S. Fenley ([8]). Elle se définit de la

manière suivante: soient 0X et 02 deux éléments de g* fixés par le même élément y
de F (ils correspondent aux orbites périodiques bordant l&apos;anneau). Soient ut une des

deux composantes connexes de @u(0t)\0t et st une des deux composantes connexes
de 9â(0t)\0t (/ 1,2). On suppose que toute feuille de &lt;SU rencontrant sx recontre

D&apos;après [6] tout tore transverse à 0&apos; est incompressible.



Mise en position optimale de tores par rapport à un flot d&apos;Anosov 117

s2, et que toute feuille de (ês recontrant m, recontre u2. Alors, l&apos;intersection entre le
saturé par (êu de sx et le saturé par 9S de ux coïncide avec celle entre le saturé par
^&quot; de 52 et le saturé par gs de u2. Cette intersection, à laquelle on ajoute 9X et 92i
est appelée y-losange de sommets 0X et 02.

Figure 2 Losange

Les losanges trace transverse d&apos;anneaux de Birkhoff élémentaires ne sont pas
quelconques: le fait que l&apos;anneau soit plongé se traduit par le fait que le losange est

simple au sens où l&apos;intersection de losange avec la F -orbite de ses sommets se réduit
à ces sommets. Le résultat essentiel de ce travail est le suivant:

THÉORÈME D. Tout losange simple de Q0 est la trace transverse d&apos;un anneau
de Birkhoff élémentaire.

Dans cette introduction, il est supposé que M ne contient pas de plongement de

la bouteille de Klein. Si on supprime cette hypothèse, le théorème D devient

(cf. proposition 6.2):

THÉORÈME D&apos;. Un losange simple de Q* est soit la trace transverse d&apos;un

anneau de Birkhoff élémentaire, soit une partie de la trace transverse d&apos;une bouteille
de Klein plongée transverse à &lt;P* en dehors d&apos;une orbite périodique.

Une fois les traces transverses des anneaux de Birkhoff caractérisées, il devient
aisé de caractériser les traces transverse des tores quasi-transverses: il s&apos;agit des

chapelets de losanges simples.

Un chapelet de y -losanges fini est une suite 5£x,..., &lt;£n de y-losanges telle que:

• on peut numéroter 0, et Q\ les sommets de chaque losange JSff de telle sorte que

pour chaque indice i entre 1 et n — 1 les sommets 9\ et 9i+ x sont confondus,

• pour chaque indice i entre 1 et n — 1 les adhérences de 5£x et de &amp;t+ x ne se

rencontrent qu&apos;en 0I+, Q\.
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Figure 3. Chapelet de losanges.

Un chapelet de y-losanges infini est une union croissante de chapelets finis de

y-losanges. Un chapelet de losanges est toujours suposé infini par défaut. Il est dit
simple si tous les losanges qui le constituent sont simples, et que pour chacun de ses

sommets 0t l&apos;intersection entre le chapelet et la r-orbite de 0, se réduit à certains 6r
Avec ces définitions nous sommes en mesure de donner la version originale du
théorème C:

THÉORÈME C. Soit &lt;P* un flot &lt;TAnosov sur une ^-variété M orientée et
n&apos;admettant pas de plongement incompressible de la bouteille de Klein. On suppose

que les deux feulletages faibles de &amp;* sont transversalements orientés. Soit f : T c+ M
un plongement incompressible du tore dans M. Soit H l&apos;image du morphisme injectif
f^ : nx(T) -?tt, (M) F: c&apos;est un sous-groupe de F bien défini à conjugaison près
dans F. On suppose enfin que H préserve un chapelet de losanges. Alors ce chapelet
de losanges est la trace transverse d&apos;un tore T&apos; plongé isotope àf(T) et quasi-trans-
verse à &lt;$&gt;*. De plus, tout tore quasi-transverse homotope àf(T) est homotope à T&apos; le

long des orbites de &lt;Pr.

Grâce aux théorèmes A, A&apos;, B et C notre projet d&apos;étude des flots d&apos;Anosov par
découpage le long de tores en position optimale est en bonne voie. Il reste un
problème important à traiter: celui de la mise en position optimale simultanée de

plusieurs tores. Nous montrerons:

THÉORÈME E. Soit (T{,..., Tn) une collection fine de tores plongés dans M de

manière incompressible. On les suppose deux-à-deux disjoints et non-homotopes. On

suppose de plus que chaque tore Tt est isotope dans M à un tore plongé T\ transverse

ou quasi-transverse à &lt;Pl. Alors, les T\ peuvent être choisis deux-à-deux disjoints.
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Avant de clore cette introduction, signalons quelques résultats intermédiaires
qui, bien que non directement liés au problème de la mise en position optimale des

tores plongés, ont leur propre intérêt. Ils s&apos;appliquent à tout flot d&apos;Anosov de

dimension trois pour peu que les feuilletages faibles soient transversalement orientés.

THÉORÈME F. Tout orbite périodique représente un élément y de F d&apos;ordre

infini et indivisible (i.e., les seuls éléments de F admettant y pour puissance sont y et

y-1).

THÉORÈME G. Si y est un élément de F admettant un losange non-simple\ alors

aucun y-losange n&apos;est simple. De plus, Vunion des y-losanges est alors un chapelet de

losanges (fini, infini ou biinfinï) et le centralisateur de y dans F est un groupe libre
abélien de rang au plus deux.

Signalons également qu&apos;il apparaît fort probable que les théorèmes B et C

peuvent être étendus de la manière suivante:

CONJECTURE. Tout tore plongé incompressible dans M est isotope à un tore

plongé transverse à &lt;&amp;&apos; en dehors d&apos;un nombre fini d&apos;orbites périodiques.

Les méthodes employées dans cet article montre en effet qu&apos;un tel plongement
est toujours homotope à une immersion du tore vérifiant des conditions analogues.

Malheureusement, un argument essentiel utilisé dans la preuve de théorème D pour
modifier cette immersion en un plongement ne s&apos;applique pas dans ce cadre général

(voir remarque 7.8).
Cet article s&apos;organise comme suit: au paragraphe suivant, nous introduisons

quelques notations et discutons quelques résultats préliminaires. Aux paragraphes 3

et 4, nous étudions la notion de losanges et de chapelets de losanges. Nous y
démontrons les théorèmes F et G. Aux paragraphes 5 et 6, nous montrons que les

losanges simples sont exactement les traces transverses des anneaux de Birkhoff
élémentaires. Au paragraphe 7, nous montrons l&apos;analogue pour les chapelets de

losanges simples et les tores quasi-transverses. Nous y montrons les théorèmes C et

C. Le paragraphe 8 est consacré à la preuve de théorème B. Les théorèmes A et A&apos;

sont traités au paragraphe 9. Enfin, nous consacrons le paragraphe 10 à la preuve
de théorème E.

Ce texte a été rédigé à l&apos;occasion d&apos;un séjour à l&apos;IMPA de Rio de Janeiro que
je tiens à remercier pour son hospitalité. Le théorème E de [2], travail effectué au

Laboratoire de Mathématiques Pures et Appliquées de l&apos;Ecole Normale Supérieure
de Lyon, est un prototype du théorème B du présent article.
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2. Préliminaires

2.1. Notations

$l désigne un flot d&apos;Anosov sur une variété M fermée orientée de dimension 3.

Il sera toujours supposé, sauf aux remarques 6.2 et 7.14, que M ne contient aucun
plongement incompressible de la bouteille de Klein. Les feuilletages faibles stables

et instables de $&apos; sont notés 3Fs et &amp;&quot;. Rappelons que nous les supposons
transversalement orientés. Ceci recouvre bien sûr le cas général à un revêtement
double ou quadruple près. Le feuilletage de dimension un engendré &lt;P* est noté #.
Le groupe fondamental de M est noté F (nous ne nous soucions pas du choix du

point base). Le revêtement universel de M est noté KÏ.
Nous rappelons dans ce qui suit quelques propriétés plus ou moins connues.

Pour toute justification, nous renvoyons le lecteur à [2] ou [3].
Les relevés dans Û de $\ #, 3Fs et 3FU sont notés respectivement &lt;P\ S9 3Fs et

&amp;u. D&apos;après [3], l&apos;espace quotient M/&amp; de M par la relation &quot;être sur la même

feuille de S&quot; est Hausdorff et homéomorphe à M2. Il est noté g*. Les orientations
de M et de &amp;&apos; induisent une orientation de g*. La projection n* : M -+ Q* est une
fibration (localement) triviale. Elle envoie «#* et #&quot; en deux feuilletages &lt;$s et ^M

de g* par droites fermées. Les orientations transverses de 3Fs et de !FU induisent
des orientations de &lt;SS et de &lt;&amp;u ainsi que des orientations transverses de ces

feuilletages. Pour tout élément x de Q* la feuille de &lt;ês le contenant est notée s(x),
et celle de (êu le contenant est notée w(x). Le complémentaire de x dans s(x) est

constitué de deux demi-droites. L&apos;orientation de &amp;s induit un ordre sur s(x): la

composante connexe de ^(x)\{x} contenant les éléments supérieurs à x est notée

s+(x). L&apos;autre est notée s~(x). On définit de manière analogue u+(x) et u~(x).
Chaque feuille de (SS recontre chaque feuille de &lt;3U en au plus point. Elle sépare

g* en deux composantes connexes. Pour tout élément x de g*, la composante
connexe de Q*\s(x) contenant u+(x) est notée S+(x). Celle contenant u~(x) est

notée S_(x). On définit de manière analogue t/+(x) et U_(x) (composantes
connexes de ô*\w(*)). D&apos;après le théorème des voisinages produite, &amp;s et &amp;u

vérifient une propriété de trivialisation locale simultanée, i.e., pour tout élément x0
de g*, il existe deux intervalles ouverts s0 et w0 voisinages de x0 dans respectivement
s(xQ) et u(x0) tels que l&apos;application de u0 x s0 qui à (y, z) associe l&apos;intersection entre

s{y) et u(z) est bien définie et un homéomorphisme local. Nous appelons rectangle
de Markov l&apos;image d&apos;une telle application.

L&apos;action de F sur M par automorphismes de revêtement passe au quotient sur

g*. Cette action préserve les feuilletages &lt;SS et &amp;u.

PROPOSITION 2.1. Un élément de Q* est une feuille de S au-dessus d&apos;une
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orbite périodique de &lt;Pl si et seulement si son stabilisateur dans F est non trivial. Son

stabilisateur est alors cyclique.

Nous appelons périodique un tel élément de g* à F -stabilisateur non trivial.

PROPOSITION 2.2. Chaque feuille de &lt;§s {respectivement de &amp;u) contient au plus
un élément périodique de Q*. Si elle en contient un, son stabilisateur dans F est

exactement le stabilisateur de cet élément périodique: il est donc cyclique. Sinon, son

stabilisateur est trivial.

Une feuille de ^s contenant un élément périodique est dite cylindrique. Si un
élément y de F fixe un élément x0 de g*, la restriction à s(x0) de son action est soit

une contraction, soit une dilatation dont x0 est l&apos;unique point fixe. Il en est de même

pour la restriction de son action sur u(x0). De plus, si y contracte s(x0), il dilate

u(x0). Ces restrictions sont donc linéarisâmes. On en déduit donc que l&apos;action de y

est linéarisable au voisinage de jc0: il suffit de considérer un rectangle de Markov
contenant x0 (cf. figure 4).

à

V
i

f X

Figure 4. Linéarisation de y au vosinage d&apos;un point fixe.

En particulier, l&apos;ensemble des points fixes de y est un fermé discret de g*.
Nous associons à chaque élément x de g* les quatres ouverts suivants (l&apos;expression

Sat9s(u + (x)) désigne le saturé par &lt;ê$ de u +(

Sat* f (m + (x)) n Sat*u(s ~ (x))

(x) (x)) n Saty u(s &quot;(x))
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2.2. Quelques remarques à propos des espaces des feuilles

Les feuilletages (SS et &lt;êu sont des feuilletages de Q* ~ IR2 par droites fermées. Il
est bien connu (voir par exemple [13]) que les quotients de g* par les relations
&quot;être sur la même feuille de (ês (respectivement de &lt;&amp;u) sont des 1-variétés fermées

simplement connexes mais en général non-Hausdorff. Nous les notons respectivement

Qs et Qu. Nous notons ps:Q0^Qs et ps:Q0^Qu les applications de

passage au quotient. Si deux éléments s et s&apos; de Qs ne sont pas séparés par la

topologie de Qs nous convenons d&apos;écrire s &amp;s&apos;. Deux tels éléments sont appelés

points de branchements.
L&apos;action de f sur g4* passe bien sûr aux quotients. Comme (ês et ^u sont

transversalement orientés, Qs et Q&quot; sont orientés. Pour chaque élément s s(x) de

Qs nous notons s+ et s__ les ouverts de Qs images par ps des ouverts S+ (x) et S_ (x)
de Q*. Ce sont les composantes connexes de gJ\{s}. On note de manière analogue

«+ et u_ les composantes connexes du complémentaire d&apos;un élément u de Qu.

Pour tout couple d&apos;éléments (s, s&apos;) de Qs nous notons ]s, s&apos;[ l&apos;ensemble des

éléments de Qs qui déconnectent s de s&apos;. Si il existe une immersion de IR dans Qs

dont l&apos;image contient s et s\ alors ]s, s&apos;[ est contenu dans l&apos;image de cette

immersion. De manière plus précise, ]s, s&apos;[ est l&apos;intervalle ouvert ]s, s&apos;[ délimité par
s et s&apos; dans l&apos;image de cette immersion. Cependant, si tel n&apos;est pas le cas, alors ]s, s&apos;[

n&apos;est pas un ouvert de Qs. Nous notons [s, s&apos;] l&apos;union de ]s, s&apos;[ et de {s, s&apos;}. Nous
laissons au lecteur le soin de montrer (voir aussi [2]):

LEMME 2.3. Pour toute paire d&apos;éléments (s, s&apos;) de Qs Vensemble [s, s&apos;] est une

union finie d&apos;intervalles [sn s&apos;t] (i 0,..., n) où:

s0 s9 s&apos;n= s&apos;

s&apos;,*st+l

Soit Q un ouvert connexe de Q. Tout élément x de sa frontière sépare Q en deux

composantes connexes dont l&apos;une contient Q. Le complémentaire dans Q de cette

composante est notée xc. Nous laissons une nouvelle fois au lecteur le soin de

montrer:

PROPOSITION 2.4. Lorsque x parcourt dQ, les ensembles xc sont deux-à-deux

disjoints. Ce sont exactement les composantes connexes de Q\Q.

Soit y un élément de F admettant un point fixe dans Qs. Nous notons Asy l&apos;union

des images par ps des feuilles de &lt;&amp;u globalement préservées par y.
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LEMME 2.5. Ay est un ouvert connexe de Qs préservé par tous les éléments de F
commutant avec y. Tout point de branchement dans Ay est un point fixe de y.

Preuve. Il est évident que Ay est ouvert et préservé par tous les éléments de F
commutant avec y. Soient s et s&apos; deux points fixes de y. Alors [s, s&apos;]

|&gt;0 s, ^o]u* • -ufo,.^ =s&apos;] est y-invariant. Il s&apos;en suit que chaque s, et chaque
s[ est un point fixe de y. La restriction de y à chaque intervalle [st,s\] est facile à

étudier: il y admet un nombre fini de points fixes alternativement attractifs et répulsifs.

On en déduit aisément que Ay contient les intervalles [sn s&apos;,], et donc également
[s, s&apos;]. La connexité de Ay en découle.

Soient enfin deux éléments sx et s2 de Ay non séparés par le topologie. Soient 0,

et 62 deux points fixes de y dans Q0 tels que ps(u(6,)) contient s, (/ 1, 2) (ps(6,)
peut être égal à st).

Notons que 0, et 02 sont différents puisque deux éléments différents de p\u(Ox))
sont toujours séparés. Donc:

P\e2)] [p\ex j, ] u [s2, p%e2)}

Comme [p\0\),p%02)] est y-invariant, sx et s2 sont points fixes de y.

On en déduit le corollaire:

PS(8J

ou

Scheme 1.

LEMME 2.6. Soit y un élément de F admettant au moins un point fixe dans Q\
Soit s un élément de Qs vérifiant:

y(s+ c s+

Alors, il existe un point fixe 9 de y dans Q* dont la feuille instable u(9) recontre s.

Preuve. Il s&apos;agit de montrer que tout élément s vérifiant les hypothèses de 2.6

appartient à Ay. Nous raisonnons par l&apos;absurde: il existe un élément ^0 de dAy tel

que Sq contient un élément s vérifiant les hypothèses de 2.6 (cf. 2.4). Alors So
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contient soit s+, soit s_. Remarquons que y(s+)as+ implique y~l(s_) czs_.
Donc, quitte à inverser y, on peut éventuellement inverser l&apos;orientation de Qs et

supposer que sc0 contient en fait s+. Alors, (yso)c y(sc0) contient y(s+ Il rencontre
donc s+ c Sq. Il s&apos;en suit que y(s0) et s0 sont confondus. Ceci est absurde car dAsy

ne contient pas de point fixe de y. D

PROPOSITION 2.7. Soit y0 un élément de T,et C czZ les sous-groupe de T qu&apos;il

engendre. Soit x un élément de Q0 dont la C-orbite n&apos;est pas fermée. Alors, la

frontière de C - x est un singleton, l&apos;élément x de ce singleton est un point fixe de y0,

et x appartient à une des feuilles s(x) ou u(x).

Preuve. Soit x un élément de la frontière de C • x. Soit (pn) une suite d&apos;entiers

différents tels que yfyx converge vers x. Quitte à extraire une sous-suite et inverser

y0 on peut supposer cette suite strictement croissante. Quitte à extraire une nouvelle
fois une sous suite et à modifier les orientations transverses, on peut supposer que
tous les yfrx appartiennent à $£ ++(x). Alors, toutes les feuilles y%ns(x) recontrent
u(x). D&apos;après 2.6, si y0 admet un point fixe, alors s(x) appartient à chaque AsYpn, i.e.,
à AsyQ. D&apos;où:

s(x) - lim yos(x)
n-* +oo

Si y0 n&apos;admet pas de point fixe, il en est de même pour toutes ses puissances. Soit
7 l&apos;intervalle fermé [yfrs(x), y%2s(x)] de Q\ Soit k l&apos;entier p2 —p\. Alors, l&apos;union des

intervalles yQnI lorsque n décrit Z est un intervalle ouvert 70 de Qs préservé par yo-
Soit / un autre intervalle ouvert y§ invariant: d&apos;après le lemme 2.4, s&apos;ils sont

disjoints, il existe un élément y de dJ tel que yc contient 70. Ce point y devrait être

fixé par 7oj ce qui est absurde. Donc, // /n70 est non-vide. Comme Qs est

simplement connexe, /&apos; est connexe. Comme les restrictions à / et 70 de y§ sont des

translations sans points fixes nous avons / /&apos; 70. Donc, 70 est l&apos;unique intervalle
de Qs 7 § -invariant. On en déduit qu&apos;il est également préservé par y0. D&apos;où:

s(x) lim
n-* + oc

En appliquant le même raisonnement dans Qu, on obtient:

u(x) lim ylu{x)
n-* + oc

En considérant un rectangle de Markov au voisinage de x on voit que:

x lim
n-* +x



Mise en position optimale de tores par rapport à un flot d&apos;Anosov 125

Comme Q* est Hausdorff, ceci montre que Je est point fixe de y0. La dynamique
locale de y0 étant hyperbolique, il est clair que x appartient à u(x) ou s(x) ou s(x).
Enfin, comme une feuille de &lt;§s fixée par y0 ne contient qu&apos;une seule orbite
périodique, la frontière de Cx est exactement le singleton {x}.

3. Etude des losanges et quelques applications

Le but essentiel de ce paragraphe est de montrer que l&apos;ensemble des points fixes
d&apos;un élément y de F s&apos;organise comme l&apos;ensemble des sommets de y -losanges. Son

contenu est très largement inspiré de [8].

DÉFINITION 3.1. Soit y un élément de F. Un ouvert S£ de Q* est appelé:

• y -losange ouvert direct s&apos;il existe deux points fixes x et y de y tels que:

&lt;£ =&amp; ++(x)=£&apos;--(y)

• y-losange ouvert indirect s&apos;il existe deux points fixes x et y de y tels que:

Dans les deux cas, les points fixes x et y - qui sont uniques - sont appelés sommets

du losange ouvert.

Un y -losange ouvert est globalement préservé par y.

DÉFINITION 3.2. Un losange (direct ou indirect) est l&apos;union d&apos;un losange

ouvert et de ses sommets.

Le lecteur peut se reporter à la figure 2 de l&apos;introduction.

LEMME 3.3. L&apos;intérieur d&apos;un losange de sommets x et y est le losange ouvert de

sommets x et y. S&apos;il est direct, sa frontière est l&apos;union de {x, y}, s+(x), u+{x), s&quot; (y)
et u~(y). S&apos;il est indirect, sa frontière est l&apos;union de {x,y}, s~(x), u+(x), s+(y) et

u-(y). D

L&apos;adhérence du losange de sommets x et y est appelé losange fermé de sommets

x et y.

LEMME 3.4. Si un élément y de F fixe un sommet d&apos;un losange, il préserve

globalement ce losange. En particulier, ilfixe l&apos;autre sommet. Son action à l&apos;intérieur
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du losange est topologiquement conjuguée a celle de (x, y) —? (^x, 2y) sur
{x &gt; 0, y &gt; 0} c: U2

Preuve Chacun des ouverts if + +(x), if+ (x), etc est &apos;&apos;intrinsèquement&quot;

défini si y fixe x, il fixe les quatres ouverts J^ + + (x), i^+ (x), etc (rappelons que

f * et ^&quot; sont transversalements orientes y préserve donc les ordres sur s(x) et

u(x)) La linéarisation de la restriction de y au losange s&apos;obtient en linéarisant ses

restrictions aux demi-feuilles s+(x), etc

D&apos;après la proposition 3 3 de [8], nous avons

PROPOSITION 3 5 Soient 6l et 92 deux éléments de Q* distincts et fixes par le

même élément y de F II existe une suite finie de y-losanges J5fj, ££n de sommets

xn x, (i 1, n) tels que

xx xn

Soit G le graphe dont les sommets sont les points fixes de y et tel qu&apos;il existe une
arête entre deux sommets x et y si et seulement si il existe un y-losange de sommets
x et } On peut si on le désire étiqueter les arêtes de ce graphes par les epithetes
direct et indirect

Scheme 2
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PROPOSITION 3 6 Gy ets un arbre connexe Chacun de ses sommets est de

valence au plus quatre

Preuve La connexité découle de la proposition 3 5 La majoration de la valence

par quatre est évidente La simple connexité provient du fait que chaque feuille de
&amp;s et de yu déconnecte Q*

PROPOSITION 3 7 Pour tout élément y de F non trivial et pour tout entier n

non nul, les arbres Gy et Gyn sont confondus En d&apos;autres termes, tout point fixe de yn

est point fixe de y

Preuve Comme tout point fixe de y est point fixe de y&quot;, Gyn contient Gy

Inversement, comme y commute avec y&quot;, il préserve l&apos;ensemble des points fixes de
y&quot;, ce qui montre qu&apos;il agit sur l&apos;arbre Gyn Comme y préserve les types + +, + —,
— + et des y &quot;-losanges, s&apos;il fixe un sommet de Gyn, il fixe toutes les arêtes

adjacentes et donc tout les sommets de Gyn Comme il est de torsion, on en déduit
qu&apos;il agit trivialement sur Gyn

PROPOSITION 3 8 Même dans le cas où &amp;s et &amp;u ne sont plus supposés

transversalement orientes, si un élément de F est sans point fixe dans Q*, aucune de

ses puissances non triviales n&apos;admet de points fixes dans Q*

Preuve Nous raisonnons par l&apos;absurde soit y un élément de F sans point fixe,

mais dont une puissance yn admet un point fixe Quitte à remplacer l&apos;entier n par
son double, on peut supposer que yn préserve les orientations transverses de (§s et

de (SU Alors, y agit librement sur l&apos;arbre Gyn Comme son action sur cet arbre est

de torsion, il doit en fixer un arête tout en échangeant les extrémités de cette arête

En d&apos;autres termes, et quitte à modifier les orientations, il existe dans g* deux

points fixes 6X et 62 de yn échangés par y et tels que

Alors, y envoie w+(0!) sur w~(02) Soit / l&apos;intervalle ps(u+(6x)) =/?5(w&quot;(02)) H est

globalement préservé par y, et y en renverse l&apos;orientation On en déduit que y admet

un point fixe dans / contradiction

REMARQUE 3 9 Le stabilisateur dans F d&apos;un sommet de Gy est cyclique
Quitte à remplacer y par une des ses racines, on peut supposer qu&apos;il engendre
l&apos;ensemble des éléments de F qui agissent trivialement sur Gy Soit Z le centralisateur

de y dans F II est clair que L ZKy&gt; agit librement sur Gy9 ce qui montre qu&apos;il

est un groupe libre On en déduit que Z est somme directe de &lt;y&gt; et d&apos;un groupe
libre
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Pour chaque orbite périodique 0 de #&apos;, soit 0 un de ses relevés dans M. Soit [0]
l&apos;unique élément de F engendrant le semi-groupe des éléments de F préservant
l&apos;orbite orientée 0: il est bien défini à partir de 0 à conjugaison près dans F. Tout
lacet représentant [0] est librement homotope au lacet orienté 0. Il découle de la

proposition 3.7 qu&apos;il est indivisible dans F: telle est la preuve (et le sens) du
théorème F énoncé lors de l&apos;introduction. Ce théorème est une légère amélioration
du théorème F de [8].

4. Chapelets de losanges et caractérisation des losanges non-simples

DÉFINITION 4.1. Deux losanges sont dits adjacents s&apos;ils sont distincts et qu&apos;ils

admettent un sommet en commun. Ce sommet commun est alors unique. Ils sont
dits en position directe s&apos;ils sont simultanément directs ou indirects. Sinon, ils sont
dits en position indirecte.

DÉFINITION 4.2. Une chaîne de losanges est une suite se,,..., if„ de

losanges différents vérifiant les hypothèses de la proposition 3.5, i.e., telle que deux

losanges successifs 5£x et S£l+X soient adjacents.

DÉFINITION 4.3. Un chapelet (fini) de losanges est une chaîne de losanges
telle que toute paire de losanges adjacents de cette suite est en position directe.

Il est clair que cette définition équivaut à celle donnée lors de l&apos;introduction. Les

chapelets de y-losanges correspondent aux chemins dans l&apos;arbre Gy n&apos;empruntant

soit que des arêtes directes, soit que des arêtes indirectes.
On peut évidemment étendre ces notions en celles de chaînes ou de chapelets

infinis et même biinfinis en permettant aux indices de parcourir N ou Z. Lorsque
cela n&apos;est pas précisé, il doit toujours être compris que pour nous un chapelet de

losanges est biinfini.
Nous définissons enfin la notion de support d&apos;une chaîne de losanges: soit

j£?i,..., JS?w une chaîne de losanges de sommets x0,..., xn. Pour chaque indice /

compris entre 1 et n — 1 on pose S, {xt} si «S?,
__ i et ï£t sont en position directe.

Sinon, les adhérences de if, _, et de S£x n&apos;ont en commun qu&apos;une semi-feuille St de

&lt;§s ou de ^M: le &quot;côté&quot; du losange gl qui les sépare.

DÉFINITION 4.4. Le support de la chaîne est défini comme étant l&apos;union de

{*o&gt;*/t}&gt; des St et des intérieurs des losanges.
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Le support d&apos;un chapelet de losanges est bien sûr l&apos;union des losanges La
définition du support s&apos;étend bien sûr aux chaînes infinies et bunfinies

Rappelons (voir introduction) la notion de losange simple

DÉFINITION 4 5 Un losange est dit simple si la F -orbite de son intérieur est

disjointe de la F-orbite de ses sommets

Nous nous proposons de montrer dans la suite de ce paragraphe le théorème G.
Montrer la première partie de ce théorème revient à montrer

PROPOSITION 4 6 Soit y un élément de F admettant un y-losange non-simple.
Alors aucun y-losange n&apos;est simple, tous les y-losanges sont simultanément directs ou
indirects, et l&apos;arbre Gy est un sous-arbre de l&apos;arbre linéaire

Par arbre linéaire nous entendons l&apos;arbre infini dont tous les sommets sont de

valence deux Comme le groupe des automorphismes sans point fixe d&apos;un sous-arbre
de l&apos;arbre linéaire est trivial ou cyclique, la dernière partie du théorème G est un
corollaire de la proposition et de la remarque 3 9

Preuve de 4 6 Soit j£? un y -losange non-simple Nous notons x0 et x, ses

sommets que $£ soit non-simple signifie que l&apos;un de ses sommets, disons xQ, admet

un itère y, x0 a l&apos;intérieur de if Pour des orientations convenables de &amp;* et de #&quot;*

et de #&quot;&quot; nous avons

LEMME 4 7 Aucun des ouverts &amp; + -(x0)9 if-+(x0), ^ + ~(xl) et &amp;~

n&apos;est un losange

Preuve Nous allons montrer par l&apos;absurde que $£ + ~(xï) n&apos;est pas un losange
les trois autres cas se montrent de la même manière Nous supposons donc que
S£ + ~(xx est un losange Nous appelons x&apos;o son second sommet Par définition même

des losanges, y,(w+(x0)) u+(yxx0) rencontre s+(x&apos;o) Comme yx(&amp;)~

&amp; ++(7i *o)est un losange, de sommets y, x0 et y} xx, on en déduit que y,x, appartient
à S+(s(x&apos;o)) Or, un argument similaire montre que ylxl appartient également à

U+(u(xx)) C&apos;est absurde, car S+(s(x&apos;o)) et U+(u(x})) sont disjoints

Soit $£&apos; un autre y-losange adjacent à if Le lemme précédent montre que S£ et

if &apos;

sont en position directe On peut supposer que 5£
&apos;

est if ++(x,) l&apos;autre cas est

analogue Si on affine l&apos;argument du lemme 4.7, on voit aisément que yxxx

appartient à l&apos;intérieur de &amp;&apos;
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Scheme 3.

Le losange ££&apos; n&apos;est donc pas simple lui non plus. On conclut grâce à la
connexité de Gy.

5. Traces transverses des anneaux de Birkhoff

PROPOSITION 5.1. La trace transverse d&apos;un anneau de Birkhoff est le support
d&apos;une chaîne finie de losanges. Uanneau de Birkhoff est élémentaire si et seulement si

sa trace transverse est un losange. Ce losange est alors simple.

Preuve. Soit se un anneau de Birkhoff plongé dans M: rappelons que cela

signifie que son bord est constitué de deux orbites périodiques 90 et 9X de $\ et qu&apos;il

est transverse en son intérieur à $&apos;. Son intérieur est donc également transverse aux
deux feuilletages faibles 3Fs et 3Fu. Nous notons respectivement/5 et/&quot; les traces de

ces feuilletages sur se&apos;. Ces deux feuilletages admettent 0O et 6X comme feuilles

fermées, et sont transverses en dehors de ces deux feuilles compactes. Par définition
même, se est élémentaire si et seulement si 0O et 6X sont les seules feuilles fermées

de/Jet de/&quot;.

Nous appelons composante de se tout sous-anneau de se dont chaque
composante de bord est une feuille fermée de/5 ou de/&quot; et dont l&apos;intérieur ne contient

pas de feuille compacte ni de f5 ni de /&quot;. Comme les feuilles de fs et de fu sont à
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holonomie hyperbolique, elles sont en nombre fini, se n&apos;admet donc qu&apos;un nombre
fini de composantes. Ces composantes s&apos;organisent en une liste (stfOi..., stfn) telle

que:

• 90 appartient au bord de s/09 6X à celui de sén,

• se est l&apos;union des séiy

m deux anneaux se\ et sé} sont disjoints sauf si leurs indices / et j sont successifs,

auquel cas elles se rencontrent en leur bord en une feuille compacte de fs ou
de/&quot;.

Soit s? un relevé de se dans M: il s&apos;agit d&apos;une bande transverse en son intérieur
à S et dont le bord consiste en deux orbites 0O et Sx. Soit y [90] [00] ~~l l&apos;élément

indivible de r préservant j?. Soient f5 et/&quot; les traces de «#* et de #&quot; sur s?.

Chaque composante sé% se relève en une &quot;composante&quot; sdt de s?. Nous notons gt
et ht les composantes de bord de s?r Ces notations sont bien caractérisées si on
convient que:

• g0 est 0O,

• hn est Sx,

• K et g, + sont confondues.

Les droites gt et ht sont y-invariantes. Il existe donc pour chaque indice i deux

orbites a, et bt de S1 y-invariantes telles que:

ou tu *(g, c w(tf,

71^)C=^) OU ^(AJdl^é,)

Nous notons /} et /&quot; les restrictions à l&apos;intérieur de sjl de Js et de Ju. Comme la

trace transverse de se n&apos;est autre que la réunion de celles de ses composantes, notre
but est de caractériser les n^is?,). Nous allons montrer que n%s^t) est grosso modo

un losange de sommet a, et bt. Quitte à échanger &amp;s et &amp;u9 on peut distinguer

quatre types possibles de composante. Nous les décrivons à la figure 5 en indiquant
l&apos;allure des triplets (s?,,f%f^) correspondants.

Il apparaît que dans tous les cas de figure:

LEMME 5.2. Chaque feuille dej\ recontre chaque feuille dejut en exactement un

point. Il existe un chemin ct transverse aux deux feuilletages J\ et ?&quot; joignant at à bt

et disjoints de tous ses itérés par y. D
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¦v- \/ ,.-J
i

Figure 5. Composantes d&apos;un bifeuilletage de l&apos;anneau

D&apos;où:

LEMME 5.3. Chaque feuille de &lt;#* (respectivement de #M) ne rencontre j?,
qu&apos;en au plus une feuille dej\ (respectivement dej&quot;).

Preuve. D&apos;après un argument classique (voir par exemple [13]), toute transver-
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sale à #5 recontre chaque feuille de #s en au plus un point. Comme toutes les

feuilles de/J recontrent cn elles appartiennent à des feuilles différentes de #\ De
même, l&apos;intersection d&apos;une feuille de #w avec j?, est connexe.

COROLLAIRE 5.4. Chaque orbite de $* autre que 0O et 0, recontre set en au
plus un point.

Soit ct n*(ct) la projection dans Q* de c,. C&apos;est un chemin fermé simple de

g*, transverse à ^A et ^M, disjoint de tous ses itérés par y sauf peut-être en ff0 ou
8X si ceux-ci appartiennent à dstf,.

L&apos;existence de c, montre que a, et bt sont différents. D&apos;après 3.5, s&apos;ils ne sont pas
sommets d&apos;un même losange, il existe un troisième point fixe 0 de y différent dont
une des feuilles s(6) ou w(0) déconnecte at et b, et doit donc recontrer c,. Cette

feuille, disons s(9) recontre 71%*?,) en une partie connexe et y-invariante (cf. 5.3).

On en déduit que cette intersection est s+(6) ou s~(8), et donc que s/, contient une
feuille fermée de fs en son intérieur: contradiction.

at et b, sont donc sommets d&apos;un même losange. Quitte à modifier les orientations:

De plus, n*(gt) est soit an soit u+(al) soit s+(at) selon que g, est 0O, une feuille de

fu on une feuille de/\ De même, n*(gt) est bn u~(bt), ou s~(bt).
Comme l&apos;intérieur de c, est disjoint de ses y-itérés, nous sommes dans l&apos;un des

cas de figure décrits par le schéma 4.

Soit @, le domaine délimité dans j?f par cn yct et les deux segments reliant dans

0O et 0, les extrémités de ct à celles de yct. C&apos;est un domaine fondamental de l&apos;action

de y sur j/,. Sa projection dans g* est le disque bordé par l&apos;image de son bord. On

en déduit que n*{ât) est l&apos;union du losange ouvert de sommets a, et bn de fl*(/*,)
et de n*(gt). On en déduit sans peine la proposition 5.1: il suffit pour cela de voir

que les images par n* de deux composantes adjacentes j?/ et j?i+ i se trouvent de

part et d&apos;autre de la semi-feuille tt*(/*,) n*(gl+ï). Les deux dernières affirmations
de 5.1 sont évidentes. D

REMARQUE 5.5. Nous avons implicitement montré le fait suivant: chaque
feuille de S autre que 0O et 0, rencontre 3 en au plus un point.

COROLLAIRE 5.6. Tout anneau de Birkhoff est homotope le long de &lt;P* à une

perturbation arbitrairement petite d&apos;une union finie d&apos;anneaux de Birkhoff élémentaires.
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Scheme 4

Preuve, Soit se un anneau de Birkhoff et (if0,..., &lt;£?„) la chaîne de losanges
dont le support est trace transverse de se. Les sommets de S£l sont des orbites de

ë* au-dessus d&apos;orbites périodiques 0, de &lt;P*. D&apos;après le théorème D (que nous
montrerons bientôt) chaque if, est trace transverse d&apos;un anneau de Birkhoff
élémentaire sét bordé par 0, et dl+ï. Pour chaque indice i soit Ul un voisinage de

9t suffisamment petit. D&apos;après le lemme 3.4 on peut choisir Ul linéarisant, i.e., tel

que la restriction de &lt;P* à U, est un flot local topologiquement équivalent à la
restriction à {(*, y, a)ei2x Sl/x2 + y2 &lt; 1} de la suspension du difféomorphisme
linéaire de 1R2 défini par la matrice:

2 0

0

Quitte à isotoper les se\ le long de &lt;P\ on peut choisir les Ut de sorte que:

• les intersections de Ut avec sét_x et sét sont connexes,

• l&apos;union des sét coïncide avec se hors de l&apos;union des Ut.



Mise en position optimale de tores par rapport à un flot d&apos;Anosov 135

Figure 6. Coulissage de deux anneaux de Birkhoff adjacents.

On peut alors déformer les sét dans les Ut de sorte que leur réunion soit un
anneau de Birkhoff dont la trace transverse est le support de (jS?0, i?n) (cf.
figure 6). Cet anneau est isotope le long de &lt;&amp;&apos; à $4.

6. Construction d&apos;anneaux de Birkhoff

Nous montrons ici le théorème D. Soit if0 un y0-losange simple de sommets ff0

et 0X. Quitte à remplacer y0 par une de ses racines, on peut le supposer indivisible,
Le., qu&apos;il engendre les stabilisateurs des sommets 0Q et 0X. D&apos;après le lemme 3.4 il
existe dans j£?0 un chemin c0 d&apos;extrémités 0O et 0X sans autointersection et disjoint de

tous ses itérés par y0. Soit c0 un relevé quelconque de c0 dans M (rappelons que tt*
est une fibration triviale). Notons x0 et xx les extrémités de ce relevé. Soit cx l&apos;image

de c0 par y0, et yQ yoxo et yx yoxx les extrémités de cx. Soient enfin /0 et Ix les

intervalles.^,y0] et [xi,};i] dans 0O^U et ffx^ U. Alors, IoucouIxucj borde un
rectangle R plongé dans M transverse à &amp;&apos; en dehors de /0 et de /,. L&apos;intérieur de

ce rectangle recontre chaque feuille de S en au plus un point. Notons j?0 l&apos;union

des itérés par y0 de R: c&apos;est une bande y0 invariante, bordée par 0O et 0X, et
transverse à $&apos; en son intérieur.

Soit M le quotient MKyo&gt;. Soit n : M -? M l&apos;application de revêtement naturelle.
&lt;P* se relève en un flot $\ et j?0 passe au quotient en un anneau plongé «s/0

transverse à &amp;&apos; en son intérieur et bordé par deux orbites périodiques ê0 et §x.

Comme y0 est indivisible les restrictions de n à 0O et 0X sont injectives. Par ailleurs,
si ces deux orbites périodiques ont même image par n il existe dans M un
plongement incompressible de la bouteille de&apos; klein, ce qui est écarté dans les

hypothèses (voir remarque 6.1). Il existe donc un voisinage 00 de ô^0 dans Û sur
lequel n se restreint en un plongement. Enfin, comme le losange J5f0 est supposé

simple, les images par n de djrf0 et de intjtf0 sont disjointes. Quitte à diminuer 00,
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on peut supposer que Uo n(Û0) et n(srfo\Ûo) sont disjoints. La restriction de n à

&lt;s/0 est une immersion de l&apos;anneau dans M. Notre but est de modifier cette
immersion en un plongement injectif. On peut supposer cette immersion en position
générale, i.e., que le lieu de non-injectivité consiste en un nombre fini de cercles de

points doubles s&apos;intersectant entre eux en des points triples (cf. figure 7, pour un
peu plus d&apos;explication voir [10]).

Ce Jieu des singularités se situe hors de Ûo. En utilisant les techniques de &quot;eut

and paste&quot; on obtient une surface se plongée dans M, de bord 60u0u transverse
à &lt;P* en son intérieur et coïncidant avec n(srf0) dans Uo (cf. [10]). Cette surface est

orientable (car transversalement orientable puisque son intérieur est transverse à
&amp;&apos;) et son intérieur est transverse à chacun des feuilletages faibles. Ces feuilletages
induisent donc deux feuilletages sans singularités sur se et tangents au bord: II s&apos;en

suit que se est nécessairement connexe et qu&apos;elle est un anneau de Birkhoff de bord
0ou0x. Pour conclure, nous devons juste montrer que la trace de cet anneau est j£?0.

Malheureusement cette affirmation telle quelle est fausse, puisqu&apos;en général les

opérations de &quot;eut and paste&quot; ne préserve pas les données homotopiques. Nous
allons montrer néanmoins qu&apos;un partie de se peut se modifier en un anneau de

Birkhoff de trace transverse J^o.
Soit srf le relevé de srf dans M contenant 0O. C&apos;est une bande de M globalement

préservée par l&apos;action de y0. Soit B\ la composante connexe de ôstf au-dessus de 0x:
c&apos;est un itéré y - ffx (y e T). Soit enfin 5£ l&apos;image de sf par n*. D&apos;après 5.1 ££ est le

support de la chaîne de losange # reliant 90 à 0\. De plus, comme si et j/0
coïncident sur un voisinage ouvert de 90 au-dessus de £/0, le premier losange de cette
chaîne, incident à 60, n&apos;est autre que «£?0. Enfin, la même remarque appliquée au
voisinage de Bx montre que le dernier losange de #, celui incidant à 0\ y9x, est

yJ5f0. Soit séx la composante de se contenant 60 (pour la notion de composante,
voir la preuve de 5.1). Quitte à inverser 4&gt;&apos;9 on peut supposer que le bord de séx est

Figure 7. Singularités en position générale.
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constituée de 90 et d&apos;une feuille fermée gx de la trace de SFS sur si. La trace
transverse de séx est l&apos;union de l&apos;intérieur de &amp;0, de {0O} et de s~(9x). Il s&apos;en suit

que la feuille F de !FS contenant gx est celle contenant 9X Soit sé2 l&apos;anneau bordé
dans F par gx et 9X (comme gx est transverse à &amp;&apos; dans F gx et 0x sont disjoints).
Comme séx ne contient aucune feuille fermée de fs autre que 9Q ou gi son

intersection avec stf2 se réduit à gx (cf figure 8)

Quitte à pousser six par &lt;Pt on peut supposer gx arbitrairement proche de 01 II
s&apos;en suit que s/2 est inclus dans un voisinage linéarisant Ux de 0X En inversant
l&apos;argument du corollaire 5 6 on montre que séx se déforme dans Ux en un anneau
de Birkhoff élémentaire bordé par 90 et 9X et de trace transverse j£?0

REMARQUE 6 1 La preuve du théorème D&apos; est semblable en tout point à

celle du théorème D Les techniques que nous avons utilisées permettent de

montrer

PROPOSITION 6 2 Soit J^o un yo~tosange simple de sommets 90 et 9X On

suppose qu&apos;il existe un élément y de F envoyant 90 sur 9X Alors, il existe un plongement

incompressible de la bouteille de Klein dans M, contenant une orbite périodique de &lt;P*

et transverse à &lt;P* en dehors de cette orbite périodique De plus, ce plongement peut
être choisi de sorte que sa trace transverse soit un chapelet contenant &amp;Q

Figure 8 Axe de couhssage de g, sur 0,
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Nous laissons au lecteur la preuve de 6.2. Nous indiquons seulement que le

revêtement intermédiaire M qu&apos;il convient de considérer ici est celui associé au

sous-groupe de F engendré par y et y0.

7. Chapelets de losanges et tores quasi-transverses

Nous montrons ici les théorèmes C et C. Voyons tout d&apos;abord pourquoi le

théorème C&apos; découle du théorème C. Il s&apos;agit de montrer:

PROPOSITION 7.1. Soit (M, #&apos;) un flot cTAnosov non topologiquement équivalent

à une suspension. Alors, tout sous-groupe libre abélien de rang deux de F préserve
un chapelet de losanges.

Preuve. Rappelons que l&apos;hypothèse produit signifie que l&apos;espace des feuilles Qs

est homéomorphe à U. D&apos;après [3], il existe un homéomorphisme ts :Qs-+Q\
commutant avec l&apos;action de F sur Qs. De plus, l&apos;espace des orbites Q* s&apos;identifie

avec l&apos;ouvert U de Qs x Qs compris entre les graphes de l&apos;identité et de ts, et cette
identification envoie l&apos;action de F sur Q* sur la restriction à U de l&apos;action diagonale
de F sur Qs x Qs. Elle envoie aussi les feuilletages (ês et (êu sur les restrictions à U
des feuilletages verticaux et horizontaux.

Soit H un sous-groupe de F isomorphe à Z © Z.

LEMME 7.2. L&apos;action de H sur Qs n&apos;est pas libre.

Preuve. Nous raisonnons par l&apos;absurde. Il est bien connu qu&apos;une action libre de

Z©Z sur la droite est toujours semi-conjuguée à une action par translation (cf. par
exemple [14]). En d&apos;autres termes, il existe une application continue, croissante et

surjective/: Qs-+M et un morphisme injectif p : H -&gt;(R tels que:

Vjc 6 Q5 VA e H f(hx) =/(jc) + p(h)

Comme/est surjective il existe au moins un élément x de Qs pour lequel ta(x) et

x n&apos;ont pas la même image par /. On en déduit l&apos;existence de deux intervalles
ouverts /, et J2 compris dans un même intervalle du type ]x, rs(x)[, et tels que les

images par/de /,, rsl{ et I2 sont disjointes. Alors, V /, x I2 est un ouvert contenu
dans U. Comme &lt;P* est topologiquement transitif (cf. théorème 2.6 de [3]) il existe

un élément (xQ,y0) de V fixé par un élément y de F. Il correspond à une orbite
périodique de #&apos;. Comme cette orbite périodique est compacte et propre, l&apos;orbite

F&apos;(x09y0) est un fermé discret de U^Q*. Il en est donc de même pour
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Soit x0 la borne inférieure des éléments de H • x0 supérieurs à jc0: il est supérieur
à x0 et il existe une suite (hn) d&apos;éléments de H telle que les hn(x) convergent vers x0.
Alors, les p(hn) convergent vers 0, et les hn(y0) convergent eux-aussi vers un élément

y0. Nous avons:

f(xo)= lim f(xo)+p(hn)=f(xo)
n~* + oo

On en déduit que le couple (x09yQ) appartient à V cU. Ceci contredit le fait que
H &apos; (*o&gt; Jo) est un fermé discret de U.

Soit h un élément de H admettant un point fixe (x0, y0) dans U. Alors l&apos;ensemble

des points fixes de h est exactement l&apos;ensemble des (t&quot;x0, xnsy0) et des (tnsy0, x&quot;+ ]x0)
où n décrit Z. Les verticales et les horizontales passant par ses points fixes

délimitent dans U ^Q® un chapelet de losanges (voir figure 9).

Comme chaque élément de H commute avec A, ce chapelet est //-invariant.

Nous nous consacrons désormais à la preuve du théorème C. Nous reprenons
les notations de son énoncé. Soit {#,} l&apos;ensemble des sommets du chapelet #. Soit
enfin //&apos; le stabilisateur de #, i.e., l&apos;ensemble des éléments de F préservant c€.

LEMME 7.3. H et H&apos; sont confondus.

Figure 9. Chapelet de losanges d&apos;un flot d&apos;Anosov produit.
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Preuve. Par hypothèse //&apos; contient H. Par ailleurs, en tant que sommets de #,
les 9t sont naturellement ordonnés et l&apos;action de H&apos; sur &lt;&amp; préserve cet ordre. On en
déduit l&apos;existence d&apos;un morphisme x &apos;-

H&apos; -* Z tel que:

VAeF VieZ *$ $ + **)

H&apos; est donc soit cyclique, soit isomorphe à Z © Z, soit isomorphe à l&apos;extension de

degré deux non triviale de Z ® Z. Le premier cas est impossible car H&apos; contient H.
Le troisième cas aussi puisqu&apos;il implique l&apos;existence d&apos;un plongement incompressible
de la bouteille de Klein (cf. remarque 7.14). Il ne reste alors que le second cas. Or,
comme H correspond à un plongement incompressible du tore, c&apos;est un sous groupe
libre abélien de rang deux de F maximal (cr. [9]). Donc H //&apos;.

Soit h un générateur du noyau de #, Le., du stabilisateur de chaque 0t. Les
méthodes utilisées au début de la preuve du théorème D permettent de contruire un
plan fQ plongé dans Si tel que:

• To est //-invariant,
• f0 contient tous les 8l9

m f0 est transverse à S* en dehors des 0,,

• # est trace transverse de f0.

Soit û : Û -+ M le revêtement associé à H c F. Soit êl le relèvement dans M de
#&apos;. Les St se projettent dans M en des orbites périodiques 6t de S\ et f0 se projette
en un tore plongé f0. L&apos;ensemble des orbites de S* recontrant f0 s&apos;identifie au

quotient de V par H. On en déduit:

LEMME 7.4. Une orbite de S1 est soit un des dt soit ne rencontre f0 qu&apos;en au

plus un point.

LEMME 7.5. Chaque orbite de S1 rencontrant f0 est fermée dans M.

Preuve, Les 0t sont bien sûr fermées. Soit 8 une orbite de &amp; recontrant f0 hors
des Sl9 Le., un élément de l&apos;intérieur de c€. Il s&apos;agit de montrer que son orbite par
H est fermée dans Q*. Nous raisonnons par l&apos;absurde: soit (hn)neN une suite
d&apos;éléments distincts de H tels que les hn8 convergent vers un élément 9 de Q0. La
limite ff appartient à l&apos;adhérence de V qui n&apos;est autre que l&apos;union de V et des u(St)

et des s{8t) (indication: considérer un rectangle de Markov rencontrant la frontière
de &lt;$% Si ff n&apos;appartient pas à l&apos;intérieur d&apos;un losange de &lt;€9 on peut supposer quitte
à échanger &amp;s et &amp;u qu&apos;il appartient à un s(fft). A partir d&apos;un certain rang les hn9
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appartiennent alors au même losange de ^, ce qui montre que les hn ne différent les

uns des autres que par des puissances de h. D&apos;après la proposition 2.7 0 est
exactement 0, et les hn0 appartiennent à s(0t) ou «(0,): contradiction.

LEMME 7.6. Le chapelet de losanges &lt;€ est simple.

Preuve. Soient 0,,..., 6n les projetés dans M des 9t. Soit 0 un relevé d&apos;un des

0, dans M rencontrant f0. On suppose que 0 n&apos;est pas 0,. Alors, d&apos;après les lemmes
7.5 et 7.4 0 est une droite fermée de M ne rencontrant f0 qu&apos;en un seul point.
Comme //n&apos;est autre que/* nx{T), /se relève en un plongement de 7 dans M dont
l&apos;image f est un relevé de f{T) librement homotope à f0. Donc, le nombre
d&apos;intersection modulo 2 de 0 avec f est non-nul. Soit c une courbe fermée simple
plongée dans/(T) librement homotope dans M à 0,. Cette homotopie se relève en

une homotopie propre entre 0 et une droite A. Cette droite A doit rencontrer f
puisque leur nombre d&apos;intersection modulo 2 est non-nul. Comme A est un relevé
de c, elle doit être contenue dans f et doit donc être un cercle. Contradiction.

Donc, les seuls relevés des 0, rencontrant f0 sont les 0,. Relevé dans M, ceci

signifie exactement que ^ est un chapelet de losanges simple (cf. introduction pour
la définition de chapelet simple).

COROLLAIRE 7.7. La restriction de n à l&apos;union des 0, est injective. L&apos;image par
n de f0 privé des 0, est disjointe de l&apos;union des 0,.

Preuve. D&apos;après le lemme 7.6 tt(To\U^#) ne rencontre aucun des 0,. Comme h

est un élément de F indivisible, la restriction de n à chaque 0, est injective. Enfin,
si un élément de F envoie un sommet de %&gt; sur un autre sommet de # il préserve
nécessairement le chapelet lui-même. D&apos;après le lemme 7.3, un tel élément

appartient à //, ce qui montre que deux orbites différentes 0, et 0) ont des images par
n différentes.

REMARQUE 7.8. Le fait que ^ soit un chapelet de losanges et non le support
d&apos;une chaîne de h -losanges quelconque, intervient de manière cruciale dans la

preuve de 7.7.

D&apos;après le théorème D chacun des losanges $£ + +(04) est la trace transverse d&apos;un

anneau de Birkhoff élémentaire sét. Il en découle que quitte à isotoper fQ le long
de Ô* on peut supposer que la restriction de n à chaque composante de f0 est un

plongement injectif (ici, une composante est un anneau transverse à S bordé dans

f par deux orbites 0, et 0I+I). Notons j?l9...,j&amp;n les composantes de f0 et

j/j sèn leurs images par n. Pour conclure nous devons juste montrer que l&apos;on

peut isotoper f0 le long de S de sorte que les &lt;*/, soient deux-à-deux disjoints.
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Quitte à modifier légèrement f0 on peut supposer que n : f0 -? M est une immersion
lisse en position générale. Rappelons que ceci signifie que le lieu des singularités £f
de cette immersion est stratifié en lignes de points doubles lisses s&apos;intersectant en des

points triples. En d&apos;autres termes, il existe dans f0 un ensemble fini F est une
sous-variété lisse plongée &amp; de dimension un tels que:

• &amp;&quot; est l&apos;ensemble des éléments de f0 dont l&apos;image par n admet exactement
trois antécédents par n: c&apos;est le lieu des points triples,

m 9) est l&apos;ensemble des éléments de f0 dont l&apos;image par n admet exactement
deux antécédents par n: c&apos;est le lieu des points doubles,

• chaque composante connexe de 2 est soit un cercle, soit un intervalle ouvert.
Dans le second cas, sa frontière est contenue dans &lt;^~,

• l&apos;union £f 2 u 3~ est le lieu des singularités: la restriction de n à son
complémentaire est un plongement injectif.

D&apos;après le corollaire 7.7 Sf est disjoint de l&apos;union des fft. La restriction de n à 3)

est un revêtement double. Il existe donc un homéomorphisme g : 3) -? 3) d&apos;ordre

deux, sans point fixe, et tel que n © a n. Comme la restriction de n à chaque se,
est injective, a ne préserve aucune composante connexe de $).

Soient sx, s2 et s3 trois éléments de 9~ ayant même image s par n. Chacun des

s, est extrémité de quatres intervalles î\ (1 ^7 &lt; 4) composantes connexes de ®. Les

douzes intervalles ainsi obtenus sont deux-à-deux différents. On peut choisir leur
numérotation de sorte que:

I\=a(I22) I] (T(I42)

Si on convient de cette numérotation, deux intervalles l\ et î\ sont tangents en leur
extrémité commune st si les indices j et f ont même parité (cf. figure 10).

Nous appelons cercle de points doubles la donnée d&apos;une suite (Iu In,
In + l=zil) de composantes connexes de 2 et d&apos;une suite (su sn, sn + l =s{)
d&apos;éléments de y telle que:

• les /, sont deux-à-deux disjoints,

• pour chaque indice i l&apos;intervalle It relie s, à st+l9
• deux intervalles successifs It et Il+l sont tangents en sl + l.

Par abus de notation, nous appellerons aussi cercle de points doubles l&apos;union des

It et àes st. En ce sens c&apos;est l&apos;image d&apos;une immersion lisse du cercle dans t0.
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s s? s

Figure 10 Lieu des singularités au voisinage d&apos;un point triple

LEMME 7.9. Les cercles de points doubles sont sans autointersection. La restriction

de n à chacun d&apos;entre eux est injective.

Preuve. Soit (/,,..., /„), ($,,..., sn) un cercle de points doubles. Nous le

supposons avec autointersection, i.e., qu&apos;il existe un indice 1 &lt;p &lt;&gt; n tel que s, sp.

Alors, l&apos;union des s,,..., sp et des Iu ,IP^\ est un cercle topologique (mais non
différentiablement immergé). De plus, les &lt;r(/;) (1 &lt;, / &lt;&gt;p — \) sont des intervalles
vérifiant:

• (7(7,) et &lt;x(//+i) sont incidents à un même point triple s&apos;t en lequel ils sont

tangents,

• a{Ix) et o(Ip_x) sont incidents à des sommets s\ et sp qui ont l&apos;un comme
l&apos;autre même image par n que s{ sp.

Les sommets s\ et sp sont reliés par un chemin dans £f. Comme ce dernier est

disjoint des ffn ce chemin est contenu dans un des se\. Comme la restriction de n à

sèx est injective, on en déduit que s\ et sp sont égaux. Il s&apos;en suit que les parties de

/,, Ip_u Ip et /„ proches de sx =sp sont envoyées par a en quatres intervalles
proches du même point triple s\ =sp. Ceci est absurde (cf. figure 10). Les st sont
donc deux-à-deux disjoints et l&apos;union des /, et des j, 1 £ / £ n) est l&apos;image C d&apos;un

plongement différentiable du cercle. L&apos;application a définie sur C\3T se prolonge en

un homéomorphisme entre C et un autre cercle de points doubles C tel que:
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C et C&quot; appartiennent à deux composantes sèt et «^ différentes. Ils sont donc
disjoints. On en déduit que la restriction de n à C est un plongement injectif.

LEMME 7.10. Chaque cercle de points doubles borde un disque dans To.

Preuve. Il s&apos;agit de montrer qu&apos;un cercle de points doubles est homotopique-
ment trivial. Supposons a contrario l&apos;existence d&apos;un cercle de points doubles C
homotopiquement non trivial. Soit C&quot; o{C) l&apos;autre cercle de points doubles ayant
même image par n que C. C et C se relèvent dans M en deux droites fermées C et
C&apos;, et il existe un élément y de F envoyant C sur C&apos;. Comme C et C&quot; sont disjoints
des fft ils leurs sont librement homotopes dans f0. Les relevés C et C&apos; peuvent donc
être choisis globalement préservés par h [0J. Il en découle que yhy~x est égal à

h±l\ y envoie donc les /*-losanges sur des h -losanges. Soit if, le h -losange de #
contenant n*(C) et S£t celui contenant n*(C&apos;): le losange jSf, est envoyé par y sur
Jif,. Comme # est un chapelet, il s&apos;en suit que y préserve (€. D&apos;après le lemme 7.3

y appartient à H. Donc, C C&quot; &lt;r(C): contradiction.

Soit C un cercle de points doubles et D le disque fermé qu&apos;il borde dans f0: ce

disque est contenu dans un anneau sev La restriction de n à ce disque est donc un
plongement. Soit D son image par n. Quitte à changer notre choix de cercle de

points doubles, on peut supposer que le nombre de composantes connexes de Q) n D
est minimal. Ceci implique que l&apos;intérieur de D ne contient pas de cercle de points
doubles, i.e., tout cercle de points doubles rencontrant D rencontre C dD. Soit
C&apos; a(C) et Df le disque bordé dans f0 par C. On note D&apos; n(Ô&apos;).

LEMME 7.11. Les intérieurs de D et de D&apos; sont disjoints.

Preuve. D et D&apos; sont transverses l&apos;un à l&apos;autre, et ils sont compacts. Si l&apos;intérieur

de D rencontrait D&apos; il contiendrait l&apos;image d&apos;un cercle de points doubles. Nous
l&apos;avons exclu par hypothèse.

L&apos;union D uZ)&apos; est donc un plongement de la &quot;sphère à coin&quot; nulle part tangent
à &amp;&apos;. Comme M est irréductible, DkjD&apos; borde dans M une boule B. Quitte à

inverser le flot, on peut supposer que &lt;Pl est rentrant dans B en D&apos;. Soit Df0 un
disque voisinage de Df dans n(f0). Pour toute paire d&apos;applications u : D&apos;o-+M~ et

v : D&apos;o-+M]~ on note Qlu(D&apos;o) l&apos;ouvert deMxH constitué des couples (%, /) vérifiant

u(x) ^ t ^ v(x). Nous notons enfin q&gt; l&apos;application (x, i) h-&gt; &lt;P&apos;(x).

LEMME 7.12. On peut choisir D&apos;o et trois applications u, v et w de D&apos;o dans R de

telle sorte que:
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• u &lt; w &lt; v

• u&lt;0 &lt;v

• la restriction de q&gt; à QVU(D&apos;O) est un plongement injectif,

• ç envoie {(x, t)/x e D&apos;Qt w(x)} sur un voisinage Do de D dans n(f0).

Preuve. Soit x un élément de D&apos;. On suppose que son orbite positive {#&apos;(*)/

t &gt; 0} ne rencontre pas D. Alors, d&apos;après le shadow lema (voir par exemple [5]) il
existe dans B une orbite périodique de $\ Or B est simplement connexe, et aucune
orbite périodique de &lt;&amp;&apos; n&apos;est homotopiquement triviale: contradiction. Donc, pour
tout élément x de D\ il existe un réel positif w(x) tel que #&apos;(x) appartient à D, et
tel que pour tout réel positif t inférieur à w(x) &lt;Pl(x) n&apos;appartient pas à D. On en
déduit aisément le lemme 7.12.

Scheme 5.

Soit ô une application D&apos;0-&gt;U~*~ comprise entre w et v et nulle au voisinage de

ôDq. On étend ô &lt;&gt; n en une application S : fo-»IR+ en lui imposant de s&apos;annuler

hors du disque D&apos;o au-dessus de D&apos;o. Alors, fô:xt-+ SS(x)(x) est une homotopie le

long de 0&apos; envoyant f0 sur un tore f%. Pour un ô générique la restriction de n à

î% est en position générale: on note alors ^ô99â, 3TÔ le lieu singulier, le lieu des

points doubles et le lieu des points triples.

LEMME 7.13. Pour un choix convenable de ô, le nombre de composantes

connexes de $)à est strictement inférieur au nombre de composantes connexes de S.

Preuve. On note:

D&apos;5=fs0&apos;)

Ôo
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Pour tout espace topologique E nous notons bQ{E) le nombre de ses composantes

connexes. Rappelons que nous avons choisi D de sorte que bo(Dn&lt;3) soit
minimal. En particulier:

o(@ nlntD) £ bQ(9 nlntD&apos;) (1)

Nous imposons à ô : D&apos;Q-+ R d&apos;être compris entre w et w + e. Les disques Do et
D&apos;ô0 sont alors disjoints. Comme n(f0) est auto-transverse il existe un réel e positif
pour lequel cp envoie QZ±CC(D&apos;O) sur un ouvert voisinage de Do dans lequel n(fo\D^)
est homéomorphe à [~e9 -fe] x ($f nD0). Quitte à diminuer Do on peut supposer
en outre que w -h e est positif.

Figure 11.

Pour un choix convenable de ô, D&apos;ô0 est transverse à n(Ti\D&apos;6Si) et leur
intersection est &quot;analogue&quot; à celle de Do avec 7r(ro\(Z)ouZ)o))- En d&apos;autres termes,

pour un tel choix de ô:

(2)&apos;s) bo(@ô nIntÔô) bQ(9 nlntD)

Chaque composante connexe / de 2 est de l&apos;un des types suivants:

• soit n(I) appartient à ôD ôD\
m soit n(I) appartient à IntD,
• soit n(I) appartient à IntD\
m soit n(I) n&apos;appartient pas à DvD&apos;.
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Donc:

bo(@n(fo\n- \D0 u /)£))) + bo{9 n ÔD)

+ 2bo{9nIntD)

D&apos;après (1), et comme bo(@ndD) =bo(@ndD&apos;):

bo{9) &gt; bo{9 n(To\n-\DouD&apos;o))) + 2bo(@ ndD) + 4bo(@ nlntD) (3)

Par ailleurs, il est clair que:

n(fâ0\n -l(Dôv D&apos;â))) + 2bo(Ss nIntDô) + 2bo(Sâ nIntÛ&apos;6) (4)

Chaque élément de Qf n(fQ\n~l(DouDfoy) est au-dessus d&apos;une autointersection
de n(fo\(DovD&apos;o)) n(fo\0êtOuD^o)). Il correspond donc aussi à un élément de

@ôn(Tso\n-l(DôvD&apos;ô)). En d&apos;autres termes:

Avec (2), (3) et (4) ceci montre:

bo{9) - bQ{9ô) ^ 2bQ{9 nÔD)&gt;0

Tant que !&amp; est non-vide on peut appliquer le lemme 7.13. De proche en proche,
on déforme f0 le long de $* jusqu&apos;à obtenir un tore sur lequel n se restreint en un
plongement injectif. L&apos;image de ce plongement est alors le tore quasi-transverse

homotope àf(T) recherché. Nous avons ainsi montré l&apos;existence. L&apos;unicité découle
de théorème A&apos; que nous démontrerons à suivre.

REMARQUE 7.14. Lors de la preuve du lemme 7.3 il a été défini un mor-
phisme x •

H&apos; -+ % où H&apos; est le stabilisateur du chapelet (€. Il y a été affirmé que la
suite exacte

n&apos;est pas centrale, alors il existe dans M un plongement incompressible de la

bouteille de Klein. Pour justifier cette affirmation il suffit d&apos;appliquer les méthodes

précédentes en remplaçant H par H&apos; et le mot &quot;tore&quot; par &quot;bouteille de Klein&quot;. En

fait, il suffit de construire l&apos;immersion K cz MjH. —? M où K est une bouteille de
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Klein quasi-transverse à S, puis d&apos;appliquer les techniques de &quot;eut and paste&quot;. On
obtient ainsi un plongement dans M quasi-transverse à &lt;2&gt;r d&apos;une surface I non-
orientable et bifeuilletable, donc une bouteille de Klein.

Nous avons même mieux: en s&apos;inspirant de la preuve précédente on peut
montrer que la bouteille de Klein quasi-transverse I peut être choisie de telle sorte

que le plongement initial/: T-*M est homotope au bord d&apos;un voisinage tubulaire
régulier de I&quot;. Nous laissons les détails au lecteur.

8. Mise en position transverse

Nous en venons à la preuve du théorème B. Soit T2 c» M un plongement
incompressible du tore vérifiant les hypothèses du théorème B. Soit H le sous-

groupe de F correspondant à nx(T2) ~HX(T2) ~Z©Z. Il est bien défini à

conjugaison près dans F. Les lacets cx et c2 correspondent à deux éléments différents hx

et h2 de H qui admettent l&apos;un comme l&apos;autre des points fixes dans Q4*. D&apos;après le

théorème F hx et h2 sont indivisibles dans F. Donc, comme cx et c2 ne sont pas
homologues dans T2 hx et h2 n&apos;admettent aucune puissance commune: aucun point
fixe de l&apos;un n&apos;est point fixe de l&apos;autre.

LEMME 8.1. Quitte à échanger hx et h2 on peut supposer qu&apos;il existe une feuille
de y fixée par hx rencontrant une feuille de &amp;u fixée par h2.

Preuve. Soit 9 un point fixe de hx dans Q*. Alors, h29 ^ 9 est lui-aussi point fixe
de hx. Soit J?x,. ££n la suite de hx -losanges reliant 9 à h29. On suppose 9 choisi
de sorte que le nombre n de ces losanges soit minimal. Pour des orientations
convenables nous avons if1 if ++(0). Soit 9X l&apos;autre sommet de S£x\

Comme n est minimal Z£n ne peut être S£ ++(h28), sinon if2,.. S£n_ x relieraient
9X à h29x. On en déduit que 9 appartient soit à U_{h29) soit à S_{h29) (voire aux
deux simultanément). En d&apos;autres termes, soit U+ (h29) soit S+ (h29) ne contient pas
9. Par ailleurs, comme Sex J£? + + (0), h29 appartient à U+ (9) n S+ (9). On en

déduit que h2U+(9) est contenu dans U+(9) on que h2S+(9) est contenu dans

S+ (9). D&apos;après le lemme 2.6 dans le premier cas il existe une feuille de &lt;ês fixée par
h2 rencontrant u{9\ et dans le second cas il existe une feuille de &amp;u fixée par h2

rencontrant s(6).
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Soit x0 une orbite fixée par hx et y0 une orbite fixée par h2 telles que

s(xo)nu(yo) ^0
Notons z l&apos;unique élément de cette intersection. On peut supposer:

149

Quitte à inverser hx et h2 on peut aussi supposer x0 et y0 sont des points fixes
attractifs des restrictions à s(x0) et u(y0) de hx et de h2. Soient xf h2x0 et y&apos; *lty0:
ce sont respectivement des points fixes de hx et de h2 et les restrictions à u(y&apos;) et six&apos;)

de /z2 et hx sont contractantes. w+(^0) et u+(y&apos;) rencontrent s+(x&apos;) et ^&quot;^(jco) en

respectivement h2z et A,z, et u+(y&apos;) rencontre s+(x&apos;) en hxh2z h2hxz. Ces quatres
demi-droites délimitent donc dans Q0 un domaine compact. Nous appelons K ce

domaine (cf. figure 12). C&apos;est un &quot;rectangle&quot; fermé de côtés a, a7, /S, fi&apos; où:

a

P=ôKnu+(y0)

Figure 12
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Soit t&apos; un élément de a&apos;. La demi-droite u+{t&apos;) est fermée dans Q*\s(x&apos;).

Comme K est compact, elle doit rencontrer dK: elle ne peut le faire qu&apos;en a. De
même, toute feuille de &lt;SS rencontre /? si et seulement si elle rencontre f}&apos;. On en
déduit que A&apos;est un rectangle de Markov. Soit Jf : a&apos; -»a l&apos;application d&apos;holonomie

induit par 9U:

Soit/l&apos;application de a dans lui-même qui à t associe Jf(h2t). Comme 3Fs est à

holonomie hyperbolique les points fixes de / sont en nombre fini et alternativement
répulsifs et attractifs. Soient a0 c a l&apos;ensemble des éléments t de a pour lesquels

u~{i) recontre ^&quot;(^o)- C&apos;est un ouvert de a/-invariant. Les propriétés topologiques
de Q* ~ R2 montrent que a0 est connexe: c&apos;est donc un intervalle non vide de s~(z)
de la forme ]z, tx[. L&apos;extrémité tx est un point fixe attractif de/(car z est un point
fixe répulsif de/et que/n&apos;admet pas de point fixe dans ]z, t{[). La feuille u{tx) est

donc /ï2-invariante: elle contient un point fixe yx de h2. Comme certaines feuilles de

(§u proches de u{tx) rencontrent s{y) et que s(y) est disjoint de ^(^i), il s&apos;en suit que
yx appartient à u+(tx).

Scheme 6.

En inversant le raisonnement, on montre que toute feuille de 9U rencontrant
s+(yx) rencontre s~(y0). De proche en proche on obtient ainsi une suite finie
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Wi&gt; • • • » yik J&gt;&apos; de points fixes de h2 tels que:

L&apos;union Qv de ces h2-losanges recouvrent K. En raisonnant de même pour /?&apos; on
obtient une suite x0,.. x2X x&apos; de points fixes de hx tels que:

et tels que l&apos;union Qx de ces h2-losanges recouvrent K. Enfin, il est clair que K est

un domaine fondamental de l&apos;action de h2 sur Ov et aussi de l&apos;action de hx sur Qx.

Pour tout entier n (2fc)# + r on définit J&amp;?n *fi? + + (jv) JS? + +(*f.Vr) si r est

pair et ifw — h\S£ ~+(yr) si r est impair. Les S£n forment une chaîne biinfinie de

h2-losanges de type alternativement —+ et ++. De même pour tout entier

n (l\)q + r on définit 5£&apos;n Af JSf+ +(jcr) si r est pair et Jîf; AJJîf+ ~(xr) si r est

impair. Soit H&apos; a H le sous-groupe engendré par /*, et h2. Soit (2 le support de (ifn)
et (2r celui de (S£&apos;^). Ce sont des ouverts ^&apos;-invariants, et il est clair que K est un
domaine fondamental de (O, H&apos;) et de (Q\ H&apos;). Donc:

Q=Q&apos; H&apos; K

Les losanges S£n correspondent à un chemin géodésique ô dans l&apos;arbre Ghr Ce

chemin n&apos;est autre que Yaxe de translation de l&apos;action de hx sur Ghl (cf. [17]). Par

unicité de l&apos;axe de translation, ô est préservé par tous les éléments de y qui
commutent avec h{ et h2, et donc en particulier par H. Il en découle que Q Q&apos; est

//-invariant. Rappelons que h2 est indivisible. Il existe donc un élément h3 de H tel

que A2 et h3 engendrent tout H. Cet élément h3 agit sur les points fixes y2l en les

permutant et en préservant leur ordre. Il existe donc un entier u tel que:

Quitte à inverser u on peut le supposer positif. C&apos;est un diviseur de k et est donc

inférieur à k. D&apos;après la proposition 4 tous les losanges &lt;£n (0 ^ n ^ lu — 1) sont

simples: en effet, l&apos;ensemble des h2-losanges n&apos;est pas un chapelet car if0 et S£x sont

en position indirecte. On peut donc construire des anneaux de Birkhoff élémentaires

sin (0 &lt; n &lt;&gt; lu - 1) dont les &amp;n sont les traces transverses. Deux tels anneaux
successifs admettent en commun une orbite périodique dans leur bord. Leur union
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Scheme 7.

est l&apos;image d&apos;une immersion &quot;à coins&quot; du tore. En reprenant l&apos;argument du lemme
4.7 on montre aisément qu&apos;aucun des s/n ne rencontre en son intérieur une

composante de bord d&apos;un autre se\. On peut alors utiliser les méthodes de la section

précédente pour montrer qu&apos;à homotopie près le long de &lt;&amp;&apos; on peut supposer que
les srfn sont d&apos;intérieurs disjoints. De manière plus précise, pour appliquer avec
succès ces méthodes il faut établir l&apos;équivalent du lemme 7.3, i.e.:

LEMME 8.2. Un élément y de F préserve globalement Q si et seulement si il
appartient à H.

Preuve. Soit y un élément de F préservant globalement Q. Il préserve alors la
frontière ôQ. On en déduit qu&apos;il envoie chaque yt sur un des hpxyl + 2^ ce qui montre
qu&apos;il commute avec h2. Il agit donc sur Gh2 et ceci en préservant l&apos;axe de translation
ô. Comme ô est l&apos;axe de translation de A3, on en déduit que y commute avec h3,

donc avec tout H. On conclut grâce à la maximalité de H en tant que sous-groupe
libre abélien de F.

Après isotopie l&apos;union des sén est un plongement topologique injectif du tore
dans M, transverse à #&apos; en dehors d&apos;un nombre fini d&apos;orbites périodiques, et dont
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la trace transverse est l&apos;union (et non le support) des &lt;£n En reprenant le

raisonnement du corollaire 5 6 on voit qu&apos;on peut coulisser les sén au voisinage de
leur bord de sorte que l&apos;union des anneaux perturbés forment l&apos;image d&apos;un

plongement lisse du tore To transverse a &amp;&apos; et dont la trace transverse est Q Qr.
Le groupe fondamental de To s&apos;injecte dans r en le groupe (h2,h^} H II est donc
homotope à T2 dans M Enfin, les traces de «Fs et de $FU sur To sont conjuguées
aux projections de ^A et de 9U sur QIH Q)H Ceci complète la preuve du théorème
B et justifie la description des traces des feuilletages faibles données lors de
l&apos;introduction

9. Unicité de la mise en position optimale d9un tore

9 1 Preuve du théorème A

Le contenu de ce paragraphe est très proche de [6], du moins en son esprit.
Soient Tx et T2 deux tores plongés dans M, transverses a $&apos; et homotopes.
Rappelons que d&apos;après [6] ou [7] deux tels tores sont incompressibles.

LEMME 9 1 T2 est homotope le long des orbites de &amp;&apos; à un tore disjoint de Tx.

Preuve Nous supposons T2 en position générale vis-à-vis de T,, c&apos;est-à-dire

transverse à Tx L&apos;intersection entre les deux tores consiste alors en une union finie
Cx u uCn de cercles plongés dans Tx Supposons qu&apos;un de ces cercles, disons C,,
soit homotopiquement trivial il borde alors dans Tx et T2 deux disques D, et D2.
On se retrouve dans la situation du lemme 7 12 où D2 joue le rôle du disque £&gt;&apos; et

Dx celui du disque D II s&apos;en suit qu&apos;en poussant T2 le long de &lt;P&apos; au voisinage de

D2, on peut faire disparaître le cercle de points doubles C, Après un nombre fini
de telles opérations, on se ramène donc au cas où tous les cercles C, sont

homotopiquement non-triviaux Comme ils sont disjoints, ils délimitent dans T2 un
nombre fini d&apos;anneaux Comme Tx et T2 sont homotopes et que M est irréductible,
un argument topologique non trivial mais aisé permet de montrer qu&apos;il existe un

anneau sex contenu dans Tx et un anneau sé2 contenu dans T2 tels que

• «s/, ne rencontre T2 qu&apos;en son bord ds/,,
• sé2 ne rencontre Tx qu&apos;en son bord dsé2,

ii, et sé2 ont même bord et leur union borde dans M un domaine W

homéomorphe au tore solide D2 x S1

Quitte à inverser le flot &lt;P\ nous le supposons rentrant dans W en st2* Nous
allons montrer que l&apos;orbite positive de tout élément de sé2 rencontre séx. Un

argument analogue à celui employé précédemment montre alors que T2 est homotope

le long de 4&gt;f à un tore transverse à &lt;Pl ne rencontrant Tx qu&apos;en n — 2 cercles
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de points doubles. Il suffit alors d&apos;appliquer un nombre fini de telles homotopies

pour achever la preuve du lemme.

Supposons donc que tel n&apos;est pas le cas. Il a été montré auparavant que ceci

implique l&apos;existence à l&apos;intérieur de W d&apos;une orbite périodique ff0 de &lt;P&apos;. Aboutir à

une contradiction est cependant un peu plus ardu.
Soit n : M -+ M le revêtement associé à nx(W) c* F. Nous notons Ô\ #5, #&quot;

les relevés dans M de &lt;P\ &amp;s et ^u. W se relève dans M en un tore solide W tel

que la restriction à W de n est un homéomorphisme sur son image W. Le bord d W
est union de deux anneaux j/, et srf2 au-dessus de séx et sé2.

LEMME 9.2. Uorbite positive {Sl(x)lt ^ 0} d&apos;un élément x de â x ne rencontre

pas sé2.

Preuve. Le lemme est évident si St est rentrant dans W en s4x puisqu&apos;alors

aucune orbite positive ne peut s&apos;échapper de W. Nous supposons donc donc S1

sortant de Wen séx. Soit fx le relevé de Tx dans M contenant séx. C&apos;est un anneau

qui déconnecte M. Soit U~ la composante connexe de M\tx contenant l&apos;intérieur

de W (il convient de remarquer que comme Tx ne rencontre pas l&apos;intérieur de sé2

il ne rencontre pas l&apos;intérieur de W). Soit U+ l&apos;autre composante connexe. Comme
11 est transverse à S1 l&apos;orbite positive de tout point de séx est entièrement contenue
dans une des composantes connexes de M\fx. Comme S* est sortant en s£x il s&apos;agit

de U + qui est bien disjoint de W, et donc de sé2.

LEMME 9.3. Uensemble VL-limite (respectivement co-limite) d&apos;un élément de M
est vide sauf si cet élément appartient à une feuille de !FU (respectivement de ^s)
contenant une orbite périodique de S&apos;, auquel cas Vensemble ^-limite (respectivement

(o-limite) est exactement cette orbite périodique. En particulier, si une orbite de S1

admet un ensemble oc-limite non vide, et un ensemble œ-limite non-vide, c&apos;est alors une

orbite périodique.

Preuve. C&apos;est la traduction dans M de la proposition 2.7.

Soit 60 l&apos;orbite périodique de S1 contenue dans W au-dessus de 60. Soit F la

feuille de &amp;s contenant 90. D&apos;après le lemme 9.2 la feuille F ne rencontre pas séx.

Soit Fo la composante connexe de Wc\F contenant $o: sa frontière est contenue
dans j/2- D&apos;après le lemme 9.3 aucun élément de F0\60 n&apos;admet un ensemble

a-limite non-vide. Son orbite négative doit donc s&apos;échapper du compact W. Il s&apos;en

suit que Fo est un anneau compact découpé dans le cylindre F et dont le bord est

constitué de deux cercles plongés dans j/2- Ces deux cercles délimitent dans j£2 un

sous-anneau sé2. L&apos;union ^2uF0 est un tore topologique plongé dans W. Il y
borde un tore solide Wf c W. Le flot S1 est tangent à dW&apos; en Fo et rentrant dans
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W&apos; en j?2- Donc l&apos;orbite positive de tout élément x de â 2 est entièrement contenue
dans le compact W\ et l&apos;ensemble cw-limite de x est non-vide. D&apos;après le lemme 9.3,
ceci implique que toutes les feuilles de #5 recontrant sé&apos;2 sont cylindriques. Ceci est
absurde puisque &amp;s n&apos;a qu&apos;un nombre dénombrable de feuilles cylindriques.

On peut donc supposer que les tores Tx et T2 sont disjoints. Comme ils sont
homotopes et que M est irréductible, leur union borde dans M un domaine W
homéomorphe au produit du tore par l&apos;intervalle. Notons que dW est transverse à
&lt;Pf et donc aussi aux feuilletages faibles. Soit Gs la restriction à W de ^s. Comme
3Fs n&apos;admet pas de feuilles compactes, Gs est sans composante de Reeb. De plus,
l&apos;argument final utilisé lors de la preuve de lemme 9.1 s&apos;applique ici pour montrer
qu&apos;aucune feuille de Gs n&apos;est un anneau compact dont le bord est entièrement
contenu dans un des tores Tx ou T2. En particulier, Gs n&apos;admet pas de semi-composante

de Reeb. Les feuilletages de codimension un de T2 x [0, 1] sans composante
de Reeb et sans semi-composante de Reeb sont bien connus: à conjugaison
topologique près, ce sont tous des produits par l&apos;intervalle [0, 1] d&apos;un feuilletage de

dimension un du tore.
Supposons l&apos;existence dans W d&apos;une orbite périodique 6Q de $l. Soit Go la feuille

de Gs contenant 60: elle est homéomorphe à g0 x [0, 1] où g0 est la trace de Go sur
Tx. Comme 0O est homotopiquement non-trivial g0 est un cercle. Il s&apos;en suit que Go

est un anneau compact, découpé dans la feuille cylindrique ^s(90) et contenant 0O

en son intérieur. On en déduit que &lt;P* est rentrant dans W aussi bien en Tx qu&apos;en

T2. Mais en raisonnant de même à partir du feuilletage instable #&quot;M, on montre que
&lt;Pl est sortant de W: contradiction.

Quitte à inverser le flot nous le supposons rentrant dans W en Tx. Nous venons
de montrer qu&apos;il n&apos;admet aucune orbite périodique dans W. Donc, toutes les orbites

positives partant de Tx rencontrent T2. Ceci montre le théorème A.

9.2. Preuve de théorème A&apos;

Soient Tx et T2 deux tores quasi-transverses librement homotopes. Il s&apos;agit de

montrer qu&apos;ils sont homotopes le long de #&apos;. Il est clair que ceci revient à montrer
qu&apos;ils ont même trace transverse. Soit H le sous-groupe de F correspondant à

nx(Tx) =nx{T2). Soit (€x la trace de Tx et ^2 celle de T2: nous les choisissons

//-invariantes. Ce sont des chapelets de losanges. Soit hx l&apos;élément de H engendrant
le stabilisateur des sommets de &lt;€x, et h2 celui engendrant le stabilisateur des

sommets de #2. Si hx et h2 sont différents, il existe d&apos;après le théorème B un tore T3

transverse à &lt;P* et homotope à Tx et T2. La trace transverse Q de T3 est un ouvert
de Q* //-invariant. Cet ouvert est une union de hx -losanges correspondant dans Ghx
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à un axe de translation de h2. Or, (êx correspond lui aussi à un axe de translation
de h2 dans Gh t. Par unicité de l&apos;axe de translation nous aurions f, fi ce qui est

manifestement absurde.

Donc, hx et h2 sont égaux. Soit h3 un supplémentaire de h{ h2 dans H. (éx et (€2

correspondent à des axes de translations de h3 dans Gh Ils sont donc égaux.

10. Mise en position optimale simultanée de plusieurs tores

Nous démontrons ici le théorème E. Nous aurons besoin du lemme topologique
suivant:

LEMME 10.1. Soient Tx et T2 deux tores plongés dans M de manière
incompressible et transverses l&apos;un par rapport à l&apos;autre. Soient fx et T2 deux relevés dans

M de Tx et T2. On suppose que Vintersection entre Tx et f2 est une droite fermée A.

Alors, tout tore plongé dans M homotope à Tx rencontre T2.

Preuve. Soit H~nx(Tx) le sous-groupe de F préservant globalement fx. Soit

n : M -&gt; M le revêtement associé à H. Le plan fx se projette dans M en un tore fx
tel que la retriction de n à ce tore est un homéomorphisme sur son image Tx. La
droite â se projette dans tx en un cercle Â (cette projection est une cercle et non
une droite puisque Tx n T2 consiste en un nombre fini de courbes fermées simples).
Le plan T2 se projette dans M en une surface plongée f2 qui est soit un tore, soit

un anneau. Comme fx n f2 se réduit à A et que H préserve globalement fx,
l&apos;intersection entre fx et f2 se réduit à A. Soit Â le cercle n{Â) n(A). C&apos;est une
courbe fermée simple contenue dans T2. Il existe donc dans T2 une courbe fermée

simple C transverse à Â et ne rencontrant Â qu&apos;en un unique point ;c0. Soit x0
l&apos;unique élément de fx au-dessus de Xq. Soit C l&apos;unique relevé de C passant par x0:

comme C est une courbe fermée simple ne rencontrant 2 qu&apos;en x0 c&apos;est une droite
contenue dans f2 ne rencontrant A qu&apos;en x0 (ceci montre en particulier que f2 est

un anneau). Il s&apos;en suit que C est une droite fermée plongée dans M ne rencontrant
fx qu&apos;en x0. En d&apos;autres termes, le nombre d&apos;intersection entre C et fx est non-nul.

Soit T\ un tore plongé dans M homotope à Tx. Il se relève dans M en un tore

f\ homotope à fx. Le nombre d&apos;intersection entre f\ et C est donc lui aussi

non-nul. Donc, T\ rencontre C &lt;=:T2.

Une simple induction sur le nombre de tores permet de ramener le preuve du
théorème E à celle de:

PROPOSITION 10.2. Soit (Tx,. Tn) une collection finie de tores transverses

ou quasUtransverses à $&apos;. On les suppose deux-à-deux non homotopes. On suppose de
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plus que les Tx (1 ^ i ^ n - 1) sont deux-à-deux disjoints, et que Tn est homotope à
un tore T&apos;n disjoint de Vunion des Tt (l^i^n — l). Alors, Tn peut être choisi
homotope à Tn le long de &amp;&apos;. En particulier, Tn peut être choisi transverse ou
quasi-transverse à &amp;&apos;.

Preuve. La preuve est similaire en bien des points à celle du lemme 9.1. Notons
T l&apos;union Tx u • • • u Tn _ x. Quitte à modifier légèrement Tn on peut le supposer
transverse à T. L&apos;intersection entre T et Tn consiste alors en une union finie de
cercles plongés dans Ttt. Nous les notons Cx,... ,CP. Soient 0,,..., 92q les orbites
périodiques contenues dans TuTn: chacune d&apos;entre elles est contenue dans un des

tores T, (1 ^ / ^ n) quasi-transverses à &lt;P&apos;.

LEMME 10.3. Aucune orbite 0j (1 &lt;&gt;j ^2q) ne rencontre transversalement un

tore T, 1 &lt; i ^ n).

Preuve. Supposons a contrario que l&apos;une des orbites 0, rencontre transversalement

un des tores Tt. Alors, 0, est contenue dans un des tores Tt&lt; où l&apos;indice i&quot; est

différent de /. Ce tore Tt est quasi-transverse à #r. Nous nous placerons ici dans le

cas où Tt Tn. L&apos;autre cas, à savoir celui où T, Tn se traite de manière analogue.
Si Tn est transverse à $&apos;, son nombre d&apos;intersection avec 0, est non-nul. Or, Tn est

homotope à Tn qui est disjoint de 0, : contradiction. Donc, Tn est quasi-transverse
à &lt;P*. Soit n : M-&gt;M le revêtement associé à nx(Tn) c^ T. Les tores Tn et Tn se

relèvent dans M en deux tores tn et t&apos;n. Soit 0, un relevé dans M de 0y rencontrant
fn. D&apos;après les lemmes 7.4 et 7.5 fy est une droite fermée dont le nombre
d&apos;intersection avec fn est non-nul. Elle doit donc rencontrer f&apos;n: ceci est absurde

puisque 07 et T&apos;n sont disjoints.

LEMME 10.4. Les 0, sont disjoints des Ck.

Preuve. Supposons qu&apos;il existe deux indices j et h pour lesquels 0j et Ck sont
d&apos;intersection non-vide. Soit / l&apos;indice compris entre 1 et n — 1 du tore Tt contenant
Ck. D&apos;après le lemme précédent 0, ne peut être transverse à Tn ni à Tt et est donc
entièrement contenu dans Tn et Tt. Il est donc confondu avec Ck. De plus, Tt et Tn

sont quasi-transverses à &amp;&apos;. Soit Qj un relevé dans M de Br Soient f, et fn les relevés

de M contenant Sr Soient (€l w*(f,) et &lt;$n n*(Tn) les traces transverses de Tt et

de Tn. Ce sont des chapelets de [0J-losanges passant par 0). Or, tout point de g*
est sommet d&apos;au plus deux chapelets de losanges biinfinis, et l&apos;intersection de ces

deux chapelets se réduit au sommet commun. Donc, soit #, et &lt;#„ sont confondus,
soit leur intersection se réduit à 0). Le premier cas est impossible d&apos;après le lemme
7.3 car Tt et Tn ne sont pas homotopes. Le second cas aussi puisque Tn est

homotope à un tore disjoint de Tt9 ce qui montre d&apos;après le lemme 10.1 que ft n fn
ne peut consister en une seule droite fermée. Contradiction.
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Si CkcTnr\Tl est homotopiquement trivial, il découle du lemme 10.4 qu&apos;il

borde dans Tt et Tn deux disques transverses à &lt;P*. On peut alors utiliser comme lors
de la preuve du lemme 9.1 le lemme 7.12 pour éliminer le cercle de points doubles

Ck. Donc, après un nombre fini et éventuel d&apos;homotopies de Tn le long des orbites
de #&apos;, on peut supposer qu&apos;aucun des cercles Ck n&apos;est homotopiquement trivial.

LEMME 10.5. // existe un anneau An plongé dans Tn est un anneau A, plongé
dans T tels que:

• les anneaux At et An sont d&apos;intérieurs disjoints, mais leurs bords sont confondus,

• leur union bord dans M un domaine W homèomorphe à D2 x S\
• F intérieur du domaine W est disjoint de TKjTn.

Preuve. Soit Tt un tore rencontrant Tn (s&apos;il n&apos;en existe pas, la proposition est

validée). Soient fn et Tt deux relevés dans M de Tn et de Tt d&apos;intersection non-vide.
D&apos;après le lemme 10.1, l&apos;intersection entre Tn et T, n&apos;est pas connexe. Il existe donc
deux bandes Ân et Ât homéomorphes à (R x [ — 1, 1] telles que:

• elles ont même bord,

• elles ne se rencontrent qu&apos;en leur bord,

• Ân est contenue dans fn9

• Â, est contenue dans Tt.
Ces bandes Ân et A, sont au-dessus de deux anneaux A &apos;n et A \ plongés dans M,

l&apos;un contenu dans Tn, l&apos;autre contenu dans Tn et homotopes l&apos;un à l&apos;autre dans M.
L&apos;union A&apos;n kjA\ est une immersion topologique compressible du tore. Il existe donc
deux sous-anneaux At et An de ce tore immergé, l&apos;un contenu dans A\, l&apos;autre dans
A&apos;n, de même bord mais d&apos;intérieurs disjoints. Alors, AtuAn borde dans M un
domaine W homèomorphe au tore solide. En étudiant l&apos;intersection de ce domaine
avec T, on voit qu&apos;il contient un sous-domaine analogue et d&apos;intérieur disjoint de

TuTn. On peut donc choisir les anneaux At et An de sorte que toutes les conditions
voulues au lemme 10.5 soient vérifiées.

Chacun des anneaux An et A, du lemme 10.5 est d&apos;intérieur transverse à &lt;Pl en

dehors d&apos;un nombre fini d&apos;orbites périodiques.

LEMME 10.6. L&apos;intérieur de An est transverse à &lt;P* si et seulement si Vintérieur
de At est transverse à &lt;P*.

Preuve. Supposons a contrario que An est d&apos;intérieur transverse à &lt;Pl mais que At
contient une orbite périodique 0, (l&apos;autre cas, à savoir At transverse à &lt;P* mais pas
An est bien sûr analogue). Nous considérons comme lors de la preuve du lemme 9.1

le revêtement fi:M-*M associé à nx{W) c* r. Les données (AnAn, W,^\0j,
^ru,Ti) se relèvent dans M en (Âi9 ÂH9 W,ê\ffJ9^u,fl)de sorte que n se restreint
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à W en un homéomorphisme sur son image W Quitte à inverser &lt;P&apos;, on peut le

supposer rentrant dans W en An Soit Fo la feuille de #&quot; contenant fy Soit Vo un
voisinage tubulaire régulier de fy dans Fo On choisit Vo suffisament petit pour
qu&apos;une des composantes connexes de V0\6j soit disjointe de W et pour que l&apos;autre

soit contenue dans W Soit Fx la composante connexe de FQ\9j contenant Von W
On montre comme lors de la preuve du lemme 9 2 que Fx ne rencontre pas Ân Par
ailleurs, comme l&apos;intersection d&apos;une feuille de «#&quot; avec ft est connexe, Px ne
rencontre pas non plus Ât La semi-feuille F{ est donc entièrement contenue dans le

compact W ceci contradit le lemme 9 3

Dans le cas ou les anneaux An et At sont d&apos;intérieurs transverses à &lt;&amp;\ on peut
exactement comme lors de la preuve du lemme 9 1 homotoper l&apos;un le long de #&apos;

pour le rendre disjoint de l&apos;autre En d&apos;autres termes, une homotopie de Tn le long
des orbites de &lt;P* supprime les deux cercles de points doubles dAt ôAn De proche
en proche, on diminue ainsi le nombre 2q de cercles de points doubles Pour
conclure, il ne reste qu&apos;a traiter le cas ou m ^,, ni An n&apos;est d&apos;intérieur transverse à
&amp;&apos; Nous allons montrer par l&apos;absurde que ce cas est en fait impossible

Supposons donc que Ax et An contiennent l&apos;un comme l&apos;autre une orbite
périodique Alors, Tt et Tn sont deux tores quasi-transverses a #&apos;, transverses entre

eux, et se rencontrant hors des orbites périodiques qu&apos;ils contiennent Soit Ck une

composante connexe de leur intersection Soit Ck un relevé de Ck dans M, et Tn, T,

les relevés dans M de Tn, Tl contenant Ck Soient &lt;ên et c€l les chapelets de losanges

7r*(fn) et 7r*(7;) Soit ifw le losange de (ên dont l&apos;intérieur contient 7t*((?*) et 5£t le

losange de c€l dont l&apos;intérieur contient n^(Ck) D&apos;après le lemme 10 4, le cercle Ck

est librement homotope aux orbites périodiques contenues dans Tt ainsi qu&apos;à celles

contenues dans Tn Ceci montre que if, et £?n sont des [Q]-losanges (où [Ck]
désigne un élément de F fixant globalement Ck) Comme leurs intérieurs ne sont pas

disjoints, on en déduit que les losanges J^z et &lt;£n sont égaux II s&apos;en suit que les

chapelets (€n et c€l sont confondus D&apos;après le lemme 7 3, les tores Tt et Tn sont
librement homotopes Contradiction
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