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Graphs of actions on R-trees

GILBERT LEVITT

Abstract. Let G be a finitely generated group acting on an R-tree 7. First assume that the action is free,
and minimal (there is no proper invariant subtree), or more generally that it satisfies a certain finiteness
condition. Then it may be described as a graph of transitive actions: the action may be recovered from
a finite graph, together with additional data; in particular, every vertex v carries an action (G,, 7,) whose
orbits are dense. For the action (G, T), it follows for instance that the closure of any orbit is a discrete
union of closed subtrees: it cannot meet a segment in a Cantor set.

Now let / be the length function for an arbitrary action of G. For ¢ > 0 small enough, the subgroup
G(e) = G generated by elements g with #(g) <¢ is independent of &, and G/G(¢) is free. Several
interpretations are given for the rank of G/G(e).

Introduction and statement of results

Let G be a finitely generated group acting on an R-tree 7. Assume that the
action is minimal (there is no proper invariant subtree), and simplicial. Then the
quotient space T/G is a finite graph. By Bass—Serre theory [Se], one may recover
the action (G, T)) from this graph, together with some additional data: groups
attached to vertices and edges of T/G, and monomorphisms between them.

Now consider an arbitrary minimal action of G. The first problem one encoun-
ters when trying to generalize Bass—Serre theory is that in general T/G is not a
graph, indeed it may even fail to be Hausdorff. To get al Hausdorff space, we note
that T'/G carries a natural pseudometric, and we define T/G as the associated metric
space. R

Let n : T — T/G be the projection. Let B = T be the set of branch points (recall
that x is a branch point if T\{x} has more than two components). If G acts freely,
work by Jiang [Ji] and Rips (see [GLP]) implies that the action of G on B has only
finitely many orbits. In particular, n(B) is a finite set (if B is dense in 7, it follows
that every orbit of (G, T) is dense).

In general, we say that an action is a J-action if n(B) is finite. For instance, very
small or geometric actions of free groups are J-actions [GL].

THEOREM 1. Let G be a finitely generated group acting minimally on an R-tree
T. If the action is free, or more generally if it is a J-action, then TG is a finite graph.
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Edges of 7{/\6 correspond to orbits of the action of G on ny(T\B). The key fact
is that this action has finitely many orbits (geometrically, this means thgt\ T/G
contains no ‘“Hawaiian earring’’). For an arbitrary action, we shall see that T/G has
the homotopy type of a finite graph. e

In order to recover a J-action (G, T) from T'/G, we need additional information.
Given v e n(B) (a vertex of the graph), the preimage n ~!(v) is a disjoint union of
closed subtrees which are all congruent under the action of G. Let T, be one of
them, and G, < G its stabilizer. The action of G, on T, has dense orbits, we say that
it is transitive. [In dynamical systems, an action is called transitive if some orbit is
dense, minimal if every orbit is dense. For an action by isometries, the two are
equivalent. We use the word transitive, since minimal has a different meaning in the
theory.]

The knowledge of these transitive actions (G,, T,) is the main piece of informa-
tion that is needed to reconstruct the original action. Details will be given in section
I.3. As a corollary, we show that, for a J-action, the closure of any orbit Gx is a
discrete union of closed subtrees. More precisely:

THEOREM 2. Let G be a finitely generated group acting on an R-tree. Assume
the action is free (or is a J-action). Given x € T, there exists 5 > 0 such that Gx nJ
is connected for every segment J of length less than 9.

Now we apply these results to an arbitrary action of G, using the following fact
[Le, Theorem 2]: there is a (canonical) normal subgroup H, = G such that T/H, is
an R-tree and the action of G/H, on T/H, is free. Note however that this action
need not be minimal, even if G acts minimally.

Given a length function Z on G, let m(¢) be the rank of the free abelian group
M(¢) = {t eHom (G, Z) | 3a > 0 such that [t|<af}. For ¢>0, let G(¢) be the
subgroup of G generated by # ~!([0, g]).

THEOREM 3. Let G be a finitely generated group acting on an R-tree T, with
length function ¢ .
(1) There exists €, > 0 such that G(g) is independent of ¢ for ¢ < ¢,. Denote it by
Gy.
(2) The quotient GG, is free of rank m(().
(3) The space T|G has the homotoBZ type of a wedge of m({) circles. It has a
universal covering: the R-tree T/G,.

COROLLARY. If the action is free, there is a decomposition G ~G|G, *
H, -« H,, where each H; = G acts transitively on its minimal invariant subtree

(compare [MS, Corollary 3.5)).
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COR/QLLARY. The following conditions are equivalent:

(D YJ\G is an R-tree.

(2) T/G is simply connected.

(3) If ¢ 2 alt|, with a >0 and © : G > Z a homomorphism, then t© = 0.

(4) G is generated by £ ~'([0, €]) for every ¢ > 0.

(5) Given geG and ¢ >0, there exist g, and g, such that g =g,g, and

max (£(g,), £(g,)) <3£(g) +e.

The implication 1 = 5 follows from an argument of [Le]. For free actions, we
have:

THEOREM 4. Let G be a. finitely generated group acting freely and minimally
on an R-tree T. The graph T|G is homeomorphic to a segment (or a point) if and
only if, given ge G and ¢ >0, there exist g, and g, such that g =g,g, and

max (£(g1), £(g2)) <3£(g) +e.

This theorem cannot be generalized to non-free actions (see II1.2).

I. Minimal J-actions

In this section we study minimal actions with n(B) finite. As mentioned above,
this includes minimal free actions: if G acts freely, it is a free product of free abelian
groups and surface groups by Rips’ theorem (see [GLP]); for free minimal actions
of such groups, Jiang has proved that B/G is finite [Ji].

We rule out the trivial case T =R.

I.1. The space of orbits carries a pseudodiit\ance: denoting by d the distance on
T, set d(Gx, Gy) =inf,, .;d(gx,g’y). Let T/G be the associated metric space,
obtamed by identifying points at distance 0 from each other. Note that, for any
ue T/G the set F, =7~ '(u) is s closed, G-invariant, and the action of G on F, is
transitive (recall that = : T — T/G is the I}Qtural projection).

Minimality of the action implies that 7'/G is compact. In fact, it has finite length
in the following sense. Fix x in T, and choose a finite generating system {g;} for G.
Then the images of the segments [x, g,x] cover T/G.

Note that n(B) = n(B) is finite. Define flat pieces of T as components of T\B.
Using minimality, we see that flat pieces are isometric to open segments (a, b), with
a, b in B (but not necessarily in B).

If no element of G interchanges a and b, the restriction of # to (g, b) is injective.
The image of [a, b] in T/G is then a segment between n(a) and n(b) if n(a) # n(b),
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or a circle containing n(a) if n(a) = n(b). If some element of G interchanges a and
b, let m be the midpoint of [a, b]. Then = sends [a, m] and [m, b] injectively onto a
segment joining n(a) = n(b) and n(m).

Theorem 1 now follows from the following fact:

LEMMA. The action of G on ny(T\B) has finitely many orbits.

Proof. First consider flat pieces (a, b) such that n(a) # n(b). Since n(B) is finite,
tggir length is bounded away from 0. They fall into finitely many orbits because
T/G has finite length (see above).

It is thus enough to fix ven(B), and to show that flat pieces with
n(a) = n(b) = v form finitely many orbits. Let (a;, b;) be a finite family of such
pieces, with midpoints m;,. Since the orbit of m; is discrete, it defines a homomor-
phism ¢; from G to Z/2Z: choose any x ¢ Gm; and define ¢;(g) as the number of
times the segment [x, gx] meets Gm; (counted mod 2).

Let 6 > 0 be smaller than the length of (a;, b,) for all i. Since G acts transitively
on F, =p~'(v), there exists g; € G such that d(g;a;, b;) <4. If the pieces (a;, b;)
belong to distinct orbits, we have ¢;(g;) = J,; and the ¢;’s are linearly independent
in Hom (G, Z/2Z). The required finiteness follows. O

In the case of a free action, the set of vertices of the graph I' = 7{/\G is n(B),
while edges are orbits of the action of G on ny(T\B). If n is the minimal number
of generators of G, the number of vertices is lesser than or equal to 2n — 2 by [Ji].
Assertion 3 of Theorem 3 will lead to the upper bound 3n — 3 for the number of
edges.

I.2. Using the lemma, we choose ¢, >0 such that every flat piece has length
>¢g,. Given v e n(B), the set F, is a union of closed subtrees which are at least ¢,
apart from each other. Since G acts transitively on F,, all components of F, are
congruent and the stabilizer G, of a component T, c F, acts transitively on T,.

We can now prove Theorem 2 for a minimal J-action. If x ¢ B, its orbit is
discrete and the result is clear. If x € B, let v = n(x). The closure of Gx is F,, and
we can take § = ¢,. Theorem 2 for non-minimal actions will be proved in II1.2.

I1.3. Our next goal is to define graphs of actions (compare [CL], [Sk2]). Let T"
be the R-tree one gets from T by collapsing every component of B to a point. It
may be given a simplicial structure, for which G acts simplicially and without
inversions. There are two types of vertices: components of B, and midpoints of flat
pieces (a, b) such that some g € G interchanges a and b. Edges are flat pieces, or
halves of flat pieces. Obviously 77/G is isometric to T/G.
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By Bass—Serre theory [Se], the action of G on T” corresponds to a graph of
groups: groups G, (resp. G,) are attached to vertices (resp. edges) of I' = T’/G, and
every oriented edge & gives a monomorphism i, : G, » G,. If the action of G on T
is free, then the set of vertices of 77/G is n(B), and all edge groups are trivial.

To recover T from 7’, we need to know the R-trees T, and the way flat pieces
are attached to them. This leads to the following definition.

DEFINITION. A graph of actions % consists of:

(1) a metric graph I" with vertex groups G,, edge groups G,, and monomor-
phisms i,.

(2) for every vertex v, an action of G, on an R-tree T,.

(3) for every oriented edge &, a point of T, fixed under the action of i,(G,).

We define 7, (%) as the fundamental group of the underlying graph of groups.
We say that ¢ is finite if I is finite, that ¢ is a graph of transitive actions (resp. of
free actions) if every action (G,, T,) is transitive (resp. free). Note that in a graph
of free actions every edge group is trivial.
A graph of actions ¢ leads to an action of 7,(%) on an R-tree 7(¥9). We have
proved:

THEOREM 5. Every minimal J-action (resp. every minimal free action) may
be represented as a finite graph of transitive actions (resp. of transitive free
actions). O

1.4. We now prove Theorem 3 for minimal J-actions. Consider the action of G
on the simplicial tree 7’. Say that g € G is elliptic if it acts with a fixed point.

LEMMA. For ¢ < g,, the group G(¢) < G is the subgroup generated by the elliptic
elements of the action (G, T").

Proof. Assume g is elliptic. Recall that vertices of 7" are components of B or
midpoints of flat pieces. If g fixes a component T, of B, it is a product of elements
g: with £(g;) < ¢ since the stabilizer G, acts transitively on 7,. If g fixes a midpoint,
then £(g) =0.

Conversely, assume 7(g) < g,. If g acts with a fixed point on 7, it also has a
fixed point on 7T". If g has no fixed point, its translation axis cannot meet any flat
piece. It is contained in some component of B, so that g acts with a fixed point on
T. O

Let G, be G(¢) for ¢ < g,. Since the action of G on 7" is simplicial and G, is the
subgroup generated by the elliptic elements, the quotient G/G, is isomorphic to
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n,(T’/G) and T'/G, is the Bgiversal covering of 77/G. We have already mentioned
that 77/G is isometric to T/G. Also note that T'/G, is isometric to T//bo. e

To complete the proof of Theorem 3, it remains to check that G/G, ~ n,(T/G)
has rank m(¢). Any homomorphism t : G — Z belonging to M(¢) vanishes on G, so
that the rank of G/G, is greater than or equal to m(¢).

To prove the opposite inequality, consider the length functions /' : G - R and
£y G/G,— R associated to the actions (G, T") and (G/G,, T'/G,) respectively. We
note that £’ <¢ and /,(gG,) =inf, .s,7'(g8), so that m(£) = m(¢’) = m(¢,).
Since the action of G/G, on T’/G, is free and simplicial, the rank of G /G, equals
m(£,), and the result follows.

Note the following consequence: if (G, T') is a minimal J-action with m(£) > 0,
then branch points are not dense in T.

I.5. Finally, we prove the first corollary of Theorem 3. We may assume that the
action is minimal. We know from 1.3 that G is the fundamental group of a graph
of groups 7’/G whose edge groups are trivial, so that G is a free product whose
factors are n,(T’/G) ~G/G, and the vertex groups. A vertex group G, acts
transitively on 7, hence also on its minimal invariant subtree.

II. Arbitrary actions

In this section we consider an arbitrary action of a finitely generated group G on
an R-tree T.

II.1. Let T,, = T be the set of points fixed by every g € G if there are any, the

m1n1ma1 G invariant subtree otherwise. Since T, /G 18 compact (see 1.1), we have

m/G T, /G Given x € T, there is a unique p(x) € T,, such that d(x, p(x)) =
d(x, T,).

For t €0, 1], define p(x, ) by following the segment [x, p(x)] with constant
speed. We get a G-equivariant strong deformation retraction from T'to 7, so that
7{/\G has the same homotopy type as T,,/G. -

If the action is free, we know by 1.4 that T, /G, is a (simplicial) tree. It follows
that T750 is/aiso an_R-tree (using for instance Theorem 1 oﬁ\[Le])./§ince the
projection T,,/G,—T,,/G is a covering map, the projection T/G,— T/G is one
also. We have thus proved Theorem 3 for non-minimal free actions.

I1.2. Now we prove Theorem 2. By 1.2, it holds for the action of G on T,,, so
that § exists if x € T,,. Now consider x ¢ T,,,. If the action is free, the orbit of x is
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discrete since d(x, gx) > 2d(x, T_,,,) for g #id. If the action is a J-action, the
segment [x, p(x)]/\contains only finitely many branch points (since it projects
injectively into 7/G), and Gx is discrete in this case also.

I1.3. To deal with completely arbitrary actions, we need the following two
facts from [Le]:

THEOREM 6. Let G be a countable group acting on an R-tree with length
function £.
(1) There exists a normal subgro/ug Hy, < G such that T /H o is an R-tree and the
natural action of G/H, on T|H, is free.
(2) Suppose T/G is an R-tree. Given ¢ >0 and g € G, there exist g,, g, such that
g = g8, and max (£(g,), £(g,)) <3¢(h) + ¢. In particular, G is generated by
2 ~1([0, g]) for every ¢ > 0.

We write G =G/H, and T = T7;IO. Let p : G -G be the quotient map. The
length function 7 of the action (G, T) is given by /(gH,) = inf, ., Z(gh). By L4,
there exists g, ><Q such that the subgroup of G generated by 7 ([0, €]) is a fixed
group G, for ¢ € (0, &). Let G, = p ~1(G).

LEMMA. In the above situation:

(1) m(Z) = m(?).
(2) G(e) =G, for 0 <e <.

Proof. Since H, is generated by its elements of length <e for every ¢ > 0, any
homomorphism 7 :G—Z in M(/) vanishes on H, and thus factors through a
homomorphism 7 : G — Z belonging to M(¢). This defines an isomorphism between
M(¢) and M(?).

Clearly p(g) € G, if £(g) < gy, so that G(¢) = G,. Conversely, assume p(g) € G,.
Write p(g) =g, - - - g, with £(g,;) <e, and choose g; € p ~'(g;) with £(g;) <e. Then
g = hg, - g, with h € H,. Since H, is contained in G(¢) by assertion 2 of Theorem
6, we get g € G(e). O

We have proved assertion 1 of Theorem 3. Assertion 2 is clear _since G/G, >
GJ\GO is free of rank m(¢) = m(£). To prove assertion 3, note that T/G is equal to
T/G. By I1.1, it has the homotopy type of a wedg/e\ of m(¢) circles. Its universal
covering is the R-tree T/G, which is equal to T/G,. The second corollary of
Theorem 3 is proved by using assertion 2 of Theorem 6.

Note that G, is the largest subgroup H < G such that T/H is an R-tree.
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III. Proof of Theorem 4

III.1. Let G be a countable group acting on an R-tree T with length function ¢.
Let ¢ €[0, 1]. We say that ¢ satisfies condition (x.) if, given g € G and ¢ > 0, there
exist g,, g, € G such that g =g,g, and:

{f(g.) +£(g,) <l(g) +¢
max (£(g,),7(g,)) <(1 —c)(g) +¢

The following facts are proved in [Le] (Theorem 1 and Remark III.1):

THEOREM 7 R

(D) If ¢ /s;atisﬁes (*.) for some ¢ >0, then T|/G is an R-tree.

2 If ]j\G is an R-tree and c €0, 1/3], then ¢ satisfies (x.).

(3) If T/G is homeomorphic to a subinterval of R and c €[0, 1/2], then ¢ satisfies
(*c)-

We now prove the following result, which strengthens Theorem 4:

THEOREM 8. Consider a mim'mcgzree action of a finitely generated group G. If
¢ satisfies () for some ¢ > 1/3, then T |G is homeomorphic to a ( possibly degenerate)
segment (so that ¢ satisfies (x.) if ¢ €[0, 1/2]).

II1.2. Before proving this theorem, we consider the following example. Let I"
be the simplicial tree having 3 vertices a,, a,, a; of valence 1, and 1 vertex v of
valence 3. Make it into a graph of groups by setting G,, = Z/2Z (edge groups and
G, are trivial), and consider the associated action of G = Z/2Z x Z/2Z x Z/2Z.

Vary the metric on I' by choosing the 3 numbers d; = d(v, a;) independently.
This gives topologically conjugate actions of G whose length functions have the
following form: if w is a cyclically reduced word in the generators g,, g, g3, then
{(w) =2%3_, myd;,, where m; is the number of occurrences of g; in w (with an
exception: /(w) =0 if Tm; <1).

If d,=d,=d,, taking g =g,8.g; shows that ¢ satisfies (*.) if and only if
¢ < 1/3.If d; = 2d, = 2d,, one can show that / satisfies (*.) for ¢ < 1/2. This means
that Theorem 4 does not extend to non-free actions.

I11.3. To prove Theorem 8, assume that ¢ satisfies (*.) with ¢ > 1/3. By I.1 and
assertion 1 of Theorem 7, we know that T/G is a finite tree whose set of vertices is
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n(B). By 1.2, the preimage n ~'(v) of a vertex v consists of congruent subtrees, and
the stabilizer G, of such a subtree T, acts transitively on T,

Say that a vertex v of T/G is trivial if the vertex group G, is trivial. Minimality
of (G, T) implies that a vertex of valence 1 cannot be trivial, while freeness implies
that T, is not a point if v is nontrivial.

Assume T'/G is not homeomorphic to a segment. Then we can find a vertex v
of valence >3 and three nontrivial vertices a,, a,, a; such that the open segments
(va;) are disjoint. Set d;, =d(v, a;), and choose 4, >0 such that 1 =2d, + 9, is
independent of i =1, 2, 3. Finally, choose ¢ > 0 small with respect to the d,’s and
c—1/3.

In this proof, we shall say that two points (or two numbers) are close if their
distance does not exceed a fixed multiple of ¢ (which we do not bother to specify
each time). Similarly, we write p 2 ¢ if p —q is greater than a fixed negative
multiple of &.

Definition gf\ T/G implies the following lifting property: given two points a, b at
distance d in T/G, and a point d@ € n ~'(a), there exists 5 € = ~!(b) such that d(d, b)
is close to d.

Fix 5 en ~'(v). Choose a; e n~'(a,) with d(7, a,) close to d,. Let T, be the
component of 7 ~'(a,) that contains @}, and G, the stabilizer of T,. Choose h, € G,
such that d( a7, h, ;) is close to 8, (this is where we use freeness of the action, cf.
I11.2). Define 0, = h, s, and note that d(7, ;) is close to A. Perform this operation
twice more, passing from 9] to &, = h, 0, via some @, € n ~'(a,), and from 7, to
vy =hy 0, via some a3 € '(a;).

Let g = h hyh, be the element of G that takes & to 03, and A, its translation
axis. Since n([7, a]) and =([h; a3, 05 ]) are almost disjoint, the translation length
£(g) is close to d(7, 03 ) ~ 3. Also note that, if /(%) and h’(?) are both close to 4,
(with A, h’ € G), then (1/4)d(h(D), h’(D)) is close to some integer k; if k = 2, then
(1/A)¢h'h=1 2 2.

Write g = g,g, with £(g,) + £(g,) <£(g) + ¢. We shall show that #(g,) or 7(g,)
is 224. We may assume that 4,, meets A,, since otherwise we get /(g;) >
£(8:8.) +£(g7") > £(g).

First suppose that g, is close to 4,. Then at least one of the numbers d(7, g,9)
or d(g,0, gb) is 22\, and we get £(g;) =24 for i =1 or 2.

If g, is not close to A4,, there exists x € [7, g0] N 4,, such that the open segment
(x, g2x) is disjoint from A4,. Let y be the point of [x, gx] whose distance to gx is
£(g,). It has to be close to g, x, since £(g,) </(g) —£(g,) +e=d(x,py) +¢& If xis
close to Gv, we argue as in the first case. If not, one of the segments [x, y] or [y, gx]
is disjoint from G, so that the other one contains two points of Gi whose distance
is 224. It follows that £(g,) or £(g,) is =2A.
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IV. Questions and remarks

IV.1. How general are J-actions? For instance, do J-actions include all small
minimal actions of finitely presented groups with proper direction-to-vertex stabiliz-
ers (see [BF, p. 140])? We can prove it for actions of free groups.

IV.2. Is there a generalization of Theorems 1 and 2 to arbitrary minimal
actions?

IV.3. Inspired by terminology from dynamical systems and foliation theory,
define a minimal set to be a nonempty, closed, G-invariant subset of T which is
minimal for these three properties. Minimal sets are precisely preimages n ~'(x).

Theorem 2 implies that a minimal set of a J-action is a discrete union of
subtrees. What can be said in general (assuming G is finitely generated)? For
instance, can a minimal set be exceptional (i.e. intersect a segment in a Cantor set),
or be a closed non-discrete orbit (compare 1V.5)?

IV.4. Consider a transitive free action of a finitely generated group G. Can G be
written as a free product in such a way that each factor acts on its minimal
invariant subtree with the property that every orbit meets every nondegenerate
segment? Since free actions of surface groups are classified [Sk1], the interesting
case is when G is free. This may be related (via Theorem III.7 of [Le]) to the
following geometric question.

Consider a nonsingular, codimension one, measured foliation &# on an open
manifold M. Can & have exceptional leaves if n; M is finitely generated?

IV.5. Theorem 3 becomes false if G is only assumed to be countable. The
following simple example was pointed out by G. Meigniez. Let G be the free group
on countably many generators {g, }. Let T be the Cayley graph of G, with a metric
giving length 1/n to the edges corresponding to g,. The natural action of G on T is
free and minimal. .

The sequence G(1/n) is strictly decreasing. The space T/G is a Hawaiian earring.
In particular, it does not have the homotopy type of a wedge of circles. It has no
universal covering, and its fundamental group is uncountable. Also note that the
orbit consisting of the vertices of T is closed but not discrete.

For any action, there is a natural homomorphism ¢ : G —-»n,(T /G): choose a
basepoint x € T, and send g € G to the projection of the segment [x, gx]. If G is
finitely generated, Theorem 3 says that ¢ is an epimorphism whose kernel is Gy. In
the above example, ¢ is not onto.

Theorem 7, however, is valid for infinitely generated groups.
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