Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 69 (1994)

Artikel: Minimal singularities for representations of Dynkin quivers.
Autor: Bongartz, Klaus

DOl: https://doi.org/10.5169/seals-52277

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-52277
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 69 (1994) 575-611 0010-2571/94/040575-37$1.50 + 0.20/0
© 1994 Birkhduser Verlag, Basel

Minimal singularities for representations of Dynkin quivers
KLAUS BONGARTZ

Meinem Lehrer Peter Gabriel zum 60. Geburtsteg

Abstract. We develop some reduction techniques for the study of singularities in orbit closures of finite
dimensional modules. This enables us to classify all singularities occurring in minimal degenerations of
representations of Dynkin quivers. They are all smoothly equivalent to the singularity at the zero-matrix
inside the p x g-matrices of rank at most one.

1. Introduction

Given a finitely generated associative algebra over some algebraically closed
field, it is an interesting task to study geometric properties of the associated varieties
of d-dimensional modules endowed with the natural GI,-action. For instance, one
would like to know which modules belong to the closure of a fixed orbit and which
singularities occur. But even for representation-finite algebras both problems are
still open.

However, in characteristic zero the geometric structure of the modules over the
truncated polynomial algebra k[X]/X” and over the path algebra of an equi-ori-
ented Dynkin quiver of type A4, is quite completely analyzed by H. Kraft and C.
Procesi (s. [13, 14]) and by S. Abeasis, A. del Fra and H. Kraft (s. [2]) in three nice
articles which stimulated and influenced the present paper very much. Later on their
methods and results were generalized to representations of an oriented cycle by G.
Kempken on one side (s. [11]) and to positive characteristic by S. Donkin on the
other side (s. [8]). Their main results are the normality of the orbit closures
and — depending on this — the precise description of the singularities occurring in
minimal degenerations.

Here we extend by different methods in a characteristic free manner the second
result to all path algebras over Dynkin quivers of type A4,, D,, E¢, E, or E; with
an arbitrary orientation. Remember that P. Gabriel has shown in [9], that these are
exactly the connected quivers having only a finite number of indecomposable
representations up to isomorphism. To study the minimal singularities, we develop
several general reduction techniques some of which have been obtained in special
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cases by the authors mentioned before. For example, we show that the singularity
of a degeneration is not influenced by cancellation of a common direct summand
provided the codimensions of the orbit closures remain the same.

Now we describe our results in more detail thereby fixing some notations and
conventions. We work always over an algebraically closed field k of arbitrary
characteristic and we consider k-varieties, i.e. reduced separated schemes of finite
type over k. A point of such a variety means a closed point. The only topology we
are dealing with is the Zariski topology. We denote the closure of a set X by X.

If A is a finite dimensional associative k-algebra with basis a, =1, ..., a,, we
have the corresponding structure constants defined by

aa; =)y a;a.

The affine variety Mod% of d-dimensional unital left 4-modules consists in the
a-tuples

m=(m,...,m,)
of d x d-matrices with coefficients in k such that m, is the identity and

mm; =Y a;m,

for all indices i and j. The general linear group G, (k) acts on Mod¥ by conjugation,
and the orbits correspond to the isomorphism classes of d-dimensional modules.
We denote by O(m) the orbit of a point m in Mod% and by M the A-module on k9
given by m. By abuse of notation we also write M for the isomorphism class of M.
Thus N is a degeneration of M if O(n) belongs to the closure of O(m), and we
denote this fact by M <,, N and not by N <, M as one might expect. It is not
clear how to characterize the partial order < ,, on the set of isomorphism classes
of d-dimensional modules in terms of representation theory.

However, there are two other partial orders <,,, and < on the isomorphism
classes which are defined in terms of representation theory as follows (s. [1, 17, 7]):

o M <,,N:there are modules M, U, V, and exact sequences
0-U,->M,»V,»0suchthat M=M,, M, ,=UdV,and N=M, , are
true for some natural number n.

e M < N:«=[M,X]<[N, X] holds for all modules X.

Here and later on we abbreviate dim, Hom (M, X) by [M, X] and dim, Ext,(M, X)
by [M, X]'. Note that < is a partial order on the isomorphism classes by a result
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of M. Auslander (s. [4, 7]). Furthermore, M < N is also equivalent to the inequal-
ities [X, M] < [X, N] for all modules X.
It is easy to see that

M<, N=>Ms<, N>M<N

holds for all modules (s. [7]). Unfortunately, the reverse implications are not true
in general, and it is interesting to find out when they are. For preprojective
modules, i.e. modules all whose indecomposable direct summands live on preprojec-
tive components, the above three partial orders all coincide by [7]. We do not want
to recall here all the basic notions of representation theory used in the foregoing
statement (see e.g. [10, 18]), but we only stress the point that a// modules over path
algebras of Dynkin quivers are preprojective. In the sequel, we call two modules
disjoint provided they have no direct summand in common.

Two pointed varieties (X, x) and (Y, y) are smoothly equivalent if there are
smooth morphisms A : (Z, z) - (X, x) and ¢ : (Z, z) = (Y, y) of pointed varieties. A
smooth morphism is called very smooth provided it does not involve étale mor-
phisms, i.e. it is the composition of an open immersion and a vector bundle
projection (see [3] for a good propaganda of smooth morphisms etc.). If the
morphisms in the above definition are both very smooth the two pointed varieties
are very smoothly equivalent. This is an equivalence relation because very smooth
morphisms are obviously stable under composition and base change. We are mainly
interested in the case where X is the closure O(m) of an orbit of a module M and
x is a minimal degeneration N of M. Such a pointed variety (O(m), n) is called a
minimal singularity.

For instance, let 4 be the path algebra of the quiver 1 — 2. This algebra has only
two one-dimensional indecomposable modules S and T and one other two-dimen-
sional indecomposable P. Given any natural numbers p and ¢, the module
P®SP~'@T? ! has S?@ T as the only proper degeneration. The corresponding
minimal singularity is very smoothly equivalent to the pointed variety (D(p, q), 0),
where D(p, q) is the set of p x g-matrices with rank <1. These determinantal
singularities are reasonably well-understood (s. [2]).

Our main result asserts that all minimal singularities occurring in representa-
tions of Dynkin quivers are very smoothly equivalent to some (D(p, q), 0). It is
somewhat surprising and disappointing that the complexity of the quiver is not
reflected by the minimal singularities. Therefore we believe that the methods used to
derive the foregoing result are more interesting than the result itself, and we
describe these methods and some other related topics in some detail.

In section 2 we compare the pointed varieties (O(m), m’) and (O(q), q’) when Q
resp. Q’ are quotients of M resp. M’ by the same module U. Under some — rather
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strong and technical — conditions both pointed varieties are very smoothly equiva-
lent. Nevertheless the theorem obtained is strong enough to imply the results of H.
Kraft and C. Procesi on minimal singularities of matrices (s. [14]).

Section 3 contains the handy cancellation result of common direct summands
which was mentioned before. In section 4 we show that a tilting functor behaves
very well with respect to geometric properties of torsion modules resp. torsion free
modules. The next paragraph asserts that one can shrink certain arrows in the
Gabriel quiver of 4. We also show that “to understand the geometry of the
representations of the double-loop means to understand the geometry of the
representations of any finitely generated algebra”. This finishes the general part of
this note.

In section 6, we study first the set-theoretic structure of minimal degenerations
provided the partial orders <,,, and < coincide. Then we show that the geometric
structure of certain minimal singularities depends on an irreducible cone with an
isolated singularity at its vertex and on two natural numbers p and q. In case the
cone is a straight line we find the pointed varieties (D(p, g), 0) introduced before.
This case occurs for all minimal singularities of representations of Dynkin quivers
as follows from the fact that the codimensions of the orbits in a minimal disjoint
degeneration differ by one only. This result has been found by U. Markolf via
computer. We include a “theoretical”’ proof in section 7. It is the only point in the
whole article where some sort of classification is used. There is some evidence that
the codimension one result holds for the much more general class of modules over
representation directed algebras. Unfortunately, we can prove this so far only in
some generic situations which include degenerations of indecomposables.

Finally, I want to thank H. Kraft for pointing out some inaccuracies in the first
version of this article.

2. Cancellation of submodules
2.1. The general set-up

The definitions that follow and slight variations thereof are central for the whole
paper and should be read carefully. This section refines chapter 2 of my previous
paper [7].

Let r,t and s =r + ¢t be three natural numbers. We want to have a geometric
way to produce t-dimensional quotients of s-dimensional modules by r-dimensional
submodules. So let  be a subvariety of Mod’, and .# be a subvariety of Mod:,.
Then we introduce the variety ¥~ consisting of triples (v, m, g =(g,, g,)) with
ue,me #H,g,e€k**’, g, € k**"'such that g,u =mg,, i.e. g,u, =m,g, for all i. In
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the sequel, we will often use this abbreviated notation. One can think of a point
(u,m, g =(g,, ) in ¥ with invertible g as a module M together with a basis,
namely the columns of g, such that the first r base vectors generate the submodule
U. Clearly, the fibre of the projection p:¥ -% x .# over (u,m) is
Hom (U, M) x k**"*. The defining conditions of ¥ can be rewritten in matrix form
as a system of homogeneous linear equations where the entries of g, are the
unknowns and the coefficients depend linearly on the coefficients of ¥ and m. The
set of solutions is Hom (U, M).

On the open subvariety ¥, where g is invertible, we can define the cokernel
morphism

c:¥’ - Mod,

by c(u, m, g) = v, where g ~!mg has the triangular shape

u 2z

o o
because of g,u = mg,.

Of course, ¢(?7"’) — which can be empty — is exactly the constructible set of all
quotients of some M in .# by some U in . But without any further assumptions
neither the projection p : ¥~ - % x .# nor ¢ have good geometric properties. So we
assume in addition that the number [U, M] is independent of U e % and M € 4.
Then p is a vector bundle projection, whence open. Therefore, ¥°, ¥*” and c(¥"") are
all irreducible provided # and # are so. If ¢(¥"") contains a dense orbit O(q), we
call Q the generic quotient. In the special case where % and .# are (contained in)
the orbits of ¥ and m we speak about the generic quotient of M by U.

On the other hand, to bring ¢ under control we look at extensions. So we start
out with two irreducible subvarieties # of Mod’, and 2 of Mod',, such that the
dimension of the space Z(v, u) of 1-cocycles is independent of v in 2 and u in %.
Recall that Z(v, u) consists of the tuples z =(0, z,,..., z,) in k">’ such that

Y azi = wuiz; + 2,0,

holds for all i and j. Thus Z(v, ) is nothing but the set of solutions of a system of
homogeneous linear equations whose coefficients depend polynomially on the
entries of u and v. Therefore, the map (i, v) — dim Z(u, v) is upper semi-continuous.
Let B(v, 1) be the subspace of coboundaries which is the image of the linear map
from k" ** to Z(v, u) sending h to the tuple with ith entry hv, — u;h. Because of

Ext\(V, U) = Z(V, U)/B(V, U)
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we have
dim Z(V,U) =[V, Ul' +dim B(V, U) =[V, U]' = [V, U] + rt.

Thus dim Z(V, U) is constant if and only if [V, U]! — [V, U] is so. In that case we
have another vector bundle

p XU x2
with irreducible total space
u z
i

Clearly, the image of the conjugation

ue%,ve.@,zeZ(v,u)}.

Gl, x Z - Mod’,

is the irreducible constructible set of all extensions of some ¥ in 2 by some U in %.
If this set contains a dense orbit we speak about the generic extension.
Now, in the situation of our next theorem both points of view fit together well.

THEOREM. Let U, M, M’, Q and Q’ be finite dimensional modules satisfying
the following conditions:

(@) [U M]=[U, M)

(b) [Q, Ul -[Q, Ul =[Q", UI'—~[Q’, U]

(¢) Q is the generic quotient of M by U, and M is the generic extension of Q by

U.

(d) Q’ is a quotient of M’ by U.
Then M degenerates to M’ if and only if Q degenerates to Q’. In that case the pointed
varieties (O(m), m’) and (O(q), q°) are very smoothly equivalent.

2.2. An application to nilpotent matrices

Before we prove the theorem, we derive from it the results of H. Kraft and C.
Procesi on minimal singularities of conjugacy classes of nilpotent matrices (s. [14]).
They represent such a conjugacy class by the Young diagram of the corresponding
partition, and they introduce two reductions, namely ‘“‘erasing a common first
column™ and “erasing a common first row”, which do not change the type of the
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singularity. Then it follows easily that any minimal singularity is smooth equivalent
to the well-understood subregular singularity inside the set of nilpotent matrices of
some smaller size (s. [19]). or to the singularity at 0 inside the set of all nilpotent
matrices of rank at most one. Thus we only have to prove that both reductions
follow from the theorem.

Now a nilpotent conjugacy class corresponds to a module over some truncated
polynomial algebra A = k[X]/X" whose indecomposable modules V; are given by
k[X]/X’ with i <r.

“Erasing a common first column’ means that M and M’ have the same socle U
so that assumption (a) holds. It does not harm to suppose that M is a faithful
module. Then Q = M/U and Q' = M’/U are annihilated by X"~! so that they
contain no copy of ¥V, as a summand. But for i <r —1 we have obviously
[V:, Vi1' =[V,, V1] = 1 so that assumption (b) is true. It remains to be seen that M
is the generic extension of Q by U. Since 4 is representation finite, there is a generic
extension E. Of course, U belongs to the socle of E which in turn cannot be strictly
larger than the socle of M because E degenerates to M. Since any A-module T is
determined by its socle S and by T/S we obtain E ~ M.

“Erasing a common first row” is even easier. Again we can suppose that M is
faithful. Then we have to divide by a common projective-injective direct summand
U~V, Setting M=U®Q and M'=U @ Q’, we see that (a) holds because U is
projective, (b) and (c¢) hold because U is injective, and finally (d) holds by
definition.

2.3. The proof of theorem 1

In the sequel, we use the notations and the remarks of 2.1. So we set r = dim U,
t =dim Q and # = {u}. By the semi-continuity of the map L  [U, L], the set

M ={l e O(m) |[U, L] =[U, M]}
is an open irreducible subset of O(m). Thus the vector bundle ¥~ contains

p ~(O(m)) as an open dense subset. By assumption (c), the set ¥’ is not empty and
we have

o(¥") = (¥ np~(O(m)) S (¥ np~'(O(m))) = O(q).

If M degenerates to M’, we use properties (a) and (d) to find a point (m’, g) in
¥"" which is mapped to ¢’ under ¢. Thus Q degenerates to Q.
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On the other hand, by the semi-continuity of the map V + dim Z(V, U), the set
2={ve0@) |V, U]'-[V, Ul =[Q, UI' - [Q, Ul}

is an open subset of —O—(—q—j We look at the vector bundle
pZ -39

Clearly, p’~'(O(g)) is an open dense subset on Z. By assumption (c),
Gl, - p’~'(0(g)) is contained in O(m), whence the same is true for G/, - &, which is
the set of all extensions of modules in 2 by U.

If Q degenerates to Q’, then ¢’ belongs to 2 by (b). Using (d), we infer that m’
beongs to 2. Therefore M degenerates to M’.

Now, we connect both constructions in the next commutative diagram. All
morphisms are open immersions, isomorphisms or bundle projections.

Z Xk D (MAZ) X Gl SN2 Vs

: |
L _F_
0(q)

O(m)

Here the isomorphism « maps (/, g) to (g ~'lg, g). Since .# is open in Bz;n—), iis an
open immersion.

If M degenerates to M’, we choose an embedding g, of U into M’ with cokernel
Q’, and we extend g, to an invertible matrix g =(g,, g,). Then (m’, g) belongs to
¢~ !(2) and we have A(m’, g) = m’ and go(m’, g) = q’. Thus the two pointed varieties
are very smoothly equivalent.

2.4 A lemma on vector bundles

As the alert reader will have observed, our main working tool are various vector
bundles. For the convenience of the reader we state a general lemma that produces
all the bundles we are dealing with in this article. The straightforward proof uses
only basic properties of determinants.
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LEMMA 1. Let f: X >k™*" be a morphism. Then we have:

(a) For any r, the set X(r) of points x where f(x) has rank r is a locally closed
subvariety of X. Moreover, the closed subset {(x, v) | f(x)v = 0} is a subbundle
of rank n —r of the trivial bundle X(r) x k".

(b) Similarly, the set {(x,w)|w belongs to the image of f(x)} is a closed
subbundle of rank r of the trivial bundle X(r) x k™.

3. Cancellation of direct summands

In this section, we adapt the two basic constructions of 2.1 to split-monomor-
phisms and split-extensions. So let U and Q be modules of dimensions r and t. By
semi-continuity, the set

2={veO(g)|V,Ul=[Q, U) U, V]=[U,Ql}

is an open irreducible subset of O(g). We denote by .# the union of all orbits
O(u ®v) with v in 2, and by M the module U@ Q.

THEOREM 2. Using the notation above we have:

(a) A is open in O(m). L

(b) Let Q' be a degeneration of Q. If the codimension of O(q’) in O(q) is the same
as the codimension of O(q’®u) in O(q @ u), then the two pointed varieties
(0(g ®uw), ¢’ ®u) and (0(q), q°) are very smoothly equivalent. Furthermore,
the map L — L @® U induces an isomorphism between the partially ordered
sets

(0,07 ={L|Q Sus L <us @'}

and QA U, Q'@ U)>.

Proof. By semi-continuity, the set
M ={leO(m)|[U,Ll=[U,M] and [L,U]=[M,Ul}
is an open irreducible subset of O(m). Let us look at the vector bundle

p:Z M withZ' ={(,g.h)|led’ g=(g, 8)ek ™",
giu=Ig,,hek ™ hl =uh}.
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Clearly, Z’ contains the open set & where hg, and g are invertible, and # is

contained in the open set p(Z). We claim that equality holds.
Indeed, for any point (/, g, h) in 2 we have

-1 _ u 2z
g Ig""[o U],

whence

u z
hg[0 v] = hlg = uhg.

Decomposed in appropriate blocs this means
uhg, =hg,u and uhg,=hg,z + hg,v.
Thus we infer z € B(v, u), so that L is isomorphic to U @ V, where V belongs to 2

by corollary 2.5 in [7].
Next, we define N to be the subgroup of G := G, consisting of upper triangular

. bl . . : :
bloc-matrices I:g 1] with g fixing u. Then we have an isomorphism a between &

and 2 x G x N sending

(g h) to (v, g [hg’ hfz])-

Here v is constructed as before, and one finds the inverse of a easily from the
calculations above. Then we have two very smooth morphisms

A:Z->0m) and ¢:Z -0(g)
which are given as compositions
F— MH<=Om) and ZF~2xGxN— 2c<c0(g.

Since the isotropy group of a module x is isomorphic to the automorphism
group of X, one has for any degeneration Q’ of Q the codimension formula

codimz——O(q’ ® u) — codimz-0(q") = (U, Q'] - [U, Q] +1Q", U] - [Q, U].
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Thus the codimensions coincide if and only if Q” lies in 2. It is clear then how to
find a point in & mapped onto ¢'®Du by A and onto ¢’ by g. Finally, the
isomorphism between the two partially ordered sets follows from part (a) and the
cancellation of degenerations (s. 25 in [7]).

4. The invariance of geometric properties under tilting functors
4.1 Some known facts from tilting theory

First of all, we recall some results of “old-fashioned” tilting-theory as described
in [18]. An A-module T is called a tilting module provided one has:

(a) Ext\(T,T) =0.
(b) ExtXT,) =0.
(¢) T has as many nonisomorphic indecomposable direct summands as A has.

Then T induces a torsion theory on the category mod A of finite dimensional
A-modules whose torsion part J consists of the homomorphic images of powers of
T. These modules are also characterized by the vanishing of Ext!(T,). Therefore,
the set J(d) consisting in the torsion modules with dimension vector d is an open
subset of the connected variety Mod4 of all modules of dimension vector d. Recall
that the dimension vector of a module counts the composition factors (with
multiplicities).

One remarkable fact about tilting is that the functors F = Hom,(,T5,) and
4T, ® induce inverse equivalences between J and the full subcategory % of modB
where Tor?(, T, ) vanishes. Here B is the opposite algebra of End, T. Furthermore,
the Grothendieck groups of mod4 and modB are isomorphic under the map which
sends the class of X to the difference of the classes of FX and Ext!(T, X). In
particular, for X in J(d) all modules FX have the same dimension vector ¢. We
denote by d or e the total dimension of a module with dimension vector d or e.

4.2 The main result
In the next statement we keep the notation introduced in 4.1.

THEOREM 3. Let T be a tilting module, and let d and ¢ be two dimension
vectors related as in 4.1. Then there is a Gl,; x Gl -variety 2 and two morphisms
A:2Z>9(d) and g : Z - ¥(e) such that the following holds:
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(a) A is a Gl -equivariant principal Gl,-bundle.

(b) Up to the twist h € Gl, — (h—1)7, g is a Gl, -equivariant principal Gl,-bundle.

(c) For any m in I (d), the inverse image 1 ~'(0O(m)) is mapped under g onto the
orbit corresponding to FM.

Before we prove the theorem, let us state an immediate consequence and some
remarks.

COROLLARY 1. The map X > g(A (X)) induces a bijection between Gl -sta-
ble subsets of I (d) and Gl,-stable subsets of % (e). this correspondence preserves and
reflects closures, inclusions, codimensions and types of singularities occurring in orbit
closures.

The most famous examples of tilting functors are Morita-equivalences and
reflection functors. In the first case, the theorem above restates the “reduced” part
of my previous article [6]. I do not know how to generalize the present result to the
scheme-theoretic setting. In the second case, theorem 3 sharpens considerably a
result that H. Kraft and C. Riedtmann have obtained in [15] using Grassmannians.

4.3. The proof of the theorem

Let ¢ be the dimension of 7, which is given by an a-tuple (¢,,...,¢,) of
t x t-matrices. We consider the set

v ={m¢,.... ) |meT@), Lt =m<}.
Recall that e = [T, M] holds for all M in 9 (d). Then Gl, x GL, acts on ¥ by
(g! h)(m’ él’ ) ée) = (gmg—‘a Zhljgéj’ MR Z hejgfj)'

The wanted variety £ is nothing but the Gl, x G, -stable open subset consisting of
those points where the &;’s are linearly independent. Defining

A% ->%(d)
as the restriction of the bundle projection ¥~ — 7 (d), we see that part (a) holds.
Next, we fix a sequence b, = E,, b,, . .., bg of ¢t x t-matrices forming a basis of

End,T = B°. Then we get a morphism

¢ :Z->Y(e)
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by ¢((m, &y, ..., L)) =(ny,...,ng) where the e x e-matrices n; are obtained from
the equation

$ib; = Z Vi Sk
by setting
()i = Vi

We always denote by X, the coefficient of the matrix X sitting in row k and column
i. It is clear that the orbit of ¢((m,¢&,,...,¢&,)) corresponds to the B-module
FM = Hom ,(,Tg, M), and one verifies easily

(g, (m, &1y ..., L)) =) TP((m, &y, ..., EDRT.

Now define a sequence 7,, . . ., 7, of e x t-matrices by the equations (17,)u = (;)pk-
The point is that the set of matrix equations used to define ¢ is equivalent to the
set of matrix equations

Np bj = an”p'

This means exactly that »,, ..., n, all belong to
Homg(,Tg, DHom (4T, M)) >~ D(, Ty ® g Hom,(,T5, M)) ~ DM,

where D is the usual duality functor Hom,(, k). Thus we are led to introduce the
vector bundle

W = {(n, ITERE 9nd) |n E@(g), ”pbj=(nj)Tr,p}

endowed with the Gl; x Gl,-action

(& Wy, . smg) = (R~ )RT, Y gy by, .., Y Buyhny)-

Up to the twist A — (h )7, the restriction ¢’ of the projection onto #(e) turns the
open subset #°’, where n,, ..., n, are linearly independent, into a Gl, -equivariant
principal Gl -bundle. It only remains to relate 2 and ¥’ by an equivariant
isomorphism.
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Using the definitions made before, we have at least an equivariant morphism

[ Z->W
that sends (m, &,,..., &) to (d((m, &, ..., E ). m,...,Nn4). Since M is generated
by a power of T, and since &,, .. ., &, are a basis of Hom (T, M), the map from T
to M with components &,, ..., &, is surjective. Therefore, m = (m,,...,m,) is the

unique solution of the system of equations ¢;1; = m;£;. This shows that f'is injective,
and that the only point in the fibre f~!(w) of w = f(z) depends regularly on w.

Now, 4-'(O(m)) is a Gl, x GL, -orbit of dimension e?+ d?—[M, M]. The
injection f maps it to an orbit of the same dimension contained in the irreducible set
P~ (O(n)), where O(n) corresponds to FM. Because F induces an equivalence
between J and %, the later inverse image has also dimension e?+ d? —[M, M],
and p ~'(O(n)) n#"’ is the only orbit of that dimension. We infer that f maps Z to
¥ ’. The surjectivity follows again from the equivalence of J and #.

5. Reductions of the underlying Gabriel quiver
5.1 Replacing two arrows by one

Given any finite dimensional module M over a finitely generated algebra A, the
annihilator I is of finite codimension in 4. Of course, I annihilates all degenerations
of M so that the study of the orbit closure can always be done over a finite
dimensional algebra. Moreover, as explained in [6], the singularities in O(m) are
very smoothly equivalent to those in _0_(_5 Here R is the representation of the
Gabriel quiver of 4/I which corresponds to M.

This point of view is a bit more complicated notationally, but it provides more
geometric intuition which was the basis for most of the proofs in the articles cited
in the introduction. In this paper we usually stress the categorical aspects of the
modules involved like homomorphism spaces and extension groups. But now, we
generalize two reduction results of [2] and [11], which are best formulated in the
language of quivers. Given an arrow a and a representation M of a quiver, we
denote by M(x) the linear map corresponding to a in M. :

Let Q be a quiver containing two arrows « : x =y and f§ : y — z such that « and
B are the only arrows starting or ending at y. Then we delete y and connect x and
y by an arrow y to obtain a new quiver Q. All the other points and arrows are not
touched upon. The obvious contraction functor M — M’ between the categories of
representations induces a morphism f between the varieties of representations.
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PROPOSITION 1. We keep the above notations and assumptions. Let M be a
representation of Q with M(a) injective and M(B) surjective. Furthermore, let N be a
degeneration of M such that N(a) is injective or N(B) is surjective. Then M’
degenerates to N’ and the pointed varieties (O(m),n) and (O(m’),n’) are very
smoothly eugivalent.

Proof. Let d and d’ be the dimension vectors of M and M’. Then the
corresponding varieties R and R’ of representations have the shapes

R=Xx kd(y) x d(x) x kd(z) x d(»)

and
Rl — X % kd(z) x d(x)‘

The morphism f sends (x, A, B) to (x, BA). It is equivariant with respect to
G=0,.4,Gly, and G’ =11, o, Gly,,. Therefore, M’ degenerates to N’.

Up to duality, we can assume that N(a«) is injective, hence d(y) = d(x). We
consider the open subset S of k9 > 4™ of matrices of rank d(x). On S x k% the
multiplication can be factorized as a bundle projection (4, B) — (A4, BA) and the
composition of an open immersion and a bundle projection. Thus the restriction g
of f to

R%:=X x § x k4@ >x@W»

is a very smooth morphism. By base change, the same is true for the induced
morphism

g~ (0(m")) —> O(m").

We claim that g ~'(O(m’)) equals M°. Then it is clear that the pointed
varieties (O(m), n), (O(m) N R°, n) and (O(m’), n’) are very smoothly equivalent.

To prove the claim we note that an arbitrary continuous map 4 : ¥ —» Z is open
if and only if A~ !'(X) = A~ '(X) holds for all subsets X of Z. By the openness and
equivariance of g we get

g~'(0(m") =g~ '(O(m")) = Gg~'(m).
So let m be (x, 4y, B,) and take any (x, 4, B) in g~'(m’). Then we have

ByAy, = BA, kerA = kerA,=0 and imB < imB,= k%®.
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It follows easily that (4, B) belongs to the closure of the Gl,,,-orbit of (4,, B,)
(see e.g. [12]). Thus (x,A4,B) belongs to O(@m)NR°. The inclusion
O(m) nR° = g ~'(O(m")) is obvious.

5.2 Replacing one arrow by none

The next reduction allows to shrink arrows different from loops which are
represented by bijections. For later use we deduce this from a more general
reduction which is a special instance of associated fibre-bundles (s. [20]). For the
convenience of the reader we include an elementary proof.

To simplify the notations we work for the moment again with algebras rather
than quivers, but an analogous reduction applies to quivers. So let B be a finitely
generated not necessarily unital subalgebra of the given finitely generated algebra A.
Then the generators of B are linear combinations P; of products of the generators
a,,...,a, of A. Given an A-module structure m =(m,,...,m,) in Mody, we
obtain a B-module structure p(m) in Mod% by subsituting the m,’s for the a,’s in the
P;’s. Clearly, p : Mod% — Mod$ is equivariant.

PROPOSITION 2. Under the above notations and assumptions, let n be a point
in Mod$ with isotropy group H < G =Gl and fibre F:=p~'(n). If m,m’ are points

in F with m’ € Gm, the pointed varieties (O(m), m’) and (Hm, m’) are very smoothly
equivalent.

Proof. We set X = p~!(O(n)) and we look at the vector bundle
¥ ={(x,8) e X xk**?| gp(x) =ng} — X.

The open subset where g is invertible is isomorphic to G x F under the map «
defined by (x, g) — (g, gxg ~"). The fibres of the conjugation

A:GxF-oX
are the H-orbits for the action

h(g,f)=(gh~', hgh™"),

and A is the composition of a~'!, an open immersion and the above bundle
projection. Therefore, 4 and the projection

e:GxXF->F
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are very smooth morphisms which are G x H-equivariant with respect to the
obvious actions. Using the openness and equivariance of A and g, we find

A=Y (Gm) = A=(Gm) = GA~'(m) = (G x H)m =G x Hm = ¢~ '(Hm).

The proposition follows.

The proof shows that A identifies X with the associated fibre bundle G x ¥F, i.e.
with the quotient of G x F by H under the action h(g, x) = (gh !, hxh ).

Now we apply the proposition to shrink bijective arrows. So let Q be a quiver
with a non-loop « : x = y. Choose B as the three-dimensional subalgebra of the
path algebra A defined by a. The open subvariety X of all representations of 4 of
dimension vector d, where « is bijective, is the inverse image of the orbit of the
identity matrix. The fibre is the variety R’ of all representations with dimen-
sion vector d” of the shrinked quiver Q’, and H is isomorphic to Il,. o, Gly(,).
Thus the singularities are not affected by shrinking bijective arrows which are not
loops.

5.3 The geometric wildness of the double-loop

It is well-known that for each finitely generated algebra C there is a full exact
embedding of the category of all finite dimensional C-modules to the corresponding
category of modules over the path algebra 4 = k{X, Y of the double-loop. Using
the last proposition, we derive a similar statement on the geometric level.

First, if C is generated by n elements there is an obvious Gl;-equivariant closed
embedding Mod% = Mod%,, where D is the free algebra with n generators. Now in
A we look at the subalgebra B generated by X, X?Y and YX. Let n, € Mod3»* " be
the module structure where X, X?Y and YX are given by

—y

[0 0 -0 E 0 0 - - 0

EO0 - - 0 000 - -0
, . and 0.

E 0 0 O 00 - -0

i 0 E 0] |00 00 0 0]

Here E denotes the d x d-identity matrix. Then the isotropy group of n, in Gl , 1
consists of a diagonal embedded copy of Gl,, and the fibre F is given by all the
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matrices Y of the shape

M, 00 - -0
M200"0
M, 00 - -

| E 000 0 0]

Thus the Gl,-variety F is isomorphic to the Gl,-variety Mod% . Therefore, to under-
stand the geometry of all finite dimensional modules over all finitely generated algebras
is not more difficult than to understand the geometry of pairs of square-matrices.

In a similar vein, one can see that any degeneration of algebras is induced in the
sense of [7], 2.2 by a deformation of representations of the double loop.

6. Minimal singularities induced by extensions
6.1 The set-theoretic structure of certain minimal degenerations

We want to analyze the minimal degenerations provided the partial orders <,,,
and < are equivalent, and we start with the following observation:

LEMMA 2. Let E:0->U—> M -V -0 be an exact sequence with indecompos-
able end term V such that M < ,, U @ V is a minimal degeneration. Then the radical
J of EndV annihilates E.

Proof. By the nilpotency of J there is a natural number i such that J'+!
annihilates E, but J' does not. We choose an element x in J’ such that
E'=E-x:0-U-X-V-0does not split. Thenwe have M <, X <, UV
by lemma 1.1 in [7], whence M ~ X by minimality. Now, E and E’ induce exact
sequences of End,V-modules

0 — Hom(V, U) — Hom(V, M) — Hom(V, V) — Ext'(V, U)
and
0 — Hom(V, U) — Hom(V, X) — Hom(V, V) — Ext'(V, U).

By construction, J is the kernel of the last morphism. Counting lengths of
End, V-modules and using the fact that End,V is local, we conclude that J
annihilates E.
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Part of our next results is already contained in [7, 16}, but we include all
arguments for the convenience of the reader.

THEOREM 4. Let C be a full subcategory of some module category which is
closed under isomorphisms, extensions and direct summands. Assume that the partial
orders <., and < are equivalent on C, and consider two objects M and N in C. Then
N is a minimal degeneration of M if and only if there is an exact sequence
E:0-U->M -V -0 with the following properties:

(@) U and V are indecomposables with M =M @UP~ '@V - '®X and

N=U’®Vi®X. Here U®V and M’ ® X are disjoint.
(b) U@V is a minimal degeneration of M’.
(c¢) Any common indecomposable direct summand W % V of M and N satisfies
[W, N]1=[W, M].
(d) Dually, any common indecomposable direct summand W # U of M and N
satisfies [N, W] = [M, W].
Here, U, V, M’, p and q are uniquely determined by M and N. Furthermore, we have

codimm O(n) = codima(—;,) Oudv)+e(p+q-—2),

where ¢ is 1 for V% U and 2 for V ~ U.

Proof. “=" We split off the greatest common direct summand (M, N) and we
write M = (M, N)® M’ and N = (M, N) ® N'. By the equivalence of the partial
orders, N’ is a minimal degeneration of M’ which is given by an exact sequence E
as above with N’ = U@ V. If U is not indecomposable, there is a retraction r onto
an indecomposable direct summand U’ with kernel K and section s. We consider
the pushout of E by r and obtain the following commutative diagram with exact
rows and columns:

0 0
|
K -5 K
[

0— U — M — V —0
Al o] @]

0 » U’ ’ " V >0
|
0

o «—RX
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This diagram shows
M<M®K<N=U®V®K
The last inequality is strict, because otherwise y has a retraction g, and we get

eBos = gyrs = idy.,

whence U’ is a direct summand of M’ and N’. Thus we infer M’ =M"@® K, and K
is a common direct summand of M’ and N’. This contradiction shows that U is
indecomposable. Similarly, V' has to be indecomposable.

Up to duality, it only remains to derive property (c). The next argument is due
to U. Markolf. So let us assume [W, N]>[W, M] for some common direct
summand W of M and N different from V. Then the last map in the exact sequence

0 — Hom(W, U) — Hom(W, M’) — Hom(W, V) — Ext'(W,U) —
Ext' (W, M)

is not injective. Therefore, we find a non-split exact sequence in Ext'(W, U) whose
pushout under U — M’ splits. Thus we get the diagram:

0 0
|
0 » U > Y » W 0
[
O— M - MOIW-W—790
L
V —s V
o
0 0

Because V does not occur in M’ @ W, we have
MeW<VeY<VeeUaW.

Since M’ and U @ V and disjoint, there is a module Z with M = M'® W @ Z and
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N=N @ W®Z. We arrive at the contradiction

M<V®Y®DPZ<N.

“<=" Only the minimality has to be shown. By theorem 2 and by the assump-
tions (c) and (d), we can forget about X. So suppose that M < N is not minimal.
Then there is a neighbor L of N such that

M=M@®UP '@V '<L<N=U?@V".

Using the part already proved we find indecomposables U’, ¥’ and a non-split
exact sequence

0 » U’ > L’ > V7’ >0

such that
L=L"@Y<U®V'@Y=UP® V1.

If U is isomorphic to V, one sees the M, L and N have U?*9~2 as a common direct
summand. Cancelling it leads to the contradiction

M <L <U->

If U and V are not isomorphic we divide again by the greatest common direct
summand of M, L and N. Up to symmetry in p and ¢, we arrive in one of the
following situations:

® p =¢q =1, in which case we have an obvious contradiction.
ep=1l,g=2and U=V V.

Then property (d) says [N, V] =[M, V], whence also [N, V] =[L, V]. By a dimen-
sion argument the sequence

0— Hom(V,V) — Hom(L’, V) — Hom(V,V) — 0

is exact, so that the original sequence

0—U —L —V —0

splits. This contradiction ends the proof of the other implication.



596 KLAUS BONGARTZ
Finally, we look at the codimensions. By lemma 2 and its dual we have
v,veVvVlj—-[V,M]=[U®V,U]l-[M,U]l=1.

Using (¢) and (d), we obtain the wanted formula by a straightforward computation.

6.2 A transversal slice

We describe now under some conditions a transversal slice to the orbit of u @ v
in the closure O(m) of an extension m of ¥V by U (see page 60ff. in [19] for the
definition and basic properties of transversal slices).

So let us fix two module structures ¥ and v of dimensions r and ¢. Inside the
space Z(v, u) of cocycles we choose a supplement H of the coboundaries. Given any
extension M of V by U, we consider the subvariety € of O(m) consisting of all
extensions

u z
0 v
with z in H.

THEOREM 5. Let N=U @V be a degeneration of some module M such that
(U, M] =[U, N] and [M, V] =[N, V] hold. Then we have:
(a) V is the generic quotient of M by U. In particular, M belongs to the set & of
all extensoins of V by U. The intersection & N O(m) is open in O(m).
(b) The variety € defined above is an irreducible cone whose dimension is given by
the codimension of O(u @ v) in O(m).

() The singularities of O(m) at u @ v and of € at its vertex [t(; 2] are very

smoothly equivalent.
(d) € is a transversal slice in O(m) to the orbit O(u @v) at u Q.

The assumptions are obviously satisfied, provided M is an extension of V and
U and these two modules have no proper self-extensions. This case occurs for
powers of indecomposable preprojectives, and this is the main application of
theorem 5 that we have in mind. But there are also other situations where the
theorem is useful, e.g. the following structural result on codimension one degener-
ations. ‘
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PROPOSITION 3. Let M <4, N be a degeneration.

(a) If N=N" @ U with [U, M] =[U, N] and [M, U] =[N, U] then U is a direct
summand of M.

(b) Set M =M'® X and N = N’ @ X with disjoint modules M’ and N'. If the
codimension of the degeneration is one, then M’ degenerates to N’ and either
N’ is indecomposable or else the direct sum of two non-isomorphic indecom-
posables. In this case M’ is an extension of these indecomposables and O(m)
is smooth at n.

Proof (of the proposition): (a) The set A = {l € O(m) ][U, L] =[U, M] and
[L, U] =[M, Ul} is open in O(m) Let us look at the vector bundle

p:Z={Ugh|leM ,gek’ gu=Ig hek ™ hl=uh} > A.

Since N belongs to ., there is a non-empty open subset of Z, where hg is
invertible. The projection of this set is open and hits O(m).

(b) From 1=[N,N]1—-[M',M1+[N,X]—-[M,X]+[X,N]—-[X,M] we
infer 1 =[N, N]1—-[M',M’] and [N, X]—[M’,X]=[X,N]—[X,M’]=0 using
lemma 1.2 in [7]. By corollary 2.5 in [7], M’ still degenerates to N’, and we
decompose N’ = @ U’ into indecomposables. Of course we have

1=(N,N]1—-[N, M)+ (N, M'] - [M',M’']) 2[N’, N'] - [N’, M"]
=Zni([Ui’ N1 —-[U;, M)

and similarly
12[N,N]—[M',N'] =Y n,(IN', U;] = [M’, U})),

where all summands are non-negative integers. If there would be an index i with
[N, U]—-[M',U]=[U;, N1—-[U;, M’] =0, then U; would be a common direct
summand by part (a). It follows that N’ is indecomposable or the direct sum of two
non-isomorphic indecomposables U and V such that [U, M’] =[U, N] and
[M’, V] =[N’, V] hold. Theorem 5 shows that M’ is an extension of V by U, and
that there is no singularity at ¥ @v in O(m’), since the cone is now a straight line.
Finally, O(m) is smooth at n because of theorem 2.

The proposition implies that the orbit of the middle term of an almost split
sequence is smooth at the direct sum of the end-terms provided these are not
isomorphic to each other. For then the codimension is one, and an end-term never
occurs in the middle. The only almost split sequence of the algebra k[X]/X? shows
that the closure of the middle term can be singular at the sum of the end-terms.
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I have no idea what happens in the first case of the proposition. In the very few
examples that I looked at there was no singularity.

If one drops one of the assumptions of the theorem, then ¥ might no longer be
a transversal slice. This occurs for representations of a double-arrow. I do not know
the exact condition for € to be a transversal slice.

6.3 The proof of theorem 5

We consider the set

M ={leO(m)|[U, L —[U M]=[L,V]—[M, V] =0},
which is open in O(m) and contains N:=U @ V by assumption. Let

p:YV ={g=(2:,8)) Ile-/{agl eksxr,gzeksx'aglul=lgl}“’-/l
be the familiar vector bundle of section 2.1. On the open set, where g is invertible,
we have the cokernel morphism ¢ to Mod’, with ¢(/, g) = w. By semi-continuity, the
set of all w’s with [U@® W, V] < [M, V] is open in Mod’,, and so is its inverse image
¥"" under c. In fact we have [U@® W, V] =[M, V] for all w in c(¥"’) because all
corresponding U @ W are degenerations of M.

Let us introduce another vector bundle

g% ={Ugh|lee¥ hek ™, vh=he(,g)}—>¥".

Inside #7, there is the open set #°* where A is invertible. Note that %"’ is not empty,
because U @ V belongs to .. Set

,1/'” — q(W‘/).
Any point (/, g) in the open set ¥” gives rise to an exact sequence

0 » U > L » V >0

and we have

PpY")=MNE =0m)NéE.

Since the projection is open and M is open in the irreducible set O(m), M is an
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extension of ¥ by U. Our construction also shows that V is the generic quotient of

M by U. Thus we have proved part (a) of the theorem.
To go on we introduce the sets

u z ;
7/ ={[0 w]eModA lweO®}n A

u 2z
EZ={[0 v]eModf,}nJ(,

so that £ is isomorphic to B(v, u) x €. Then we have the following diagram of

varieties and open immersions, bundle projections, isomorphisms or compositions
of such morphisms:

V" ——s MNE — O(m)
l_N_ (g
]
Y xGl, (g7'g8)

!

%={(y,g’h) |y=l:g ;]e@,geGLs,hek’x’,hw =vh}

Z x Gl, x Gl,([g ‘Z] g,h)

4 > €

Now, x = ([; g] 1, 1) in & x Gl, x Gl, is mapped to « @v in O(m) and 0 in

€, which proves part (c).
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Since O(m) is irreducible, all varieties involved in the above diagram are
irreducible and so is 4. It is a cone because it is stable under conjugation with

E 0 .
[O aE,] for all a in k — {0}.

To obtain the dimension of €, we calculate the dimension of & x G/, x GI, in
two ways using the above diagram:

dim & x Gl, x Gl, = dim U = dim V" +[V, V]
= dim O(m) +[U, U@ V] + st +[V, V]

and
dimZ x Gl x Gl,=s*+ 2 +dim % =s2+ >+ rt + dim € — [V, U].
The wanted equality follows.
Finally, it is not hard to see now that € is a transversal slice. Since we will not
use this fact later on, we omit this proof.
6.4 Reduction to disjoint degenerations
Suppose we are given two indecomposable modules U’, ¥’ and an extension
E:0-U-M->V" -0

such that [U', M| =[U’, U @ V']and [M’, V'] =[U' @ V’, V'] hold true. Then we
write

Zw',u)=B@,u)®H’

and we consider the irreducible cone
€' =H' nO(m’)

defined in the section 6.2. For any natural numbers p and g we set
U=U)?, V=) and M=M@U) ') L.

Then N=U@Visalsoa degeneration of M satisfying the assumptions of theorem
5. We want to relate the corresponding irreducible cones € and €’.



Minimal singularities for representations of Dynkin quivers 601

Of course, we can identify Z(v, ) with Z(v’, u")? *?, B(v, u) with B(v’, u")? > 19
and H with (H")?*? by writing the elements of Z(v, u) as matrices

_u 0 * 0 le 212 ‘ Zlq ]
0 u 0 221 22y 22q
0 0 U Z, Zp Zpq
0 0 0 v 0 0
0 0 0 0 v 0

LO O -0 0 0 - v |

and so on. To describe ¥ in terms of €’ we introduce for an arbitrary cone €’ with
vertex 0 inside some vector space H’ the new cone €’(p, q) as the subset of those
[c;] in (H’)?* 7 such that the following two conditions are satisfied:

e All ¢; belong to €.
e If ¢; ;, is not zero, there exists a matrix [¢;] of rank 1 such that c; = t;¢;
holds for all indices.

oJo

Obviously, €’(p, ¢) is a closed irreducible cone inside (H’)? * 4, and it is isomorphic
to the quotient of €’ x D(p, q) under the k*-action #(c’, [t;]) = (¢'t ™", ¢[t;]). There-
fore, the dimension of €’(p, q) is dim €’ + p + ¢ — 2. If 0 is an isolated singularity
in €’, then it is so in €’(p, q).

LEMMA 3. We keep all the notations and assumptions of 6.4. Then we have:

(a) If €’ is one-dimensional the pointed varieties (€’( p, q), 0) and (D(p, g), 0) are
isomorphic.

(b) € always contains €’(p, q). Both sets coincide if and only if the radicals of the
endomorphism algebras of U’ and V' annihilate the given exact sequence E.

Proof. (a) Since €’ is an irreducible cone, we have €’ = kx for any non-zero
element x in €’. Then we get

€'(p, 9) = {[t;x] | [t,] € D(p, @)} = D(p, g).

(b) Of course, €’(p, q) is stable under elementary operations on the rows and
the columns. Using these operations, any element in €’(p, q) is conjugate to an
element z with z,, in ¢’ and z;; =0 for all other indices. Such an element belongs
to € for obvious reasons.
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On the other hand, ¥ is also invariant under elementary operations, because
these are induced by conjugation of

[u 0 - 0 211 212 " Zig T
O u - 0 231 2739 qu
0 0 U 2, Zp Zpq
0 0 0 v O 0
0 0 0 0 0
0O 0 -0 0 0 - v i

with appropriate bloc matrices

-a“ a, alp 0 0 ° O ]
Gy Gp * a4, 0 0 - 0
a, a, a, 0 0 - 0
0 0 : 0 b” b]z ‘ blq
O O : 0 b2l b22 ‘ b2q
0 0 - 0 b, b, - b,

where all a;; and b,; are scalar matrices. We infer that €’(p, g) is contained in %.
Since € is irreducible and €’(p, q) is a closed subset of €, both sets coincide if and
only if the dimensions are equal. Using theorem 5 (b) and the assumptions
U, M]=[U,U®V]and [M",V']=[U @V, V'] we obtain

dim€ =dim €’ +(q— D)V, U' @ V'] ~[V’, M"))
+(p-DU SV, U]—[M,U).

Since the given extension does not split the two differences in the brackets are
strictly positive. Thus the dimensions coincide if and only if both differences are
equal to one. This means exactly that the radicals annihilate the extension.

I do not know how to analyze the singularity of €’(p, q) in general. However,
if €’ is the closure of a highest weight vector v in an irreducible representation V'
of a reductive algebraic group G, then €’(p, q) is again the closure of a highest
weight vector in the irreducible representation V@ k?® (k9)* of G x Gl, x Gl,.
This observation due to H. Kraft and P. Littelmann allows to apply a general result
of E. Vinberg and V. Popov in [21], and to conclude that €’(p, q) is normal. The
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situation described before occurs for minimal singularities of matrix pencils as we
will show in another paper.

7. Minimal singularities of preprojective modules
7.1 Statement of the results

Let M < N be a minimal degeneration of preprojective modules. By the equiva-
lence of <., and < (s. [7]) and by theorem 4 we have

M=M®U)Y 'eWV) '®@X and N=U)eV)dX
for some minimal disjoint degeneration M’ < N’ = U’@® V’. Here we have
[X, M'] —[X, N'] =[M’, X] - [N, X] =0,

so that theorem 2, theorem 5 and lemma 3 show that

(O(m), n), (Om'@@)” '@ @)*~"), @)’ ® (@) and (¢'(p,q),0)

are very smoothly equivalent. Unfortunately, the geometric structure of the cone ¢’
is still unknown to me in general, but for representation finite quiver algebras we
have the following result:

PROPOSITION 4. Any minimal disjoint degeneration of representations of
Dynkin quivers is of codimension one.

From the discussion above and this proposition we obtain our main result:

THEOREM 6. Any minimal singularity (O(m), n) of representations of Dynkin
quivers is very smoothly equivalent to the pointed variety (D(p, q), 0) for some natural
numbers p and q.

Proposition 4 has been found by U. Markolf in his Diplomarbeit via computer
(s. [16]). To check these computer results I figured out a slightly technical
theoretical proof which is also reproduced in [16]. The same proof is given here in
the last section, because it is essential for the proof of theorem 6, and because it
illustrates by a non-trivial example the combinatorial complexity of the problem we
are dealing with.
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Another remarkable observation in [16] is the fact that the number of minimal
degenerations ending in the direct sum of two indecomposable modules U and V is
always r(r + 1)/2 with r =[V, U]'. Furthermore, it is possible that proposition 4
and therefore also theorem 6 remain valid for the much more general class of all
representation-directed algebras. I can prove this so far only in some special cases,
e.g. for degenerations of indecomposables, which answers a question of C. Riedt-
mann. The precise statement is this:

PROPOSITION 5. Let 0> U - M — V =0 induce a minimal disjoint degenera-
tion of preprojective modules. If Hom(X, Y) =0 holds for all non-isomorphic inde-
composable direct summands X and Y of M, then the codimension is one.

However, for minimal disjoint degenerations of preprojective representations of
the triple arrow the codimensions are no longer bounded, so that the structure of
€’ is not clear.

Another interesting question is whether orbit closures of preprojectives are
always normal. Again, I can prove this only in some generic situations where they
happen to be complete intersections.

PROPOSITION 6. Let M be a stretched preprojective module (s. [7], 3.3 for the
definition), e.g. an indecomposable. Then O(m) is a complete intersection which is
regular in codimension one. In particular, O(m) is Cohen-Macaulay and normal.

This result is obvious for quiver algebras, but there exist many more algebras
having preprojective modules (s. [10]).

The proof of proposition 6 is essentially contained in [6]. It only remains to
verify in addition that each irreducible component of O(m) — O(m) contains a
smooth point n. To see this one follows the argument of [6] and one finds a module
N with Ext*(N, N) =0.

In the next section we prove proposition 5, and in the last section a sharper
version of proposition 4. Thus we conclude the present article with the only proof
that involves some sort of classification.

1.2 The proof of proposition 5
Because of

0=[V,V]'=[V,U] =[M,U] and [U,U]=1
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we can calculate the codimension as follows:

eV, UdV]-MM=[UV,UBV]-[M,UV]I+[M,UV]
—[M, M] =1+[M, U® V] —[M, M].

So assume that the codimension is greater than one. Then there is an indecompos-
able direct summand M, of M = @ M™, such that

M, UV]=[M,,V]>[M, M]2n,.

Thus we can choose linearly independent elements
Jits <« s fin, 1 in Hom(M,, V).

Similarly, we can find linearly independent functions
Jis -« o5 Jin, iIn Hom(M;, V)

for the other indices. We take these homomorphisms as the components of a map

h: @ MoV,
iz2
and we take f,, ..., fi,, and fi,, . . ., fia, +1 @s the components of two maps g, and

g, from M™ to V. For any pair (a, b) € k*— {0} the morphism f(a,b) from
M = @ M7 to V with components ag, + bg, and h has the property that none of
its components factors through the others. This follows from [M;, M;] =1 for all i
and from the assumption Hom(M;, M;) =0 for i # j. Argueing as in theorem 4.1 of
[7], we see that f(a, b) induces for all (a, b) # (0, 0) an exact sequence

0 » U » M >» V— 0.

This leads to a contradiction.

Namely, suppose for a moment that there is a point x in the Gabriel quiver of
A with

U(x) =0# M,(x).

Then we can choose appropriate bases of M(x) and U(x) such that (g,, A)(x) is
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represented by the identity and (g,, #)(x) by a bloc matrix

H 0

7 2}

If A is an eigenvalue of H then f(4, —1) is not bijective as it should be.

The general case is reduced to the former by an appropriate tilting functor. First
of all, we can forget about all indecomposable projectives which are not predeces-
sors of V, and all indecomposable projective injectives which are not successors of
U, because the corresponding simples do not occur as composition factors of M.
Thus we can assume that all preprojective injectives are successors of U. Then we
take in the TrD-orbit of each projective indecomposable P the lowest power TrD*
P, which is a successor of U. Standard arguments show that the direct sum T of all

these modules is a tilting module. By construction, all preprojective successors of U
are generated by 7. Therefore,

0 >» FU »FM — FV — 0

remains exact, and all the properties of homomorphisms between indecomposables
occurring in the original exact sequence are preserved by F = Hom(T, ). But now,
FU is a simple not isomorphic to FM,, so that our previous arguments apply.

1.3 The proof of proposition 4
We will use the following consequence of theorem 4 (compare 4.6 in [7]):

LEMMA 4. Let M <N =U @ V be a minimal disjoint degeneration of prepro-
Jective modules. If the codimension is not one, there is an indecomposable direct
summand X of M and a minimal disjoint degeneration X*>@® Y < N’ of preprojectives.

Proof. By the first section in the last proof, there is an indecomposable direct
summand X of M with [X, U@ V] > [X, M]. By theorem 4,

MeoX<UdVeX

is no longer minimal. So we can take a minimal degeneration L of M in between.
Again by theorem 4, we have

MAX=M@Z<L=UBDVRZ<UDVDX
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for some modules M’, U’, V' and Z and some minimal disjoint degeneration
M <U@V.If Zwould be Z'® X, we would get

M<M®Z<U®YV,

contradicting the minimality of M < U@ V. Thus M'<U’'@ V' is the wanted
degeneration. '

Of course, proposition 4 follows now from the following sharper result, which
is definitely wrong for arbitrary representation-directed algebras:

LEMMA 5. Let M < N be a minimal disjoint degeneration of modules over the
path algebra A of a Dynkin quiver. Then no indecomposable direct summand X occurs
twice in M.

Proof. Suppose not. Then we consider the exact sequence
0—U—M=X’@Y—V—0

inducing the minimal degeneration M < N. We will show that in that case the
quiver is of type Eg, Y has two indecomposable direct summands Y, and Y, and the
position of U, V, X, Y, and Y, in the Auslander—Reiten quiver is the one shown in
figure 1.

Then X?@® Y < U@ V is not a minimal degeneration as can be seen in figure 2,
which shows a sequence of five minimal degenerations from the generic extension of
V by U through X2@® Y to U @ V. The six modules involved are the direct sums of
the thick points in the Auslander—Reiten quiver I',, and only X occurs twice. The
first three degenerations are induced by almost split sequences, whence obvious.
The last two have been verified using the equivalence of <,, and <. Also
proposition 5 shows that X°@ Y < U@ V is not a minimal degeneration.

Y X Y

Figure 1
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Figure 2
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Using reflection functors, we reduce to the situation where U is the only simple
projective. Then we infer from

4<[X’Y, X?@Y]<[UQV,U®V]=2+[U, V]

and from the fact that the roots of 4, and D, have only components <2, that 4
is of type E,. By the above inequality we have [U, V] > 0, so that we can assume
V to be faithful. Next, we look at the full subquiver S of I', consisting of all
successors 7 of X such that DTrT is not a successor. Because V is faithful and
[X, V] is not zero, S is an oriented tree of the same type as 4 with X as the only
source. Recall that such subquivers are often called slices. Let Z be the indecompos-
able at the end of a longest branch of S. Then we have

25X, X’®Y|<[X,U®V]<[X, V]

whence V does not belong to S. Similarly, we have
2<[X’@VY,ZI<[U®V,Z]<[U, Z].

Now, for any indecomposable U’ over a Dynkin quiver of type E, the functions
Tw—[U, T

from (I ,), to the natural numbers are well-known and easy to determine (s. [5]).
The case [U’, Z] = 2 for a Z sitting at a longest branch occurs only for Eg, only for
U’ in the DTr-orbit with three neighbors and only for at most one Z once U’ is
given and vice versa. Since we have fixed U already, we know that X lies on the slice
through I', with Z as the only sink. Dual arguments show, that ¥V lies in the
TrD-orbit of U, and that its position is uniquely determined by X. We are left with
eight possibilities for X. Looking at the non-negative function

T[U®V,T]—[X? T]

one verifies that U, ¥ and X have to be in the position of figure 1. Since the
difference of the dimension vectors of U@® V and X? is neither zero nor a root,
we infer that Y has at least two indecomposable direct summands. By duality, we
can assume that Y, belongs to the left half of figure 1. The dashed zeros in the
function

TH[U@V’ T]___[X2, T]9
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1 2 3 4 4 3 3 3 2 4 3 3 4
112132 4 253 4143 413 242 42 42 4 24
1 2 2 3 2 4 2 2 3 2 3 3 2

Figure 3

which is reproduced to a large part in figure 3, leave only the possibility of figure
1 for Y,. Its multiplicity is one because of the dashed one. The dual argument
finishes the proof of the lemma.

As shown in [16] there are 120 isomorphism classes of extensions of ¥ by U in
the case of lemma 5. For Dynkin quivers the maximal number of such extensions
is 132, whereas this number becomes arbitrarily large for general representation-
directed algebras.
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