Root vectors in quantum groups.

Autor(en):  Xi, Nanhua

Objekttyp:  Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 69 (1994)

PDF erstellt am: 29.04.2024

Persistenter Link: https://doi.org/10.5169/seals-52278

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-52278

Comment. Math. Helvetici 69 (1994) 612-639 0010-2571/94/040612—-28%1.50 + 0.20/0
© 1994 Birkhduser Verlag, Basel

Root vectors in quantum groups

NANHUA X1

The root vector defined in [L1-2] plays a fundamental role in quantum group
theory. However even for some simple questions, such as the number of root
vectors, the relations between root vectors, etc., we know little. There are several
formulas concerned with the coproducts of root vectors in [AJS, KR, LS]. These
formulas are important, but for many purposes it is inconvenient to use them,
because these formulas in fact are not formulas in quantum group but in certain
completions of quantum groups and are involved products of infinite sums. It seems
also no explicit formula for the antipode of a root vector at hand. The arguments
in the remarkable work [AJS] show that for a quantum group it is valuable to have
formulas (in the quantum group) of coproducts and antipodes of root vectors.
Therefore it is necessary to understand root vectors further. This paper is motivated
by the work [AJS].

In this paper, we prove that for a root vector, certain presentation is unique (see
Theorem 4.4 (ii)) and Lemma 4.2). The uniqueness of the presentation is useful to
prove that root vectors are linearly independent and can be used to get some
explicit formulas concerned with root vectors, for example, coproduct formulas.
The uniqueness of the presentation also can be used to count root vectors. Other
known presentations of root vectors are not effective for these purposes. In this
paper we also prove that for a root vector there exists a unique shortest element (in
a reasonable sense) in the Weyl group attached to it (see Theorem 4.4 (iii) and
Proposition 2.12 (i)). Using Theorem 4.4 (ii) and Proposition 4.8 we get an explicit
formula for the coproduct of a root vector in a quantum group of type A.
Unfortunately it is not easy to get such a formula for other types in general.

The contents of the paper are as follows. In section 1 we recall some basic
definitions and fix notations. We also list some formulas for later uses. In section
2 we prove some results about root systems. Some of them are needed in sections
4 and 5. For the possible generalizations of the results in section 4, we also consider
infinite root systems. In section 3 we give several lemmas which are important for
our proof of the main result in technique. Lemma 3.2 is originally proved for type
A, D, E by Lusztig in [L3] based on the relations between quantum groups and
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quivers. In this paper we prove the lemma in general by a simpler way. Lemma 3.5
is an essential ingredient for the proof of Lemma 4.2, which implies that root
vectors are linearly independent. In section 4 we give the main result Theorem 4.4
which was explained before. We also get an explicit formula (Theorem 4.7) for the
antipode of a root vector and give an upper bound for the number of root vectors
(see Proposition 4.8). In section 5 we restrict ourselves to type A. We get an explicit
formula (Theorem 5.5) for the coproduct of a root vector by using Theorem 4.4 (ii)
and Proposition 4.8. (A very special case was treated in [R].) We finally list some
commutation formulas for some root vectors (see 5.6), which are g-analogue of
similar formulas in universal enveloping algebras.

We only discuss root vectors of positive roots since through the homomorphism
Q (see 1.3 (a)) all results can be transfered to those concerned with the root vectors
of negative roots.

1. Introduction

We recall some basic concepts.

1.1. Let R be an irreducible root system with simple roots a; (1 <i <n), RY and
a be the corresponding dual. Then (a;;);<;;<. 18 a Carten matrix, where
a;; =<, a;». Assume that we are given integers d; € {1, 2, 3} (1 < i < n) such that
d;a;; = d;a;. The quantum group U over Q(v) (v is an indeterminate) associated to
(a;) is an associative algebra over Q(v) generated by E, F,, K, K;' (1<i<n)
which satisfy the g-analogue of Serre relations (see for example, [L2]). The algebra
U is in fact a Hopf algebra, the coproduct 4, antipode S, counit ¢ are defined as

follows:
AE)=E®1+KQ®E, AF)=F®K'+1®F, A4K)=K®K,
S(E;))=—K['E, S{F)=-FK, SK)=K"',

e(E;) = e(F;) =0, «K;) =1

1.2. The root vectors in U are defined through elements of the Weyl group and
some automorphisms of U (see [L2]). We recall the definition.

Let W be the Weyl group of R generated by simple reflections s, (1 <i <n)
which are defined by s;(a) = @ — (&, a;” Ya;, « € R. For each i the automorphism
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T, =T, is defined by Lusztig as follows (see [L2]):

T.E,=-FK, TE= Y (=)o “EPEE®, ifi#j,

r+s= -—aij

TF=-K'E, TFE= Y (=Dv“FPEFD, ifi#}
r+s= —aj
T,K] = K‘.KJ.—“U,
where E(M) =EV[[N],, F™ =F][[Nly, [0, =1, [NI,=I[14[2,...[N], if
N 21, and [N], = (@™ —v~") j(v% —v~%), N 2 0.
These automorphisms satisfy the braid relations, thus for each element w e W

we can define the automorphism 7, of U as T, ... T;, T, wheres, ...s;5; is a
reduced decomposition of w (see [L2, 3.1-2]).

1.3. The following are some simple properties about these automorphisms T, (see
[L2]): (a) Let Q, ¥ : U — U’ be the Q-algebra homomorphisms defined by

QE,":F,', QI:,-:E,-, QKizK;l, QU:-U_I,
TE,'-——Ei, TE=E’ WK;=K,-1, Yv =v.

Wehave QT =T Qand T =T; ' =¥YT,¥.So QT, =T, Qand T ;. = VYT, ¥
for any w e W.

(b) T,E =E;, if wa,)=a,.

By (b) and the definition of T, we get the following equalities.

() T.E=E, TF=F, TK=K, ifa,=0.

(d) T/ 'E =T;E, T;'F,=T,F, T/ 'K, =T,K, if aa; = 1.

(e T7'E=T,TE, T;'F=TTF, T 'K=TTK, ifa;a=2
If a;;a; = 3, then we have

() T7'E=TLLTE, T7'E=TLILTE,  T7'K=TTLITK,

(g) Tj—lTi—lE‘j:TiIva'i‘Ej’ Tj—lTx_lF‘]=TyxT;T':Ep Tj:—lT{_lszT}T}TiK_],
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We also have
(h) T?E, =v*K;2E,.

() TIE=(1-v%FKT(E)-v *E ifa;=—1.

J Ly}

B TE =021 —0-)(1- 0~ YFPKIT,(E)
—v7 (1 =0 )FKT; ' (E) +v2E,

(k) T?E=v"%(1—0")(1 =091 -0~ YFPK}T,(E)
—0 (1 =071 —v~YFPKIT,T,(E,)
+o (1 —v )FKT;'(E) —v’E,.

1.4. For any positive root a € R* (the set of positive roots in R), if
w (@) =a;(we W) is a simple root in R, then we set E,, =T,(E;) (resp.
E_,.=F,, =QE,, =T,(F;) and call it a root vector in U of root a (resp. — ).
The definition of root vectors looks simple.

2. Some facts on root system and Weyl group

2.1. To formulate the results in section 4 and section 5 we need some properties
about root systems and Weyl groups. We are mainly interested in finite root
systems. However, in view of the results in [L4, Chapters 39, 40], it is possible to
generalize the main result of the paper to quantum analogue of the enveloping
algebras of symmetrizable Kac-Moody algebras. Therefore, in this section we also
consider infinite root systems.

Let @ be the root system associated to a symmetrizable Kac-Moody algebra (for
example, the root system of a semisimple Lie algebra), and denote by W the Weyl
group of the root system. Let @ * be the set of positive roots, denote by IT the basis
of the root system, and let &7, be the set of positive real roots.

We shall define a function A’ : @}, >N and prove some properties of the
function. We also introduce the concept shortable and prove a result concerned with
the concept.
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We shall use the symbol *“ < for the Bruhat order in W as well as for the usual
partial order in @*. For positive roots «, § we also write f <o when f < a and
p # a. The notation in this section has no relations with those in section 1. In
particular, we allow «; not to be a simple root.

LEMMA 2.2. Let a be a positive real root and denoted by s, € W the correspond-
ing reflection. Then the length ¢(s,) of the reflection is an odd number, i.e.
£(s,) =2m + 1 for some m € N.

Proof. The determinant of a reflection is —1, so a reflection can not be a
product of an even number of reflections.

LEMMA 2.3. Let a be a positive real root and suppose £(s,) =2m + 1. Let B be

a simple root and let w € W be such that w(f) = «, and suppose w =sg - - - Sg is a
reduced decomposition.
For i=1,...,r denote by w; the word sg - """ sg , denote by o, the root

o, =w;(B), let &;:={6>0]s,(0) <0} and set &, ,=={B}.
The following are equivalent.
(i) r=m,ie s,=s5 """ Sg SpSp " Sg, is a reduced decomposition.
(i) Br=0,, 1 <sp(B) =0, <55 _,55(B)=0,_ 1 <...<a;=w(f) =a.
(lll) <ai+l9ﬁiv > <0f0r = la Y
(iv) <o, B >>0fori=1,...,r
(V) B¢ L1y and Py, 0 > #0 fori=1,...,r
(Vi) ﬁieyiforl'f-“-l,...,r

REMARK. It is clear that the property (i) is independent of the choice of the
reduced decomposition of w. So if one of the properties holds for some reduced
decomposition of w, then it holds for all reduced decompositions of w.

Proof. The -equivalence of (ii), (iii)) and (iv) are obvious. Now
84,(B:) = Bi — {Bi, & Do; <0 if and only if (B, ;" > >0 and hence if and only if
{oy, B > >0, which proves the equivalence of (iv) and (vi). The equivalence of (iii)
and (v) follows in the same way.

Suppose now (i) holds, i.e. 2Z(w) +1=7¢(s,). This implies obviously that
2/(w;) +1=1£(s,,), and hence s, =55, - " - - Sgccc s, is a reduced decomposition,
so B, € &;. To prove that (vi) implies (i), note that if y € &;, then —s, () € &,
Further, w,, ,==s; is a reduced decomposition. We prove now by decreasing
induction that 2¢(w;) + 1 = 4(s,,).

We may assume thats,  , =s5 """ Sy trven Sg, . , is a reduced decomposition.
Since B, € &, we know that B, ¢ %, ,. S0 &, 2 {55, (8) |6 € L1} U{Bi, —5.,(B:)}
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and hence |#;| 2 |#,, |+ 2, this forces that 5, =55 -+ - Sgrr sp, is a reduced
decomposition.

DEFINITION 2.4. For a real positive root a set h’(x) :=(£(s,) — 1)/2.

REMARK. The relation between the function A’ and the depth function is
h'(a) =dp («) — 1, for the definition of dp (x), see “A finiteness property and an
automatic structure for Coxeter groups” (by B. Brink and R. B. Howlett, Math.
Ann. 296, 179-190 (1993), Definition 1.5 (i), p. 181).

LEMMA 2.5. The function h’ : @, —N has the following properties:

(i) h'(x) =0 if and only if o is a simple root.

(ii) If B is a simple root such that a = w(B) for some w € W, then h'(a) < £(w).
Moreover, if B £ a, then h'(a) < £(w).

(iii) If B is a simple root such that 0 < sg(x) <a, then h'(sg(@)) + 1 = h'(a).

(iv) Let a be a positive real root and suppose h’(a) = m. There exists a reduced
decomposition s, =sg ** - Sp, SgSp, " 5, -

(V) Let a be a positive real root and suppose h’(a) = m. There exists a simple root
f and w € W such that w(f) = o and £(w) = h’(a).

Proof. Now (i), (ii) and (iii) are simple consequences of Lemma 2.3, and (iv)
and (v) are equivalent. We give a proof of (iv):

If « is a simple root, then nothing is to prove. So suppose a is not simple and
let y be a simple root such that {a,yv > >0. (Such a y exists since a is a positive
root.) Then é :=s,(x) < a is a positive real root. By induction on the height we may
assume that there exists a x € W and a simple root B such that x(f) =6 and
£(ss) =2¢(x) + 1. Then s,k(f) =a, and by Lemma 2.3 we have in addition
2£(s,x) + 1 =1£(s,).

We shall now prove more properties of the function A’.

LEMMA 2.6. Let o be a positive real root and suppose h'(a) =m. Let

Bis- s BmsBs¥is---s¥m»? be simple roots such that a=sg - -- sg, (B) =
Syt s, (v). We have
(i) Either s, sg """ Sg SSp v S, OF sy,(“) =g, 00 s, () =585, "
sﬁ,,,__l(ﬂm)'
(i) Assume that the Dynkin diagram of ®, (the connected component of P
containing o) includes no cycles. If s, sg,*" """ Sg, =8, Sg,.» then
sy, (@) £ B.

(iii) Assume that the Dynkin diagram of ®, includes no cycles. Let 6 be a simple
root. If B <ss(B) <, then sg - - - Sg S5 SSg S, -
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Proof. Set w:=5s5 +-- - g, Ui=8, Sy -

(i) When s, w <w, nothing need to prove. Now assume that s, w 2 w. Then
w~1(y;) > 0. By Lemma 2.3 (iv), we have {a, y,;’ > > 0. Since B is a simple root, we
get w='s, w(B) = w (o — <o, ¥y Dyi) = B — <o, 7Y w ') <0. Thus w's, ws,
<w~'s, w. Set y,=f,, since wsg 2w, we can find i in [1,m —1] such that

g, besed Sp, Sy WSg=58p 1" sg, s, w. Thatis, s, wsgw™'s, andsz ----- 5858,
Sg, sg, are equal. We also have s, wsgw~'s, =us,u~' since s, w(B) = u(y).
Thus we get sp, " " 55,55, , S, """ sg, = us,u~'. According to Lemma 2.5 (i)
and Lemma 2.3 (ii)) we must have i =m — 1 for the reason of length. Hence
s')’l(a) =S, T s)'m(y) =3p, " o :gﬁm—l(ﬂ’”)'

(ii) By (i) and the assumption in (ii) we have y":=s, () =85 - - 55 (Bm)-

Note that A’'(y’) =m —1 (Lemma 2.5 (iii)). According to the definition of

h'() (=m), h'(y’), and using Lemma 2.3 (iil) we see

(a) {B,.,B") is negative and {B,,_,, B, > is negative. In particular B,, #B,8,._ -
Since s, w 2 w, we get

(b) 6:=w~'(y,) > 0. By (i) we see that s, w(f) = —w(f,,), that is
(¢) 55(8) =B —<B, "> = —B,,- By (a), (b) and (c) we get
(d) B,6vV>=1and 6 = +8,.

Note that g + B, is a real positive root of height 2, by Lemma 2.5 (v) and
Lemma 2.3 (ii) we see that ¢ is equal to sz(B,,) or sz (B). That is, s; is equal to
spSp, Sg OF sg_szsg . Using (c) we get

(e) spsp,,(B) = B, and s _sg(B,,) = B, and hence by Lemma 2.3, B8, _, # . Since
s, w 2w, by (i) we know that

(f) s,,(¢) is a linear combination of B, - - - s Bn— 15 Bm-

We also have

(g) Let 7 be a simple root such that sg ----- Sg, S SSg e sg, _,- Since the
properties of B, _, do not depend on the chosen reduced decomposition of
Sg,cc sg, _,» T has the same properties with B,,_,, i.e. (t, B,, ) is negative

and 7 is not equal to f.

Assume that s, (@) = f. By (f) we see that §; = # for some i in [1, m]. According
to (a), (e) and Lemma 2.3 (ii) we know that i <m — 1. We may choose i such that
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all B;,,,..., B, are not equal to B. According to (e) and (g) we can find indices
=i <i<...<ip=m(p23)such that (B, ,B;) ><Ofora=12,...,p—1.
But B; is equal to f and (B, B, > <0 (see (a)), so the Dynkin diagram of &,
includes a cycle. This contradicts to our assumption. Therefore s, (a) 2 B.

(iii) Since a = s;(B) > B, we have

(a) {(B,dV) <0 and B is not equal to 6.

(b) For each reduced decomposition s, - - - s, of w(ty,..., 1, are simple roots),
there exists i in [1, m] such that t;, = 4.

We may choose a reduced decomposition s, - - - s, of w such that the index
i in (b) is maximal in all possibilities. If i is not equal to m, then we can find indices
i=i<i<...<i,=m (p 22) such that

(©<r,t),><0fora=1,2,...,p—1.
By Lemma 2.3 (i1)) we know that

(d)<B, 1, > <0.

According to (a), (¢) and (d), 6 =1, 1,,,.. ., Tis p generate a sub-root-system
of &, whose Dynkin diagram includes a cycle. This contradicts to our assumption.
Therefore i = m, that is, ws; < w.

The lemma is proved.

PROPOSITION 2.7. Let a be a positive real root. Then

(i) The set A,=={B eIl |w(B) =a for some w e W with length h’(a)} is con-
nected. (That is, for any PB,yeA,, we can find a sequence
B=20,,05...,0,=yin A, suchthat (6,0 ,>#0fori=1,2,...,k—1.
We also say that B,v are connected in A,).

(ii) Assume that the Dynkin diagram of ®, includes no cycles, then for each
B e A,, the element w € W such that w(B) = o and {(w) = h’(a) is unique.

(iii) Assume that the Dynkin diagram of ®, includes no cycles. If the set
H,={Bell |B<a, and B, a are conjugate under W} is connected, then
A, =11,.

(iv) Let a, B, w be as in (ii), and let s, be a simple reflection, then s,w < w if and
only if B <s,(a) <a; and ws, <w if and only if B <s,(B) <a.

(v) Let a4, ..., be simple roots. Assume that s,(x) <a for i=1,2,... k.
Then s,,, S,s - - - » S, geNerate a finite group P. If further a, a,, ..., a, are
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linearly independent, then we can find a simple root B and an element w € W
such that w(p) = a and ¢(w) = £(uy) + £(uow) = h’(xx), where u, is the longest
element of P.

REMARK. When the Dynkin diagram of &, includes cycles, the assertions (ii),
(iii) and (iv) may be false. As an example we consider affine root system A4<". Let
o, %, be the simple roots, then (o, aY >=—1 when i#j We have
%y < Sa;(a()) < Sazsa,(%) < saosazsal(aO) < Salsaosazsa,(aO) < Suzsalsaosazsax(aO) =
200 + 3o + 3a; and  atp < 8o, (%) <8y, Su,(%0) < SaySa,Say(%0) < SuySaSa,Say(%) <
SaySa,8a0Sa, S, (%) = 20 + 30y +3a2=—a But s,,5:,5205,5%, # Sa, 50,5405, 52, thus
(i) is not true for A{’. Moreover, 0<s, (1) <o but s, S,,5 SaoSu,%; 2

xo a2
825, 5ugSa,52,> SO (iv) is not true for A%V, Note that <sa2(a0) <salsa2(oc0) =
o + 20, + , and o + 2o, + oz2 F SuoSa,(%1)s Sa,5,(¢1) We see that (iii) is not true for
A9,
In addition, IT, may be not connected. For example, consider affine root system
C{. Let oy, a;, , be the simple roots, such that {a,, &) > = —2 = {a,, &)’ >, and
(ao,oz2 >=0, (a;,a9>=—1=<(a;,ay). Then o =0y + 20, + 20, € P, and

= {a, &, } is not connected.

Proof Suppose h’(x) = m. In parts (i) and (ii), f,, .. Bm, By Vis- s Vms Y are
simple roots and w =55 - - Sg o =S5, """ 8y and a’ stands for s, ().

(1) Suppose that w(B) = u(y). We need to prove that §, y are connected in 4,. We
use induction on m. When m =0, 1, the assertion is obvious. Now assume that
m 2 2. By Lemma 2.5 (iii)) and Lemma 2.3 (ii), A’(2") = m — 1, this implies that
A, < 4,.If s, w <w, then (s, w) =m — 1 = h’(«’). By induction hypothesis f, y are
connected in A,.. In particular, B, y are connected in 4,. If s, w 2 w. By Lemma 2.6
(i) we havea’=s, - - - 5, () =85, """ sg, _,(Bm). By induction hypothesis ,,, y
are connected in A,.. Obviously {B, B> > #0, so B,y are connected in A,.

(ii) Suppose that w(B) = u(f). We use induction on m to prove that w and u are
equal. When m = 0, 1, the assertion is obvious. Now assume that m > 2. Note that
h'(@)=m—1.1f s, w2w, by Lemma 2.6 (i) and Lemma 2.3 (ii) we have

a'=s,, """ s, B)=sp, """ sg, _,(Bm) = B. By Lemma 2.6 (ii), this is impossible.
Therefore we must have s, w <w, then /(s, w) =m —1=h’(a"). By induction
hypothesis s, w=s,, - - s, , hence w =u.

(iii) We first establish the following fact.

(a) Assume that the Dynkin diagram of & includes no cycles. Let 8,7 be simple
roots in @ such that {B,y") <0 and y = x(f) for some x € W. Then s45,(f) =7y

and s,54(y) = B.

(Remark: If the Dynkin diagram of @ includes cycles the assertion (a) may be
false. As an example we consider the root system generate by simple roots a,, a;, ®,
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with relations {a;, Y, ;> =<o;+ 1, Y=—1for i =0, 1, {ay,ay > = <oy, 000 > =
—2. Denote s; for s5,, i=0,1,2. Then s,5,55 () =, but sp5,(x) = 3y +
4a, # a,.)

Let 0 be a simple root such that xs; < x and let x, be the shortest element of the
coset x<ss, 55 (we denote <s;, 55 ) the subgroup of W generated by s;, s5). Let y
be the element in {s;, 55> such that x = x,y. Since x,(d) > 0 and x,(f) > 0, so y(f)
is a simple root, denote by t,. We have

()T, =P or {(B,1) ) <0, and x,(1,) =7.

Note that £(x,) is smaller than #(x). We may continue this process, and finally
we get a sequence of simple roots y =1,,7,_;,..., 7, To =B such that

Either 7, =1, , or {t;, 1%, ) <0fori=0,1,...,r—1. &)

Since {f,y ") <0 and the Dynkin diagram of & includes no cycles, by (1) we
must have

Either 7, =f ort,=yfori=1,...,r—1. (o)

Therefore there exists an element x” in {sg, 5, > such that x’(8) =y. It is easy to
check that x’(f) =y implies that {B,y")>=<(y,BY)>=—1 and x’=sps,. This
completes the argument for (a).

Now we argue for (iii). By Lemma 2.5 (v), the set A, is non-empty. Obviously,
A, <1I,. Let Be A, and let y € I1,. Assume that B # y. Since I, is connected, we
can find a sequence f =6,,0,,...,0, =y in II, such that {4,,6,,,> <0 for
i=1,...,k—1 By (a) and the definition of IT, we obtain

(b)ss,, 85,(0:+1) =96, and 8556, ,,0:) =6; 4 fori=1,2,... k-1

Let w € W be such that w(f) = a and £(w) = h’(x). By (b) we get ws; 55(5;) = a.
Note that s;,(f) =f +06,<0a, using Lemma 2.6 (ii)) we see ws;, <w. Thus
¢(ws;,55) =h’(x) and J,€ A,. Continue this process, finally we see that
¢(w’) =h’(x) and w'(y) = a, here w’ = ws; 55 55,8, """ 55,55, _,- Hence y € 4,.

(iv) The “only if”’ parts follow from Lemma 2.3 (ii). Assume f <s,(2) <a. By
Lemma 2.5 (iii) there exists a simple root T and an element u € W such that
u(t) =s,(«) and £(u) =h'(s,(®)) =h’(a) — 1. Thus s,u(tr) =a. According to the
definition of h’(x) we must have h’(x) = £(u) + 1. Since s,(x) 2 B, applying Lemma
2.6 (ii) we see s,w <w. If B <s,(B) <, by Lemma 2.6 (iii) we see that ws, < w.
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(v) If a, 0, ..., are linearly dependent, then «,,..., a, span a finite root
system [K, Corollary 4.3, p. 42]. In particular, its Weyl group P is finite. Now
assume that a, a,, . . . , o, are linearly independent. Let 7, . .., T, be simple roots in
{o,..., 0} such that s, ----- 5., is a reduced decomposition. Define wy:=e (the
neutral element in P), w;:=s; -+ - s., fori=1,...,r. Then

(a)Fori=0,1,...,r—1, we have w,, , =5, ,w; 2 w;. In particular w; ' (z,.,) is
a positive root and is a linear combination of «,, . .., .

Since <a, Y »>0 for j=1,...,k, by (a) we obtain
(b)Fori=0,1,...,r — 1, one has {w;a, 7%, ,>>0.

Since a, a4, . . ., o are linearly independent, by (a) and (b) we get the following
assertion.

(©) a >w () >wy(a) >-->w,(x) >0.

The height of « is finite, hence the group P must be finite and has a longest
element u,. We may take the element w, in (c) to be the longest element u,. Then
uy () is a positive real root. By Lemma 2.5 (iii) we see

(d) h*(2) = £(uo) + h'(uo ().

Let feIl and x € W be such that x(B) =uy(2) and £(x) = h'(us()). Set
w=uyx, then w(f) = a and £/(w) < £(uy) + £(uyw) = h’(x). By (d) and the definition
of h’(a), these imply that £(w) = £(uy) + £(ugw) = h'().

The proposition is proved.

2.8. Assume @ is finite, then &+ = @ ,. We shall give another interpretation for
the function 4’ : & * — N. We recall some simple facts about finite root systems. Let
&V be the dual root system of &. For a root « in @, denote by a v its corresponding
root in & V. We identify the Weyl group of & with W, the Weyl group of @. Let
a, B be positive roots.

(i) If « is a short root and a # B, then [Ka, BV )| < 1.
(ii) For w € W we have w(f) =« if and only if w(fV) =a".
(iii) « is a long (resp. short) root in @ if and only if ¥ is a short (resp. long)
root in @ V.
(iv) Assume that both a, B are short (resp. long) roots, then f < « if and only
if ¥ <av.
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PROPOSITION 2.9. Assume that & is of finite type. Let a be a positive root.
Then
(1) h'(x) = h(x) — 1 when a is a short root, and h’(o) = h(a ™) — | when o is a long

root, where h denotes the height function of ®* or ®" .

(i) A, =11,, and for each B € I1,, there exists a unique element w € W such that
w(B) = a and £(w) = h'(a).

(iii) Let w be as in (ii) and let sg - - - - - sg, be a reduced decomposition of w. Set
Bni1=PB. Then for any 1<i<j<m, we have sz --:-- Sg,(Bj+1) 2
Sg 1+ - Sg By 1)

(iv) Let w be as in (ii) and let s, s, , be simple reflections in W such that s, w < w,

S,,W S w (resp. ws, <w, ws,, <w), then s, 5, =5,.5,,.

Proof. Using 2.8 and Lemma 2.3 we get (i).

(i1) Since @ is finite, the Dynkin diagram of @ includes no cycles and I, is
always connected. By parts (ii) and (iii) of Proposition 2.7 we see that (ii) is true.

(iii) By 2.8 we may assume that a is a short root. If j =m, we always have
Sgo s,Bj(BJ-Jr 1) >8g s,,j(ﬁj +1) by Lemma 2.3. Now assume j < m. Using
28 and Lemma 23 we see s5...5 (B)=pfi+s5 """ sg (B) =B: +
Sgipy Sg(Biv1tsp S5, (B) =Bi+sp, ., Sg,(Bi+1) s, "
5888, Sﬂm(ﬂ) and Sg Sﬂm(ﬂ) =sp s ﬂj(ﬂj+ D)+ S, 58,58, . »
..... Sﬁm(ﬂ) Ssp e 'sﬁj(ﬂjﬂ) + B, S, SeSp L, 'sﬂm(ﬂ)' Hence we

must have sg - - - Sg,(Bj+1) 28,7 55, (Bj+1)-

(iv) Assume s, w <w, s, w <w. Let u be the longest element in the dihedral
group generated by s, ,s,,, then £(w) = £(u) + £(uw). Thus y,, u(a), y, are simple
roots of the finite root system (Zy, + Zu(a) + Zy,) N ®, whose Dynkin diagram is
not a cycle. Therefore we have <y, 7y > =0, ie. s, 5,,=5,,s,,.

If ws, <w, ws,, <w, then (8,7 > <0, {B,yy > <0. But the Dynkin diagram
of @ includes no cycles, so {y,, 7y, >=0.

The proposition is proved.

REMARK. When ¢ is infinite, the relations between the functions A’, & are not
so simple as in Proposition 2.9 (i). Also Proposition 2.9 (iii) and (iv) may be false.
In fact, consider the affine root system D{. Let a,, a;, o, a5, &, be the simple roots
such that {a,,a >=—1for i=0,1,3,4. Let a = ay + 2, + 30, + a3 + @4, then
h'(x) = 6. Let w = 5,,5,,5 52,55, then w(a,) =oa. We have s, s,,(2;) <s,,(x),
and s, w <w,s,,w<w, buts, s, #s,,s,,. So (iii) and (iv) are not true for D{".

2.10. Set # ={(w,B) e W xII |w(f) e ®},}. We call an element (w,f) e H#
shortable if there exist w,, u; € W such that w=w, -u;, and w;(B) e II, £(u,) 21,
u, € s, t) for some simple reflections s, t € W; we also call £(w) the length of (w, f).
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Here we use the convention: for x, x;, x,,..., X, € W,wewrite x =x, - x, """ Xy
if x=x,%x,"""x,, and £(x) =£(x;) +£(x;) + - -+ £(x,,).

Let (w, B), (u,y) € H#, we write (w, B) ~ (u, y) if there exists u, € W such that
w =u - u, and u,(f) =y. The relation ~ generates an equivalence relation in J#, we
denote it also by ~. The equivalence class containing (w, f) is denoted by (w, f)~.
The set of all equivalence classes in 5 is denoted by .

LEMMA 2.11. Let B,v, 6 be simple roots and w € W. Assume w(f) =y and
f(w) 2 1.
(i) If ws; < w, then s5, sz generate a finite group, denote by (s;, sg ). In particu-
lar, |<6, BV ) <B, 6 )| <4
(i1) (w, B) is shortable.

Proof. (i) We apply the method in [L1, 1.8]. Let w, be an element of the coset
w{ss, 5g > of minimal length and let w, € {s;, s3> be such that w =w, - w,. Then
w, (), w,(B) are positive roots, so w,(f) is a simple root. Obviously, w,(d) <0, and
wys5(B) <0. Since w,(6) and w,(B) are linearly independent, we have
W, 55(8) = w,(6 — {6, B¥)B) <0. Thus w,ss is an element in {s;, s5) of maximal
length. So (s;, s5) is finite.

(ii) By the definition and the proof of (i) we get (ii).

PROPOSITION 2.12. (i) For each equivalence class (w, )~ in 3, there exists
a unique shortest element (u, y) in (w, B) ~. Furthermore, we have w = u - u, for some
u e w.

(ii) Assume that @ is finite. For two elements (w, B), (u, y) € I, choose arbitrary
(x,0), (y,€) € # such that x ‘w=x""-w,y lu=y~ ' uand w() = x(9), u(y) =
y(e), then (w, B) ~ (u, y) if and only if (x, d) ~ (y, &). In particular, if x is a shortest
element such that x ~'w=x""'-w, and x ~'w(B) is a simple root &, then (x, ) is the
unique shortest element in (x, 6)~. We also denote (x,3)~ by (w, )+ .

Proof. (i) Let (u,y) be an element in (w, f)~ with minimal length. We shall
prove that w = u - u, for some u, € W, this forces that (u, y) is the unique shortest
element in (w, f)~.

Let (u,y),w,B)e(w, )~ be such that u'=u-uj,u’=w’-wi;, where
uye W, and w] is one of the following elements (6 is a simple root): s;,
B, B>=0; g5 (B BVIBLOV>=1;  s5pss, <6, BB, VD=2
5585858555, <0, B’V > <{B’, 6V = 3. Because (i, y) is an element in (w, f)~ of mini-
mal length, using exchange condition [K, Lemma 3.11 (¢), p. 33] we get u} =u, - w}
for some u, € W, thus w' =u - u,. According to the definition of ~ and Lemma
2.11 we see that there exists u, € W such that w =u - u,.
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(i) Suppose that (w, f) ~(u, 7). It is no harm to assume that (u,y) is the
shortest element in (w, f)~. By (i) we know that x "'u=x"'-u,y " lu=y"'-u
and x(8) = u(y) = y(e). Let uy€ W be such that uyus, = u, - us, = w,, the longest
elements of W. Then wuy=x,-x"'=y -y~! for some x,,y € W. Since
o =uyu(y) € I1, we get (x, 8) ~ (uy ', 6) ~ (y, €). The “only if”’ part is similar when
one notes that w = 'x =w=1-x, u"ly=u"1.y.

The proposition is proved.

REMARK. Part (ii) gives a way to compute the shortest elements in J# for
finite root systems.

For infinite root systems, sometimes it is impossible to find an element such that
x“'w=x"1-w and x~'w(f) e Il. As an example we pick up again A¢". Let
o = 200 + 30, + 30y, B =0tp, W = SuySa,524%,52,» then we can not find an element
x € W such that x "'w=x"!-w and x~'w(B) e II.

3. Several Lemmas

3.1. Keep the notation in section 1. In this section we give several lemmas
concerned with the automorphisms 7;. We refer to [L3]. The Lemma 3.5 is an
essential ingredient to the proof of Lemma 4.2, which implies that the root vectors
are linearly independent.

Let si, 5,8, - - - S, _ S, be a reduced expression of the longest element w, of W.
For any ¢ =(¢y, ¢5,...,¢,) €N, r=(ry,...,r,) € Z", we set

E¢ = E9 Ty (E2)Te Tu,(ER) ... To To, ... To,_ (ER),  Fo=Q(EY).
G =Ep ERT, (ER)T,, T (ER) .- Ty, Ty, ... Ty, (ER),

He = (G,

K=K).. Kn

Let U™ be the subalgebra of U generated by all E,. The following two lemmas are
due to Lusztig (see [L3, 2.4])

LEMMA 32. Wefixie[l,n]. Let O,={¢ e U* |F,¢( —EF,e K7'U*}. Let O;
be the Q(v)-subalgebra of U™ generated by the elements T,(E;), T,T;(E,),
T, T,T,(E;), T,T,T,T;(E,) for j such that a,;a; =3, the elements T;(E;), T,T;(E;) for
J such that a;;a;; = 2, the elements T,(E;) for j such that a;;a; =1, and by E, for j # i.
Choose a reduced expression s Si,Sk, - - - Sk, _,Sk, 0f Wo be such that k, =i. Let O}
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be the Q(v)-subspace of U™ spanned by the elements E¢ (defined in 3.1) for various
c=(c,...,¢,) €N such that c,=0. We have O, =0; =0 =U*nT,(U™).

Proof. 1t is clear that O, is a Q(v)-subalgebra of U™. It is easy to check that the
generators of O; are contained in O,. It follows that O; < O,.

By using the method in the proof of [L1, 1.8] we see that O} = O;. As the same
way of the proof of R; = R} in [L3, 2.4] (notations in loc. cit) we get O, = O;. The
lemma is proved.

LEMMA 33. Wefixie[l,n). Let P,={({ e U* | F,¢ —¢F; € K;U™}. Let P} be
the Q(v)-subalgebra of U™ generated by the elements T;(E;), T;T;(E,), T;T;T;(E;),
T.T;T;T;(E;) for j such that a;;a; = 3, the elements T;(E;), T;T;(E;) for j such that
a;;a; = 2, the elements T (E;) for j such that a;;a; = 1, and by E, for j #i. Choose a
reduced expression si si,S,...Sk, _ Sk, Of Wo be such that k,=i. Let P} be the
Q(v)-subspace of U™ spanned by the elements G° (defined in 3.1) for various
c=(c,...,c,) € N such that c,=0. We have P,=P; =P =U**nT;(U").

The proof is similar.

34. For e NR™*, we denote U; the set of all elements & € U such that
KEK ' =04 DE Let U =UTNU,.

LEMMA 3.5. Let Q;=0,nP,={eU* IF,?,‘={F,} We have s;(A) =2 A if
Q.nU;S 75{0}'

Proof. Let U, be the A = Q[v]-subalgebra of U generated by all E;, F;, K;, K;'.
Regard Q as a Q[v]-algebra by specializing v to 1. Thus we can get the Q-algebra

U]=UA®AQ/<K|—l,Kz—l,...,Kn—1>,

which is just the universal enveloping algebra of the simple Lie algebra correspond-
ing to the Cartan matrix (a;). Let f;, U, U{;, be the images of F,, U™, U,
respectively. According to the commutation relations between root vectors in U,
and PBW Theorem one can check easily that the subalgebra Q,,={xeU*
| fix = xf;} is generated by e,(x € R*) such that & — «; ¢ R, where e, is a root vector
in U of root a. Note that « — a; ¢ R implies that s;(o) = a, we see that Q, ;N U,
# {0} implies that s;(4) = A. Our assertion follows from this and that Q,,nU¢,
# {0} if Q;n U} # {0}. The lemma is proved.

36. REMARK. By 32 and 33 we know that Q;,=0,nP;=
UrnT,(UY)NT;(U™). It is likely that Q; is the Q(v)-subalgebra of U* generated
by the elements T, T;(E;) for j, k with a;a; >0, a,a,; =1, and by E; for j #i.
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4. Root vectors

4.1. Keep the notation in section 1 and section 3. In this section we describe the set
of all root vectors of a given root. Theorem 4.4 is the main result.

Let IT denote also the set of simple roots in R. Given a positive root a in R*.
Let Y, be the set of all root vectors of root a. Recall that we have defined the set
11, in Proposition 2.7 (iii). According to Prdposition 2.9 (ii), for each g € IT,, there
exists a unique element w € W such that w(f) = a and £(w) = h’(«). We shall denote
the element by w,,; or by w,, when B = a,. Suppose m = h’(a), we fix a reduced
expression s; ;. ...s; of w,z, B €Il,. For any simple root y we set E, := E; when
y =«&;. Define Y, ={T,;,(Ep) |a€l,}, where T,5,=TT3...Tin, a=(a,a,,
oo, 8y) €1,:={1, —1}". When h’(a) =0, we set I, = {e} and T, 5, =id,, where e
is the neutral element of W.

LEMMA 4.2. Keep the notations in 4.1.

(i) The set Y, is independent of the choice of the reduced expression and the
choice of B, so only depends on a.

(ii) The elements T,z ,(Eg), a € I, are linearly independent over Q(v). In particu-
lar, the set Y/, contains 2¥® elements.

Proof. (i) Using Proposition 2.7 (iv) and induction on A’(x) we see that Y7 is
independent of the choice of the reduced expression. According to the proof of
Proposition 2.7 (iii) and 1.3 (d) we know that Y, does not depend on the choice of
p.

(ii) If each j € [1, n] appears in the sequence ji, j, - - - s Jms Jm+1 (%, , == B) at

most two times, then we can choose the reduced expression such that j, j,,...,j,
is a subsequence (disregard order) of j,.1,/p4+25--+sJmrJm+1 for some p and

Jp+1>Jp+2s -+« sJmsJm+1 are pairwise different. Thus for any ael,, T7IT}2...
Tis(F, ,)e U™ =QU™) for any ¢ <p—1, and Tjr+1Tpr+2... Tjm(Eg) e U,

since both ji, b, ..., j, and j, 1 1,J, 41> - - - »Jm are pairwise different. Combine these
and using induction on m we see that in the expression

T}l Tjag o T]a:(EB) B < cZeNv pc,,r’ch’KrEc’ Perec € Q(v)a
;e n

(resp. T TS .. T = Y, plncHKG,  ply, eQ(v),)

c,ce NY
rean

if p.,.#0 (resp. p.,.#0), then E°€ O, (resp. G°€ P;), where F<, E°, HC,
G¢, K" are defined as in 3.1, we choose the reduced expression of w, such that
k, =J,. According to Proposition 2.9 (iii) we see that
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5.8, -8, )28, .8 ) for any 1 <r <m. (%)

Therefore if p., #0 (resp. p..,. #0), then Ee U} (resp. G°e U} ) for some
A €NR™ such that s; (1) < A. Using Lemma 3.5 we see that if

z Pa Ta,ﬁ,a(Eﬂ) = 09 Pa € Q(U)a

ael,

then

Z Pa Ta,ﬂ,a(Eﬂ) =0, Z Pa Ta,ﬂ,a(Eﬂ) =0.

ael, ael,
al==l a|==—l

Using induction we know that p, =0 for all a € I,. Thus we have proved (ii) for
type 4,, B,,C,, D,, G,.

In general we argue as follows.

Let

Tfll T.;? ce Tja,:,”(Eﬂ) = éa + é;a
where

— 4 [ 7 C' . _
ca - Z pc',r.ch KrEcs Ca - Z pc’,r,cF KrEc’ if a = ls
¢, ce NV ¢’,ce NV
reZn reZn
Ece Ojl EC¢ Ojl

— (d ’r ’ el rec . _
éa - Z pc’,r,cH Kch’ ga - Z pc’,r,cH K'G > if a = — 19
c’,ce NY c’,ce Nv
reZn redZn
G‘ePh Ge¢ le

pc’,r,c € Q(U), p ::’,r,c € Q(U).
Note that

(#+) The image of T717T72...Ty(F;, . ) (1<r<m) in Uy (see the proof of
Lemma 3.5) is not zero,

s 85,87, - - 8,(%, . ), 1 Sr < m are pairwise different. Using induction on m
and the fact (*) it is not difficult to check that if p., #0, E°e O; nU, (resp.
Porc#0, G°€ P, nU,), then s, (1) <A, and that the set {{,|a, =1} (resp.
{¢, | a, = —1}) is Q(v)-linearly independent. By these and Lemma 3.5 we see that
(ii) is true.

and «;
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4.3 REMARK. By (*) and (**) in the proof of Lemma 4.2 we know that if
T; T+ ...Tim(Eg) ¢ U™ for some r <m, then T,,,(E;) ¢ U™.

Jr 7 Jlr +1

Set Y= UaeR+ You Y,:: UaeR+ Y;

THEOREM 4.4. Keep the notations in 4.1. Let x € R, then
(1) The set Y, is stable under the anti-automorphism ¥ (see 1.3 (a) for the
definition), i.e. Y(Y,) = Y,. In particular, ¥(Y) =Y.

(i) We have Y, < Y, nU™*. In particular, all root vectors in U are linearly
independent over Q(v).

(iii) Recall that we have defined the set J# in 2.10. The map © : (w, f)~ — T,(Eg)
defines a bijection between # and Y. Moreover O(#,) =Y,, where
#,={(w, B~ € F | wB) = a}.

(iv) Let (w, B)~ € 3, then O((w, B)7) =¥ - O((w, B)~).

Proof. Let 6 be a simple root and x € W such that E:=T, (E;) is an element
in Y,.

(i) Choose y € W be such that y~'x =y~ ' -x and e:=y~'x(6) is a simple
root, according to 1.3 (a-b) we get Y(E) =T, (E,) € Y,.

(ii) When A’(a) = 0, the assertion is obvious. Since h’(s; (a)) < h’(a), we shall
use induction on A’(x). By induction hypothesis we see that there exist
a,...,a,¢€{l, —1}, such that T,(E;)=Ts2... Tim(Eg), where z =s; x. There-
fore T.(E;) =T, T2...Tim(Ep), if £(x) =£(s;x) +1; and T,(E;)=T;'Ty2. ..
T¢m(Ep), if £(x) =£(s;x) — 1. Hence E€ Y, nU™.

(i) By 1.3 (b) we know that @ is well defined and is surjective. We use
induction on A’(x) to prove that @ is injective. Assume that @((w, f)~) =
O((u,7)~). Let w =s; w, u’=s; u. Using (i), (i), 1.3(a) and Proposition 2.12
(i) we may assume that w'<w, u’<u. By induction hypothesis we get
w’, B~ =(u’,y)~, using Proposition 2.12 (i) we have in addition (w, f)~ =
(u,7)~.

(iv) It follows from the proof of (i).

The theorem is proved.

REMARK. (i) It is likely that Y=Y nU".

(ii) For any v, € C*, we regard Q(v,) as an 4 = Q[v]-algebra by specializing
v to vy. Let U, =U,® Qo). If v # 1 for any 1 <d <max{d,}, the same
arguments show that Lemma 4.2, 43 and Theorem 4.4 are true for U,,.
If v2=1, then for each a € R, there is a unique (up to +1) root vector of
root a.
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COROLLARY 4.5. Notations are as in 4.1. Let E=T,;,(Ez) €Y,
a=(a,a,,...,a,), m=~h'(a), then
(i) The element E is a root vector if and only if W(E) is a root vector. When
a, =1, then E is a root vector if and only if T;2 . . . Tim(Eg) = T, (E;) € Y for
some ue W, 6 €1l and s; u 2 u.
(i) Forany 1 <i<m, T;iTji+1 ... Tim(Eg) is a root vector if E is a root vector.
(iii) If T7Tirrt ... Tim(Ep) is not a root vector for some 1 <p <m, then E is

Jp +1
not a root vector, i.e. E¢Y,.

Proof.
(i) The first assertion follows from Theorem 4.4 (i). The second follows from
the proof of Theorem 4.4 (ii).
(ii) Suppose that E = T, (E;) for some x € W and some simple root d. As in the
proof of Theorem 4.4 (i) we see T,.(Es;) =T;iTyi+}. .. T;m(Ep), where

l—-
X'=8 8 .5 W.

(iii) It follows from (ii).

For any E € Y, we shall denote the shortest elements in @ ~1(E), @ ~(¥(E))
by (Wg, o), (WE, acz) respectively.

COROLLARY 4.6. Let a,j, be as in 4.1 and let E€ Y,.
(i) We have s; wg < wg if and only if 5; wE = wk.
(ii) Let W, is the subgroup of W generated by these simple reflections s, such
that a,, < oa. Then wg, wg € W, and o, oyx € I1,.
(i) We have wg'wt=wg' -wk and wy'wi (o) = a,.

Proof. (i) Let ael, be such that E=T,;,(Es) (notations as in 4.1). By
Theorem 4.4 (ii) and its proof we see that s; wy < wg if and only if a; = 1. Since
Y(E)=T;,"1...T; *(Eg), we know that our assertion is true.

(ii)) From the proof of Proposition 2.12 (ii) we see that w, € W, if and only
if wk e W,. Thus we may assume that a; =1 to prove (ii). In this case, accord-
ing to Corollary 4.5 (i), Theorem 4.4 (iii)) and Proposition 2.12 (i), it is obvious
that we have wy =s; wp, where E' = T2... T;m(Eg). Thus we can use induction
on h’(a) to prove the result since h’(s;, («)) = A'(a) — 1.

(iii) It follows from the proof of Proposition 2.12 (ii).

By means of ¥ we can describe the antipode S(E) for a root vector E € Y,.

THEOREM 4.7. Suppose o =m0, + myo,+---+m,a, € R*. For any root
vector E in Y,, we have S(E) = p,K;'W(E), where
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n n—1
paz(—l)ml+m2+"'+mn H Umk(mk—l)dk l—I Umkdk(mk+]ak'k+1+"'+m,,ak',,),

K,=KMmK?2 . K™

Note that Y(E) is also a root vector in Y,.

Proof. 1t follows from K;'EK;'E;=v%%K;'K;'E,E,=v%%K;'K; ' E,E,
and the definitions of S, ¥ (see 1.1 and 1.3 (a)).

PROPOSITION 4.8. We have # Y, <2¥®. The equality holds if and only if
Jisdzs « « s Jms Jm+1 (&, = PB) (notations as 4.1) are pairwise different.

Proof. The first part is obvious.

Thanks to Corollary 4.5 (i) and Corollary 4.6 (ii) we see the “if”” part of the
second assertion is true.

Assume that j, = j,.. for some different k, k’. Using Corollary 4.5 (iii)) we may
suppose that a, R is one of the following cases: a;+ a,+ a5+ a4, D,;
oy + 20, + 205, Bs; oy + 20, + a3, Cs; 30y + 205, Gy; 20, + &, G,. (Here we number
the simple roots in IT as usual). Then it is easy to check that the following elements
are not in U* by using 1.3 (h-k): T5'T\T3T,(E,),D,; T,T{'Ti(E,), B;;
T,T;Y(E,), C3; T, Ty \(E,), Gy; T,T5'(E,), G,. In particular, they are not root
vectors. The proposition is proved.

49 REMARK. Let o« =ma; + mya, + -+ - +m,a, € R*. Using PBW Theorem
and Proposition 4.8 we see that U, is spanned by Y, if all m; < 1. It seems that U}
is not spanned by Y, if m, =2 for some k €[1, n).

5. An example, type A4,

5.1. It is easy to say a little more for type 4,. In this section we shall assume
that R is of type A,, number its simple roots as wusual and fix
a=o;+o;,+ -+ (i <j). We choose all d; to be 1. We have

(i) h'(x) =j—1.

(ii) I, = {0, 01y - - -5 0}

(1) Wop =881 Sk 15iSie1" " Sk—15 i<k<j
(V) W, =8 Sip15 -5 8-
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(v) Wehave #Y,=#Y,=2""So #Y=2"*'—n -2,
(vi) Let E=TpTy - - THH'(E)), (@), . .., a;,,) €1, then we have

D_lEiE' —E,Ei, if a,~+1 = 1,
(a) E= {v—‘E’E,-—E,-E’, ifa,,,=—1.
& £ol7EE~EE. ita=1,

v_lEjE”—E”E}, ifaj= —"1,

where E' =TpTj~ - Ti2(E; ), E"=Tj~---THH(E). Moreover,
E,E =v*%EE;, E,E =v¥%EE,.

Proof. (i—v) is obvious by results in sections 2 and 4. Now we prove (vi).

The assertion (a) is obvious. Note that E = T +1 T %+2- - - T/_%4(E;), we get
(b). The remain part of (vi) can be easily deduced from the definition relations of
U.

Let O,; be the set of monomials in E,, E,, |, ..., E; such that in any of which
Ey (i <k <) appears exactly once. It is obvious that O,; = {E,E, EE; | E€ O,;_,}
(we define O, ;_, similarly), so there are at most 2~ elements in O;;. But each
element E € Y, is a Q(v)-linear combination of elements in O,;, thus (v) implies that
O,; has exactly 2~/ elements which are linearly independent over Q(v) (one also can
get this from PBW Theorem).

Using (vi) and induction on j — i it is easy to see that the determinate of the
transformation matrix from the set Y, to the set O is +(v =2 —1)U—977"71,

We give some properties for (wg, o, ), E € Y,. We need the following lemma.

LEMMA 5.2. Given (w, o) € # and let t,t
of w. If

4—1° " Lty be a reduced expression

Lty aty 2 i) <t, 1ty ti() 28, 5 b)) 22 5(0) 2o

Jor some 1 <p < q, then (w, o) is shortable.

Proof. The element (w, o) is obvious shortable when there exists some simple
reflection s in R(w) = {s; | ws; <w, i €[1,n]} such that s(a) = a,. Suppose that
there exists no simple reflection s in 8(w) such that s(a,) = a,, then #2%(w) =1 or
2. When &#(w) =1, it is easy to see that w =u - 5,85, _; or w =u - 5.5, ; for some
u € W, so (w, ;) is shortable. When # %#(w) = 2, we have #(w) = {s; _;, S 41}, and
W=WiSk " Sm,Smy—1"" " Sk+25%+150,5n, 1" " Sk—285_ for some m, >k, n <k,
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where w,s, is the shortest element in the coset wW, W}, is the subgroup of W
generated by those s; such that i # k. Our assumption on %(w) implies that
Wi =WoSk  SmoySmy—1" " " Sk+28k+15n,8n,— 1" " " Sk— 25k -1 or WaSk " SmySmy—1

Sk 4285k 1 OF Wos - SnySny 177" Sk 28k for some m, >k, n, < k, where w,s, is
the shortest element in the coset w,W,. If m,2m, or n,<n,, we have
W=1U"SS_,0rw=u-S8S8, forsome u € W, so the assertion is true. If m, <m,
and n,>n,, we continue this process, finally we see that w=u-s.s5,_, or
W =u-5S,, for some u € W, which is what we need.

REMARK. In general Lemma 5.2 is not true. For type D,, let
W = §,5,53545,5,5354, then (w,a,) is the shortest element in (w,a,)~, but
w(o,) < syw(a,), so Lemma 5.2 is false for type D,. Here we number the simple
roots in R as usual.

PROPOSITION 5.3. Let E=TyTy~ ... . THqW(E) €Y, (a,a_,...,
a;,)€l,. Then
(1) We have wg = s,wg if a; = —1, and wg = s;wg if a; = 1, where
E'=TpTp - Tig(Eiyy),  E'=Tpy - Tie(E).
(i) We have wE—sksk+, Swg if aj=a;_ =" =a,,,=—1, g =1,
j>k>i, where G=T; - Tk Tge~r - TEHI(E)).
(iii) We have wg = ug - W, for some ug € Wa—al——aj (ff « —a; —a; ¢ R* we set

Weajmq,= {e}). Moreover wg =w,,_when kg =i or j.
(iv) We have #{EeY,|ks=k}=Ct-}. Note that Ck=/ is also the number of
different reduced expressions of w,,.
(v) Set Y, ={E€Y,|kpg=k} (i <k <)), then ¥(Y,;) =

aj k+i

Proof. (i) Note that we also have E =T %+'T %+2... T, %(E;), we see that
(i) was already proved in the argument of Corollary 4.6 (ii).

(i) Let w=s5:84,"""s;wg and let wg=s,5,,, " "sw,i<h<j Then
T,(E,) = E for some k €[i,j — 1] (in fact k = k). Since w, w; € W,, by Proposi-
tion 2.12 (i) we can find some x € W, such that w =w; - x. But w(x,) =a, we
necessarily have xeW,_,. This forces that k=h We then have
T, (E.) = T, (E,). Therefore w, = wg since wp is the shortest element in & ~1(E).
The assertion (ii) is proved.

(iii) If kg =i or j, by Lemma 5.2 we see that wy = w, . If kg, by the proof
of (ii) we see that wg = 5,8, " " S;Wg, kg =k for some heli+1,j],GeY, 5j(@)*
Using induction hypothesis we know that wg=ug Wy, for some
U € Wy @y —aj—a,_,- So we have sjug = ugs;. Note that §;w, )k, = Wax,, We see (iii)
is true in this case.
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From the proof of (ii) it is easy to see that kz=k if and only if
#{meli+1,j]|a, = —1} =k —i. Thus we get (v), and (iv) follows from 5.1 (v).
The proposition is proved.

5.4. We shall give a clear formula for the coproduct of a root vector. We need some
preparation.

Let a be as in 5.1. For any f e NR™, let ¢(B) be the number of connected
components of f. When B < a, ¢(f) is just the minimal number of roots in R*
whose sum is f.

Let E=THTy~' - TEHRWE,) =T %+ T %+2--- T, %(E;) be a root vector
in Y,. Let e NR™ be such that f<a. If =0 we set Eg=1, K;=1, if
=0+ + -+ (<k<I<j) we set E;=TyT}' T E,
Ke=KK, |- K 1Ky, if By,..., B are connected components of B and
B=B+: " +Pp, we set Eg=Eg ... Eg , Kg=Kp ...Kp . The elements
Ejg, Kg are well defined since for different connected components ,, §,, we have
Eg,Ep,, = Ep, Ep,» Kp, Ky, = Ky, Kg,.

We define X inductively as follows: If j —i <2, we set

Xe={yeNR*|y<a,wz'(y) 20}

Assume that X is well defined for E' =TpTy~'... T/ 2(E)€Y,,
o' =a —oa; when g, ; =1, we set

Xg=1{y +°‘i’7,l?aY’EXE'sO"“V’Z“Hl};
when a;, , = —1, we set

Xe={y+0,7 |17 €Xp,? 2,1}

Now we can state our second main result.

THEOREM 5.5.
(i) Keep the notations in 5.4, then

AE)= Y @~ '—v)@"+0-KE QE,

'YEXE

(When a; = - - =a; ., = 1, this formula appears in [R].)
(i) S(E) =(—=1)"/+W'~IK;'W(E).
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Proof. When j =i, it follows from the definition of the coproduct. Now assume
that j>i Let E'=TpTp+'. .. TiH2(E;,,) € Yy, &’ =a — ;. We use induction
onj—i.
If a;, , =1, then (see 5.1 (vi)) E =v~'E,E’ — E’E,. By induction hypothesis we
get

() AE) =v ' E®I+KOE) ¥ @ '—o)®+- 1K EQEF,

_ ’ZX (U_l—'U)c(ﬂ')+c(yl)—IK),/EB'®E),1 (Ez®1+Kx®Ez)
Yy € X
f =’y

If y2a,;, ,, then we have

(2) EK,=vK,E, EgE, = EE.
v 'EE,—E,E,=E, ., EgK,=KEg, c(y' +a,) =c(y’).
If 2 o, ,, then we have

(3) v 'E,Eyp — EgE;=Ep ., K, E; = EK,, c(f’+ ;) =c(B).
EE,=E/,E =E, ., EgK,=vK.Eg, c(y'+a;) =c(y’) + 1.

If a, ., = —1, then (see 5.1 (vi)) E =v~'E'E; — E,E’. By induction hypothesis
we get

(4) A(E)=U—1 Z (U-l—’U)c(ﬂ’)-’—c(y’)—le'Eﬂ'®Ey' (Ez®1+Kz®Ez)

—(E®1+KQE)| Y @ '—o)¥r+-1K E,QE,\.

If y 2 a; . ;, then we have
(5) EK,=vK,E, EgE, = EEg =Ep , ,, e’ +a;)=c(f)+1.

v _lEy' Ei - E,'Ev’ = Ey’+ai‘) Eﬂ'Ki = KiEﬁ" C('y’ + at) = c(y,)'
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If 2 a;,,, then we have
(6) v lEﬁ’Ef - EiEﬁ' = Ep’ + a9 K‘y'Ei == EiK‘)'" C(ﬁl + a,) = C(ﬂ,).
E,'Ey' = EY'E,', Eﬂ'Ki = vKiEﬂ'.

Combine (1-6) and the definition of X we see (i) is true. (ii). It follows from
Theorem 4.7.
The theorem is proved.

REMARK. For other types it is not difficult to get the formula A(E) for E € Y,
when the j,, /s, ... JmsJm+1 are pairwise different (see Proposition 4.8 for
notations).

5.6. We shall write E,; for the root vector T;T;_, - T,, (E;). In particular we
have E; = E,. The set {E,; | 1 <i <j < n} first appears in [J] and corresponds to the
reduced expression 8, _ 1S, _ 28, _ 1S, " " * 182" * * S, _ 25,15, of the longest element
of W (see [L2]). In this subsection we list some formulas concerned with E;;,
F;=QE;), K;j=T,T,_, - T,, ,(K;), one can prove them by direct computations
or see [L1, R] for some of them.

The indices i, j, k, [ always indicate numbers in [1, n], and M, N always indicate
non-negative positives, we also assume that i <jand k < /.

(ELE,, ifj<k—-lork<i<j<l,
vEyE,;, ifk<i<j=l,
E Ey =< v'EyE,, ifi=k<j<lori<k<j=I (d0)
vE;+vELE,;, if j=k —1,
\E,C,E,-j + @ '—VEE,; fi<k<j<l

we set E{Y) = EY/[N]\, F{’ = F}/[N]!, where [N]!=TII}_, @' —v ") /(v —v ") if
n 21, [0]!=1. Let ¢ be an integer, we set

N —r+1 ~l,—c+r—1
K,-j,C _ H K,'jvc r . _K’J v L
N re=1 v'—v’

EMEMN =EMEM ifj<k—lork<is<j<l (d1)

EMER =oMVEMEM  ifk<i<j=1. (d2)
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EMEN =v-MNEMEM  ifi=k<j<lori<k<j=I (d3)
EMEM = Y ovPHEQEPED  ifj=k—1. (d4)
p>04g20
p+qg=N
g+r=M
EQOE( = ¥ 0Tl o) [EQELY OB EY (ds)
0<st<MN

fi<k<j<l

-
FyE,;, fj<kork<i<j<l
FuE ;+v 'K Ee_y, ifi<k<j=|,

E,Fy = 4 FuE,;,—F;, . ,,K;", ifi=k<j<l|, (e0)

K., 0 )

FkIEij+[ Ul ], ifi=k, j=],
FyEj;+v "0 —v DF K Ey_y, fi<k<j<l
.

EMFE) = FEPEY fj<kork<is<j<l (el)

EMFMN = Y g Wot-DEN-0KSEM-0EQ) | if i<k <j=1I (e2)

0<t<MN

EJOF = ¥ (=1 OF PR B

0<t<MN
ifi=k<j<l (e3)
K, 2t—M~N B
EQFP = Y F%-”"’[ T ]Eﬁ“ . (e4)
0<t<MN
EMFY = )y o CCNH D20 — o Y [IFY O FY,
0st<MN
‘KGEY-PEQ ., fi<k<j<l (e5)

We have X E, = {0, @, &;; 415 -..,0;} (see 5.4 for notations), so we get

A(Eij) =E;® 1+K,QE; + = '—v Z Ky E 1, ® Ej. (f0)

isk<j
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AEG") = ) cmKmEn ® Ep, (1)

mo.m;.m; 4 | . mJZO
mo+mi+m; 1+ -+mi=M

where m = (mqy, m;, Mgy mj)’ K, = K;:_’.KZ‘;:I! . K:.’]’J,
Jj—1
6m =1 _mo(M_ mO) H (U -1 _ v)mr[mr] !vmr (m, — 1)/2’

En= Ey—PERP - EGERY,  Ea=EQOE) - B,
S(E;)) =(=1)""/* lvi—jKij'P(Eij)' (g0)

S(EGP) = (—1)ME=I+ Dy ME=D+ MM = DEMP(EGD), (gl)
Note that Y(E;;) = T,T,,, - -- T;_,(E;) is also a root vector.
Apply ©Q one can get more formulas.
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