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On the Gauss curvature of maximal surfaces in the
3-dimensional Lorentz-Minkowski space

Francisco J M Estudillo and Alfonso Romero*

Several authors hâve dealt with maximal surfaces in the Lorentz-Minkowski
space Q3, [1], [2], [6], [8], from diverse points of view The most remarkable resuit

on this family of surfaces can be enounced as follows, [1], [6],

(C) Space-hke planes are the only complète maximal surfaces in L3

The same conclusion îs reached if the assumption &quot;complète&quot; îs replaced by
&quot;closed&quot;, [2] In particular, this gives an affirmative answer to the Bernstem

problem for maximal surfaces of L3, [1] Consequently, the global geometry of
maximal surfaces was completed by thèse results If we remove the regulanty
condition, we can then consider generahzed maximal surfaces A systematic study
of their branch points, includmg an extension of Theorem (C) above, îs given in [3]
The main purpose of this paper îs to obtain the following umversal înequahty of the

Gauss curvature at any point /?, K(p), of a maximal surface M with boundary m L3,

where d îs the distance on M
Remember that K(p) &gt; 0 and therefore (0 1) clearly implies Theorem (C) Our

main idea îs to use Schwarz&apos; Lemma to control curvature, since the Gauss map of
a maximal surface can be viewed as a holomorphic function with values in the unit
disk Observe also that no assumption on the normals to M in L3 îs made in order
to obtain (0 1) On the other hand, under vanous conditions on the Gauss map,
analogous mequahties to (0 1) were obtamed for minimal surfaces in the 3-dimen-
sional euchdean space, [4], [7], [9]
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1. Préliminaires

We consider the Lorentz-Minkowski space (L3 with îts usual Lorentzian metrie
dx\ + dx\ — dx\ Let M be an orientable Riemannian 2-manifold, with metrie ds2,

which îs isometrically immersed with zéro mean curvature in L3 As usual, we call
M a maximal surface m L3 At any point of M we hâve local isothermal coordmates
(m, v), (see [5], pp 34-35) In a natural way we then induce a conformai structure
on M If we put &lt;j)k (dxk/du) — i(dxk/ôv), k — 1,2,3, then the holomorphic
functions &lt;f&gt;k9 k 1,2, 3, satisfy 4&gt;] + &lt;\&gt;\ - &lt;\&gt;\ 0 and \&lt;t&gt;x\2 + |&lt;/&gt;2|2- |&lt;/&gt;3|2 &gt;0

everywhere If (/&gt;2 # *&lt;/&gt;i then we hâve a globally defined holomorphic 1-form co on
M and a meromorphic function g on M, constructed locally as co (&lt;/&gt;2 — i^)x)dz
and g (/&gt;3/(02 — l(t&gt;i) The pôles of g with order m coïncide with the zeroes of co

with order 2m It îs known, [3], [6], [8], that d$2 (l/4)(l - \g\2)2\co\2 The Gauss

map N îs valued m the two-sheet unit hyperboloid (î e the two-sheet hyperbohe
plane) m L3 and then we get either \g\ &lt; 1 or \g\ &gt; 1 everywhere The map g
represents, after stereographic projection, the Gauss map N Fmally we observe that
if co =fdz locally, the Gauss curvature K of M îs locally obtained as

K [4\g&apos;\K\f\(\g\2-l)2)]2, (11)

therefore K ^ 0 everywhere and K has only isolated zeroes whereas K ^ 0

2. Main resuit and conséquences

In order to get (0 1) we first give the following resuit, inspired in [9], Theorem
1, and [10]

THEOREM 1 Let M be a maximal surface in the Lorentz-Minkowski space L3

Let p be a point of M and U be an open neighborhood ofp having the property that

for some positive real number j8, the normal at each point of U makes a hyperbohe

angle of less thon fi with the normal at p Then the Gauss curvature at /?, K(p),
satisfies

where ô is a positive real number such that the distance along M from p to the

boundary of U is at least ô
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Proof. We may assume that the open neighborhood U is 1-connectée!, otherwise

we shall change it by its universal covering. We consider the (local) Enneper-
Weierstrass représentation (/, g) on U. Assume g(p) 0 by using perhaps a rigid
motion on L3. Thus we hâve \g\&lt;l everywhere on U and, in particular, g has no

pôle on U. Therefore,/has no zéro on U. This provides us with the following flat
Riemannian metric ds2 (l/4)|/dz|2 on U. Let D(0, r) be the greatest dise around
the origin in the tangent plane to M at p, on which the exponential map relative to
ds2, exp^, can be deflned as a local isometry. Consider now the Enneper-Weier-
strass représentation (/, g) with respect to the conformai parameter w eZ&gt;(0, r). It
is clear that f(w) dw =f(z) dz and \dw\2 ds2. Therefore, we get [f(w)\ 2 at any
w g D(Q, r). On the other hand, from \g\&lt;\ we hâve |g| &lt; 1. Let w0 be a point on
the boundary of D(0, r) such that exp^ w0 lies on the boundary U. The curve
y(t) Qxpp (tw0), t g [0, 1), is divergent in U. If ô represents a positive number less

or equal to the distance, with respect to ds2, from p to the boundary of U then we

get

ô &lt; f ds f (1 - \g(w)\2)\dw\ &lt; f \dw\ r. (2.2)
Jy Jy h

Now note that Np (0, 0, — 1) from our assumption g(p) =0 above. It is easy
to see that the radius R of the image by g of Z)(0, r) is given by tanh (jS/2). Schwarz&apos;

Lemma for the holomorphic function G : £&gt;(0, 1)-&gt;Z)(O, 1), G(rj) (l/R) • g(rrf\
r\ gD(0, 1), and (1.1), provide us with

K(p)&lt;4(R/r)2. (2.3)

Finally, from (2.3), using (2.2) and taking into account the value for R obtained
above, we complète the proof of Theorem 1.

Clearly the inequality (0.1) follows from (2.1) above.

Remark. (1) In the proof of Theorem 1 we hâve found the following slightly
stronger inequality K{p) &lt; (4/r(/?)2), where r{p) is the infimum of the lengths of
divergent curves starting from the point /?, with respect to the flat metric ds2. It is

straightforward to show that a metric homothetical to ds2 bounds from above to
the induced metric on U by the usual Euclidean one of R3. Thus, we can modify last

inequality to reprove that a closed maximal surface in L3 must be totally géodésie.

(2) A similar argument as in Theorem 1 permits us to state that if p is a point
of a maximal surface M and V is an open neighborhood of p having the property
that the normal at any point of V makes a hyperbolic angle of at least j? ^ 0 with
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some fixed timelike vector, then K(p) &lt; (4/&lt;52)((l+cosha)2/(l -h cosh fi)2) where
a &gt; P is the hyperbolic angle of the normal at p with the fixed timelike vector, and
ô &gt; 0 îs less than or equal to the distance from p to the boundary of V, (compare
with [9], Theorem 2).
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