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The geometric invariants of direct products of virtually free groups

HOLGER MEINERT

1. Introduction

I.1. Summary. The purpose of this paper is to compute the homological and
the homotopical geometric invariants of [Bi-Re] and [Re 88] for direct products
G =G, x G, x - - - x G, of finitely generated virtually free groups. As an application
we determine the finiteness properties “type FP,,”” and “type F,,” for all subgroups
of G above the commutator subgroup G’.

1.2. Recall that a group (or a monoid) G is said to be of type FP,,, where
m € N,, if the trivial G-module Z admits a projective ZG-resolution, which is
finitely generated in all dimensions <m [Bi 76/81]. Moreover, a group G is of type
F,, if an Eilenberg—McLane complex K(G, 1) for G with finite m-skeleton exists
[Wa]. Type F,, always implies type FP,,, but it’s not known whether the converse
is true. More details can be found in [Bi 76/81], [Br], [Rat].

The homological invariants X™(G; Z) and the homotopical invariants X"(G)
referred to above are conical subsets of the real vector space V(G):=Hom (G; R).
They can be defined in terms of FP,,-properties of certain submonoids of G in the
homological case and in terms of connectivity properties of pieces of universal
coverings of certain K(G, 1)-complexes in the homotopical case. We will give the
definitions in Section 2; for a survey the reader is referred to [Bi 93], [Bi-Str].

1.3. The result. Let G =G, x G, X - - - x G, be the direct product of / finitely
generated virtually free groups. We denote by Z the lattice of all subsets of

F={je{l,...,1}|G;/G; infinite and G, virtually (free of rank >2)}

and if o € & we write |g| for its cardinality. For ¢ € & we consider the subgroup
H, < G generated by the union of all G,, i € 6. If w is the complement of ¢ in .#,
then G is the direct product H, x H,, x H, where H is the subgroup of G generated
by all G; with i ¢ #. Now, the canonical projection n, : G -» H, induces an injective
R-linear map n* : V(H,) » V(G), and we can state our main result.
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THEOREM. Let G =G, x - - - x G, be the direct product of | finitely generated
virtually free groups. Then the homological and the homotopical geometric invariants
of G coincide and their complements in V(G) are given by the formula

Zm(G;Z)”=Z’"(G)“=( U ﬂ?V(Ha))—{O}- (%)

ce PLlol<m

Note that Z™(G; Z)° = Z™(G)* are equal to n% V(H,) — {0} if m = |.#|. More-
over, the theorem says, in other words, that a non-zero homomorphism y : G >R is
in 2™(G; Z) = Z™(G)° if and only if its kernel contains H,, x H for some w € & with
lo| 2 |£]| —m.

The three inclusions which are necessary to prove the theorem will be estab-
lished in Paragraph 2.3, Proposition 3.7 and Proposition 4.3.

1.4. Remarks. 1) Sometimes it might be convenient to replace .# by the set of
all j such that G, is virtually (free of rank =2). This yields the same result because
groups with finite Abelianization do not admit any non-zero homomorphism into
the reals.

2) The homological part of the theorem is essentially contained in the author’s
diploma thesis [Mei 90]. However, all proofs given here are new.

1.5. The problem of how to compute the invariants of a direct product in terms
of the invariants of the factors is still open. It is conceivable that the answer is given
by the

CONJECTURE. If G =G, x G, is of type F,, then

2™G, x Gy)° = U (mF22(Gy)° + 3 29UG,)°),

ptg=m

where n¥ : V(G;) » V(G) is induced by the projection n, : G - G; and + denotes the
complex-sum in the real vector space V(G).

The conjecture is true for m =1 [Bi-Neu-Str] (also see [Bi-Str]) and m =2
[Geh]; the inclusion = holds for arbitrary m [Geh]. Gehrke’s method also gives a
formula for Z™(G)¢ if G is the direct product of / groups G,, G,, . . ., G, of type F,,
with the property that X'(G;) = Z™(G;) for all 1 <i <. For example, f.g. virtually
free groups, 1-relator groups, polycyclic groups or fundamental groups of compact
3-manifolds are of that type for all m. In this case Z™(G) is the union of all subsets
arZ'(G, )+ - +nrZ'(G) of V(G) with 1 <iy < -+ <i, </and k <m. Our
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theorem follows from Gehrke’s result, but his proof is much longer and needs
totally different techniques.

1.6. Normal subgroups with Abelian quotient. Let N be a normal subgroup of
G =G, x -+ x G, with Abelian quotient G/N. We define the depth 3(N) of N by

9(N):=min {d € Ny | NHH,, has finite index in G for every w € & with |w|=d}.

Note that 0 < $(N) < |#|, that 3(N) =0 if and only if G/NH is finite, that 3(N) is
equal to 1 + #{j € # | |G, : G;n N| < o} if G/N has torsion free rank 1 and G/NH
is infinite and that 9(G’) = |#|. We say that a group is of type F if it is of type
F,, for all m and note that G has this property. Now, the finiteness properties of N
can be read off from the depth 3(N).

COROLLARY. Let N be a normal subgroup of the direct product
G =G, x -+ x G, of | finitely generated virtually free groups and assume that G|/N
is Abelian. If I(N) =0 then N is of type F, and if 3(N) >0 then N is of type F,,
and not of type FP,, , ,, where m = |#| — 3(N).

Proof. The linear subspace of V(G) consisting of all homomorphisms y : G - R
which vanish on N will be denoted by V(G; N). Then we use the following result of
R. Bieri and B. Renz ([ Bi-Re], [Re 88]; see also [Bi 93] or [Bi-Str]): N is of type FP,,
(resp. F,,) if and only if V(G; N) € 2™(G; Z) (resp. V(G; N) = 2"(G)).

Now, by formula (x) a non-zero homomorphism y € V(G) is an element of
2= 2"(G;Z) = 2™(G) if and only if its kernel does not contain any H, x H with
|w| = | #| — m. Next, we observe that the existence of a non-zero homomorphism
x : G — R whose kernel contains N and H, x H for some w € & is equivalent with
the assertion that the Abelian group G/NHH_, be infinite. From this we infer that
V(G; N)< 2™ if and only if NHH, has finite index in G for all w € & with
lw| = |F| —m.

Now, $(N) = 0 implies V(G; N) < 2™ for all m € N, so N is of type F_, by the
result quoted above. If we assume 3(N) > 0, it follows that V(G; N) = 2™ if and
only if 3(N) < |#| — m. In other words, N is of type FP,, if and only if N is of type
F, if and only if m < |#|— 3(N). O

1.7. A concrete example is given as follows. Let D, :={x;, ;| =) x - --
X {Xpms ¥m| — >, define a D, -action on F, the free group on generators {a, |k € Z},
by x; - ay==a,,,=:y;"a.and put 4,,:=F x D,,. If G is the direct product of m + 1
free groups of rank 2 consider the homomorphism y : G -» Z which sends each
basis element of each free factor of G onto 1. Then A4,, is isomorphic to the kernel
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N of y and the depth of N is 3(N) = 1. Hence 4,, is of type F,, and not of type
FP,, ., by our corollary.

The groups 4,, were introduced in [Bi 76] to establish the existence of groups of
type FP,, which are not of type FP,, ., for m € N, where the case m =2 is due to
J. R. Stallings [Sta].

1.8. Recently, S. M. Gersten proved that each of the groups 4,,, m = 2, satisfies
a fifth degree polynomial isoperimetric inequality [Ger]. On the other hand these
groups are neither combable nor asynchronously automatic (see [ECHLPT]) since
groups with one of these properties are of type F_ ([Al], [ECHLPT], [Ger]). No
examples of groups with sub-exponential isoperimetric function which are not
combable were known before.

Now, one can use the corollary above to characterize all combable normal
subgroups N with Abelian quotient of a direct product G of finitely many free
groups of finite rank >2. Using [Al], [ECHLPT], [Ger] and our result that N is of
type F, if and only if N has finite index in G, one can conclude: N is combable
(automatic, asynchronously automatic, biautomatic) if and only if N has finite
index in G.

1.9. There is a slight overlap with work of G. Baumslag and J. E. Roseblade
[Bau-Ro]. One of their main theorems states that every finitely presented subgroup
S of a direct product of two free groups is a finite extension of a direct product of
two free groups (of finite rank). If S contains the derived subgroup G’, then we
recover their result from our corollary. In fact, if G is a direct product of / free
groups of finite rank =2, then every normal subgroup N of type FP, with G’ < N
has finite index in G. In particular, N is a finite extension of a direct product of /
free groups (of finite rank). Hence we have enough examples to ask:

QUESTION. Let G be the direct product of | free groups of finite rank = 2. Is
every subgroup of type FP, in G a finite extension of a direct product of | free groups
(of finite rank)?

1.10. Acknowledgements. 1t is a pleasure to thank Professor Robert Bieri for the
introduction into the theory and for his encouragement in both finding the results
and presenting the material. I am also indebted to Ralf Gehrke for many fruitful
discussions on the subject. Lastly I would like to express my thanks to the
“Arbeitsgruppe 8.2 des Fachbereichs Mathematik der Universitit Frankfurt” for
the hospitality and the stimulating atmosphere during the last two years.
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2. The geometric invariants

2.1. The homological invariants. Let G be a group and y : G - R a homomor-
phism. Then we consider the submonoid G,:={g € G | x(g) = 0} of G and put for
m € N,

I™G;Z):={y € V(G) |G, is of type FP, } = V(G).

The complement of X™(G; Z) in V(G) will be denoted by Z”(G; Z)°. It follows from
[Bi-Re] that 2™(G; Z) # ¢ if and only if 0 e 2™(G; Z) if and only if G is of type
FP,,.

2.2. The homotopical invariants. Let G be a group of type F,, and X the
universal cover complex of a K(G, 1)-complex with finite m-skeleton. If y € V(G),
then G acts via y on R and any continuous G-equivariant map h = h, : X — R shall
be called a height function (with respect to y). For a real number r we denote by
X' the maximal subcomplex of X contained in A~ '([r, )). XU is called
essentially k-connected in X for some k = —1, if there is a d = 0 with the property
that the map 7;(X"") -z, (XY ~%*) induced by inclusion is trivial for all i < k.
Then we define

I™G)={x € V(G) | X" is essentially (m — 1)-connected in X} < V(G)

and 2™(G)“:=V(G) — Z™(G). This definition does not depend on the choice of X
and A [Bi-Str], and we always have 0 € 2"(G).

2.3. It is an open problem as to whether the two invariants coincide if both are
defined. However, 2%G) = 2% G; Z) = V(G) for all groups, Z'(G) = Z'(G; Z) for
all finitely generated groups and by a result of Renz (see [Bi 93] or [Bi-Str])
2™(G) = Z*(G)nZ™(G; Z) holds for every group G of type F,, if m = 2. This
proves the first inclusion, X"(G; Z) < 2™(G)¢, of our theorem.

3. The homotopical part of the theorem

The aim of this section is to prove that X™(G)¢ is contained in the right hand
side of formula (x). However, we start with two easy results on arbitrary groups.
Recall that the subspace of V(G) consisting of all homomorphisms which vanish on
a subgroup S < G is denoted by V(G; S).
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3.1. LEMMA. Let Z = Z(G) be the centre of a group G of type F,,. Then 2™(G)
contains the complement of the subspace V(G; Z).

Proof. Exactly as in the homological case ([Bi-Re], Lemma S5.2) using the
homotopical version of the X™-criterion ([Bi 93], Theorem A; [Bi-Str]). O

3.2. LEMMA. Let G be a group of type F,, and let S < G be a subgroup of finite
index. If y : G —R is a homomorphism, then y € Z™(G) if and only if x|s € Z™(S).

Proof. Let X be the universal cover of a K(G, 1)-complex with finite m-skeleton
and let A : X - R be a height function with respect to y : G - R. Then X is the
universal cover of a K(S, 1) with finite m-skeleton and 4 is also a height function
with respect to x|s : S —R. Now the claim is obvious by the definition of Z™(—).

O

3.3. A construction. We now turn to free groups F of finite rank. Let # < F be
a finite set of free generators and consider the Cayley graph T:=I'(F; %) of F with
respect to %. This is a combinatorial F-tree with set of vertices V the elements of
F, with set of oriented edges E the pairs e = (w, y) € F x %, the origin of e given by
w and the terminus given by wy (cf. [Serre]). By the inverse edge e — we mean e with
the opposite orientation and by P(T) we denote the set of all edge paths of T.

Now, let ¥ : F - R be a non-zero homomorphism. Without loss of generality we
may assume that there is an element z € % with y(z) > 0. Then we define F-maps
Yr:V-oVand Yy : E—- P(T) by putting Y-(w):=wz for w € V, Yr(w, z) :=(wz, 2)
and Y r(w, y):=(w, z) ~(w, y)(wy, z) for (w, y) € E with y # z. Moreover, we define
a combinatorial height function A, : V' — R by hy(w):=y(w) for w e V.

wz wyz

(w, 2) (wy, 2)
(w, y)

W brony) "

The geometric realisation X of T is a contractible 1-dimensional CW-complex, on
which F acts freely by permuting the cells, i.e. X is the universal cover of a finite
1-dimensional K(F, 1). By linear extension of &, we equip X with a height function
h : X - R with respect to y. Now, by a suitable realisation of , we obtain for every
¢ > 0 a continuous cellular F-equivariant map y : X = X with A(Y(x)) = h(x) — ¢ for
all x € X and A(Y(x%) = h(x®) + x(z) for all O-cells x° € X°. O

34. Let G=F, x --- x F, be the direct product of / free groups of finite rank.
Then £ = {j | rk F; 2 2} and the subgroup H generated by all F; with i ¢ . is equal
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to the centre Z =Z(G) of G. Let y : G- R be a non-zero homomorphism and
recall that .# is the lattice of all subsets of .#. Then the crucial step is the following:

3.5. PROPOSITION. Suppose there is an element o € & with the properties that
|o| > m and that y(F;) # {0} for all i € 6. Then y € Z™(G).

Proof. Put y;:=y| g, for i=1,...,1 and choose the universal covering X; of a
finite 1-dimensional K(F;, 1)-complex together with the height function 4; : X; >R
as in 3.3. Then X:=X, x --- x X, is the universal cover of a finite /-dimensional
K(G, 1)-complex and h : X — R defined by h:=h,p, + - -+ + hp, is a height func-
tion with respect to y if p, is the projection X—»X;. Now, by 3.3 again there is a
0 > 0 and there are continuous cellular F;-equivariant maps y; : X; > X, foralli e o
with the property that A,(y;(x;)) = h;(x;) — /I for all x; € X; and h,(y;(x?)) =
h;(x?) + 6 for all O-cells x? € X? (recall that the definition of y, depends on a
non-zero homomorphism y; whereas the definition of X; and A; does not).

Next, we put ¢ : X —» X to be the product map ¢ :=II'_, ¢,, where ¢,:=y, if
i €0 and ¢;:=1dy otherwise. Then ¢ is a continuous cellular G-equivariant map
with A(p(x)) = h(x) + /I for all x € X™. To see this let x =(x,,...,x;,) € X" and
note that the number of x, with x, ¢ X is at most m <|o|</. Hence there is at least
one i € ¢ such that x; € X?¥. Consequently A(p(x)) = h(x) +6 —m - 6/l = h(x) + /1.

Using the homotopical version of the X™-criterion ([Bi 93], Theorem A; [Bi-Str])
we see that y € 27(G). O

3.6. Remarks. 1) Note that the height functions h; and A used above are
valuations in the sense of [Re 87] (Remark on p. 468) and [Re 88].

2) One can prove that the following assertion is valid for arbitrary groups G,
and G, of type F,,, where m = m, + m, + 1 with m;, € Ny. If ; € 2™(G;) — {0}, then
X1 X X2 € 2™(G, x G,) (see [Geh]). A similar result holds for the homological
invariants.

Now we are ready to prove the homotopical part of our theorem.

3.7. PROPOSITION. Let G =G, x -+ x G, be the direct product of | finitely
generated virtually free groups. Then

V(G) — ( U V(H,,)) < I™(G).

cePlolsm

Proof. Let x : G - R be a homomorphism in the left hand side. Then either (i)
x does not vanish on the subgroup H < G generated by all G; with i ¢ .#, where ¥
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is the set of all j with G,/G; infinite and G; virtually (free of rank >2), or (ii) there
exists a o € &, the lattice of all subsets of .#, with |o| >m and x(G;) # {0} for all
i €0.

Next, we consider a subgroup S =F, x --- x F, of finite index in G with
F; < G, free of finite rank. By Lemma 3.2 we have y € 2™(G) if and only if
x|s € Z™(S). Now, in case (i) x does not vanish on the subgroup of G generated by
all virtually (infinite cyclic) factors G;. Hence y|s is non-trivial on the centre Z(S)
of S so the result follows from Lemma 3.1, and case (ii) is obviously covered by
Proposition 3.5. O

4. The homological part of the theorem

In this section we prove the remaining inclusion of formula (). As in Section 3
we begin with a result on the X’s of arbitrary groups.

4.1. PROPOSITION. Suppose that N = G —» Q is a short exact sequence of
groups of type FP,, and let Y : Q — R be a homomorphism. Then € 2"(Q; Z) if and
only if y ot € 2™(G; Z).

Proof. We may assume that m > 1 and we put y:=y o 7, so that N is contained
in the kernel of x. The obvious ring homomorphism r, :ZG, » ZQ, induces
spectral sequences

TorZ9v (TorZ%«([] 2G,; 2Q,); Z) = Tor?%x ([1 2G,; Z)

for arbitrary direct products I1 ZG, of copies of ZG, ([Rot], Theorem 11.62).

Since ZG, is a free ZN-module and ZG, ® zy Z = 2.0, as G, -modules with the
obvious actions, a change-of-ring isomorphism ([Rot], Theorem 11.64) yields
Tor?°» (N ZG,; ZQ,) = Tor?Y(I1 ZG,;Z). Now, N is of type FP,, hence
TorZV(—; Z) commutes with direct products for ¢ <m ([Bi 76/81], Theorem 1.3),
and we obtain Tor’¥(I1 ZG,;Z) =0 if ] <g <m and =II1(ZQ,) if ¢ =0.

We find that the above spectral sequence has enough collapsing to yield
isomorphisms Tor?2«(I1 ZQ,,; Z) = Tor’?°«(I1 ZG,; Z) for n <m and arbitrary
direct products I1. Another appeal to Theorem 1.3 of [Bi 76/81] now gives the result
by the definition of Z™( —; Z). O

4.2. Remarks. 1) A similar result holds for the homotopical geometric invari-
ants [Mei 93].
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2) If N satisfies the weaker condition that the Abelian groups H;(N;Z) are
finitely generated for 1 <i <m — 1, and G is of type FP,,, then { - n € Z"(G; Z)
implies Y € 2™(Q; Z).

Now everything is present to complete the proof of our theorem.

4.3. PROPOSITION. Let G =G, x -+ x G, be the direct product of | finitely
generated virtually free groups. Then

( Uy V(Ha)) — {0} € Z™(G; Z)~.

ge Lol <m

Proof. Let m>0 and let y:G—R be a non-zero homomorphism with
x € n¥V(H,) for some ¢ € & with |o| <m. Then there is a non-zero x, € V(H,)
such that y =y, o 7.

Let w be the complement of ¢ in #. Then G =~ H, x H, x H and Proposition
4.1 asserts that y € 2™(G; Z)° if and only if y, € 2™(H,; Z) since H, x H is of
type F,,. Now, H, has a subgroup S =F, x -+ x Fj, of finite index which is a
direct product of |o| free groups of finite rank >2. By the analogue of Lemma 3.1,
the homological finite index result [Bi-Str], we find that y, € Z™(H,; Z)¢ if and only
if x, |s € Z™(S; Z)“. In view of the inequality || < m the result follows once we have
established the next lemma. O

44. LEMMA. Let S =F, x --- x F, be the direct product of s free groups of
finite rank >=2. Then 2°(S; Z) = V(S) — {0}.

Proof. For each i =1,...,s there is a free F;-resolution E, » Z of the form
0> (ZF,))—2ZF, -Z -0, where r,>2 is the rank of F; Putting E:=E,®,
- ®, E, yields a free S-resolution E —» Z with E, = (ZS)* and k, =0 if n > s.
Moreover, E has the additional property that k,,,—k,+k,_,— -+ + ko=
—(r;=D(r,—1) - (r,—1)<0 as is easily seen by induction on seN.
Now, a result on the partial Euler characteristics [Bi-Str] asserts that

T%(S; Z) — {0} =0. O
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