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On the classification of constant mean curvature ton in M3

Christian Jaggy

1. Introduction

Let S be a compact orientée surface and / : S -» R3 an immersion with constant
mean curvature. Hopf [6] investigated such immersions, and for genus (S) 0 he

showed that i : S -+ M3 must be an embedding of a round sphère. Conversely, the genus
of the surface S is 0, if i is an embedding. This statement was proved by Alexandrov
[1]. Only a few years ago Wente [10] and Kapouleas [7] proved the existence of
constant mean curvature immersions for genus (S) 1 and genus (S) ^ 2, respec-
tively. In this work we will only look at constant mean curvature immersions with
genus (S) l.

First the relation of hyperelliptic curves and constant mean curvature immersions

is sketched. For a rigorous formulation see Bobenko [3].
Let u be a solution of the elliptic-sinh Gordon équation

wWïi&gt; + sinh u 0 (1)

on a simply-connected domain (2cC. There is an algorithm that associâtes an
immersion i:Q-+M3 to u with constant mean curvature \. Conversely, every
constant mean curvature immersion yields a solution u of équation (1).

On the other hand we can associate quasi-periodic solutions of équation (1) on
U2 to hyperelliptic curves

(2)

where the branch points are distinct and satisfy

ei+g=^zr9 i l,..., g. (3)
ei

We first hâve to fix some notation to write down an explicit formula for solutions
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Figure 1

of équation (1). In figure (1) a canonical basis al9. ag, bu bg of HX(X, Z)
with intersection numbers

atbj ôtJ, ataj 0, b,bj 0, ij 1,.. g (4)

is introduced. Let Qo and Q^ be meromorphic differentials on X, holomorphic
outside 0 and oo, respectively, which satisfy the conditions

Ja, Ja,
g

and

Qo has a pôle of second order at 0,

Q^ has a pôle of second order at oo.

Define the vectors iio,Hao by

«• -(1,*

(5)

(6)
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and for f e Cg put

«(0 21og-^ * ¦

where 0 is the Riemann thêta function of X for the given homology basis. The

fonction

&quot;(C+ Wth + WVao) il)

is a real quasi-periodic solution of équation (1) for every Ç g Ug.

The question anses, whether it is possible to choose X in a way, such that X
yields constant mean curvature ton. The answer to this question was given by
Bobenko [4] and Pinkall-Sterling [9].

THEOREM 1.1.

(1) Under the correspondence mentioned above X yields constant mean curvature
tori in U3 if and only if
(a) Qœ has a root p (x0, yQ) with \xo\ 1;

(b) Let y be a path that connects the two points (xo,yo) and (x0, —y0). Then

the span of the vectors

-(! Q f Q (q\

Vnn

in Cg+1 must contain two linearly independent rational vectors. In this

case one gets a (g — 2)-parameter family of constant mean curvature tori.
(2) Every constant mean curvature torus arises in such a way.

It is known that there are no curves satisfying the condition (a) for genus (X) 1.

Wente found constant mean curvature tori which are known to correspond to curves
with genus (X) 2 or genus (X) 3. In 1991 Ercolani-Knôrrer-Trubowitz [5]
proved the existence of such curves for even genus (X). AU curves constructed there
hâve the additional property, that the set of branch points is invariant under the map
x h-* l/x. In this paper the existence of curves X fulfilling the conditions (a) and (b)
is proved for genus (X) arbitrary.
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2. Préliminaires

The map a \X-*X

(/
2g \ 1/2

X X

is an antiholomorphic involution of X. The sign of (Ilfi, et)l/2 is chosen in such a

way, that the points lying over S1 are fixed points of a. Then a ^ acts as follows on
the cycles:

*,*, - an

^

i- ,...,g ^

with A,7 g Z; ij 1,. g, and

y -o*y= X Af,fl,5 (9)

with \ij g Z; 7 1,... ,g.
It is possible to choose Qo, Q^ in a way, such that

holds. It follows that the vectors v0, v^ are complex conjugate. The new vectors

wî= /(Voo - vo)

are éléments of R*+1.

Now consider the map/: C^Cx Gr(2, Ug+Ï)

(eu...,eg)\-+ (root of Q^, &lt;», w».

/is a multivalued fonction and one should restrict the domain of définition of/to
the open subset [/cC1, where ail the branch points are distinct. Gr(2, Ug+l)
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dénotes the Grassmannian of 2-dimensional subspaces of Ug+ K The vectors v and
w are linearly independent and &lt;t?, w} is a welldefined élément of Gr(2, Ug+l).

It is interesting to look at this map, because if one finds a root p (jc0, y0) w*th
|jco| 1 and if &lt;#, w&gt; contains two linearly independent rational vectors, the
existence of constant mean curvature tori is guaranteed. In section 3 the following
theorem will be proved.

THEOREM 2.1. Let e (eu ,eg) be in U. Assume that the differentials
Q09 Q^ on the hyperelliptic curve

fulfill the following conditions:

(1) Qo, Q^ hâve a common root &lt;x over x 1,

(2) QQ, Q^ donU hâve any other common roots,
(3) (Qœ — Qo) (em) t* Ofor m 1,..., 2g, and Q^ — Qo has a root oforder 1 at et.

Then df(e) is invertible.

We dénote Xe as the hyperelliptic curve associated to the point e e U. Due to
this theorem it follows, that arbitrarily close to e there are points, such that the

corresponding curves Xe fulfill conditions (a) and (b). In section 4 we will finally
show

THEOREM 2.2. For every g ^ 2 there are curves Xe,e e U, satisfying the

conditions (1), (2), (3) above.

This theorem will be proved by induction on g.

3. Simplification

Proof of Theorem 2.1. Since dimensions are equal it is enough to show that
df(e) is injective. The strategy is due to Krichever [8], Bikbaev and Kuksin [2].

Let e(r), x € (R, be an arbitrary differentiable curve passing through e, such that
f(e(x)) changes only in order t2, in other words

a(t) 1 + 0(t2). (11)
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We want to conclude that

**&gt; 0

holds. This implies that df{é) is injective. Put B(x)*=A(x)&apos;\ clearly

and after differentiation

645

(12)

Thèse are 2g + 2 équations, 2g of them describe relations among period intégrais.
Define differentials œuco2 by

\&lt;02(t)/
V &apos;

\/(floo(T) - O0(T))/
V ^

By intégration of coi(x), co2(x) one get&apos;s multivalued meromorphic functions on

(14)

where / dénotes the hyperelliptic involution.

LEMMA 3.1. The functions

are single-valued meromorphic functions on Xt. At the points ei9..., e2g, 0, oo they
hâve first order pôles. Furthermore there are non-zéro complex numbers c,,..., c2g

such that

-*&quot;¦ ctn a e^ (15)
T-0
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Due to this lemma it is enough to show that

~ &quot;&quot; &apos;

=0.

This will prove the theorem. We first prove this lemma, before we continue the

proof of the theorem.

Proof. To see that the functions (ô/ôx)Ql(P, t) |t=s0 are single-valued, we hâve

to look at the corresponding 6-periods:

—
O* Jbj

û),

0.

The last identity is true due to équation (12). The same is true for co2 and the first
statement is proved.

Expand cot(x) at em{x) in the local coordinate (x —em{x))xl2:

E (x^

Put P (x, y), then we get

r d

t * o Jy(/»)CT

ô

J-
It follows that the functions (d/dx)Qt(P, t) |tœ0 hâve first order pôles at the points

Ci, •.., e2g and the same is true for 0 and oo by a similar calculation. Due to the

assumption (3) in Theorem 2.1 the daim about the numbers cm is obvious.
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Let&apos;s continue the proof of the theorem. Take P e Xe with co2(P) # 0. The

implicit function theorem yields a curve P(x) with

O2(P(T),t)=O2(/&gt;,0)

and after differentiation

d
:O2(P(t),t) a&gt;2(P)-P{x)

dx -Q2(P,x) 0.

(16)

(17)

Define a new function

Qi(P):=-Ql(P(x),x)

The function Ûx is welldefined and by the équation (17) above one gets

Q(P)- — Q( %

Ô

1

dx l &apos;

(18)

(19)

It follows that Ûx is a meromorphic function on X. To finish the proof of the

theorem we need the following lemma:

LEMMA 3.2. The functions (d/dr)Qt(P9 t) |t==0 roo/ of order 2 ai a.

/V00/. By équation (11) the differentials (3/3t)g&gt;,(P, t) |Taa0 hâve a root of
order 1 at a. The functions

hâve a root or order 2 at a. Now look at

Tt 0 Jy

/(a) ^T

— co^P, t)
T=0
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J;(a) Sx

With équation (12) one gets

r) =0
T 0

and this implies

D

^! has 2g roots at the branch points ex,..., e2g and another 4 roots over a: 1.

The roots of œ2 lying outside the set {a, /(a)} yield 2g pôles of Ô,, together with the

simple pôles at 0 and oo we see that Ûx has at most 2g + 2 pôles. Consequently (5,

is the zero-function and one gets the following équation:

t) O)X(P) =- (20)

There are 2g roots of co2 outside the set {a, /(a)}, which can&apos;t coincide with roots
of co, due to the assumption (2). Thèse 2g roots of œ2 must be roots of
(d/dt)Q2(P, t) |t.= o- Together with the 4 roots lying over x 1 we conclude that
(d/dx)Q2(P,x) |T==0 has at least 2g-f 4 roots. But (ô/ôt)Q2(P9x) |ts=0 has at most
2g + 2 pôles at the branch points. We get (d/ôr)Q2(P, t) |T 0 0 and by Lemma 3.1

(d\d%)e(ï) |T=o 0 foilows. This proves the theorem.

4. Induction

Theorem 2.2 will be proved by induction on g. We will see that a good
configuration of branch points for genus g yields a good configuration of branch

points for genus g + 1. Let&apos;s first prépare the induction step.
Take a point e (eu eg) for which the conditions (1), (2), (3) are fulfilled.

The corresponding curve Xe and differentials Q%, Q^, G§ + Q%&gt; look like

I« 1

xy0
¦dx, cgeC9
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n (*-«.)
0?,,=— dx,

O^-Oj»—i^J dx, £, 1, dgeC.
xyo

For (e,,. eg, a, t) e U x S1 x —e, e), e &gt; 0 we define

and corresponding normalized differentials

dx, cg+ieC,

8f\(x-af+x)
— dx,

Qsx+l-Q%+l= ^ dx, dg+leC.
xy

Due to the compactness of X{eat), the normalization conditions and the residue

theorem one has the following équations

and

^^0) Q?o. (22)
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Due to the réduction (21) we delete the superscript g + 1 from af + &apos;, £f + Now
put

and let&apos;s impose the further conditions on Xe

(4) lankf^W &apos;¦-1.2,

(5) the real part of the meromorphic function

w x *
dx dx

k\Xi 1 ~t~ x

~dx

doesn&apos;t vanish identically on S1.

The conditions (4) and (5) are used to prove the following lemma:

LEMMA 4.1. The map h : U x S1 x (-6, e) -&gt;C xi
(e,a912) h*(a,, |a,+ 1|)

has maximal rank in a point P (e, a, 0), where Re(k(a)) ^ 0.

REMARK. This lemma together with the property

d- =o

yields the existence of curves X{etQtt) of genus g -h 1, which satisfy the conditions (1),
(2), (3). Taking t small enough the conditions (4) and (5) are also fulfilled.

Proof. Due to the réduction (21) and condition (4) we hâve
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It remains to prove that

e

651

For this we will deduce an équation for (d/dt2)ag+l \P. Diflferentiation of
yields

¦dx + -£
Since

we get the équation

and

ô

dt

Since

d

1

p
û&apos;~2

Re{k{a)) * 0 we

#0,

1 c

2X

hâve

x dx

~dx

and the lemma is proved.

Finally, we hâve to prove the existence of curves Xe of genus g 2 which satisfy
the conditions (1) up to (5). For the beginning of the induction results of Bobenko

[4] and Ercolani-Knôrrer-Trubowitz [5] are used.
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Figure 2

Let Xe be the hyperelliptic curve (figure (2))

with normalized differentials

«0
ôt1â2(x-pl)(x-p2)

xy
dx,

dx.

(23)

Let CUC2 be the elliptic curves

and

&lt;jf&gt;v

meromorphic differentials on Cv with vanishing a-periods (see figure (3)).
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Figure 3

There are maps tv : Xe -* Cv given by

The pullback of (pv with respect to tv is given by

xy

xy

Taking the sum and the différence one gets

Introduce new parameters r, 0 by the équation

X 2 + re*.

Now, look at the following lemma:

(24)

LEMMA 4.2.

(i) There is a unique 0 60 e(0,n/2), such thaï Çi(r,90)=2 holdsfor arbitrary r,

(iii) Ç2(r, 6) 2 + rcos (6) + O(r2).
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Proof. Let&apos;s make the change of variables £ z — 2 and let&apos;s define

The curve Cx is given by

y2 Ç(Z2 -2rÇ cosO + r*)

and for the differential cpx we hâve

Following Bobenko [4] one has

cos t dt

)e yjcos 0 — cos /

and there is a unique 0 =f 0q e (0, nj2) for which

f* cos t dtfJe
=0.

Je .y/cos 0 — cos t

Consequently, we hâve the équation

Z(r,0)=O o 0 6O.

To prove (ii) we first observe that Z(r, 6) rZ(l, 0). Differentiation of (p, yields

TZVdhO) (25)

and

J=-Sin 0o-p--2COS0o—+ 2y-

Due to

0
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équation (25) gives rise to

W(1&apos;&apos;

655

Intégration of équation (26) yields

n f dZ 1 cos 60 Ç t dZ 1 f dt
__ C|T1 M I —— I _^ __________ I ___0 }a y3 2 sin 0O Jfl y 2 sin 0O J_ y

&apos;

The first expression on the right is zéro and we get

1

e0~ ~2sin0o&apos;

which proves (ii).
The curve C2 is given by

- 2r£ cos 0 -f r2)

and the differential q&gt;2 looks like

_«z_______rfs.

Put

Q(r,6):=— -i,

and we hâve

5
— _2(r&gt;(
5r

COS
—— cos0.

16
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Consequently,

Q(r, 0) - - — r cos 0 + 0(r2). (27)
2 lo

Similarly we put

and this yields

P(r, 0) I r cos 0 + 0(r2). (28)

Since the intégral of q&gt;2 over a is identically zéro, (iii) follows from the équations
(27) and (28). D

We use this lemma to prove the final step:

PROPOSITION 4.3. There are curves Xe of genus g 2 which satisfy the

conditions (1),..., (5).

Proof For 0 0O the differential q&gt;x has a root over z 2. Put 2. Then Qo

and Cqq hâve a common root a over x 1 and condition (1) is fulfilled.
For condition (2) we hâve to look at &lt;x2 and p2. They satisfy the équations

Suppose a2 fi2 holds, then we hâve Cl== 4&gt; but for Ç2 we know

£2(r, 0) 2 + r cos 0 -h fi?(r2).

For condition (3) we hâve to examine the roots of Q^ — Qo tJç&gt;2. Due to the

équation above for £2 the roots of the polynomial

don&apos;t lie in the branch points and û^ — QQ has a root of order 1 at a. For small r
the conditions (1), (2), (3) are satisficd.
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Now look at the condition (4). We want to show that the matrix

657

dx.ôy

with ex pi and e2 fi has rank 2. If we rotate the configuration of branch points
around the origin, also a, is rotated. Moreover, if we move 0 for fixed r, the root
a1 can only move on the real axis. Now look at the équations

&lt;*i + «2
^

(Ci + Cil

Suppose we hâve

da&apos;

-0

then we can conclude

0,

but

— ri
de

So, the assumption was false and we get the desired resuit.

For condition (5) we take the limit r-*0 and we get k(a) 1/2 (using the

identities \x 1, a2 1). Thus the proof of the theorem is complète.
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