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Mise en position optimale de tores par rapport a un flot d’Anosov

THIERRY BARBOT

Abstract. Let @' be an Anosov flow on a (non atoroidal) 3-manifold M. We say that an incompressible
torus T embedded in M admits an optimal position with respect to @’ if it is isotopic to a torus
transverse to @' outside a finite number of periodic orbits contained in 7 (there’s an additional condition
we don’t mention here). The first remark is that such an optimal position is quasi unique, i.e., we prove
that if two tori in optimal position are homotopics in M, then they are homotopics along the flow. Then
we give some sufficient condition for a torus admiting an optimal position. Eventually, we show that if
a finite collection of disjoint tori is such that each torus admits an optimal position, then these optimal
positions can be chosen disjoints one from each other.

1. Introduction

Soit @’ un flot d’Anosov sur une variété fermée M orientée de dimension 3. Sauf
indication contraire, nous supposerons toujours que M est orientée et qu’elle
n’admet pas de plongement incompressible de la bouteille de Klein. Nous suppos-
erons également que les divers feuilletages forts et faibles associés au flot d’Anosov
sont orientés (pour toutes ces notions, voir [1]).

Notre projet a long terme est d’étudier ces flots en utilisant un programme
analogue a celui de [18], i.e., découper un flot d’Anosov en parties élémentaires le
long de tores incompressibles en bonne position par rapport au flot. Nous ne nous
intéressons dans cet article qu’au probléme de la mise en bonne position des tores
de découpage. Nous devons pour ce faire convenir de ce qu’est un tore en bonne
position. La premiére idée qui vient a I’esprit est convenir qu’un tore est en bonne
position dés qu’il est transverse au flot. Cette idée est d’autant plus naturelle que
nous montrerons ici:

THEOREME A. Deux tores plongés dans M de maniére incompressible et
transverse a @' sont homotopes si et seulement si ils sont homotopes le long des orbites
de @',

Précisons le sens de cet énoncé: deux tores T et T’ sont dits homotopes le long
des orbites de @’ s’il existe une application continue u : 7 — R telle que ’application
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114 THIERRY BARBOT

x > @“™)(x) envoie homéomorphiquement 7T sur 7. Nous nous posons donc la
question:

QUESTION. A4 quelle condition T peut-il étre isotopé en un tore transverse a ®?

Une premicre résponse possible est donnée par le critére de Schwartzman (cf.
[16]) selon lequel il suffit que le nombre d’intersection homologique de T avec
chaque orbite périodique de @’ soit strictement positif. Ce cas de figure a I'inconvé-
nient majeur d’étre trés particulier: il ne se présente que lorsque @’ est (topologique-
ment équivalent a) la suspension d’un difféomorphisme linéaire hyperbolique du
tore. Dans ce cas, il s’avére méme que tout tore plongé est isotope a un tore
transverse. Nous nous proposons d’établir ici un autre type de résultat de nature
complétement différente:

THEOREME B. On suppose existence de deux lacets fermés c, et c, dans T tels
que:
® ¢, et ¢, ne sont pas homologues dans T,
® chaque c, (i =1, 2) est librement homotope dans M a une orbite périodique de
P,
Alors, T est isotope a un tore transverse a D°.

Nous montrerons en fait un peu mieux. Comme le nouveau tore 7" isotope a T
est transverse a @, il l'est également avec chacun des deux feuilletages faibles.
Ceux-ci induisent donc sur 7” deux feuilletages transverses I'un par rapport a
I'autre. Il découlera de la preuve du théoréme B que ces deux feuilletages sont de
type morse-smale, sans composante de Reeb, admettent chacun un nombre pair de
feuilles fermées, que les feuilles fermées de I’'un sont homologues a ¢, et que celles
de I'autre sont homologues a ¢, (étant entendu que ces homologies sont au signe
pres). Une bonne illustration de ca cas de figure est donnée par I’exemple de ce
Bonatti—Langevin (cf. [14]).

Il ne serait guere intéressant de se limiter au seul cas des tores transverses. En
effet, nombre de flots d’Anosov sur des variétés non-atoroidales n’admettent pas de
tore transverse. Tel est le cas par exemple des revétements finis des flots géodésiques
des surfaces riemanniennes a courbure négative, et, de maniére plus générale, de
tous les flots d’Anosov produits sans section globale (voir [3]). Dans le cas des flots
géodésiques et de leurs revétements finis, il est facile de voir que tout tore
incompressible est isotope a un tore tangent 4 un nombre fini d’orbites périodiques,
et transverse au flot en dehors de ces orbites périodiques. Un tel tore s’obtient par
recollements ‘“d’anneaux de Birkhoff élémentaires” (pour plus de précision, le
lecteur peut se reporter a la discussion préliminaire de [12]).
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Nous appelons anneau de Birkhoff tout anneau plongé dans M, d’intérieur
transverse a @', et dont le bord consiste en deux orbites périodiques de ®°. Il s’agit
du prototype le plus simple de section de Birkhoff locale au sens de [10] ou de [7].
Un tel anneau est toujours transverse aux deux feuilletages faibles du flot. Ceci le
munit naturellement de deux feuilletages de dimension un, transverses I'un par
rapport a P'autre a l'intérieur de I'anneau, et tangents au bord. Lorsque ces deux
feuilletages sont sans composante de Reeb et ont pour seules feuilles fermées celles
que constituent le bord, 'anneau de Birkhoff est dit élémentaire (voir figure 1).
Cette terminologie est justifiée par le fait que, a homotopie prés le long des orbites
de @', tout anneau de Birkhoff s’obtient en perturbant légérement une union finie
d’anneaux de Birkhoff élémentaires (voir corollaire 5.6).

Nous appelons tore quasi-transverse tout tore plongé dans M décomposable en
une union finie d’anneaux de Birkhoff élémentaires et tel que le flot @' soit
alternativement rentrant et sortant sur ces anneaux (De mani€re plus précise, ceci
signifie que si &/, et o/, sont deux anneaux de Birkhoff contenus dans T et
adjacents, et que 7 est muni d’une orientation transverse, alors I'orientation de @‘
ne peut coincider simultanément sur o/, et sur &, avec cette orientation transverse).
Un tel tore est transverse & @’ en dehors d’'un nombre fini (pair) d’orbites
périodiques, et il est transverse aux deux feuilletages faibles. Comme les anneaux de
Birkhoff qui le constituent sont élémentaires, les seules feuilles fermées des traces de
feuilletages faibles sont les orbites périodiques, et ces traces n’admettent pas de
composante de Reeb. Nous avons 1a encore:

THEOREME A’. Deux tores plongés dans M de maniére incompressible et
quasi-transverses a @' sont homotopes si et seulement si ils sont homotopes le long des
orbites de P’

Figure 1. Anneau de Birkhoff ¢lémentaire.
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L’abondance de tores quasi-transverses est illustrée par le théoréme suivant:

THEOREME C'. Si &' est produit et non topologiquement équivalent & une
suspension, alors tout tore plongé de maniére incompressible dans M est isotope a un
tore quasi-transverse. De plus, ce tore quasi-transverse est unique a homotopie le long
des orbites de @' preés.

Rappelons que I’hypothése produit signifie que les relévements dans le revéte-
ment universel de M des feuilletages faibles sont conjugués 'un comme I’autre au
feuilletage produit de R® par plans horizontaux R? x {} (cf. [3]). Elle ne constitue
pas le point crucial du théoréme C’. Celui-ci doit étre compris comme un corollaire
d’un résultat plus général dont le principe consiste a déceler la présence de tores
quasi-transverses a partir d’indices a rechercher dans “I’espace transverse au flot”.

Cet “‘espace transverse” est plus précisément I’espace des orbites tel qu’il est
défini dans [3]. Rappelons en briévement la définition: soit @’ le relevé de @' dans
le revétement universel A de M. Le quotient de M par la relation d’équivalence
“étre sur le méme orbite de & est noté Q% et appelé espace des orbites.
L’application passage au quotient est notée n?: M — Q% D’aprés [3], Q2 est
homéomorphe 4 R? et n? est une fibration (localement) triviale. L’action par
automorphismes de revétement du groupe fondamental I' de M sur M passe au
quotient en une action sur Q% pour laquelle #® est équivariante. Les relevés dans
M des feuilletages faibles se projettent par n® en deux feuilletages par droites %° et
%*“. Le théoréme 3.4 de [3] énonce que la donnée & équivalence topologique prés de
(M, &%) équivaut a celle de ’action de I" sur Q% a équivariance topologique pres.

Si § est une surface plongée dans M, nous appelons trace transverse de S toute
n®-projection dans Q% de n’importe quel relevé dans M de S. La trace transverse
est unique a l'action de I' prés. En guise d’exemple, la trace transverse d’un tore
plongé transverse au flot est un ouvert de Q¢ homéomorphe a R? et invariant par
un sous-groupe libre abélien de rang deux de I': celui provenant du groupe
fondamental du tore!. Le fait essentiel sur lequel repose cet article est qu’il est
possible de caractériser les traces transverses des anneaux de Birkho™ élémentaires:
il s’agit des losanges simples.

La notion de losange a été introduite par S. Fenley ([8]). Elle se définit de la
maniére suivante: soient 8, et 6, deux éléments de Q? fixés par le méme élément y
de I’ (ils correspondent aux orbites périodiques bordant ’anneau). Soient »; une des
deux composantes connexes de ¥*(6,)\0; et s; une des deux composantes connexes
de 9°(0,)\0; (i =1, 2). On suppose que toute feuille de ¥“ rencontrant s, recontre

! Draprés [6] tout tore transverse 4 @' est incompressible.
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s,, et que toute feuille de ¥° recontrant u, recontre u,. Alors, I'intersection entre le
saturé par 4* de s, et le saturé par ¥° de u, coincide avec celle entre le saturé par
%" de s, et le saturé par ¥° de u,. Cette intersection, 4 laquelle on ajoute 0, et 0,,
est appelée y-losange de sommets 0, et 0,.

Figure 2. Losange.

Les losanges trace transverse d’anneaux de Birkhoff élémentaires ne sont pas
quelconques: le fait que ’anneau soit plongeé se traduit par le fait que le losange est
simple au sens ou l'intersection de losange avec la I'-orbite de ses sommets se réduit
a ces sommets. Le résultat essentiel de ce travail est le suivant:

THEOREME D. Tout losange simple de Q% est la trace transverse d’un anneau
de Birkhoff élémentaire.

Dans cette introduction, il est supposé que M ne contient pas de plongement de
la bouteille de Klein. Si on supprime cette hypothése, le théoréme D devient
(cf. proposition 6.2):

THEOREME D'. Un losange simple de Q% est soit la trace transverse d’un
anneau de Birkhoff élémentaire, soit une partie de la trace transverse d’une bouteille
de Klein plongée transverse a @' en dehors d’une orbite périodique.

Une fois les traces transverses des anneaux de Birkhoff caractérisées, il devient
aisé de caractériser les traces transverse des tores quasi-transverses: il s’agit des
chapelets de losanges simples.

Un chapelet de y-losanges fini est une suite %, ..., Z, de y-losanges telle que:

e on peut numeéroter 6, et 0; les sommets de chaque losange .%; de telle sorte que
pour chaque indice i entre 1 et n — 1 les sommets 6] et 6, ; sont confondus,

e pour chaque indice i entre 1 et n — 1 les adhérences de &, et de &, | ne se
rencontrent qu’en 6, , = 0;.



118 THIERRY BARBOT

Figure 3. Chapelet de losanges.

Un chapelet de y-losanges infini est une union croissante de chapelets finis de
y-losanges. Un chapelet de losanges est toujours suposé infini par défaut. Il est dit
simple si tous les losanges qui le constituent sont simples, et que pour chacun de ses
sommets 6, I'intersection entre le chapelet et la I'-orbite de 6, se réduit a certains 0,.
Avec ces définitions nous sommes en mesure de donner la version originale du
théoréme C:

THEOREME C. Soit &' un flot d’Anosov sur une 3-variété M orientée et
n’admettant pas de plongement incompressible de la bouteille de Klein. On suppose
que les deux feulletages faibles de ®' sont transversalements orientés. Soit f: T < M
un plongement incompressible du tore dans M. Soit H I’image du morphisme injectif
fo T (T)>n, (M) =T": c’est un sous-groupe de I' bien défini a conjugaison prés
dans I'. On suppose enfin que H préserve un chapelet de losanges. Alors ce chapelet
de losanges est la trace transverse d’un tore T’ plongé isotope a f(T) et quasi-trans-
verse a ®'. De plus, tout tore quasi-transverse homotope a f(T) est homotope a T’ le
long des orbites de ®'.

Grace aux théorémes A, A’, B et C notre projet d’é¢tude des flots d’Anosov par
découpage le long de tores en position optimale est en bonne voie. Il reste un
probléme important a traiter: celui de la mise en position optimale simultanée de
plusieurs tores. Nous montrerons:

THEOREME E. Soit (T,, ..., T,) une collection fine de tores plongés dans M de
maniére incompressible. On les suppose deux-a-deux disjoints et non-homotopes. On
suppose de plus que chaque tore T; est isotope dans M a un tore plongé T transverse
ou quasi-transverse a ®*. Alors, les T, peuvent étre choisis deux-a-deux disjoints.
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Avant de clore cette introduction, signalons quelques résultats intermédiaires
qui, bien que non directement liés au probléme de la mise en position optimale des
tores plongés, ont leur propre intérét. Ils s’appliquent a tout flot d’Anosov de
dimension trois pour peu que les feuilletages faibles soient transversalement orien-
tes.

THEOREME F. Tout orbite périodique représente un élément y de I' d’ordre
infini et indivisible (i.e., les seuls éléments de I' admettant y pour puissance sont 7y et

y~h.

THEOREME G. Siy est un élément de I' admettant un losange non-simple, alors
aucun y-losange n’est simple. De plus, I'union des y-losanges est alors un chapelet de
losanges (fini, infini ou biinfini) et le centralisateur de y dans I' est un groupe libre
abélien de rang au plus deux.

Signalons également qu’il apparait fort probable que les théorémes B et C
peuvent €tre étendus de la maniere suivante:

CONIJECTURE. Tout tore plongé incompressible dans M est isotope a un tore
plongé transverse a @' en dehors d’un nombre fini d’orbites périodiques.

Les méthodes employées dans cet article montre en effet qu’un tel plongement
est toujours homotope a une immersion du tore verifiant des conditions analogues.
Malheureusement, un argument essentiel utilisé dans la preuve de théoréme D pour
modifier cette immersion en un plongement ne s’applique pas dans ce cadre général
(voir remarque 7.8).

Cet article s’organise comme suit: au paragraphe suivant, nous introduisons
quelques notations et discutons quelques résultats préliminaires. Aux paragraphes 3
et 4, nous étudions la notion de losanges et de chapelets de losanges. Nous y
démontrons les théorémes F et G. Aux paragraphes 5 et 6, nous montrons que les
losanges simples sont exactement les traces transverses des anneaux de Birkhoff
élémentaires. Au paragraphe 7, nous montrons I’analogue pour les chapelets de
losanges simples et les tores quasi-transverses. Nous y montrons les théorémes C et
C'. Le paragraphe 8 est consacré a la preuve de théoréme B. Les théorémes A et A’
sont traités au paragraphe 9. Enfin, nous consacrons le paragraphe 10 a la preuve
de théoréme E.

Ce texte a été rédigé a I’occasion d’un séjour a 'IMPA de Rio de Janeiro que
je tiens a remercier pour son hospitalité. Le théoréme E de [2], travail effectué au
Laboratoire de Mathématiques Pures et Appliquées de I’Ecole Normale Supérieure
de Lyon, est un prototype du théoréme B du présent article.
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2. Préliminaires
2.1. Notations

&' désigne un flot d’Anosov sur une variété M fermée orientée de dimension 3.
Il sera toujours supposé, sauf aux remarques 6.2 et 7.14, que M ne contient aucun
plongement incompressible de la bouteille de Klein. Les feuilletages faibles stables
et instables de @‘ sont notés F° et #“. Rappelons que nous les supposons
transversalement orientés. Ceci recouvre bien siir le cas général a un revétement
double ou quadruple prés. Le feuilletage de dimension un engendré &’ est noté .
Le groupe fondamental de M est noté I' (nous ne nous soucions pas du choix du
point base). Le revétement universel de M est noté M.

Nous rappelons dans ce qui' suit quelques propriétés plus ou moins connues.
Pour toute justification, nous renvoyons le lecteur a [2] ou [3].

Les relevés dans M de &, ®, #° et F* sont notés respectivement &, ®, F° et
Fu Draprés [3], espace quotient M /@ de M par la relation “étre sur la méme
feuille de ¢ est Hausdorff et homéomorphe 4 R2 Il est noté Q%. Les orientations
de M et de @' induisent une orientation de Q?. La projection % : M — Q2 est une
fibration (localement) triviale. Elle envoie & * et & “ en deux feuilletages %° et %*
de Q? par droites fermées. Les orientations transverses de & ¢ et de #* induisent
des orientations de ¥° et de ¥“ ainsi que des orientations transverses de ces
feuilletages. Pour tout élément x de Q? la feuille de 4° le contenant est notée s(x),
et celle de ¥* le contenant est notée u(x). Le complémentaire de x dans s(x) est
constitué de deux demi-droites. L’orientation de %° induit un ordre sur s(x): la
composante connexe de s(x)\{x} contenant les éléments supérieurs 4 x est notée
5T (x). L’autre est notée s ~(x). On définit de maniére analogue u*(x) et u ~(x).

Chaque feuille de %° recontre chaque feuille de 4* en au plus point. Elle sépare
Q% en deux composantes connexes. Pour tout élément x de Q2, la composante
connexe de Q®\s(x) contenant u*(x) est notée S, (x). Celle contenant u ~(x) est
notée S_(x). On définit de maniére analogue U, (x) et U_(x) (composantes
connexes de Q%\u(x)). D’aprés le théoréme des voisinages produite, ¥* et %
vérifient une propriété de trivialisation locale simultanée, i.e., pour tout élément x,
de Q°%, il existe deux intervalles ouverts s, et u, voisinages de x, dans respectivement
s(x,) et u(x,) tels que 'application de u, x s, qui a (y, z) associe I'intersection entre
s(y) et u(z) est bien définie et un homéomorphisme local. Nous appelons rectangle
de Markov I'image d’une telle application.

L’action de I" sur M par automorphismes de revétement passe au quotient sur
Q. Cette action préserve les feuilletages 4° et ¥

PROPOSITION 2.1. Un élément de Q° est une feuille de & au-dessus d’une
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orbite périodique de @' si et seulement si son stabilisateur dans I" est non trivial. Son
stabilisateur est alors cyclique. O

Nous appelons périodique un tel élément de Q% a I'-stabilisateur non trivial.

PROPOSITION 2.2. Chagque feuille de 4° (respectivement de %*) contient au plus
un élément périodique de Q%. Si elle en contient un, son stabilisateur dans I est
exactement le stabilisateur de cet élément périodique: il est donc cyclique. Sinon, son
stabilisateur est trivial. U

Une feuille de 4° contenant un élément périodique est dite cylindrique. Si un
élément y de I fixe un élément x, de Q2, la restriction a s(x,) de son action est soit
une contraction, soit une dilatation dont x, est I'unique point fixe. Il en est de méme
pour la restriction de son action sur u(x,). De plus, si y contracte s(x,), il dilate
u(x,). Ces restrictions sont donc linéarisables. On en déduit donc que I’action de y
est linéarisable au voisinage de x,: il suffit de considérer un rectangle de Markov
contenant x, (cf. figure 4).

Y

Figure 4. Linéarisation de y au vosinage d’un point fixe.

En particulier, I’'ensemble des points fixes de y est un fermé discret de Q°.

Nous associons a chaque élément x de Q° les quatres ouverts suivants (1’expres-
sion Saty,(u*(x)) désigne le saturé par ¥° de u*(x)):

L+ H(x) = Satys(u*(x)) N Satg.(s*(x))

L+ (x) = Saty(ut(x)) nSatg.(s ™ (x))

&L ~*(x) = Satys(u~(x)) N Satg.(s*(x))

&L~ (x) = Saty(u~(x)) N Satg.(s ~(x))
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2.2. Quelques remarques a propos des espaces des feuilles

Les feuilletages 4° et 4* sont des feuilletages de Q% ~ R? par droites fermées. Il
est bien connu (voir par exemple [13]) que les quotients de Q® par les relations
“€tre sur la méme feuille de ¥° (respectivement de ¥*) sont des 1-variétés fermées
simplement connexes mais en général non-Hausdorff. Nous les notons respective-
ment Q° et Q“ Nous notons p*: Q0®—Q° et p*: 0%?— Q" les applications de
passage au quotient. Si deux éléments s et s de Q° ne sont pas séparés par la
topologie de Q° nous convenons d’écrire s & s’. Deux tels €léments sont appelés
points de branchements.

L’action de I' sur Q% passe bien siir aux quotients. Comme ¥° et ¥* sont
transversalement orientés, Q° et Q“ sont orientés. Pour chaque élément s = s(x) de
Q° nous notons s et s_ les ouverts de Q° images par p* des ouverts S, (x) et S_(x)
de Q?. Ce sont les composantes connexes de Q*\{s}. On note de maniére analogue
u, et u_ les composantes connexes du complémentaire d’un élément u de Q.

Pour tout couple d’é¢léments (s,s”) de Q° nous notons ]s, s’[ I’ensemble des
éléments de Q° qui déconnectent s de s’. Si il existe une immersion de R dans Q°
dont I'image contient s et s’, alors Js,s’[ est contenu dans I'image de cette
immersion. De maniére plus précise, Js, s'[ est 'intervalle ouvert s, s'[ délimité par
s et s” dans I'image de cette immersion. Cependant, si tel n’est pas le cas, alors Js, s'[
n’est pas un ouvert de Q. Nous notons [s, s’] 'union de s, s/ et de {s, s'}. Nous
laissons au lecteur le soin de montrer (voir aussi [2]):

LEMME 2.3. Pour toute paire d’éléments (s,s”) de Q° I’ensemble [s, s’] est une

union finie d’intervalles [s;, s;] (i =0, ..., n) ou:
So =S, s, =S5
i R Siq 0

Soit Q un ouvert connexe de Q. Tout €lément x de sa frontiére sépare Q en deux
composantes connexes dont I'une contient Q. Le complémentaire dans Q de cette
composante est notée x°. Nous laissons une nouvelle fois au lecteur le soin de
montrer:

PROPOSITION 2.4. Lorsque x parcourt 02, les ensembles x° sont deux-a-deux
disjoints. Ce sont exactement les composantes connexes de Q\£. O

Soit y un élément de I admettant un point fixe dans Q°. Nous notons A3 'union
des images par p* des feuilles de ¥“ globalement préservées par y.
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LEMME 2.5. Aj; est un ouvert connexe de Q° préservé par tous les éléments de I
commutant avec y. Tout point de branchement dans A3 est un point fixe de .

Preuve. 1l est évident que A3 est ouvert et préservé par tous les éléments de I’
commutant avec y. Soient s et s° deux points fixes de y. Alors [s,s] =
[so=s5,80] U Uls,, s, =s'] est y-invariant. Il s’en suit que chaque s, et chaque
s; est un point fixe de y. La restriction de y a chaque intervalle [s;, s/] est facile a
¢tudier: il y admet un nombre fini de points fixes alternativement attractifs et répul-
sifs. On en deéduit aisément que A contient les intervalles [s;, s;], et donc également
[s, s']. La connexité de A3 en découle.

Soient enfin deux ¢lements s, et s, de 4] non séparés par le topologie. Soient 6,
et 6, deux points fixes de y dans Q° tels que p*(u(6,)) contient s; (i = 1, 2) (p*(6,)
peut étre égal a s;).

Notons que 6, et 0, sont différents puisque deux ¢léments différents de p*(u(6,))
sont toujours séparés. Donc:

[p%(8,), p*(8,)] = [p*(6)), s1] Vs, p*(05)]
Comme [p*(0,), p*(0,)] est y-invariant, s, et s, sont points fixes de y. O

On en déduit le corollaire:

p*(8,)

Scheme 1.

LEMME 2.6. Soit y un élément de I' admettant au moins un point fixe dans Q°.
Soit s un élément de Q° vérifiant:

(s, ) s,

Alors, il existe un point fixe 0 de y dans Q% dont la feuille instable u(0) recontre s.

Preuve. 11 s’agit de montrer que tout élément s vérifiant les hypothéses de 2.6
appartient a A3. Nous raisonnons par I'absurde: il existe un élément s, de 94 tel
que s§ contient un élément s vérifiant les hypothéses de 2.6 (cf. 2.4). Alors s§
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contient soit s, , soit s_. Remarquons que y(s, ) s, implique y ~'(s_) cs_.
Donc, quitte a inverser y, on peut éventuellement inverser 1’orientation de Q° et
supposer que s§ contient en fait s, . Alors, (ys)¢ = y(s§) contient y(s_ ). Il rencontre
donc s, < s§. Il s’en suit que y(sp) et s, sont confondus. Ceci est absurde car 04,
ne contient pas de point fixe de 7. O

PROPOSITION 2.7. Soit y, un élément de I', et C ~ Z les sous-groupe de I' qu’il
engendre. Soit x un élément de Q% dont la C-orbite n’est pas fermée. Alors, la
frontiére de C - x est un singleton, I’élément X de ce singleton est un point fixe de y,,
et x appartient a une des feuilles s(X) ou u(x).

Preuve. Soit X un ¢€lément de la frontiére de C - x. Soit (p,) une suite d’entiers
différents tels que y4»x converge vers X. Quitte & extraire une sous-suite et inverser
7o ON peut supposer cette suite strictement croissante. Quitte a extraire une nouvelle
fois une sous suite et & modifier les orientations transverses, on peut supposer que
tous les y4x appartiennent a £ * *(x). Alors, toutes les feuilles y5»s(x) recontrent
u(x). D’apres 2.6, si y, admet un point fixe, alors s(x) appartient a chaque Ajz, i.e.,
a 4;,. Dou:

s(x) = lim ygs(x)
n-» + o0

Si y, n’admet pas de point fixe, il en est de méme pour toutes ses puissances. Soit
I 'intervalle fermé [y4!s(x), y§2s(x)] de Q°. Soit k I’entier p, — p,. Alors, I'union des
intervalles y4"I lorsque n décrit Z est un intervalle ouvert I, de Q° préservé par y¥.
Soit J un autre intervalle ouvert y& invariant: d’aprés le lemme 2.4, s’ils sont
disjoints, il existe un élément y de dJ tel que y¢ contient I,. Ce point y devrait €tre
fixé par y§, ce qui est absurde. Donc, J'=J NI, est non-vide. Comme Q° est
simplement connexe, J’ est connexe. Comme les restrictions a J et I, de y& sont des
translations sans points fixes nous avons J = J’ = I,. Donc, I, est 'unique intervalle
de Q° y&-invariant. On en déduit qu’il est également préservé par y,. D’ou:

s(x) = lim 7ygs(x)
n— +x
En appliquant le méme raisonnement dans Q% on obtient:
u(x) = lim ygu(x)
n—+x
En considérant un rectangle de Markov au voisinage de X on voit que:

x= lim ygx

n-s + %
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Comme Q% est Hausdorff, ceci montre que X est point fixe de y,. La dynamique
locale de y, étant hyperbolique, il est clair que x appartient & u(x) ou s(X) ou s(x).
Enfin, comme une feuille de %° fixée par y, ne contient qu’une seule orbite
périodique, la frontiére de C - x est exactement le singleton {Xx}. O

3. Etude des losanges et quelques applications

Le but essentiel de ce paragraphe est de montrer que I’ensemble des points fixes
d’un élément y de I" s’organise comme ’ensemble des sommets de y-losanges. Son
contenu est trés largement inspiré de [8].

DEFINITION 3.1. Soit y un élément de I'. Un ouvert ¥ de Q2 est appelé:
e y-losange ouvert direct s’il existe deux points fixes x et y de y tels que:

L=LTx)=2L""(»
e y-losange ouvert indirect s’il existe deux points fixes x et y de y tels que:
L=L""x)=2L""0)

Dans les deux cas, les points fixes x et y — qui sont uniques — sont appelés sommets
du losange ouvert.

Un y-losange ouvert est globalement préservé par 7.

DEFINITION 3.2. Un losange (direct ou indirect) est 'union d’un losange
ouvert et de ses sommets.

Le lecteur peut se reporter a la figure 2 de 'introduction.

LEMME 3.3. L’intérieur d’un losange de sommets x et y est le losange ouvert de
sommets x et y. S’il est direct, sa frontiére est 'union de {x, y}, s*(x), u*(x), s~(y)
et u=(y). S’il est indirect, sa frontiére est I'union de {x, y}, s~(x), u*(x), s*(y) et
u=—(y). O

L’adhérence du losange de sommets x et y est appelé losange fermé de sommets
x et y.

LEMME 3.4. Si un élément y de I' fixe un sommet d’un losange, il préserve
globalement ce losange. En particulier, il fixe I’autre sommet. Son action a I’intérieur
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du losange est topologiquement conjuguée a celle de (x,y)—(Gx,2y) sur
x>0,y >0} =R

Preuve. Chacun des ouverts %" (x), " (x), etc. est “intrinséquement”
défini: si y fixe x, il fixe les quatres ouverts ¥ * " (x), & * (x), etc., (rappelons que
F et F“ sont transversalements orientés: y préserve donc les ordres sur s(x) et
u(x)). La linéarisation de la restriction de y au losange s’obtient en linéarisant ses
restrictions aux demi-feuilles s *(x), etc. .. ]

D’apres la proposition 3.3 de [8], nous avons:

PROPOSITION 3.5. Soient 0, et 0, deux éléments de Q? distincts et fixés par le
méme élément y de I'. Il existe une suite finie de y-losanges &, ..., L, de sommets
xX,x, (i=1,...,n) tels que:

X, = X, 1 1 (i=1,...,n—1) ]

Soit G, le graphe dont les sommets sont les points fixes de 7y et tel qu’il existe une
aréte entre deux sommets x et y si et seulement si il existe un y-losange de sommets
x et y. On peut si on le désire étiqueter les arétes de ce graphes par les épithétes
direct et indirect.

Scheme 2.
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PROPOSITION 3.6. G, ets un arbre connexe. Chacun de ses sommets est de
valence au plus quatre.

Preuve. La connexité découle de la proposition 3.5. La majoration de la valence
par quatre est évidente. La simple connexité provient du fait que chaque feuille de
%S et de 4* déconnecte Q°. O

PROPOSITION 3.7. Pour tout élément y de I' non trivial et pour tout entier n
non nul, les arbres G, et G, sont confondus. En d’autres termes, tout point fixe de y"
est point fixe de 7.

Preuve. Comme tout point fixe de y est point fixe de y", G,. contient G,.
Inversement, comme y commute avec ", il préserve ’ensemble des points fixes de
7", ce qui montre qu’il agit sur Parbre G,.. Comme y préserve les types + +, + —,
—+ et —— des y"-losanges, s’il fixe un sommet de G,., il fixe toutes les arétes
adjacentes et donc tout les sommets de G,.. Comme il est de torsion, on en déduit
qu’il agit trivialement sur G,..

PROPOSITION 3.8. Méme dans le cas ou F° et F* ne sont plus supposes
transversalement orientés, si un élément de I est sans point fixe dans Q®, aucune de
ses puissances non triviales n’admet de points fixes dans Q.

Preuve. Nous raisonnons par I’absurde: soit y un élément de I" sans point fixe,
mais dont une puissance " admet un point fixe. Quitte a remplacer I’entier n par
son double, on peut supposer que y” préserve les orientations transverses de %° et
de ¢“. Alors, y agit librement sur I’arbre G,.. Comme son action sur cet arbre est
de torsion, il doit en fixer un aréte tout en échangeant les extrémités de cette aréte.
En d’autres termes, et quitte a modifier les orientations, il existe dans Q% deux
points fixes 6, et 6, de y” échangés par y et tels que:

L) =2%""(6,)

Alors, y envoie u*(0,) sur u~(6,). Soit I 'intervalle p*(u*(6,)) = p*(u—(6,)). 1l est
globalement préservé par 7, et y en renverse I’orientation. On en déduit que y admet
un point fixe dans I: contradiction. O

REMARQUE 3.9. Le stabilisateur dans I' d’'un sommet de G, est cyclique.
Quitte a4 remplacer y par une des ses racines, on peut supposer qu’il engendre
I’ensemble des éléments de I' qui agissent trivialement sur G,. Soit Z le centralisa-
teur de y dans I'. 1l est clair que L = Z,(,, agit librement sur G,, ce qui montre qu’il
est un groupe libre. On en déduit que Z est somme directe de {y) et d’un groupe
libre.
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Pour chaque orbite périodique 0 de @, soit § un de ses relevés dans M. Soit [6]
I'unique élément de I' engendrant le semi-groupe des €léments de I' préservant
P’orbite orientée - il est bien défini a partir de  a conjugaison prés dans I'. Tout
lacet représentant [f] est librement homotope au lacet orienté 6. Il découle de la
proposition 3.7 qu’il est indivisible dans I': telle est la preuve (et le sens) du
théoréme F énonceé lors de I'introduction. Ce théoréme est une légére amélioration
du théoréme F de [8].

4. Chapelets de losanges et caractérisation des losanges non-simples

DEFINITION 4.1. Deux losanges sont dits adjacents s’ils sont distincts et qu’ils
admettent un sommet en commun. Ce sommet commun est alors unique. Ils sont
dits en position directe s’ils sont simultanément directs ou indirects. Sinon, ils sont
dits en position indirecte.

DEFINITION 4.2. Une chaine de losanges est une suite %,,..., %, de
losanges différents vérifiant les hypothéses de la proposition 3.5, i.e., telle que deux
losanges successifs &, et &£, , soient adjacents.

DEFINITION 4.3. Un chapelet (fini) de losanges est une chaine de losanges
telle que toute paire de losanges adjacents de cette suite est en position directe.

Il est clair que cette définition équivaut a celle donnée lors de I'introduction. Les
chapelets de y-losanges correspondent aux chemins dans I’arbre G, n’empruntant
soit que des arétes directes, soit que des arétes indirectes.

On peut évidemment étendre ces notions en celles de chaines ou de chapelets
infinis et méme biinfinis en permettant aux indices de parcourir N ou Z. Lorsque
cela n’est pas précisé, il doit toujours €tre compris que pour nous un chapelet de
losanges est biinfini.

Nous définissons enfin la notion de support d’une chaine de losanges: soit
Z,,..., %, une chaine de losanges de sommets x,, ..., x,. Pour chaque indice i
compris entre 1 et n — 1 on pose S; = {x,} si &,_, et &, sont en position directe.
Sinon, les adhérences de .%;_, et de £, n’ont en commun qu’une semi-feuille S; de
%° ou de ¥“: le “c6té” du losange &£, qui les sépare.

DEFINITION 4.4. Le support de la chaine est défini comme étant I'union de
{xo, X; }, des S; et des intérieurs des losanges.
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Le support d’un chapelet de losanges est bien sfir I'union des losanges. La
définition du support s’étend bien slir aux chaines infinies et biinfinies.
Rappelons (voir introduction) la notion de losange simple:

DEFINITION 4.5. Un losange est dit simple si la I'-orbite de son intérieur est
disjointe de la I'-orbite de ses sommets.

Nous nous proposons de montrer dans la suite de ce paragraphe le théoréme G.
Montrer la premi€re partic de ce théoréme revient & montrer:

PROPOSITION 4.6. Soit y un élément de I' admettant un y-losange non-simple.
Alors aucun y-losange n’est simple, tous les y-losanges sont simultanément directs ou
indirects, et I’arbre G, est un sous-arbre de I’arbre linéaire.

Par arbre linéaire nous entendons I’arbre infini dont tous les sommets sont de
valence deux. Comme le groupe des automorphismes sans point fixe d’un sous-arbre
de I’arbre linéaire est trivial ou cyclique, la derniére partie du théoréme G est un
corollaire de la proposition et de la remarque 3.9.

Preuve de 4.6. Soit % un y-losange non-simple. Nous notons x, et x, ses
sommets: que & soit non-simple signifie que 'un de ses sommets, disons x,, admet
un itéré y, - x, a 'intérieur de .#. Pour des orientations convenables de & © et de #*
et de & nous avons:

=L (x)=¢""(xy)

LEMME 4.7. Aucun des ouverts £~ (x,), L~ (%), L+ (x,) et L~ *(x,)
n’est un losange.

Preuve. Nous allons montrer par 'absurde que £ * ~(x,) n’est pas un losange:
les trois autres cas se montrent de la méme mani¢re. Nous supposons donc que
% *~(x,) est un losange. Nous appelons x; son second sommet. Par définition méme
des losanges, y,(u*(xo)) =u*(y;Xx,) rencontre s¥(xp). Comme 7,(¥)=
£ **(y,x,) est un losange, de sommets 7, x, et y, x,;, on en déduit que y, x, appartient
a S, (s(xp)). Or, un argument similaire montre que y,x, appartient également a
U, (u(x,)). Cest absurde, car S, (s(xg)) et U, (u(x,)) sont disjoints. O

Soit .#’ un autre y-losange adjacent 4 £. Le lemme précédent montre que % et
%’ sont en position directe. On peut supposer que £’ est £ * *(x,): 'autre cas est
analogue. Si on affine l'argument du lemme 4.7, on voit aisément que y,x,
appartient a l'intérieur de £’.
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Scheme 3.

Le losange ¢’ n’est donc pas simple lui non plus. On conclut grace a la
connexité de G,. O

5. Traces transverses des anneaux de Birkhoff

PROPOSITION 5.1. La trace transverse d’un anneau de Birkhoff est le support
d’une chaine finie de losanges. L’anneau de Birkhoff est élémentaire si et seulement si
sa trace transverse est un losange. Ce losange est alors simple.

Preuve. Soit o/ un anncau de Birkhoff plongé dans M: rappelons que cela
signifie que son bord est constitué de deux orbites périodiques 6, et 8, de @°, et qu’il
est transverse en son intérieur & @‘. Son intérieur est donc également transverse aux
deux feuilletages faibles & ° et & “. Nous notons respectivement f* et f* les traces de
ces feuilletages sur /. Ces deux feuilletages admettent 6, et 6, comme feuilles
fermées, et sont transverses en dehors de ces deux feuilles compactes. Par définition
méme, o/ est €élémentaire si et seulement si 6, et 6, sont les seules feuilles fermées
de f° et de f“.

Nous appelons composante de </ tout sous-anneau de ./ dont chaque com-
posante de bord est une feuille fermée de f* ou de f“ et dont I'intérieur ne contient
pas de feuille compacte ni de f* ni de f“. Comme les feuilles de f* et de f“ sont a
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holonomie hyperbolique, elles sont en nombre fini. »/ n’admet donc qu’un nombre
fini de composantes. Ces composantes s’organisent en une liste (&, ..., o,) telle
que:

e 0, appartient au bord de </, 0, a celui de </,

® o/ est I'union des &/,

e deux anneaux .o/, et .o/, sont disjoints sauf si leurs indices i et j sont successifs,
auquel cas elles se rencontrent en leur bord en une feuille compacte de f* ou

de 1.

Soit &7 un relevé de &/ dans M il s’agit d’une bande transverse en son intérieur
a @ et dont le bord consiste en deux orbites 8, et 8, . Soit y = [0,] = [6,] ~' ’élément
indivible de I' préservant 7. Soient /* et f* les traces de #° et de F* sur .
Chaque composante &7, se reléve en une “composante” «7; de . Nous notons g,
et h; les composantes de bord de &7,. Ces notations sont bien caractérisées si on
convient que:

® g, est (70,
® h,est 0,,
® h; et g;,, sont confondues.

Les droites g, et A, sont y-invariantes. Il existe donc pour chaque indice i deux
orbites g, et b, de &' y-invariantes telles que:

n®(g;) < s(a;) ou n®(g;) < u(a;)

n®(h;) = s(b;) ou n®(h;) < u(b;)

Nous notons f* et f“ les restrictions a I'intérieur de &/, de 7% et de f“. Comme la
trace transverse de ./ n’est autre que la réunion de celles de ses composantes, notre
but est de caractériser les 7®(,). Nous allons montrer que n®(#;) est grosso modo
un losange de sommet ag; et b,. Quitte & échanger #° et #*, on peut distinguer
quatre types possibles de composante. Nous les décrivons a la figure 5 en indiquant
Pallure des triplets (<, f%, f“) correspondants.

Il apparait que dans tous les cas de figure:

LEMME 5.2. Chaque feuille de f* recontre chaque feuille de f“ en exactement un
point. 1l existe un chemin ¢; transverse aux deux feuilletages 1% et f* joignant a, & b,
et disjoints de tous ses itérés par y. O
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Figure 5. Composantes d’un bifeuilletage de I’anneau.

D’ou:

LEMME 5.3. Chaque feuille de F 5 (respectivement de F ) ne rencontre o,
qu’en au plus une feuille de f5 (respectivement de f*).

Preuve. D’aprés un argument classique (voir par exemple [13]), toute transver-
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sale a % recontre chaque feuille de #° en au plus un point. Comme toutes les
feuilles de f% recontrent ¢;, elles appartiennent a des feuilles différentes de % *. De
méme, l'intersection d’une feuille de & “ avec ., est connexe. (]

COROLLAIRE 5.4. Chaque orbite de ®' autre que 8, et 0, recontre A, en au
plus un point. O

Soit ¢; = n®(¢;) la projection dans Q% de ¢;. C’est un chemin fermé simple de
Q°%, transverse a 4°* et “, disjoint de tous ses itérés par y sauf peut-étre en &, ou
g, si ceux-ci appartiennent a 0.<7,.

L’existence de ¢; montre que g; et b, sont différents. D’aprés 3.5, s’ils ne sont pas
sommets d’un méme losange, il existe un troisiéme point fixe 6 de y différent dont
une des feuilles s(8) ou u(f) déconnecte g; et b, et doit donc recontrer ¢. Cette
feuille, disons s(f) recontre n®(Z,) en une partie connexe et y-invariante (cf. 5.3).
On en déduit que cette intersection est s*(8) ou s~ (), et donc que =, contient une
feuille fermée de f* en son intérieur: contradiction.

a; et b; sont donc sommets d’'un méme losange. Quitte & modifier les orienta-
tions:

L a)=2""(b)

De plus, n®(g;) est soit a;, soit u*(a;) soit s*(a;) selon que g; est 6,, une feuille de
f“ on une feuille de 7. De méme, n®(g;) est b;, u~(b;), ou s ~(b,).

Comme lintérieur de ¢, est disjoint de ses y-itérés, nous sommes dans 1’un des
cas de figure décrits par le schema 4.

Soit 2, le domaine délimité dans 7, par &, y¢; et les deux segments reliant dans
0, et 9, les extrémités de ¢, a celles de yé;. C’est un domaine fondamental de I’action
de y sur ;. Sa projection dans Q¢ est le disque bordé par I'image de son bord. On
en déduit que n®(;) est 'union du losange ouvert de sommets q; et b;, de n®(h;)
et de n%(g,). On en déduit sans peine la proposition 5.1: il suffit pour cela de voir
que les images par n? de deux composantes adjacentes o, et o, se trouvent de
part et d’autre de la semi-feuille n®(h;) = n®(g,, ,). Les deux derniéres affirmations
de 5.1 sont évidentes. O

REMARQUE 5.5. Nous avons implicitement montré le fait suivant: chaque
feuille de @ autre que 6, et 0, rencontre &/ en au plus un point.

COROLLAIRE 5.6. Tout anneau de Birkhoff est homotope le long de ®' a une
perturbation arbitrairement petite d’une union finie d’anneaux de Birkhoff élémen-
taires.
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Scheme 4.

Preuve. Soit .o/ un anneau de Birkhoff et (%, ..., &,) la chaine de losanges
dont le support est trace transverse de /. Les sommets de .Z; sont des orbites de
@' au-dessus d’orbites périodiques 6, de @‘. D’apres le théoréme D (que nous
montrerons bientdt) chaque .#; est trace transverse d’un anneau de Birkhoff
¢lémentaire of; bordé par 6, et 6, ,. Pour chaque indice i soit U; un voisinage de
0, suffisamment petit. D’apres le lemme 3.4 on peut choisir U, linéarisant, i.e., tel
que la restriction de @' a U, est un flot local topologiquement équivalent a la
restriction a {(x, y, a) € R? x S'/x?+ y? < 1} de la suspension du difféomorphisme
linéaire de R? défini par la matrice:

20
0 4
Quitte a isotoper les o/, le long de @‘, on peut choisir les U; de sorte que:

e les intersections de U, avec &/;_, et &, sont connexes,
@ Yunion des &, coincide avec ./ hors de 'union des U,.



Mise en position optimale de tores par rapport a un flot d’Anosov 135
L
f % .i

Figure 6. Coulissage de deux anneaux de Birkhoff adjacents.

On peut alors déformer les o/; dans les U; de sorte que leur réunion soit un
anneau de Birkhoff dont la trace transverse est le support de (%,,...,%,) (cf.
figure 6). Cet anneau est isotope le long de &' 4 «. O

6. Construction d’anneaux de Birkhoff

Nous montrons ici le théoréme D. Soit #, un y,-losange simple de sommets 50
et §,. Quitte a remplacer y, par une de ses racines, on peut le supposer indivisible,
i.e., qu’il engendre les stabilisateurs des sommets 8, et §,. D’aprés le lemme 3.4 il
existe dans %, un chemin ¢, d’extrémités @, et §, sans autointersection et disjoint de
tous ses itérés par y,. Soit &, un relevé quelconque de &, dans M (rappelons que n?
est une fibration triviale). Notons x, et x, les extrémités de ce relevé. Soit ¢, 'image
de &, par 7y, et yo = yoXo €t ¥, = YoX1 les extrémités de ¢&,. Soient enfin I, et I, les
intervalles. {xo, yo] et [x;, y,] dans G,~R et §, >~ R. Alors, I,u & uI, uéiborde un
rectangle R plongé dans M transverse a &' en dehors de I, et de I,. L’intérieur de
ce rectangle recontre chaque feuille de @ en au plus un point. Notons &/0 I'union
des itérés par y, de R: c’est une bande y, invariante, bordée par G, et 0,, et .
transverse 4 ¢* en son intérieur.

Soit M le quotient M Koy SOIt M — M lapplication de revétement naturelle.
@' se reléve en un flot &', et &/, passe au quotient en un anneau plonge .sx’o
transverse 4 &' en son intérieur et bordé par deux orbites périodiques , et 0,.
Comme 7, est indivisible les restrictions de # & 0, et 6, sont injectives. Par ailleurs,
si ces deux orbites périodiques ont méme image par 7 il existe dans M un
plongement incompressible de la bouteille de klein, ce qui est écarté dans les
hypothéses (voir remarque 6.1). Il existe donc un voisinage U, de 6.2/, dans M sur
lequel # se restreint en un plongement Enfin, comme le losange %, est suppose
simple, les images par # de 0.4, et de intd, sont disjointes. Quitte a diminuer U,
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on peut supposer que U, = #(U,) et #(/,\U,) sont disjoints. La restriction de # a
&, est une immersion de 'anneau dans M. Notre but est de modifier cette
immersion en un plongement injectif. On peut supposer cette immersion en position
générale, i.e., que le lieu de non-injectivité consiste en un nombre fini de cercles de
points doubles s’intersectant entre eux en des points triples (cf. figure 7, pour un
peu plus d’explication voir [10]).

Ce lieu des singularités se situe hors de U,. En utilisant les techniques de “cut
and paste” on obtient une surface &/ plongée dans M, de bord 6,U0,, transverse
a @' en son intérieur et coincidant avec #(s/,) dans U, (cf. [10]). Cette surface est
orientable (car transversalement orientable puisque son intérieur est transverse a
®’) et son intérieur est transverse a chacun des feuilletages faibles. Ces feuilletages
induisent donc deux feuilletages sans singularités sur </ et tangents au bord. Il s’en
suit que o/ est nécessairement connexe et qu’elle est un anneau de Birkhoff de bord
0, 8,. Pour conclure, nous devons juste montrer que la trace de cet anneau est .Z,.

Malheureusement cette affirmation telle quelle est fausse, puisqu’en général les
opérations de ‘“‘cut and paste” ne préserve pas les données homotopiques. Nous
allons montrer néanmoins qu’un partie de o/ peut se modifier en un anneau de
Birkhoff de trace transverse .%,.

Soit o le relevé de o7 dans M contenant §,. C’est une bande de M globalement
préservée par I'action de y,. Soit 0} la composante connexe de .2 au-dessus de 6,:
c’est un itéré y - 4, (y € I'). Soit enfin & I'image de & par n®. D’aprés 5.1 % est le
support de la chaine de losange € reliant 8, a §,. De plus, comme o et Ay
coincident sur un voisinage ouvert de 8, au-dessus de U,, le premier losange de cette
chaine, incident a 6, n’est autre que %,. Enfin, la méme remarque appliquée au
voisinage de 0, montre que le dernier losange de ¥, celui incidant a 5’1 =90,, est
7 &,. Soit &/, la composante de &/ contenant 8, (pour la notion de composante,
voir la preuve de 5.1). Quitte a inverser @, on peut supposer que le bord de .« est

* Figure 7. Singularités en position générale.
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constituée de 6, et d’'une feuille fermée g, de la trace de &#* sur /. La trace
transverse de o/, est 'union de Pintérieur de %Z,, de {#,} et de s~(§,). Il s’en suit
que la feuille F de % ° contenant g, est celle contenant 6,. Soit ./, ’anneau bordé
dans F par g, et 6, (comme g, est transverse a ¢' dans F g, et 0, sont disjoints).
Comme &/, ne contient aucune feuille fermée de f* autre que 6, ou g, son
intersection avec ./, se réduit a g, (cf. figure 8).

Quitte a pousser &/, par @' on peut supposer g, arbitrairement proche de 6,. Il
s’en suit que ./, est inclus dans un voisinage linéarisant U, de 8,. En inversant
I’argument du corollaire 5.6 on montre que «/, se déforme dans U, en un anneau
de Birkhoff élémentaire bordé par 6, et 0, et de trace transverse %,.

REMARQUE 6.1. La preuve du théoréme D’ est semblable en tout point a
celle du théoréme D. Les techniques que nous avons utilisées permettent de
montrer:

PROPOSITION 6.2. Soit £, un y,-losange simple de sommets 0, et 0,. On
suppose qu’il existe un élément y de I' envoyant (70 sur 8, . Alors, il existe un plongement
incompressible de la bouteille de Klein dans M, contenant une orbite périodique de ®'
et transverse a @' en dehors de cette orbite périodique. De plus, ce plongement peut
étre choisi de sorte que sa trace transverse soit un chapelet contenant %,. g

Wl

Figure 8. Axe de coulissage de g, sur 0,.
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Nous laissons au lecteur la preuve de 6.2. Nous indiquons seulement que le
revétement intermédiaire M qu’il convient de considérer ici est celui associé au
sous-groupe de I' engendré par y et y,.

7. Chapelets de losanges et tores quasi-transverses

Nous montrons ici les théorémes C et C’. Voyons tout d’abord pourquoi le
théoréme C’ découle du théoréme C. Il s’agit de montrer:

PROPOSITION 7.1. Soit (M, ®°) un flot d’ Anosov non topologiquement équiva-
lent a une suspension. Alors, tout sous-groupe libre abélien de rang deux de I' préserve
un chapelet de losanges.

Preuve. Rappelons que ’hypothése produit signifie que ’espace des feuilles Q*
est homéomorphe a R. D’aprés [3], il existe un homéomorphisme t,: Q°— Q°,
commutant avec I’action de I' sur Q°. De plus, I’espace des orbites Q¢ s’identifie
avec 'ouvert U de Q° x Q° compris entre les graphes de I'identité et de t,, et cette
identification envoie I’action de I' sur Q? sur la restriction a U de I’action diagonale
de I' sur Q° x Q°. Elle envoie aussi les feuilletages 4* et ¥“ sur les restrictions a U
des feuilletages verticaux et horizontaux.

Soit H un sous-groupe de I' isomorphe a Z® Z.

LEMME 7.2. L’action de H sur Q° n’est pas libre.

Preuve. Nous raisonnons par ’absurde. Il est bien connu qu’une action libre de
Z @ Z sur la droite est toujours semi-conjuguée a une action par translation (cf. par
exemple [14]). En d’autres termes, il existe une application continue, croissante et
surjective f: Q°— R et un morphisme injectif p : H - R tels que:

VxeQ*'YVheH f(hx) =f(x)+ p(h)

Comme f est surjective il existe au moins un ¢lément x de Q° pour lequel 7,(x) et
x n'ont pas la méme image par f. On en déduit I'existence de deux intervalles
ouverts I, et I, compris dans un méme intervalle du type ]x, 7,(x)[, et tels que les
images par fde I,, 1.1, et I, sont disjointes. Alors, V' = I, x I, est un ouvert contenu
dans U. Comme @* est topologiquement transitif (cf. théoréme 2.6 de [3]) il existe
un élément (x,, y,) de V fixé par un élément y de I'. Il correspond & une orbite
périodique de @‘. Comme cette orbite périodique est compacte et propre, I'orbite
I (xg,y,) est un fermé discret de U~Q®% 1l en est donc de méme pour

H - (xo,y0) =T - (xg, Yo)-
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Soit X, la borne inférieure des éléments de H - x, supérieurs a x,: il est supérieur
a x, et il existe une suite (h,) d’éléments de H telle que les A,(x) convergent vers X,.
Alors, les p(h,) convergent vers 0, et les 4,(y,) convergent eux-aussi vers un élément
¥o- Nous avons:

fGo) = lim f(xo) + p(h,) = f(xo)
S (o) =f(¥o)

On en déduit que le couple (X,, y,) appartient & ¥ < U. Ceci contredit le fait que
H - (x,, yo) est un fermé discret de U.

Soit A un élément de H admettant un point fixe (x,, yo) dans U. Alors ’ensemble
des points fixes de 4 est exactement ’'ensemble des (t7x,, T7y,) et des (t7y,, T2+ ' x4)
ou n décrit Z. Les verticales et les horizontales passant par ses points fixes
délimitent dans U ~ Q% un chapelet de losanges (voir figure 9).

Comme chaque élément de H commute avec h, ce chapelet est H-invariant. [
Nous nous consacrons désormais a la preuve du théoréme C. Nous reprenons
les notations de son énoncé. Soit {f;} ’ensemble des sommets du chapelet €. Soit

enfin H’ le stabilisateur de %, i.e., I'’ensemble des éléments de I" préservant .

LEMME 7.3. H et H' sont confondus.

%

Figure 9. Chapelet de losanges d’un flot d’Anosov produit.
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Preuve. Par hypothése H’ contient H. Par ailleurs, en tant que sommets de %,
les 6; sont naturellement ordonnés et I'action de H’ sur € préserve cet ordre. On en
déduit I'existence d’un morphisme y : H' - Z tel que:

H’ est donc soit cyclique, soit isomorphe & Z@® Z, soit isomorphe a I’extension de
degré deux non triviale de Z@ Z. Le premier cas est impossible car H’ contient H.
Le troisiéme cas aussi puisqu’il implique I’existence d’un plongement incompressible
de la bouteille de Klein (cf. remarque 7.14). Il ne reste alors que le second cas. Or,
comme H correspond a un plongement incompressible du tore, ¢’est un sous groupe
libre abélien de rang deux de I maximal (cr. [9]). Donc H = H'. O

Soit h un générateur du noyau de y, i.e., du stabilisateur de chaque 0,. Les
méthodes utilisées au début de la preuve du théoréme D permettent de contruire un
plan T, plongé dans M tel que:

e T, est H-invariant,

e T, contient tous les 6,

e T, est transverse & ¢ en dehors des §,,
® % est trace transverse de 7.

Soit # : M — M le revétement associé a H = I. Soit @° le relévement dans M de
@". Les 0, se projettent dans M en des orbites périodiques 6, de &*, et T, se projette
en un tore plongé To. L’ensemble des orbites de @' recontrant 7, s’identific au
quotient de ¥ par H. On en déduit:

LEMME 7.4. Une orbite de ®' est soit un des 0, soit ne rencontre T, qu’en au
plus un point. O

LEMME 7.5. Chaque orbite de &' rencontrant T, est fermée dans M.

Preuve. Les 0, sont bien siir fermées. Soit § une orbite de &' recontrant T, hors
des 8;, i.e., un élément de intéricur de €. 1l s’agit de montrer que son orbite par
H est fermée dans Q. Nous raisonnons par I'absurde: soit (h,),.n uUne suite
d’éléments distincts de H tels que les h,8 convergent vers un élément § de Q%. La
limite @ appartient a 'adhérence de € qui n’est autre que 'union de % et des u(f;)
et des s(f,) (indication: considérer un rectangle de Markov rencontrant la frontiére
de ¥). Si 6 n’appartient pas a l'intérieur d’un losange de %, on peut supposer quitte
a échanger ¥° et ¥“ qu’il appartient a un s(f,). A partir d’un certain rang les 4,0
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appartiennent alors au méme losange de €, ce qui montre que les 4, ne différent les
uns des autres que par des puissances de h. D’aprés la proposition 2.7 9 est
exactement 0, et les h,0 appartiennent a s(6;) ou u(6,): contradiction. O

LEMME 7.6. Le chapelet de losanges € est simple.

Preuve. Soient 0,, ..., 0, les projetés dans M des 6,. Soit 0 un relevé d’un des
0, dans M rencontrant T o- On suppose que 6 n’est pas ;. Alors, d’aprés les lemmes
7.5 et 7.4 0 est une droite fermée de M ne rencontrant TO qu’en un seul pomt
Comme H n’est autre que fx7,(T), f se reléve en un plongement de T dans M dont
image T est un relevé de f(7) librement homotope & T,. Donc, le nombre
d’intersection modulo 2 de § avec T est non-nul. Soit ¢ une courbe fermée simple
plongée dans f(T') librement homotope dans M a 0,. Cette homotopie se reléve en
une homotopie propre entre § et une droite 4. Cette droite 4 doit rencontrer T
puisque leur nombre d’intersection modulo 2 est non-nul. Comme 4 est un relevé
de ¢, elle doit étre contenue dans 7T et doit donc étre un cercle. Contradiction.

Donc, les seuls relevés des 6, rencontrant T, sont les §,. Relevé dans M, ceci
signifie exactement que € est un chapelet de losanges simple (cf. introduction pour

la définition de chapelet simple). (]

COROLLAIRE 7.7. La restriction de # a I'union des 0, est injective. L’image par
# de T, privé des 0, est disjointe de I'union des 0,.

Preuve. D’aprés le lemme 7.6 #(T, O\U()A,.) ne rencontre aucun des §,. Comme A
est un élément de I indivisible, la restriction de # a chaque 6, est injective. Enfin,
si un élément de I" envoie un sommet de € sur un autre sommet de € il préserve
nécessairement le chapelet lui-méme. D’aprés le lemme 7.3, un tel élément ap-
partient a H, ce qui montre que deux orbites différentes 6, et éj ont des images par
7 différentes.

REMARQUE 7.8. Le fait que € soit un chapelet de losanges et non le support
d’'une chaine de h-losanges quelconque, intervient de maniére cruciale dans la

preuve de 7.7.

D’aprés le théoréme D chacun des losanges & * +(8,) est la trace transverse d’un
anneau de Birkhoff élémentaire ;. Il en découle que quitte a isotoper T, le long
de &' on peut supposer que la restriction de # 4 chaque composante de T, est un
plongement injectif (ici une composante est un anneau transverse a & bordé dans
T par deux orbites 0, et ,,,). Notons &,,..., o, les composantes de T, et
s,,...,o, leurs images par #. Pour conclure nous devons juste montrer que 'on
peut xsotoper T, le long de @ de sorte que les </, soient deux-d-deux disjoints.
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Quitte & modifier 1égérement T, on peut supposer que 7 : T, » M est une immersion
lisse en position générale. Rappelons que ceci signifie que le lieu des singularités &
de cette immersion est stratifié en lignes de points doubles lisses s’intersectant en des
points triples. En d’autres termes, il existe dans 7T, un ensemble fini J est une
sous-variéte lisse plongée 2 de dimension un tels que:

® 7 est 'ensemble des éléments de T, dont I'image par 7 admet exactement
trois antécédents par 7: c’est le lieu des points triples,

® 2 est I'ensemble des éléments de T, dont Iimage par # admet exactement
deux antécédents par #: c’est le lieu des points doubles,

e chaque composante connexe de 2 est soit un cercle, soit un intervalle ouvert.
Dans le second cas, sa frontiére est contenue dans 7,

e l'union ¥ =2 uUJ est le lieu des singularités: la restriction de 7 a son
complémentaire est un plongement injectif.

D’apreés le corollaire 7.7 & est disjoint de I'union des ;. La restriction de # 2 2
est un revétement double. Il existe donc un homéomorphisme ¢ : 2 > 2 d’ordre
deux, sans point fixe, et tel que 7 - 0 = . Comme la restriction de # a chaque <,
est injective, o ne préserve aucune composante connexe de 2.

Soient s,, §, et s; trois éléments de J ayant méme image s par 7. Chacun des
s; est extrémité de quatres intervalles I’ (1 < j < 4) composantes connexes de 2. Les
douzes intervalles ainsi obtenus sont deux-a-deux différents. On peut choisir leur
numérotation de sorte que:

Ii=o(3) L=o0(3)
B=o3) ILi=o(3)
L=dl}) L=odl3)

Si on convient de cette numérotation, deux intervalles I/ et I/ sont tangents en leur
extrémité commune s; si les indices j et j° ont méme parité (cf. figure 10).

Nous appelons cercle de points doubles la donnée d’une suite (/;,..., 1,
I,.,=1,) de composantes connexes de 2 et d’une suite (s,,...,S8,, 5,41 =35)
d’éléments de J telle que:

@ les I, sont deux-a-deux disjoints,
e pour chaque indice i U'intervalle 7, relie s; a s, ,,
e deux intervalles successifs I; et I, ; sont tangents en s, ;.

Par abus de notation, nous appellerons aussi cercle de points doubles I’'union des
I, et des s;. En ce sens c’est 'image d’une immersion lisse du cercle dans 7.
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‘ l:
,11
Il ? 12
‘3 ll
3

Figure 10. Lieu des singularités au voisinage d’un point triple.

LEMME 7.9. Les cercles de points doubles sont sans autointersection. La restric-
tion de 7t a chacun d’entre eux est injective.

Preuve. Soit (I,,...,1,), (s;,...,s,) un cercle de points doubles. Nous le
supposons avec autointersection, i.e., qu’il existe un indice 1 <p < n tel que s, =s,,.
Alors, 'union des sy, ..., s, etdes I},...,I,_, est un cercle topologique (mais non

différentiablement immergé). De plus, les o(f;) (1 <i < p — 1) sont des intervalies
vérifiant:

e o(l;) et a(I;, ) sont incidents & un méme point triple s; en lequel ils sont
tangents,

® a(l)) et a(I,_,) sont incidents 4 des sommets s; et s, qui ont I'un comme
'autre méme image par & que s, =s,,.

Les sommets s et s, sont reliés par un chemin dans &. Comme ce dernier est
disjoint des 8, ce chemin est contenu dans un des .«/;. Comme la restriction de # a
</, est injective, on en déduit que s; et s, sont égaux. Il s’en suit que les parties de
I, I,_,, I, et I, proches de s, =s, sont envoyées par ¢ en quatres intervalles
proches du méme point triple s; =s,. Ceci est absurde (cf. figure 10). Les s; sont
donc deux-a-deux disjoints et I'union des /; et des s5; (1 <i <n) est 'image C d’un
plongement différentiable du cercle. L’application ¢ définie sur C\Z se prolonge en

un homéomorphisme entre C et un autre cercle de points doubles C’ tel que:

ﬁ°olc=ﬁ
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C et C’ appartiennent a deux composantes /; et </, différentes. Ils sont donc
disjoints. On en déduit que la restriction de # & C est un plongement injectif. [J

LEMME 7.10. Chagque cercle de points doubles borde un disque dans T,.

Preuve. 11 s’agit de montrer qu’un cercle de points doubles est homotopique-
ment trivial. Supposons a contrario 'existence d’un cercle de points doubles C
homotopiquement non trivial. Soit C’ = ¢(C) I’autre cercle de points doubles ayant
méme image par # que C. C et C’ se relévent dans M en deux droites fermées € et
C’, et il existe un élément y de I' envoyant € sur €’. Comme C et C’ sont disjoints
des 0, ils leurs sont librement homotopes dans T,. Les relevés C et ¢’ peuvent donc
étre choisis globalement préservés par & = [6,]. Il en découle que yhy ~! est égal a
h*!. y envoie donc les h-losanges sur des h-losanges. Soit %, le h-losange de %
contenant n®(C) et &, celui contenant 7%(C"): le losange &, est envoyé par y sur
;. Comme % est un chapelet, il s’en suit que y préserve €. D’aprés le lemme 7.3
y appartient a H. Donc, C = C’ = ¢(C): contradiction. O

Soit C un cercle de points doubles et D le disque fermé qu’il borde dans T,: ce
disque est contenu dans un anneau ;. La restriction de 7 a ce disque est donc un
plongement. Soit D son image par #. Quitte a changer notre choix de cercle de
points doubles, on peut supposer que le nombre de composantes connexes de 2 N D
est minimal. Ceci implique que I'intérieur de D ne contient pas de cercle de points
doubles, i.e., tout cercle de points doubles rencontrant D rencontre C = dD. Soit
C’ =0(C) et D’ le disque bordé dans T, par C’. On note D’ = #(D").

LEMME 7.11. Les intérieurs de D et de D’ sont disjoints.

Preuve. D et D’ sont transverses I'un a l’autre, et ils sont compacts. Si I'intérieur
de D rencontrait D’ il contiendrait I'image d’un cercle de points doubles. Nous
’avons exclu par hypothése. O

L’union D u D’ est donc un plongement de la “sphére a coin” nulle part tangent
a @'. Comme M est irréductible, D u D’ borde dans M une boule B. Quitte a
inverser le flot, on peut supposer que @’ est rentrant dans B en D’. Soit Dj un
disque voisinage de D’ dans ﬁ(fo). Pour toute paire d’applications u : Dy — R, et
v:Dy— R} on note Q;(Dg) l'ouvert de M x R constitué des couples (x, #) vérifiant
u(x) <t < v(x). Nous notons enfin ¢ I’application (x, ¢) — ®'(x).

LEMME 7.12. On peut choisir D et trois applications u, v et w de D; dans R de
telle sorte que:
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e u<w<v

o u<l<v

® la restriction de ¢ a Q'(Dy) est un plongement injectif,

® ¢ envoie {(x, t)/x € Dyt = w(x)} sur un voisinage D, de D dans #(T,).

Preuve. Soit x un ¢élément de D’. On suppose que son orbite positive {@‘(x)/
t > 0} ne rencontre pas D. Alors, d’aprés le shadow lema (voir par exemple [5]) il
existe dans B une orbite périodique de @‘. Or B est simplement connexe, et aucune
orbite périodique de @ n’est homotopiquement triviale: contradiction. Donc, pour
tout élément x de D’, il existe un réel positif w(x) tel que P‘(x) appartient a D, et
tel que pour tout réel positif ¢ inférieur & w(x) ®'(x) n’appartient pas & D. On en
déduit aisément le lemme 7.12.

Dl

Scheme 5.

O

Soit ¢ une application Dj— R* comprise entre w et v et nulle au voisinage de
0D}. On étend é o 7 en une application 6 : Ty— R* en lui imposant de s’annuler
hors du disque D; au-dessus de D;. Alors, f; : x $%)(x) est une homotopie le
long de ¢* envoyant T, sur un tore T2. Pour un & générique la restriction de # a
T2 est en position générale: on note alors &, 95, 7 le lieu singulier, le lieu des
points doubles et le lieu des points triples.

LEMME 7.13. Pour un choix convenable de 6, le nombre de composantes
connexes de Dy est strictement inférieur au nombre de composantes connexes de 9.

Preuve. On note:

Dy =f;(D)  Djo=/s(D0)

D,=D Dyo=D,

D;=#(D;)  Djo=%(Dj0)
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Pour tout espace topologique E nous notons b,(E) le nombre de ses composan-
tes connexes. Rappelons que nous avons choisi D de sorte que by(D ND) soit
minimal. En particulier:

bo(2D ~IntD) < by(2 N IntD") (1)

Nous imposons a ¢ : Dy— R d’étre compris entre w et w + €. Les disques D, et
Dj, sont alors disjoints. Comme #(T;) est auto-transverse il existe un réel ¢ positif
pour lequel ¢ envoie 2%+ <(Dj) sur un ouvert voisinage de D, dans lequel #(T,\D,)
est homéomorphe a [—¢, +¢] x (¥ N D,). Quitte & diminuer D, on peut supposer
en outre que w + € est positif.

Figure 11.

Pour un choix convenable de d, Dj, est transverse a ﬁ(TS\Ijg,o) et leur
intersection est “analogue” a celle de D, avec (T, \(D,u D})). En d’autres termes,
pour un tel choix de 4:

bo(D5 N IntD}) = by(25 N IntDs) = by(2 N IntD) (2)
Chaque composante connexe I de £ est de I'un des types suivants:

e soit (/) appartient a oD = oD’,

e soit 7(/) appartient a IntD,

e soit 7(/) appartient a IntD’,

e soit (/) n’appartient pas & DuD’.
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Donc:

bo(D) = bo(2 N (Ty\#t = (DyU D}))) + bo(2 N OD) + by (2 N0D")
+ 2bo(2 N IntD) + 2by(2  IntD")

D’aprés (1), et comme by(2 NdD) = by(2 N D"):

bo(2) = by(2 N (Ty\2 ~(Dy U D}))) + 2by(2 D) + 4by(D A IntD) (3)

Par ailleurs, il est clair que:

bo(25) < bo(Ds N (T\%~ (D5 U D)) + 2by(Ds N IntD;) + 2by(25 N IntD3}) (4)

ChAaquE élénAlent de @A N (To\% ~Y(Dyu D})) est au-dessus d’une autointersection
de A(T,\(Dyu Dp)) = #(T{\(Dsou Dj,)). 1 correspond donc aussi & un élément de
Ps~\(T\# ~'(DsuD})). En d’autres termes:

2 n(To\t = (Dyu Dy)) = D5 N (T3\£ ~'(Ds U D}))

Avec (2), (3) et (4) ceci montre:

bo(D) — by(D5) = 2by(2 N 0D) >0 O

Tant que 2 est non-vide on peut appliquer le lemme 7.13. De proche en proche,
on déforme T, le long de &’ jusqu’a obtenir un tore sur lequel # se restreint en un
plongement injectif. L’image de ce plongement est alors le tore quasi-transverse
homotope a f(T) recherché. Nous avons ainsi montré I’existence. L’unicité découle
de théoréme A’ que nous démontrerons a suivre. O

REMARQUE 7.14. Lors de la preuve du lemme 7.3 il a été défini un mor-
phisme y : H’—Z ou H’ est le stabilisateur du chapelet €. Il y a été affirmé que la
suite exacte

0oZ>H 570

n’est pas centrale, alors il existe dans M un plongement incompressible de la
bouteille de Klein. Pour justifier cette affirmation il suffit d’appliquer les méthodes
précédentes en remplagant H par H’ et le mot “tore” par “bouteille de Klein”. En
fait, il suffit de construire I'immersion K < M, 2, M ou K est une bouteille de
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Klein quasi-transverse & &, puis d’appliquer les techniques de “cut and paste”. On
obtient ainsi un plongement dans M quasi-transverse 4 ¢’ d’une surface X non-
orientable et bifeuilletable, donc une bouteille de Klein.

Nous avons méme mieux: en s’inspirant de la preuve précédente on peut
montrer que la bouteille de Klein quasi-transverse X peut €tre choisie de telle sorte
que le plongement initial f: 7 — M est homotope au bord d’un voisinage tubulaire
régulier de X. Nous laissons les détails au lecteur.

8. Mise en position transverse

Nous en venons a la preuve du théoréme B. Soit 72 ¢ M un plongement
incompressible du tore vérifiant les hypothéses du théoréme B. Soit H le sous-
groupe de I' correspondant a n,(T%) ~ H,(T*) ~Z@®Z. 1l est bien défini & conju-
gaison pres dans I'. Les lacets ¢, et ¢, correspondent a deux ¢léments différents 4,
et h, de H qui admettent 'un comme 1’autre des points fixes dans Q. D’aprés le
théoréme F h, et h, sont indivisibles dans I'. Donc, comme c, et ¢, ne sont pas
homologues dans T2 k, et h, n’admettent aucune puissance commune: aucun point
fixe de I'un n’est point fixe de I’autre.

LEMME 8.1. Quitte a échanger h, et h, on peut supposer qu’il existe une feuille
de %° fixée par h, rencontrant une feuille de %" fixée par h,.

Preuve. Soit 6 un point fixe de 4, dans Q. Alors, h,0 # 0 est lui-aussi point fixe
de h,. Soit &,, ..., %, la suite de h,-losanges reliant 6 a h,0. On suppose 8 choisi
de sorte que le nombre n de ces losanges soit minimal. Pour des orientations
convenables nous avons ., = £ **(0). Soit 0, 'autre sommet de Z;:

Ly=277(6))

Comme 7 est minimal %, ne peut étre £ **(h,0), sinon .%,, ..., %, _, relieraient
0, a h,0,. On en déduit que 0 appartient soit a U_ (h,0) soit a S_ (h,0) (voire aux
deux simultanément). En d’autres termes, soit U, (h,0) soit S (h,60) ne contient pas
0. Par ailleurs, comme ¥,=<%""(0), h,0 appartient a U, (0) S, (0). On en
déduit que h,U, (6) est contenu dans U, (6) on que A,S. (0) est contenu dans
S, (6). D’aprés le lemme 2.6 dans le premier cas il existe une feuille de %° fixée par
h, rencontrant u(), et dans le second cas il existe une feuille de ¥* fixée par A,
rencontrant s(6). U
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Soit x, une orbite fixée par k, et y, une orbite fixée par A, telles que

s(xo) Nu(y,) # &
Notons z 'unique €lément de cette intersection. On peut supposer:
z €5 (x0) Nut(yo)

Quitte a inverser A, et h, on peut aussi supposer x, et y, sont des points fixes
attractifs des restrictions a s(x,) et u( y,) de #, et de h,. Soient x" = h,xy et y’ = h, y,:
ce sont respectivement des points fixes de 4, et de A, et les restrictions a u( y’) et s(x’)
de h, et h, sont contractantes. u*(y,) et u*(y’) rencontrent s*(x’) et s*(x,) en
respectivement h,z et h,z, et u*(y’) rencontre s *(x") en h, h,z = h,h,z. Ces quatres
demi-droites délimitent donc dans Q® un domaine compact. Nous appelons K ce
domaine (cf. figure 12). C’est un “rectangle” fermé de cotés a, a’, §, B’ ou:

o =0Knst(xy) o =0Knst(x)

B=0Knu*(y) B =0Knu"(y)

N
S
Y
-

Figure 12.
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Soit ¢’ un élément de «’. La demi-droite u*(¢’) est fermée dans Q%\s(x’).
Comme K est compact, elle doit rencontrer JK: elle ne peut le faire qu’en a. De
méme, toute feuille de ¥° rencontre f si et seulement si elle rencontre ’. On en
déduit que K est un rectangle de Markov. Soit J# : a’ — a ’application d’holonomie
induit par ¥*

H()=u*t(@t)na

Soit f I'application de a dans lui-méme qui a ¢ associe H#'(h,f). Comme F° est a
holonomie hyperbolique les points fixes de f sont en nombre fini et alternativement
répulsifs et attractifs. Soient a, = a ’ensemble des éléments ¢ de a« pour lesquels
u~ () recontre s ~(y,). C’est un ouvert de a f-invariant. Les propriétés topologiques
de Q% ~ R? montrent que a, est connexe: ¢’est donc un intervalle non vide de s ~(2)
de la forme ]z, ¢,[. L’extrémité ¢, est un point fixe attractif de f (car z est un point
fixe répulsif de f et que f n’admet pas de point fixe dans ]z, ¢;[). La feuille u(¢,) est
donc h,-invariante: elle contient un point fixe y, de 4,. Comme certaines feuilles de
%* proches de u(t,) rencontrent s( y) et que s( y) est disjoint de s(y,), il s’en suit que
y, appartient & u*(t,).

Scheme 6.

En inversant le raisonnement, on montre que toute feuille de ¥* rencontrant
s*(y,) rencontre s (y,). De proche en proche on obtient ainsi une suite finie
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Yos V1> - - -» Y =y’ de points fixes de A, tels que:

L) =L (Yais)
LT (Vo 1) =L (yu)

L’union Q” de ces h,-losanges recouvrent K. En raisonnant de méme pour f’ on
obtient une suite x,, . .., x,; = x” de points fixes de A, tels que:

L) =L (x4 1)
L (X)) =L (xy)

et tels que 'union Q* de ces h,-losanges recouvrent K. Enfin, il est clair que K est
un domaine fondamental de ’action de A, sur Q* et aussi de I’action de A, sur Q*,
Pour tout entier n = (2k)g + r on définit &£, =h{ L (y,) =L **(h{y,) si r est
pair et &£, =h{¥ ~*(y,) si r est impair. Les ¥, forment une chaine biinfinie de
h,-losanges de type alternativement —+ et + +. De méme pour tout entier
n = (2l)g + r on définit &, =h§L **(x,) si r est pairet &, =h§¥*"(x,) si r est
impair. Soit H' < H le sous-groupe engendré par A, et h,. Soit Q le support de (Z,,)
et Q' celut de (&). Ce sont des ouverts H’-invariants, et il est clair que K est un
domaine fondamental de (2, H') et de (Q’, H’). Donc:

Q@=Q =H-K

Les losanges %, correspondent & un chemin géodésique é dans I'arbre G,,. Ce
chemin n’est autre que 'axe de translation de I'action de h, sur G,, (cf. [17]). Par
unicité de 'axe de translation, § est préservé par tous les éléments de y qui
commutent avec A, et h,, et donc en particulier par H. Il en découle que 2 = Q’ est
H-invariant. Rappelons que 4, est indivisible. Il existe donc un élément h; de H tel
que h, et h, engendrent tout H. Cet €lément A, agit sur les points fixes y,; en les
permutant et en préservant leur ordre. Il existe donc un entier u tel que:

h3yi = Yisou

Quitte a inverser # on peut le supposer positif. C’est un diviseur de k et est donc
inférieur a k. D’aprés la proposition 4 tous les losanges &, (0 <n <2u — 1) sont
simples: en effet, 'ensemble des h,-losanges n’est pas un chapelet car %, et &, sont
en position indirecte. On peut donc construire des anneaux de Birkhoff élémentaires
o, (0<n<2u—1) dont les &, sont les traces transverses. Deux tels anneaux
successifs admettent en commun une orbite périodique dans leur bord. Leur union



152 THIERRY BARBOT

_/

b

N

7

27
.

N/

2

\
"

2)

Scheme 7.

est 'image d’une immersion “a coins” du tore. En reprenant ’'argument du lemme
4.7 on montre aisément qu’aucun des ./, ne rencontre en son intérieur une
composante de bord d’un autre «7;. On peut alors utiliser les méthodes de la section
précédente pour montrer qu’a homotopie prés le long de @* on peut supposer que
les o/, sont d’intérieurs disjoints. De maniére plus précise, pour appliquer avec
succés ces méthodes il faut établir I’équivalent du lemme 7.3, i.e.:

LEMME 8.2. Un élément y de T' préserve globalement Q si et seulement si il
appartient a H.

Preuve. Soit y un élément de I" préservant globalement Q. Il préserve alors la
fronti¢re 0Q. On en déduit qu’il envoie chaque y; sur un des A7y, , , ce qui montre
qu’il commute avec A,. Il agit donc sur G, et ceci en préservant I’axe de translation
0. Comme ¢ est I’axe de translation de A5, on en déduit que y commute avec A;,
donc avec tout H. On conclut grace a la maximalité de H en tant que sous-groupe
libre abélien de I'. O

Aprés isotopie 'union des <7, est un plongement topologique injectif du tore
dans M, transverse & @' en dehors d’'un nombre fini d’orbites périodiques, et dont
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la trace transverse est 'union (et non le support) des .#,. En reprenant le
raisonnement du corollaire 5.6 on voit qu’on peut coulisser les </, au voisinage de
leur bord de sorte que I'union des anneaux perturbés forment I'image d’un
plongement lisse du tore T, transverse a @' et dont la trace transverse est Q = Q.
Le groupe fondamental de T, s’injecte dans I en le groupe {A,, h,> = H. Il est donc
homotope a T? dans M. Enfin, les traces de #* et de #*“ sur T, sont conjuguées
aux projections de ¢° et de 4" sur Q,,, = Q/,,. Ceci compléte la preuve du théoréme
B et justifie la description des traces des feuilletages faibles données lors de
I'introduction.

9. Unicité de la mise en position optimale d’un tore
9.1. Preuve du théoréme A

Le contenu de ce paragraphe est trés proche de [6], du moins en son esprit.
Soient T, et T, deux tores plongés dans M, transverses a &' et homotopes.
Rappelons que d’aprés [6] ou [7] deux tels tores sont incompressibles.

LEMME 9.1. T, est homotope le long des orbites de ®' a un tore disjoint de T,.

Preuve. Nous supposons 7T, en position générale vis-a-vis de T, c’est-a-dire
transverse a T,. L’intersection entre les deux tores consiste alors en une union finie
C,u---uC, de cercles plongés dans T,. Supposons qu’un de ces cercles, disons C,,
soit homotopiquement trivial: il borde alors dans T, et T, deux disques D, et D,.
On se retrouve dans la situation du lemme 7.12 ou D, joue le role du disque D’ et
D, celui du disque D. Il s’en suit qu’en poussant 7, le long de @' au voisinage de
D,, on peut faire disparaitre le cercle de points doubles C,. Aprés un nombre fini
de telles opérations, on se raméne donc au cas ou tous les cercles C; sont
homotopiquement non-triviaux. Comme ils sont disjoints, ils délimitent dans 7, un
nombre fini d’anneaux. Comme T, et T, sont homotopes et que M est irréductible,
un argument topologique non trivial mais ais¢é permet de montrer qu’il existe un
anneau &/, contenu dans 7, et un anneau ./, contenu dans T, tels que:

e </, ne rencontre T, qu’en son bord 0%/,

® </, ne rencontre T, qu’en son bord 0.%/,,

® o/, et o/, ont méme bord et leur union borde dans M un domaine W

homéomorphe au tore solide D x S'.

Quitte a inverser le flot @', nous le supposons rentrant dans W en &/,. Nous
allons montrer que lorbite positive de tout ¢€lément de &/, rencontre «/,. Un
argument analogue a celui employé précédemment montre alors que T, est homo-
tope le long de @' A un tore transverse @ ®* ne rencontrant T, qu’en n — 2 cercles
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de points doubles. 11 suffit alors d’appliquer un nombre fini de telles homotopies
pour achever la preuve du lemme.

Supposons donc que tel n’est pas le cas. Il a ét¢ montré auparavant que ceci
implique I'existence a Yintérieur de W d’une orbite périodique 8, de @’. Aboutir a
une contradiction est cependant un peu plus ardd.

Soit # : M — M le revétement associé a 7n,(W) o I'. Nous notons o', F, F"
les relevés dans M de &', F° et F“. W se reléve dans M en un tore solide W tel
que la restriction & W de # est un homéomorphisme sur son image W. Le bord 0W
est union de deux anneaux ¢, et &/, au-dessus de &, et .<7,.

LEMME 9.2. L’orbite positive {®'(%)/t = 0} d’un élément % de <, ne rencontre
pas .

Preuve. Le lemme est évident si @' est rentrant dans W en &/, puisqu’alors
aucune orbite positive ne peut s’échapper de W. Nous supposons donc donc b
sortant de W en «,. Soit T, le relevé de T, dans M contenant .«Z,. C’est un anneau
qui déconnecte M. Soit U~ la composante connexe de M\T, contenant I'intérieur
de W (il convient de remarquer que comme 7, ne rencontre pas l'intérieur de .7,
il ne rencontre pas l'intérieur de W). Soit U™* I’autre composante connexe. Comme
T, est transverse 4 &' I'orbite positive de tout point de .7, est entiérement contenue
dans une des composantes connexes de M\ T,. Comme &’ est sortant en 7, il s’agit
de U™, qui est bien disjoint de W, et donc de .,. O

LEMME 9.3. L’ensemble a-limite (respectivement w-limite) d’un élément de M
est vide sauf si cet élément appartient a une feuille de Fu (respectivement de F )
contenant une orbite périodique de &, auquel cas I’ensemble o-limite (respectivement
w-limite) est exactement cette orbite périodique. En particulier, si une orbite de ®'
admet un ensemble a-limite non vide, et un ensemble w-limite non-vide, c’est alors une
orbite périodique.

Preuve. C’est la traduction dans M de la proposition 2.7. O

Soit 6, 'orbite périodique de @ contenue dans W au-dessus de 8,. Soit F la
feuille de Z * contenant ,. D’aprés le lemme 9.2 la feuille F ne rencontre pas o7, .
Soit F, la composante connexe de W nF contenant §,: sa frontiére est contenue
dans /,. D’aprés le lemme 9.3 aucun élément de Fy\f, n’admet un ensemble
a-limite non-vide. Son orbite négative doit donc s’échapper du compact W. 1l s’en
suit que F, est un anneau compact découpé dans le cylindre F et dont le bord est
constitué de deux cercles plongés dans «7,. Ces deux cercles délimitent dans .o/, un
sous-anneau 7%5. L'union #4UF, est un tore topologique plongé dans W. Il y
borde un tore solide W’ < W. Le flot @' est tangent 4 W’ en F, et rentrant dans
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W’ en /5. Donc l'orbite positive de tout élément £ de 7 est entiérement contenue
dans le compact W, et 'ensemble w-limite de % est non-vide. D’apres le lemme 9.3,
ceci implique que toutes les feuilles de % * recontrant <7 > sont cylindriques. Ceci est
absurde puisque #° n’a qu'un nombre dénombrable de feuilles cylindriques. [

On peut donc supposer que les tores T, et T, sont disjoints. Comme ils sont
homotopes et que M est irréductible, leur union borde dans M un domaine W
homéomorphe au produit du tore par I'intervalle. Notons que W est transverse a
@' et donc aussi aux feuilletages faibles. Soit G* la restriction & W de % °. Comme
#* n’admet pas de feuilles compactes, G* est sans composante de Reeb. De plus,
I'argument final utilisé lors de la preuve de lemme 9.1 s’applique ici pour montrer
qu’aucune feuille de G° n’est un anneau compact dont le bord est entiérement
contenu dans un des tores 7, ou T,. En particulier, G° n’admet pas de semi-com-
posante de Reeb. Les feuilletages de codimension un de 72 x [0, 1] sans composante
de Reeb et sans semi-composante de Reeb sont bien connus: a conjugaison
topologique pres, ce sont tous des produits par I'intervalle [0, 1] d’un feuilletage de
dimension un du tore.

Supposons 'existence dans W d’une orbite périodique 8, de ®*. Soit G, la feuille
de G° contenant 6,: elle est homéomorphe a g, x [0, 1] ou g, est la trace de G, sur
T,. Comme 6, est homotopiquement non-trivial g, est un cercle. Il s’en suit que G,
est un anneau compact, découpé dans la feuille cylindrique & °(6,) et contenant 0,
en son intérieur. On en déduit que @’ est rentrant dans W aussi bien en T, qu’en
T,. Mais en raisonnant de méme a partir du feuilletage instable & ¥, on montre que
@' est sortant de W: contradiction.

Quitte a inverser le flot nous le supposons rentrant dans Wen T,. Nous venons
de montrer qu’il n’admet aucune orbite périodique dans W. Donc, toutes les orbites
positives partant de T, rencontrent 7,. Ceci montre le théoréme A.

9.2. Preuve de théoréeme A’

Soient T, et T, deux tores quasi-transverses librement homotopes. Il s’agit de
montrer qu’ils sont homotopes le long de @°. Il est clair que ceci revient a montrer
qu’ils ont méme trace transverse. Soit H le sous-groupe de I' correspondant a
n,(T)) =n,(T,). Soit €, la trace de T, et %, celle de T,: nous les choisissons
H-invariantes. Ce sont des chapelets de losanges. Soit 4, I’élément de H engendrant
le stabilisateur des sommets de €,, et A, celui engendrant le stabilisateur des
sommets de %,. Si A, et h, sont différents, il existe d’aprés le théoréme B un tore 7,
transverse 4 @’ et homotope a T, et T,. La trace transverse Q de 75 est un ouvert
de Q% H-invariant. Cet ouvert est une union de h,-losanges correspondant dans G,
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a un axe de translation de A,. Or, €, correspond lui aussi & un axe de translation
de h, dans G,,. Par unicité de I'axe de translation nous aurions %, = Q ce qui est
manifestement absurde.

Donc, h, et h, sont égaux. Soit 4, un supplémentaire de h, = h, dans H. €, et €,
correspondent a des axes de translations de 45 dans G, . Ils sont donc égaux.

10. Mise en position optimale simultanée de plusieurs tores

Nous démontrons ici le théoréeme E. Nous aurons besoin du lemme topologique
suivant:

LEMME 10.1. Soient T, et T, deux tores plongés dans M de maniére incom-
pressible et transverses I’un par rapport a lautre. Soient T, et T, deux relevés dans
M de T, et T,. On suppose que intersection entre T, et T, est une droite fermée A.
Alors, tout tore plongé dans M homotope a T, rencontre T,.

Preuve. Soit H ~m,(T,) le sous-groupe de I' préservant globalement 7. Soit
# : M — M le revétement associé¢ a H. Le plan T, se projette dans M en un tore T}
tel que la retriction de 7 a ce tore est un homéomorphisme sur son image 7,. La
droite A4 se projette dans T, en un cercle 4 (cette projection est une cercle et non
une droite puisque T, T, consiste en un nombre fini de courbes fermées simples).
Le plan T, se projette dans M en une surface plongée T, qui est soit un tore, soit
un anneau. Comme T, T, se réduit & 4 et que H préserve globalement T,
Pintersection entre T, et T, se réduit a A. Soit 4 le cercle #(d) = n(4). C’est une
courbe fermée simple contenue dans 7,. Il existe donc dans 7, une courbe fermée
simple C transverse 4 4 et ne rencontrant A qu'en un unique point x,. Soit %,
I'unique élément de T, au-dessus de x;. Soit C I'unique relevé de C passant par £,:
comme C est une courbe fermée simple ne rencontrant 4 qu’en x, c’est une droite
contenue dans T, ne rencontrant 4 qu’en £, (ceci montre en particulier que 7T, est
un anneau). Il s’en suit que € est une droite fermée plongée dans M ne rencontrant
T, qu’en %,. En d’autres termes, le nombre d’intersection entre C et T, est non-nul.

Soit 7" un tore plongé dans M homotope a T,. Il se reléve dans A en un tore
T, homotope a T,. Le nombre d’intersection entre 77 et C est donc lui aussi
non-nul. Donc, T} rencontre C < T,. O

Une simple induction sur le nombre de tores permet de ramener le preuve du
théoréme E a celle de:

PROPOSITION 10.2. Soit (T, ..., T,) une collection finie de tores transverses
ou quasi-transverses a ®'. On les suppose deux-a-deux non homotopes. On suppose de
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plus que les T; (1 <i <n — 1) sont deux-a-deux disjoints, et que T, est homotope a
un tore T, disjoint de Iunion des T, (1 <i<n—1). Alors, T, peut étre choisi
homotope a T, le long de ®'. En particulier, T, peut étre choisi transverse ou
quasi-transverse a 9.

Preuve. La preuve est similaire en bien des points a celle du lemme 9.1. Notons
T l'union T u---uUT,_,. Quitte a modifier légérement T, on peut le supposer
transverse a 7. L’intersection entre T et 7, consiste alors en une union finie de
cercles plongés dans T,,. Nous les notons C,, ..., C,. Soient 0,, . . ., 0,, les orbites
périodiques contenues dans Tu T, : chacune d’entre elles est contenue dans un des
tores T; (1 <i < n) quasi-transverses a @°.

LEMME 10.3. Aucune orbite 6; (1 <j < 2q) ne rencontre transversalement un
tore T; (1 <i<n).

Preuve. Supposons a contrario que 'une des orbites 6; rencontre transversale-
ment un des tores T;. Alors, 8; est contenue dans un des tores T, ou I'indice i’ est
différent de i. Ce tore T, est quasi-transverse a3 ¢‘. Nous nous placerons ici dans le
cas ou 7T, = T,. L’autre cas, a savoir celui ou 7, = T, se traite de maniére analogue.
Si T, est transverse 4 @‘, son nombre d’intersection avec 6, est non-nul. Or, T, est
homotope a T, qui est disjoint de 6;: contradiction. Donc, T, est quasi-transverse
a @' Soit 7 : M - M le revétement associé a n,(T,) o I'. Les tores T, et T, se
relévent dans M en deux tores T, et T",. Soit 0 un relevé dans M de 6; rencontrant
T,. D’aprés les lemmes 7.4 et 7.5 9 est une droite fermée dont le nombre
d’intersection avec T, est non-nul. Elle doit donc rencontrer T7: ceci est absurde
puisque 0, et T, sont disjoints. O

LEMME 10.4. Les 0, sont disjoints des C,.

Preuve. Supposons qu’il existe deux indices j et k pour lesquels 6, et C; sont
d’intersection non-vide. Soit i I'indice compris entre 1 et # — 1 du tore T; contenant
Ci. D’aprés le lemme précédent 6; ne peut €tre transverse a T, ni & T; et est donc
entiérement contenu dans T, et T;. Il est donc confondu avec C,. De plus, T; et T,
sont quasi transverses a @°. Soit (7 un relevé dans M de 6,. Soient T et T, les relevés
de M contenant 9 Soient €; = n"(T‘) et €, =n%T,) les traces transverses de 7 et
de T,. Ce sont des chapelets de [6;]-losanges passant par 9 Or, tout point de Q®
est sommet d’au plus deux chapelets de losanges blmﬁms, et l'intersection de ces
deux chapelets se réduit au sommet commun. Donc, soit €, et €, sont confondus,
soit leur intersection se réduit a 5, Le premier cas est impossible d’aprés le lemme
7.3 car T, et T, ne sont pas homotopes. Le second cas aussi puisque T, est
homotope 4 un tore disjoint de T, ce qui montre d’aprés le lemme 10.1 que 7, T,
ne peut consister en une seule droite fermée. Contradiction. O
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Si C, < T,nT,; est homotopiquement trivial, il découle du lemme 10.4 qu’il
borde dans T; et T, deux disques transverses & @‘. On peut alors utiliser comme lors
de la preuve du lemme 9.1 le lemme 7.12 pour éliminer le cercle de points doubles
C,. Donc, aprés un nombre fini et éventuel d’homotopies de T, le long des orbites
de @, on peut supposer qu'aucun des cercles C, n’est homotopiquement trivial.

LEMME 10.5. 1l existe un anneau A, plongé dans T, est un anneau A; plongé
dans T tels que:

® les anneaux A; et A, sont d’intérieurs disjoints, mais leurs bords sont confondus,

® leur union bord dans M un domaine W homéomorphe @ D* x S,

® l’intérieur du domaine W est disjoint de TUT,.

Preuve. Soit T; un tore rencontrant 7, (s’il n’en existe pas, la proposition est
validée). Soient T, et T deux relevés dans M de T, et de 7, d’intersection non-vide.
D’aprés le lemme 10.1, intersection entre T, et T; n’est pas connexe. Il existe donc
deux bandes 4, et 4, homéomorphes a R x [—1, 1] telles que:

e clles ont méme bord,

e clles ne se rencontrent qu’en leur bord,

e A, est contenue dans T,

e A, est contenue dans T.

Ces bandes A, et 4, sont au-dessus de deux anneaux A/, et A; plongés dans M,
I’un contenu dans T,, I'autre contenu dans 7;, et homotopes I’'un a I'autre dans M.
L’union 4, U A est une immersion topologique compressible du tore. Il existe donc
deux sous-anneaux A4; et A, de ce tore immerge, 'un contenu dans A4/, I'autre dans
A,, de méme bord mais d’intérieurs disjoints. Alors, 4, U A4, borde dans M un
domaine W homéomorphe au tore solide. En étudiant 'intersection de ce domaine
avec T, on voit qu’il contient un sous-domaine analogue et d’intérieur disjoint de
T uT,. On peut donc choisir les anneaux A, et 4, de sorte que toutes les conditions
voulues au lemme 10.5 soient vérifiées. O

Chacun des anneaux A4, et 4; du lemme 10.5 est d’intérieur transverse a @' en
dehors d’un nombre fini d’orbites périodiques.

LEMME 10.6. L’intérieur de A, est transverse a ®' si et seulement si [’intérieur
de A; est transverse a P’

Preuve. Supposons a contrario que A, est d’intérieur transverse a @‘ mais que 4,
contient une orbite périodique 6, ('autre cas, a savoir 4, transverse 4 ®* mais pas
A, est bien sir analogue). Nous considérons comme lors de la preuve du lemme 9.1
le revétement £ : M — M associé¢ & n,(W) o I'. Les données (4,, 4,, W, @', 6;,
F* T, se relévent dans M en (4,, 4,, W, ', 0,, #*, T,) de sorte que # se restreint

L 4
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a W en un homéomorphisme sur son image W. Quitte a inverser @, on peut le
supposer rentrant dans W en 4,,. Soit £ la feuille de #* contenant ;. Soit ¥, un
voisinage tubulaire régulier de 9: dans F,. On choisit ¥, suffisament petit pour
qu’une des composantes connexes de Vo\ﬁj soit disjointe de W et pour que I’autre
soit contenue dans W. Soit F, la composante connexe de F,\f; contenant ¥, W.
On montre comme lors de la preuve du lemme 9.2 que £, ne rencontre pas A4,. Par
ailleurs, comme lintersection d’une feuille de #* avec T,- est connexe, F, ne

rencontre pas non plus A;. La semi-feuille £, est donc entiérement contenue dans le
compact W: ceci contradit le lemme 9.3. O

Dans le cas ou les anneaux A, et 4, sont d’intérieurs transverses a ¢‘, on peut
exactement comme lors de la preuve du lemme 9.1 homotoper I'un le long de &’
pour le rendre disjoint de ’autre. En d’autres termes, une homotopie de T, le long
des orbites de @' supprime les deux cercles de points doubles 04, = d4,. De proche
en proche, on diminue ainsi le nombre 2g de cercles de points doubles. Pour
conclure, il ne reste qu’a traiter le cas ou ni 4;, ni 4, n’est d’intérieur transverse a
@’. Nous allons montrer par I’absurde que ce cas est en fait impossible.

Supposons donc que A; et A, contiennent 'un comme l'autre une orbite
périodique. Alors, T; et T, sont deux tores quasi-transverses a ¢‘, transverses entre
eux, et se rencontrant hors des orbites périodiques qu’ils contiennent. Soit C, une
composante connexe de leur intersection. Soit C, un relevé de C, dans M, et T, T
les relevés dans M de T, T, contenant C,. Soient €, et &, les chapelets de losanges
n®(T,) et n%(T,). Soit &, le losange de €, dont I'intérieur contient 7%(C,) et Z; le
losange de %, dont Pintérieur contient 7%(C},). D’apreés le lemme 10.4, le cercle C,
est librement homotope aux orbites périodiques contenues dans 7 ainsi qu’a celles
contenues dans T,. Ceci montre que %; et &, sont des [C,]-losanges (ou [C,]
désigne un élément de I fixant globalement C,). Comme leurs intérieurs ne sont pas
disjoints, on en déduit que les losanges &, et £, sont égaux. Il s’en suit que les
chapelets €, et €, sont confondus. D’apreés le lemme 7.3, les tores T, et T, sont
librement homotopes. Contradiction. O
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