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Ahlfors—Weill extensions of conformal mappings and critical points of
the Poincaré metric

M. CHuAQUI AND B. OsGOOD

1. Introduction

Nehari showed in [10] that if f is analytic in the unit disk D, and if its
Schwarzian derivative Sf = (f"/f") — (1/2) (f"[f")? satisfies '

2
|Sf(2)|5(‘1‘:—|'z“|5Fa (L.1)

then f is univalent in the disk. Ahlfors and Weill showed in {1] that if the
Schwarzian satisfies the stronger inequality

2t
1S/ (2)| < TR (1.2)

for some 0 < ¢ < 1 then, in addition, f has a quasiconformal extension to the sphere.
They gave an explicit formula for the extension. The class of analytic functions
satisfying either of these conditions is quite large. It was shown by Paatero in [13]
that any convex univalent function satisfies (1.1). This was later established in a
different way by Nehari in [11], and he went on to prove that a bounded convex
function satisfies the Ahlfors—Weill condition.

In [6], Gehring and Pommerenke made a careful study of Nehari’s original
univalence criterion and showed, among other things, that the condition (1.1)
implies that f(D) is a Jordan domain except when fis a Mobius conjugation of the
logarithm,

14z
1—-2z°

1
F,(2) = 3 log (1.3)

By this we mean that f = T o F; o 1, where T and t are Mdbius transformations and
7(D) = D. The function F, has SF,(z) = 2/(1 — z%)?, and F,(D) is an infinite parallel
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660 M. CHUAQUI AND B. OSGOOD

strip. For topological reasons, it then follows from the Gehring—Pommerenke
theorem that other than in the exceptional case f has a homeomorphic extension to
the sphere. See also [4]. The main result in this paper is that the same Ahlfors—
Weill formula defines a homeomorphic extension of f, though it will not in general
be a quasiconformal extension. We discuss this phenomenon via a relationship
between the Ahlfors—Weill extension and the Poincaré metric of the image of f.
This may be of independent interest.

For economy of notation, though at the risk of sinking a crowded ship, we
introduce explicitly several subclasses of univalent functions associated with Nehari
type bounds. Thus we let N denote the set of analytic functions in the disk
satisfying (1.1), N* the elements of N other than M&bius conjugations of the
function F,, and N’ those functions satisfying (1.2). We use the notation
Ny, N§, Nj to indicate that'a function fin any of the classes has the normalization
f(0)=0,f(0)=1, f(0)=0. If f(z) =z + a,z>+ - - - is in any of the classes, then
f/(1 +a,f) is in the corresponding class of normalized functions, the point being
that the normalized function is still analytic, [2]. The function F, is normalized in
this way. Furthermore, according to [3], Lemma 4, functions in N¥ are bounded.
The family of normalized extremals for the Ahlfors—Weill condition (1.2) is

_10+2-(1-2°
G R T a=/1—1 (1.4)

We thank the referee for his thoughtful and helpful remarks.

2. Preliminary estimates

Several distortion theorems for the classes N, and N§ were proved in [2] using
comparison theorems for the second order, ordinary differential equation associated
with the Schwarzian. We continue somewhat in the same vein here for a few basic
estimates. We refer to our earlier paper for further background.

LEMMA 1. If fe€ N, then

l——( )| = (2.1

1— |z|2

Equality holds at a single z # 0 if and only if f is a rotation of Fy(z). If f € N§ then

(2.2)
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The inequality (2.2) is not sharp. The proof will show how one may obtain a
sharp estimate, but it is not as convenient and explicit as the one given here.

Proof. Let y =f"/f". Then

1
y=-2-y2+2p, »(0) =0,

with 2p(z) = Sf(z). We consider the real equation

, 1 2 _
w-2w +(1——x2)2’ w(0) =0,

on (—1,1), whose solution is w(x) =2x/(1 —x?). We want to show that

()| < w(|z)).

Fix zo, |z| =1, and let

@() = |p(120)|, 0<t<l

Unless f(z) = z identically the zeros of ¢ are isolated. Away from these zeros ¢ is
differentiable and ¢’(1) < |y’(rz,)|. Since |p(tz,)| < 1/(1 — 7?)? we obtain

d 1
7 (1) —w(D) < ly'(tz0)| —w'(x) < 3 ([W(xz0) P — w(2))

(@(z) — w(¥)) (@(7) + w(7)).

S

This, together with ¢(0) —w(0) =0, implies that ¢(7) — w(t) can never become
positive.

Now suppose that equality holds in (2.1) at z; # 0. Let z, =z, /|z,| and let ¢(z)
be defined as above. Then ¢(|z,]) = w(|z;]) which, by the previous analysis, can
happen only if ¢(t) = w(), first on [0, |z,|], and then for all 7 € [0, 1) since both
functions are analytic. Hence y(tz,) is of the form e®®w(t). Since all inequalities
above must be equalities, it follows easily that 6(r) must be constant. From this, it
follows in turn that y(z) = ew(Z,2) for all |z| <1, with |c|=1. Integrating this
equation and appealing to the normalizations on f shows that f(z) = e ~F,(e*z).
This proves the first part of the lemma.

Next, suppose that f € N§. The proof that | f”/f’| has the bound in (2.2) proceeds
exactly as above with the single difference that the comparison equation is

2
(1-x)?’

’

W =%w2+ w(0) = 0.
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The solution is given by

2x 20,2
1—-x2 1—-x2 A,

w(x) =

where A,(x) is defined in (1.4). It can be checked that 4,(x) is convex on [0, 1], and
hence

A
max 2 _ 470 =1.
0<sx<1 X
Therefore
1 —x?
<l—a’=
% w(x) o’ =t,

which proves (2.2).

3. Bounds for the Poincaré metric

The Poincaré metric g |dw| of a simply connected domain @ is defined by

1
bl SN @) =A@ = 7

where f: D — Q is a conformal mapping of the unit disk onto Q. From Schwarz’s
lemma and the Koebe 1/4-theorem one has the sharp inequalities

1

1
s <
4d(z, 0Q) *a(?)

1
dz, 0Q)°

where d(z, 0Q) denotes the Euclidean distance from z to the boundary.
Writing w = f(z) and taking the 0, = 0/0z derivative of the logarithm of (3.1)
gives

0, 4a(f(2)) z 17 (3.2)

lg(f(Z)) f'(z) = 1— IZP_‘-—,(Z).

Observe for a normalized function f € N, that the Poincaré metric A, of the image
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Q has a critical point at w =0, and, by Lemma 1, that this must be the unique
critical point if f is not a rotation of the logarithm F,. (In the latter case Q is a
parallel strip and the critical points of A, are all the points of the axis of symmetry
of Q.) Assuming that f e N is bounded, we can drop the normalization and reach
the same conclusion:

LEMMA 2. If f € N is bounded, then A, has a unique critical point.

Proof. Since Q = f(D) is bounded and Ay(w) —» 00 as w — 0Q, 1, must have at
least one critical point. By replacing f by f o T, where T, is a Mdbius transforma-
tion of the disk to itself, and then by T,ofo T,, where T, is a complex affine
transformation, we may assume that one such critical point is w = 0 = f(0), and
furthermore that f(0) =0 and f’(0) = 1. The identity (3.2) then forces f”(0) =0, i.e.
that f € N¢. Hence, as above, w = 0 is the unique critical point for A, since f cannot
be a rotation of the log.

REMARK. These are sharp results in the sense that for any 0 < € < 2 there is
a bounded, univalent function f with Sf(z) = —2(1+¢)/(1 —z?)? such that
Ao, 2 = f(D), has more than one critical point. In fact, consider the (normalized)
functions 4_,(z) for 1 <t <3, where A4,(z) is defined in (1.4). For each ¢ the
function A_, has SA_,(z) = —2t/(1 —z?)? and maps D onto the quasidisk £,
consisting of the interior of the union of the circles through the points 1/a, —1/a
and +i(1/x) tan (na/4), where « = ,/1 + t. One can check directly that when ¢ > 1
the Poincaré metric for Q, has exactly three critical points, one at 0 and two on the
imaginary axis which are conjugate.

In [7] Kim and Minda showed that log 4, is a convex function if and only if Q
is a convex domain. See also the papers [9] and [14]. Using the fact that N contains
the convex conformal mappings we can add:

COROLLARY 1. If Q is a bounded, convex domain, then A, has a unique critical
point.

In [12] it was shown that
IV log Ag| < 4ig (3.3)
as a consequence of (3.2) and the classical bound for |f”/f’| that holds for any

univalent function in the disk. The inequality (3.3) is equivalent to the coefficient
inequality |a,| < 2. We now give some lower bounds for |V log 4, |.
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LEMMA 3. If f e N§, then there exists a constant ¢ > 0 such that

|V log Ag(w)| 2 c|w|dg(w) /2. (3.9
If f € N§, then

|V log Aq(w)| 2 2(1 — 1)*?|lw|An(w). (3.5)

Recall that a function f € N§ is bounded. The constant in (3.4) depends on the
bound for f. In an appendix we will give an example to show that the exponent 1/2
is essentially best possible in (3.4).

Proof. The estimate (3.4) is implicit in [6]. We show how it can be deduced,
adopting the notation used there. Let 4 be the inverse of F, and let g =f - h. For
7 € R we have 2|g’(z)| = (1 — |h(®) P) | f(h(r))| = Aa(g(x)) ~'. It was shown in [6] that
v = |g’|~ ' is convex, with v(0) =1, v’(0) = 0. It is not constant when f'is not equal
to F,. Now,

’ d
2 % (r) = log Aa(g()) < |V log Aa(g(0))||g'()| = |V log Aa(g(2)|p(z) ~2,

hence
|V log Aa(g(7))| 2 2v(z)v’(x) = 2¥%0"(7)Ao(g(1)) 2.

Since v is not constant and f is bounded, it follows that there exists a constant a
such that v’(t) 2 alg(z)| for T 2 0. The estimates can be made uniformly on different
rays from the origin by considering f(e®h). This proves (3.4).

Now suppose that f e Nj and write w = f(z). Using (3.2),

o1 1"
@uia) S| _ [ —5(=[zP) 7@
(f@ —  (A-EPIF@l

1
5 |V log Ag(w)| =

From Lemma 1, (2.2) we then obtain

2(1 — 1)z
(1=|zP)| |

|V log Ao(w)| 2 =2(1 - 0)|z|Aq(w),

with w = f(z). But from [2], a function in N§ is subject to the sharp bound
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|/(2)| < 4,(Jz|), where 4, was defined in (1.4). This can be rearranged to

(1+alw)=— (1 —alw)'™ )
lzl 2 (1 _alwl)lja+(1 _ alwl)l/a— ll/(alWI), a=./1—1t

The function y(s) is concave on [0, 1] with ¥(0) =0 and (1) = 1. Hence y(s) = 5
and (3.5) follows.

4. Homeomorphic extensions

Let f € N with f(z) =z + a,z> + - - - . It was shown in [2] that —1/a, ¢ f(D), and
it follows from Lemma 4 in [3] that unless f is conjugate to F, the point — 1/a, will
actually lie outside (D). For a fixed { € D renormalize in the usual way to

z+¢
f(m)—f@) :

(1= KPR ©

which is again in N, and which has g(0) =0 and g’(0) =1. To say that
—2/g"(0) ¢ g(D) is equivalent to saying that

A =-[Pfro
ﬁ
fl

and, again, if fis not conjugate to F, then

: VAT
+(5(1—|Cl)f,(C) C)z+ ,

g(z) =

E Q) =1 +- ¢ f(D), (4.1)

1
{—51=KPZQ

E/({) ¢ /(D). 42)
In terms of the Poincaré metric, E, has the expression
E@) =10+ 57— (43
w(log 4g) (f(2))
by (3.2).
THEOREM 1. If fe N* then
_ @ for lz] <1, (4.4)

FO=g,qin for lo| > 1,

is a homeomorphic extension of f to the sphere.
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The extension E, has the important property that it commutes with Mobius
transformations of f. If T is a Mobius transformation, then

Er ;= T(E,). (4.5)

This can be checked directly from the definition, first for complex affine transforma-
tions and then, less obviously, for an inversion. It is also true that E,_.(z) = E.(1(2))
for all Mobius transformations t of the disk onto itself, but we will not make any
use of this fact.

Proof of Theorem 1. We first show that F is continuous at all points of the
sphere. If |z| <1 this is obvious. Next, using (4.5) we may normalize further and
assume that fe N§. It is then clear from

(1= |zP)r @
O N
P U- D5

E(z) =f(2) +

that F is continuous outside D; from Lemma 1 the denominator vanishes only at
z =0, which corresponds to oo under the reflection in |z| = 1. Finally, recall by the
Gehring—Pommerenke theorem that f has a homeomorphic extension to D. Thus
since f(D) = Q is a Jordan domain, to show that F is continuous on |z| = 1 we must
see that E, matches with f there. Because we have normalized to get f € N§ we know
that Q is bounded, and so it suffices to show that E,(z) —f(z) -0 as |z| > 1. This
is equivalent to |V log Ao(w)|— 00 as w — 9, which follows from the first part of
Lemma 3. We also now conclude that the range of F is all of C.

Since f is a homeomorphism of D, it remains to show that E, is injective.
Suppose that E.(z,) = E.(z,). Appealing again to (4.5) we may change fto T o f by
an appropriate Mobius transformation 7 and assume that this common value is co.
But (4.2) now implies that f must be bounded, while on the other hand (4.3) shows
that an infinite value of E, must be a critical point of log 4,. By Lemma 2 such a
critical point is unique, hence z, = z, because f is univalent.

We have proved that the mapping F is continuous and injective, and is therefore

a homeomorphism onto its range, C. This completes the proof of the theorem.

The function E, is precisely the Ahlfors—Weill extension. For f satisfying
|Sf(z)| < 2¢(1 — |z[*) 2 the function F defined by (4.4) is a (1 + t/1 — r)-quasicon-
formal mapping which extends f. In [5] Epstein made an enlightening differential-
geometric study of this extension. Independent of the Gehring—Pommerenke
results, a function in N§ is already /1 — ¢t-Holder continuous in D, and so, in
particular, it can be extended to Dj; see [2].
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The complex dilatation uy = 8,F/d,F of the Ahlfors—Weill extension at a point
{ in the exterior of the disk is

k(@) = 5 (1 = |2/,

where z = 1/{. It will therefore not define a quasiconformal mapping at points
where |Sf(z)| is at least 2/(1 — |z])%. There are, however, functions in N*\{J, ., N*
which do have quasiconformal extensions. For example, take f to be a solution of
Sf =2 in D. The function has |Sf(z)| < tn?/2 for t = 4/n* < 1, and so by [10] and [6]
its image is a quasidisk. But the formula (4.4) will not provide a global quasiconfor-
mal extension. Also, recall from the remark following Lemma 2 that the functions
A_,(2), 1 <t <3, with §f(z) = —2t/(1 — z%)? (too big to be in N when ¢ > 1) all
have quasiconformal extensions, but again not via the Ahlfors—Weill extension.

Appendix: An example

We return to the first part of Lemma 3. We want to construct a function f'e N¢
showing that the exponent 1/2 in the bound |V log Ao(w)| 2 a|w|io(w)'?, 2 = f(D),
is, in general, best possible. As the proof of Lemma 3 shows, this will be the case
provided the convex function v, introduced in the proof, has bounded derivative.

The extremal F, maps the disk onto the strip —7/4 <Im w < /4. We want to
construct g, analytic in this strip, so that f=g- F, will be in N§, and
v(t) = |g’(z)| > will be convex with bounded derivative for t on the real axis.

Let a >0, to be chosen, and let

ey = —2
g (C) - a + Cz i

If a > ﬁ /2 then g’ will be regular in the strip and v(r), 7 € R, will be a convex

function with bounded derivative. We compute the Schwarzian of g to be

—2a
Sg(0) = @ 0

Then f = g o F, is normalized and

4a

2
Sf(z) = Sg(Fo(2)) (F5(2))* + SFo(2) = TS { - @+ 02

}9 C=F0(Z)
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It is not hard to show that if a is sufficiently large then

I 4a <1,

I ~G+oy

so that fe N§¥.
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