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On the Gauss curvature of maximal surfaces in the
3-dimensional Lorentz—Minkowski space

FrRANCISCO J. M. ESTUDILLO AND ALFONSO ROMERO*

Several authors have dealt with maximal surfaces in the Lorentz—Minkowski
space 13, [1], [2], [6], [8], from diverse points of view. The most remarkable result
on this family of surfaces can be enounced as follows, [1], [6],

(C) Space-like planes are the only complete maximal surfaces in 1°.

The same conclusion is reached if the assumption “complete’ is replaced by
“closed”, [2]. In particular, this gives an affirmative answer to the Bernstein
problem for maximal surfaces of 1, [1]. Consequently, the global geometry of
maximal surfaces was completed by these results. If we remove the regularity
condition, we can then consider generalized maximal surfaces. A systematic study
of their branch points, including an extension of Theorem (C) above, is given in [3].
The main purpose of this paper is to obtain the following universal inequality of the
Gauss curvature at any point p, K(p), of a maximal surface M with boundary in L?,

4
W, for any p e M, (0.1)

K(p) =7
where d is the distance on M.

Remember that K(p) = 0 and therefore (0.1) clearly implies Theorem (C). Our
main idea is to use Schwarz’ Lemma to control curvature, since the Gauss map of
a maximal surface can be viewed as a holomorphic function with values in the unit
disk. Observe also that no assumption on the normals to M in L* is made in order
to obtain (0.1). On the other hand, under various conditions on the Gauss map,
analogous inequalities to (0.1) were obtained for minimal surfaces in the 3-dimen-
sional euclidean space, [4], [7], [9])- ‘
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1. Preliminaries

We consider the Lorentz—Minkowski space 1° with its usual Lorentzian metric
dx3?+ dx3 — dx?. Let M be an orientable Riemannian 2-manifold, with metric ds>,
which is isometrically immersed with zero mean curvature in 3. As usual, we call
M a maximal surface in L3. At any point of M we have local isothermal coordinates
(u, v), (see [5], pp. 34-35). In a natural way we then induce a conformal structure
on M. If we put ¢, = (0x,/0u) —i(0x,/0v), k =1,2,3, then the holomorphic
functions ¢,, k=1,2,3, satisfy ¢i+¢3—@d3=0 and |¢,|*+|p,|*—|¢:]*>0
everywhere. If ¢, # i¢, then we have a globally defined holomorphic 1-form w on
M and a meromorphic function g on M, constructed locally as w = (¢, — i¢h,) dz
and g = ¢,/(¢, — i¢p;). The poles of g with order m coincide with the zeroes of w
with order 2m. It is known, [3], [6], [8], that ds?® = (1/4)(1 — |g[>)*|w|*. The Gauss
map N is valued in the two-sheet unit hyperboloid (i.e. the two-sheet hyperbolic
plane) in L’ and then we get either |g| <1 or |g|>1 everywhere. The map g
represents, after stereographic projection, the Gauss map N. Finally we observe that
if w = fdz locally, the Gauss curvature K of M is locally obtained as

K =[4g’|/(|f1lel — DI, (1.1)

therefore K = 0 everywhere and K has only isolated zeroes whereas K # 0.

2. Main result and consequences

In order to get (0.1) we first give the following result, inspired in [9], Theorem
1, and [10].

THEOREM 1. Let M be a maximal surface in the Lorentz — Minkowski space 1°.
Let p be a point of M and U be an open neighborhood of p having the property that
for some positive real number B, the normal at each point of U makes a hyperbolic
angle of less than B with the normal at p. Then the Gauss curvature at p, K(p),
satisfies '

4 B2
K(p) < (55>(tanh 5) , (2.1)

where 0 is a positive real number such that the distance along M from p to the
boundary of U is at least o.
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Proof. We may assume that the open neighborhood U is 1-connected, otherwise
we shall change it by its universal covering. We consider the (local) Enneper—
Weierstrass representation (f, §) on U. Assume g(p) =0 by using perhaps a rigid
motion on L3, Thus we have |g| < 1 everywhere on U and, in particular, § has no
pole on U. Therefore, f has no zero on U. This provides us with the following flat
Riemannian metric ds? = (1/4)|fdz|* on U. Let D(0, r) be the greatest disc around
the origin in the tangent plane to M at p, on which the exponential map relative to
dsi, exp,, can be defined as a local isometry. Consider now the Enneper—Weier-
strass representation ( f, g) with respect to the conformal parameter w € D(0, r). It
is clear that f(w) dw = f(z) dz and |dw|* = ds}. Therefore, we get |f(w)| =2 at any
w € D(0, r). On the other hand, from |§| <1 we have |g| < 1. Let w, be a point on
the boundary of D(0,r) such that exp, w, lies on the boundary U. The curve
(1) = exp, (tw,), t €[0, 1), is divergent in U. If 6 represents a positive number less
or equal to the distance, with respect to ds?, from p to the boundary of U then we
get

5 SJ ds=J (l—lg(w)lz)]dw]SJ dw| = . 22)

Now note that N, = (0,0, —1) from our assumption g(p) = 0 above. It is easy
to see that the radius R of the image by g of D(0, r) is given by tanh (f/2). Schwarz’
Lemma for the holomorphic function G : D(0, 1) —» D(0, 1), G(n) = (1/R) - g(rn),
n e D(0, 1), and (1.1), provide us with

K(p) <4(R/r)*. (2.3)

Finally, from (2.3), using (2.2) and taking into account the value for R obtained
above, we complete the proof of Theorem 1.

Clearly the inequality (0.1) follows from (2.1) above.

Remark. (1) In the proof of Theorem 1 we have found the following slightly
stronger inequality K(p) < (4/r(p)?), where r(p) is the infimum of the lengths of
divergent curves starting from the point p, with respect to the flat metric ds?. It is
straightforward to show that a metric homothetical to ds? bounds from above to
the induced metric on U by the usual Euclidean one of R*. Thus, we can' modify last
inequality to reprove that a closed maximal surface in [° must be totally geodesic.

(2) A similar argument as in Theorem 1 permits us to state that if p is a point
of a maximal surface M and V is an open neighborhood of p having the property
that the normal at any point of ' makes a hyperbolic angle of at least § = 0 with
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some fixed timelike vector, then K(p) < (4/6%)((1 + cosh a)?/(1 + cosh £)?) where
o = B is the hyperbolic angle of the normal at p with the fixed timelike vector, and
0 >0 is less than or equal to the distance from p to the boundary of V, (compare
with [9], Theorem 2).
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