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On the convergence of normalizations of real analytic surfaces near
hyperbolic complex tangents

XIANGHONG GONG

1. Introduction

Let M = C? be a real analytic surface with a non-degenerate complex tangent at
p. After a change of coordinates, we may assume that p =(0,0) and M has the
form

M :z,=zZ +yz} + 721 + H(z,, 7)), (1.1)

where H(z,, Z,) is a convergent power series in z; and Z, starting with the third order
terms, and 0 <y < oo is the Bishop invariant [3]. The complex tangent is said to be
elliptic if 0 <y < 1/2, parabolic if y = 1/2, or hyperbolic if y > 1/2. Let A be a root
of yA2— A +7y=0. Then |4| =1 for 1/2 <y < co. We say that y is exceptional if
is a root of unity. When 0 <y < 1/2, or y > 1/2 and non-exceptional, J. K. Moser
and S. M. Webster [9] proved that, under the group of formal transformations of
C?, M can be-transformed into a surface given by

x=2z + (1 +ex3)(yzi +v27),  y,=0, (1.2)

in which € =0, or ¢ = +1 with s a positive integer. The character of complex
tangents plays an important role in the problem of convergence. They showed that
the formal normal form (1.2) can be realized through biholomorphic mappings if
0 <y < 1/2, while the divergence of normalizations occurs, as a rule, near hyper-
bolic complex tangents.

In this paper, we shall first consider real analytic surfaces which are formally
equivalent to a quadric

Q, :z, =1z, +yz} +yZ3.

This corresponds to the case ¢ =0 in (1.2). One says that A satisfies the Diophantine
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550 XIANGHONG GONG
condition, if A is not a root of unity, and

1
Wr=t>—5,  neZ,, (1.3)

in which ¢ and ¢, are positive constants with ¢, > 1. We have

THEOREM 1.1. Let M, given by (1.1), be. a real analytic surface with a
hyperbolic complex tangent at 0. Assume that M is formally equivalent to a quadric
Q,. Then M is actually equivalent to the quadric through biholomorphic mappings,
provided that its corresponding 2 is a root of unity, or satisfies the Diophantine
condition.

In [7], W. Klingenberg proved the existence of a pair of asymptotic curves on
surfaces near a hyperbolic complex tangent, where only the Diophantine condition
(1.3) is assumed. It is unknown whether Theorem 1.1 still holds without the
Diophantine condition. Apparently, one encounters with a problem analogous to
the normalization for area-preserving mappings [11].

A real analytic surface in C? is said to be holomorphically flat if it can be
transformed into a real hyperplane through biholomorphic mappings. A fundamen-
tal result in [9] is the discovery of a pair of involutions intrinsically attached to a
real analytic surface near a non-degenerate complex tangent. The holomorphic
flatness of a real analytic surface corresponds to the existence of non-constant
holomorphic functions invariant under its pair of involutions. We notice that
examples of real analytic surfaces with hyperbolic complex tangents, which cannot
be holomorphically flattened, were constructed by E. Bedford [1], Moser and
Webster [9]. However, our next result indicates that the holomorphic flatness is not
equivalent to the convergence of normalizations for surfaces near hyperbolic
complex tangents. This contrasts with the theory of Hamiltonian systems or
symplectic mappings, where the convergence of normalizations is equivalent to the
existence of invariant functions (see [2], [14], [6]).

We now state the following:

THEOREM 1.2. Let € and ¢, ;, with i + j 2 3, be positive numbers. Suppose that
M is a holomorphically flat real analytic surface given by (1.1) with
H(z,, ) = H(Z,, z,). Assume that 1/2 <y < co. Then there exists a holomorphically
flat real analytic surface

M : 22"""%(21,51) +fi(zh z1), ﬁ(zl, Zy) =ﬁ(51, zy) = 0(3),
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which cannot be transformed into the Moser—Webster normal form through any
biholomorphic mapping, while |§ —y| <e¢, and |H,; — H, ;| <¢,; for i +j 2 3.

The paper is arranged as follows. In section 2 we state an analogue of Theorem
1.1 in n dimensional case, which is reduced to the problem of the linearization for
an elliptic pair of involutions. The convergence proof, for the latter, is given in
sections 3 and 4, where a KAM argument is used to deal with the small divisors
problem. In section 5, we discuss the divergence of normalizations for elliptic pairs
of involutions with a fixed invariant function, where the small divisors are used in
a similar way as in [4], [12). The proof of Theorem 1.2 is given in section 6.

2. A pair of involutions

Throughout the discussion of the paper, a formal transformation of C” is
defined by f(z) = (fi(2), . . . , f,(2)), where f,(z) is a formal power series in z without
the constant term, and the linear part of f(z) is an invertible linear transformation.
Let M < C" be a smooth real submanifold of dimension n. Assume that p € M is a
complex tangent point of M, ie. T,M NJT,M # {0}. For w =dz, A" A dz,,
write

o |a = po,

where v is a real volume form of M, and p is a C-valued smooth function. We have
p(p) = 0. The non-degeneracy for the complex tangent of M at p is defined by

dp(p) #0, on T, MnJT,M. (2.1)

One can see that T,M nJT,M is a two dimensional real space. Let T¢"? be the
space of vectors of type (1,0) in T,M nJT,M ® C. Then the Bishop invariant (see
[15]) is given by

1
y_ZXp’

where X spans T¢"OM.
Consider the quadric in C" defined by

. Zy = q‘y(zl’ 21)9
0 o S casn (2.2)
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where q,(z,, Z,) =z,Z, + vz} + yZ2 for 1/2<y < o0, and ¢, (z,, ;) =z} + Z1. Put
p =0. We now assume that M is equivalent to (2.2) through a formal transforma-
tion. By truncating the formal transformation, we may further assume that, for a
biholomorphic change of coordinates, M is given by

{z,, =q,(2,2) + H(z,, 21, %), X=(X35...,%X,_1)s (2.3)

ya'—"'f;z(zhfl’x)y 2SaSn—l,

where each of H(z,, Z,, x) and f,(z,, Z,, x) is a convergent power series starting with
the third order terms. For 1/2 <y < o0, we let y be a root of

PA2—A+7y=0.

It is easy to see that [1|=1. We assign 1 =,/ —1 for y = 0.
An analogue of Theorem 1.1 in the higher dimensional case is the following.

THEOREM 2.1. Let M be a reai analytic submanifold given by (2.3) with
1/2 <y < 0. Suppose that the corresponding A is a root of unity, or satisfies the
Diophantine condition. Assume that M is formally equivalent to Q,. Then there exists
a biholomorphic mapping which transforms M into Q,.

One notices that, under the non-degeneracy assumption (2.1), the complex
tangent may further satisfy one of the following degeneracy conditions:

(i) dp =0 on TV M,
(11) dp = O_on T¢OM,
(iii) dp Adp =0 on T, M,

which correspond to the cases y = 00, y =0 and y = 1/2, respectively. Theorem 2.1
includes the first case. The case y = 0 was discussed by J. K. Moser in [8], where an
analogue of Theorem 2.1 for y = 0 was proved. For the parabolic complex tangent,
a typical case of real Lagrangian surfaces was also investigated by S. M. Webster
in [16). The real Lagrangian surfaces of complex tangents are always formally
equivalent to the quadric Q,,, under unimodular transformations. However, one
may not be able to transform the surfaces into Q,/, by any convergent mapping, as
shown in [5].

The proof of Theorem 2.1 is based on the theory about a pair of involutions
introduced in [9]. To describe the intrinsic involutions, we replace (z, 2) by (z, w) in
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(2.3) and consider the complexified submanifold in C*" as follows

fzn = q(zla wl) + H(Z|, Wi, X),

w, =q(zl’ wl) +g(wl’zla x)a

Mce: < 24
Za_wa=2ifc;(zl’whx)’ ( )

2x, =z, +w,, 25as<n-—1.
.

We shall use (z,, w,, x) as the coordinates to identify M with C”. The projections
n,(z, w) = z and 7,(z, w) = w, restricted to M*, induce two double-sheeted branched
coverings. Let (z7, wi, x") =1,(2,, w;, X) be the covering transformations for n,.
Then we have

q(zll’ wl) +ﬁ(W1,Z’l,x,) =q(Z], wl) +f—{(W|,Zl,X),
x;_l.'/;x(zllswlsx’)=xa—l:/;t(zl’wlsx)’ ZSaSn_l~

By the implicit function theorem, we get

x, =x, + 0(2).
"

Let p be the restriction of the anti-holomorphic involution (z, w) — (W, Z) to M“.
Then p(z,,w,,x) =(¥,,Z,,X). Notice that M° is invariant under p, and
n, = ¢ o m, o p for ¢(z) = Z. Hence, the covering transformation 7, for n, satisfies the
relation 1, = p1,p.

We change the notation and let

iAI/Z l 1/2
¢ =']“__—F(}»Z|+W|), '7=—m“2’(21+)~wn),
(25)
(o= X, 2sa<n-—1.
Under the new coordinates, the pair of involutions is given by
&' =4n+£En 0, h=A=1k, |i=1,
y:n =4E+gEn D), (2.6)

C; = Ca + hj;a(éa n, C)s

-

2<asn-—1,
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in which f;, g;, h;,, start with the second order terms. Meanwhile, the anti-holomor-
phic involution p and reality condition on 7, and 7, are given by

p(¢9 n, C) = (E’ ﬁ’ C_)a 12(69 n, C) = ptlp(és n, C) (27)

We say that a biholomorphic mapping f satisfies the reality condition if pfp = f.
The intrinsic property of the pair of involutions, generated by a real analytic
submanifold in the form (2.3), implies that two submanifolds are equivalent
through biholomorphic mappings in C”, if and only if their corresponding pairs of
involutions are equivalent through a biholomorphic mapping which satisfies the
reality condition (see [9], p. 263).

For a quadric Q, with 1/2 <y < oo, it is easy to see that its pair of involutions
is given by

6’___.11,”, Al=2'="1_29 l,{l.—.l’
< =L¢, (2.8)

£ =L, 2<a<n-1.

Thus, Theorem 2.1 is reduced to

THEOREM 2.2. Let {t,, 15, p} be a pair of involutions given by (2.6) and (2.7).
Suppose that A is a root of unity, or satisfies the Diophantine condition. Assume that
there exists a formal transformation ¥ such that ¥Yt,;¥ ~'=1t}. Then there is a
biholomorphic mapping which satisfies the reality condition and transforms {t,, ,}
into {t¥,1%}.

The proof of the theorem will be given in the following two sections.

3. Basic estimates
We need some notations. For a multi-index 7 =(i,, ..., i,_;), put
=i+ +ipoy, =02 000

If A is not a root of unity, we let m = 0; otherwise, we choose m to be the smallest
positive integer with 12" = 1. For a formal power series a(¢,#, {5, ...,{,_,), We
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use the following notations

a(és n, C) = Z ai,j,lé injzla (3.1)
[a]k(f’ n, C) = ] ZM —x ai,j,lfi"jcls (32)
Pa(,n,{) = Z ai,j,léi”jcls e=0, 1. (3.3)

i —j=emod (m)

Let y be a transformation given by

(&= ¢+, n,0,
i< =n+onl), (3.4)
=0,

where u, v, w are power series starting with the second order terms. y is said to be
partially normalized if

P_v=0="Pyw,, 2<a<n-—1. (3.5)
We also call y a normalized transformation if it satisfies a further condition
P+ 1 u= O.

Let {t,, 75, p} be as in Theorem 2.2. Assume that ¥ is a formal transformation
such that ¥Y¢;% ~' =t*. Then

d¥(0) o ¥ o dP(0)~' =t*.

Hence, d¥(0) ~' o ¥ linearizes 7, and 7,. From now on, we assume that {r,, 7,} can
be linearized by a formal transformation

Y& n, 0 =&n )+ WUE N, V(En D), W, n, ),

in which U, V, W start with the second order terms. By ¥7,% ~! =t}, we see that
U, V, W satisfy
AU—Vor=g, (3.6)
W—-Woti=h, j=1,2.
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Following V. A. Pliss [10], we consider the following approximate equations

Av—uotkt=[f1F"2,
,Eu - o‘tj* = [gj 2d-2 (3.7

w—wotr=[n]F"2% =12,

in which d denotes the lowest order of non-vanishing homogeneous terms of f}, g;, h;
(j=1,2), and

[f} 31d_2 = [f}]d s ol o [f}]zd..z, etc.

The existence of a solution (u, v, w) to (3.7) will not follow directly from the
theory of normal forms given in [9], because here A can be a root of unity. The
assumption that (3.6) has a formal solution (U, V, W) will be used to prove the
existence of a solution (u, v, w) to (3.7). In fact, we shall prove that there is a unique
solution (u, v, w) to (3.7), which satisfies the normalizing condition (3.5). Moreover,
the corresponding transformation y defined by (3.4) satisfies the reality condition,
whenever 1, and 7, satisfy the reality condition (2.7). Eventually, through the
method of rapid iterations (i.e. KAM theory), we shall construct a sequence of
transformations, whose formal limit transformation is actually convergent and
linearizes the pair of involutions {z;, 1,}.

There are 2n equations in (3.7) for n unknowns u, v and w, (2<a <n —1). To
solve for u, v and w,, we need to find the compatibility conditions on the right hand
side of (3.7). For simplicity, let us drop the subscript d and superscript 2d — 2 for
a moment. Obviously, the first two equations and the third one in (3.7) imply

g+afiety=0=h+hott, j=12 (3.8)

Given (3.8), one can then get rid of the second equation in (3.7). Now it is easy to
see that (3.7) implies

uot¥ord—A%u= —fiot¥+A%;01%,
vot¥ord—Aw=Afjottotd—Af,, (3.9
Wotlotf —w=—hot¥—h,.

Notice that for a power series f, we have Py(f o 1;) = Pof. Thus, (3.8) implies
that the last equation in (3.9) is solvable. The first two equations in (3.9) are



Real analytic surfaces near hyperbolic complex tangents 557

solvable if and only if
Pi(—fiotd+A%pot8) =0="P_,(Af; ot} o 1¥ — 1f2).
Since P, (fo1}¥)=(Ps,f) o1}, the above is equivalent to

P_,(fi =A%) =0. (3.10)
As an immediate consequence of (3.5) and (3.10), the first equation of (3.7) gives
Piu=—P,(fiot}). (3.11)

It is easy to see that, under the condition (3.5), ¥ — P,u, v and w, are uniquely
determined by (3.9). Thus, (3.8) and (3.10) are the compatibility conditions to solve
u, v, w from (3.7). Furthermore, u, v and w are uniquely determined by (3.5), (3.9)
and (3.11).

LEMMA 3.1. Let {t;, p} be as in Theorem 2.2. Then (3.7) has a unique solution
(u,v,w) satisfying (3.5). Moreover, the transformation Yy(&,n,0) = +u,
n + v, { + w) satisfies the reality condition f o p = p o .

Proof. We need to verify (3.8) and (3.10). Assume that there is a formal
transformation ¥ which linearizes {t;}. Then

Yory,=1}¥.
Comparing the terms of both sides up to order d — 1, we get
Yootrf =10 ¥,
in which ¥, = X _ | [¥]. Therefore, replacing ¥ by ¥, ! o ¥, we may assume that

PEn)=C+UEn0.n+V(E 0.0+ WK n )

linearizes t,, 1,, while U, ¥ and W contain no terms of order less than d.

We now see that the linearized equation (3.7) is obtained from (3.6) by
collecting terms up to order 2d —2. Hence, u =[U]}¥"2, v=[V]3*~? and
w = [W]3? 2 satisfy (3.7). Thus, we have verified the compatibility conditions (3.8)
and (3.10).
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Next, we show that Y(&,n,0) = (€ +u(€, n, ), n+ v, 1,0, +w n, () sa-
tisfies the reality condition. The reality condition means that u,», w have real

coefficients. Conjugating the first equation in (3.7), we get

Notice that 4, = A,. Since 1, = pt, p, we have 7, = 1, and f, = f,. Therefore, we see
that # and o satisfy the first equation in (3.7). Similarly, one can also show that #,
v and w satisfy the rest of equations in (3.7). Clearly, (3.5) implies that
P_,v = Pyw, =0. Now, the uniqueness of solutions to (3.7) implies that

u=u, vV =uv, w=w.

Therefore, the transformation  satisfies the reality condition. O
Let us keep the notations in Lemma 3.1 and set
=Yooy = +(f 8, k), Jj=12 | (3.12)

Then we have

_f}=uO‘thl/I‘"l——Ajvoq//_l-{—fj'.od/‘“l,
g‘j.:vorjol//"—,{_juoq’[/“l+gjo|//_l, (3.13)

~

hi=wotofy " '—woy " 4+ hoyyt
Notice that u, v, w start with terms of order d. One can obtain from (3.13) that
[l 2 =uoty —dp+[f1¥ 2 =0,

in which (3.7) is used. Similarly, one can show that g, and i?, start with terms of
order 2d — 1. Denote by ord (7) the lowest order of non-vanishing terms of f;, g;
and h;,. Then we obtain

ord (f) 22ord (r) — 1. (3.14)
The above estimate is crucial to apply the KAM method, which means that the

original functional equation is well approximated by the approximate equations
(3.7) at least on the level of formal power series.
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Let A4, ={¢&n0eC"|||,|n],[(|<r}. Given holomorphic
fi»fas - .., f, defined near 4,, we denote

|(fir oo f) ] =max {| ;@] z€ 4,, 1< <n}.
For 7, and 7, given by (2.6), we put
[ —<*|, = max {Jlv, = <t [z — 22|, }.

We now give an estimate for the solution to (3.7) as follows.

559

functions

LEMMA 3.2. Let (u, v, w) be the solutions to (3.7), which satisfies the condition
(3.5). Assume that A is a root of unity, or satisfies the Diophantine condition (1.3). If

T, is holomorphic near A,, then we have

T —1*|,
|G, 0, W) |1~ 0y < o€y "—Hﬂ— 1=[6]+2+n,

in which c, depends only on 6 and n, and ¢, > 1.

Proof. From (3.9), we have

A .
Uiju = 22G=H _ )2 {'12f2;j,i,l — St }s i —j # 1 mod (m),

A . ..
Vijua = 1267 _ 32 A ijr —Friga b i —j# —1mod (m),

1 o ..
Wesi, jur = W {'lt —th,a;j,iJ + hl;a;i,j.l}’ I—]# 0 mod (m)

From (3.11), we get

U jir = “'-171; il i —j = 1mod (m).

In view of the Diophantine condition on A and Cauchy inequalities, we obtain

|ui,j,l| <2 +j+ 1)6(lfl;j,i,1| + lfz;j,i,1|)

< cozé(k + 1)6 "fl “r:; ”f2 ”r < c026+1(k + 1)5 “T _r:*"r ’
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in which k =i +j + |I|. Hence, for (¢, 5, {) € 4, _g),, we have

2d-2 o 2d—2
3 u,-,,,,:wc1Scozmur—r*u, S G+ 151 - )¢
i+j=1=d K=d
st -1
<co2*fe—er], 3 EHZDL G gy
k=0 k-
ST o), L=ntle 42,

where ¢, = (I — 1)!122+ !, One can obtain similar estimates for w,, w;, ..., w,_, and
v, so the lemma is proved. O

To control the involutions defined by (3.12), we need the following.

LEMMA 3.3. Let yi(z) be holomorphic on A _g),. Assume that
1,
II.// - Id"(l _9), S ;; 9 r.

Then for 0<r <1 and 0 <0 < 1/3, Y has an inverse on 4, _ 14, and

Y~ (Ao —sep) S da—20> V(G _ay) <4, (3.15)

Proof. Clearly, we have Y(4,, _q),) < 4,. Let Y(2) = (¥1(2), . . . , ¥,(2)). We put

|9 =2 = 22, 2, 1204 = 20 o -0

From Cauchy inequalities, we get

—Id|| gy
||d|//—Id|](,~2,,),Sn"'/’ BrN(l <. (3.16)

Fixing w € 4, _ 1¢),, We consider the mapping T, (2) = w + z — Y(2). Clearly, we
have |/(0)| < 8%r/n. Hence, (3.16) gives

92
17l 20 < (1 =36)r +—n—f + ||d — I — 26, (1 — 20)r < (1 —20)r.

From (3.16), we also know that T, : 4, _ 4, = 4(; — 20)- IS @ contraction mapping.
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By the fixed-point theorem, one obtains the inverse mappings of ¥ from 4, _ s,

We now give estimates for the high order terms in ;.

LEMMA 3.4. Let {t;, p} and Yy(&,n, {) = (& +u,n +v,{ + w) be as in Lemma
3.2. Assume that <, and t, satisfy

|z —*, S—g—’—-l()zr. (3.17)
CoCy N

Then for 0 <r <1 and 0 <8 < 1/4, we have t;(4, _3q,) < 4, and

. 3¢c,C
Ht - r*l](,_49), < % ||r —-r*",(l — @)@ -1, (3.18)

Proof. Clearly, one can get (3.15) from (3.17), Lemmas 3.2 and 3.3. Notice that
¥ (41— 20) = 4(1 —26)-- Then (3.17) gives 7;(4(; _20),) < 41 —g),- Combining with
(3.15), we have (4, _3q),) < 4,.

The first identity in (3.13) gives

“ﬁ let =38 < 2]l —oy + [l =0 + 1S 2 - 65

3¢y

< ! "T—'T*"r'

Since f’; vanishes at the origin with order =2 ord (t) — 1, the Schwarz lemma gives
A 3coc, 1 —40\2erd®—1
7l = 22 (1=55) " Ie=el

3¢y
01

<

(1 _ 9)2ord(t)—- l”T _ T*"r-

The rest estimates for ; and I;j,a can be obtained in a similar way from the last two
identities in (3.13). O

4. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2 through a KAM argument.
Let t{¥ =1, (j=1,2). We consider the approximate equations (3.7) for the
involutions {t{®, t}. The solution (u, v, w) to (3.7) define a transformation ¥, as
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in Lemma 3.4. Denote 4 ot o 5! by 7{V. Since y, satisfies the reality condition,
{z{P, 7"} is a pair of involutions satisfying the reality condition " = pt{¥p.
Obviously, {t{", t{"} is still linearizable by formal transformations. We repeat this
process and obtain a sequence of pairs of formally linearizable involutions

t}k) — 1-'}" + (f}(_k), }k), hj(-k)), tg‘) = p‘tﬁk)p.

Let d, be the order of {t{?, t{"}. Then (3.14) gives that d, , , = 2d, — 1. This implies

that d, > 2+ . In particular, Y., = lim, _, ., ¥, © - * - o Y, is formally well-defined and

satisfies the reality condition ¥, = py,, p. It is also clear that Y, o7, oy ' =1}.
Next, we show that y converges near the origin. Let 0 <r < 1. Set

_1 1
(1+k+ )r k=0,1,...,
1 Tk +1 1
9"‘4(1 rk) 4k +2)%°

We need a numerical result.

LEMMA 4.1. Let 0, and r, be as above. Then there exists an €,0 < e < 1, such
that for any sequence of non-negative numbers {6, }r_ o, if 0o <€d§ and

3coc,

<o (1—0,_)%8_,, 1<k<N, (4.1)
k—1

Ok

then we have

6, 1
5](56,‘—;? ;Ok k> OSkSN. (4.2)
0%1

Proof. Clearly, 6%, ,/0% —1 as k - 00. On the other hand, we have

(1—6,)% 2k 16,
n-————é—,—— 9k In(1—6,)"% — > —Inf, ;.
Notice that the quantity in the brace tends to — 1. Since 2%/8, — + 00 as k — o0, we

have

3COCI (1 _ Bk)2k+l




Real analytic surfaces near hyperbolic complex tangents 563

Hence, it follows from (4.1) that there exists k,, independent of &,, such that

Op 1S 0,0k, /0F, for k 2 max {ky, N — 1}. (4.3)
From (4.1), one can choose ¢ >0 so small that if §, < &g, then

0;<0F, 0<j<k,.
Then (4.3) gives (4.2). O

To continue our proof for Theorem 2.2, we put

O = t®—z*|,, k=012,....

Let r,, 0¥ and € be as in Lemma 4.1. Since (¥ and g{” vanish at the origin of order
22, then for a small r, and the € given in Lemma 4.1, we have

0o

1
|t @ —1*|,, < EZ)—C_; : EO%ro =edf.

Thus, Lemma 3.4 shows that (4.1) holds for N = 1. Now Lemma 4.1 gives (4.2) for
N = 1. Inductively, one can prove that for all £

0! 1
k) _ % Kk ._p2
I T ""‘Scocl nGkrk.

Now (3.15) implies that Y '(4,, ,,) = 4,,. Hence, Yg' o+ ot 1 Ay, =4,
is well defined. Notice that

Vit =1d + 0(d,).

Thus, we see that g 'o - oy —fg'o -0y !, vanishes at the origin with
order 2d,. Applying the Schwarz lemma, we obtain

1\%
loto oyt - Jl°"'°'/’l—c_—]1”(1/4)r52"(§) .

Since 0 <r <1 and d, 22¢*!, we see that {yg'o-- oy !}, converges to ¥,
on A4, The proof of Theorem 2.2 is complete.
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5. Integrals of a pair of involutions

In this section, we shall first recall the Moser—Webster normal form for a pair
of involutions. Then for a pair of involutions generated by a surface M in C2, we
shall show that the existence of integrals for involutions is equivalent to the
existence of a holomorphic function whose restriction to M is real-valued. Finally,
we shall prove that there exist elliptic pairs of involutions, which have integrals, but
cannot be transformed into the normal form.

Consider an elliptic pair of involutions {z,, 7,} given by

&M =G +LEM AT E+gE M),  A=A=k, |i=1 (5.1)

We assume that 7, and 7, satisfy the reality condition

& m =puplm, e =En) (5.2)

We now state the Moser—Webster normal form as follows.

THEOREM 5.1 (Moser—Webster [9]). Let t, and 1, be a pair of involutions
given by (5.1) and (5.2). Assume that A is not a root of unity. Then there exists a
unique normalized transformation  which satisfies the reality condition and trans-
SJorms 1; into

TF(E% %) = (A4, >, A7 (E**)EY), j=1,2 (5.3)
where A, = 1/A, is a formal power series in £*n*, of which the constant term is A.

We shall call (5.3) the normal form of pairs of involutions although one can
further normalize (5.3) to get a full set of invariants. However, as shown in [9], the
normal form (1.2) can be realized by convergent transformations, if and only if the
normalized transformation ¥ in (a) converges.

We now discuss the compatibility condition involved in (5.1) and (5.2). Since 7,
is completely determined by 7, and p, we need only to find the compatability
condition for T =1, to be an involution. Write

"= +1 ),
; = 54
=T+ g m). ¢9

From 12 =1d, we have

[gle(&, m) = — AL 1(An, &) + e (&, m), (5.5)
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in which e, depends on the coefficients of fand g with order less than k. Inductively,
one can show that 7 is completely determined by f. Conversely, for each holomorphic
function f without constant and linear terms, there exists an involution t such that

~

o T(éa ") - A’" =f(€9 '1)

In fact, for the transformation W(¢, n) = (¢, n + Af(&, n)), we have

¥ ot 0 Y& m) = (An + £ m), AC + (&, ),

in which 7, is the linear involution (£, ) — (i, A€). This also shows that a single
involution is always linearizable when its linear part is given by 7.
An integral of t, and 1, is defined to be a holomorphic function K which satisfies

Kot (¢, n) =K, n), for j=1,2.

One also defines a formal integral to be a formal power series satisfying the above
relation. Assume that A in (5.1) is not a root of unity. Then from the normal form
(5.3), we see that {z,, 7,} has a formal integral x(&, n) = *n*.

Next, we want to show that any formal integral K can be written as a formal
power series in x. To see this, we need to find a power series a(f) = Z_ , a,t* such
that K = a o k. Clearly, a, = K(0). Assume that there exist ay, . . . , @ — 1)/ such that

{(k-1)/2]

K& m= 3 ax/(&n+ECn,

j=0

where E is a formal power series in ¢ and #n of order 2 k. Obviously, E is a formal
integral of 1; (j =1, 2). Let

o(&, 1) = 1,75(E, ) = (A%, A’n) + 0(2).
Then E is invariant by ¢. This implies that
E(A%, ) = E(&, ) + Ok + 1).

Since A is not a root of unity, it is easy to see that homogeneous terms of order &
are given by

e _{o, for k odd,
[EL(E,m) = ak(én)(l/Z)k, for k even.
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Hence, we obtain

k2l
K¢, m =) ax/(¢n)+0k+1),

j=0

which implies that K is a formal power series in x.

Now, if K is a non-constant convergent power series invariant under the pair of
involutions, then there is a formal power series ¢(#) such that K = ¢ o k. Assume
that ¢@(?) — ¢(0) vanishes of order k. It is easy to see that

R, m) = (¢ — 0(0)) o k(&, m)

is still a convergent power series invariant under the pair of involutions, while K
starts with the quadratic term. Certainly, one may also assume that K has real
coefficients.

We now prove the following result which is contained in [9].

PROPOSITION 5.2. Let M be a real analytic surface defined by (1.1). Assume
that 1/2<y < oo and its corresponding A is not a root of unity. Then M is
holomorphically flat near 0, if there is a non-constant holomorphic function f defined
near 0 such that f |, is real.

For the proof, assume that f'is holomorphic near 0 € C2, and f(z,, z,) = fZ,, Z,)
on M. Through the totally real embedding M < M, fis extended to a holomorphic
function which is invariant under 7, and 7,. Denote the extended function by
K(¢, n). From the above discussion, we may further assume that the extension of K
has real coefficients and starts with the quadratic term in ¢ and 7. From
K(&, n) = 0(2), we see that £, (0) =0. We now have

fzi,2y) =az, + bzi+- -+,

in which the terms omitted are in the form z{z5 with i +2j > 2. Notice that
f(z,, 2,) =fZ,, Z,) on M. Now (1.1) gives that b =0, and a = a # 0. This proves
that M is holomorphically flat.

Let J be the set of elliptic pairs of involutions {7, 7,}, given by (5.1) and (5.2),
such that & is their integral. Denote by T the set of biholomorphic transformations
which have the form

¥ - wa@), ima='(%)), [u|=1 and a(0)=1. (5.6)

Then T acts on J by the conjugation.
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THEOREM 5.3. Let ¢,,¢,, ... be a sequence of positive numbers. Assume that
{t,, 72} is an elliptic pair of involutions in J. Then there exists a biholomorphic
mapping Y € J such that the pair of involutions t, = Y1,y ~! and t, = pt, p cannot be
transformed into the normal form through any biholomorphic transformation, while
A = Au? is not a root of unity, and

u—1l<e, gl <g,  forj>0.

Proof. We shall recursively determine the conditions on g and coefficients of
a(é) such that the unique normalized transformation ¥ normalizing the pair of
involutions {,, 7,} diverges. Let

A&, 1) =y ~ (&, ) = (A + (&, m), A€ + 5, ).

Then we have

m (&, m) = pina(®) ' + r(pa(%), an(a(€)) ~").

Hence

[ 2+ 1(E, ) = [r)e 1 (U6, in) — u/laké"r] + e (&, ),

in which e, depends only on the coefficients of a(£) with order less than k. In the
following discussion, we shall denote by e;(&, ) the error terms which are deter-
mined by the coefficients of a(&) with order less than k. We also have

[ Wthe o 1 (& ) = pA* a1+ pl fli 1 (& n) + e3(E, ).

Thus, from the last two identities, we obtain

[l - (&, fin) = pAap&Fn 4+ pd* a1 4yl £ 1 1) + es(E, n). (5.7

Let Y(& n) = (& + U, n),n + V(& n) be the unique normalized transforma-
tion which normalizes {f,, t,}. Theorem 5.1 gives

Wt £, W~ N(E, ) = (AZEA(En), A~ A~ (En) = ¢*.
Hence
[0, 0 *®Le 4 (& 1) = AU o 1 (&, 1) + AZELAED] + es(E, 1),

[0 P2, 8 )k (& 1) = [Ule s 1 (A2 272) + [ 1 (A", 46)
+ A5 1 1 (& 1) + (& ).
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Now, fori#j+1,i+j=k + 1, the compatibility condition (5.5) gives the follow-
ing solution

Ti—j+ 2z Ti—j
AR = A,

Im (47,,)

U= T +e;= mG ) (5.8)
Substituting (5.7) into the above, we get
Im ((An)*a, + Au* )
Ukir0=— (4p) a, = Jokst +erx+10- (5.9

Im A*

We need the following.

LEMMA 5.4. Let {6,}X_0 be a sequence of positive numbers. Given A with
|A| =1, there exists i, |l| =1, such that 1 is not a root of unity, |A — 4| < &,, and

| —1] < 6,,
for a sequence of positive integers n, — ©.

Let us assume the lemma and continue the proof. Put

1 1
50='2'51, 5n=§

e,n"".

By Lemma 5.4, there exist X and a sequence n, — oo such that A is not a root of
unity, and

I—1l< —e,, A"’c—1< €, N .
|

Assume that ¢, < 1. Then for a suitable choice of root u = (11)!/2, we have
e —1<1/2,  |u+1]>1

Hence
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We now can choose the coefficients a;, We may assume that ¢, < 1. Put

a; =0, for j #n,.

J

We define a, recursively as follows: If

Im (o 1)
Im A%

+ €7, + 10| 2 7 1K,
4
we put a, = 0; otherwise, we take
i —n

ank = E enk(lu) k'

It is easy to see that in both cases, we have
1 n
|Uni + 10| > 2 R for all k.

Therefore, U(E, 1) diverges. This proves Theorem 5.3. O

We now follow Siegel [12] to give a proof for Lemma 5.4. One may assume that
for all n, §, < 1. Let A = e, Clearly, one may also assume that 4 is not a root of
unity. Choose integers p and ¢ so large that

p6 —q| <1, p>8nd;'.
Denote p by n,. Let n, be the smallest positive integer satisfying

ny|ny,  ny>8mn3dr’.
Recursively, we define n, to be the smallest positive integer such that

Me_y|me,  me>8mni_ 671, (5.10)
Let 6 = g/lp +X_ n;' and 1 = e We first show that 4 is not a root of unity.
To see this, we assume that there exists a positive integer x such that x0 € Z.

Choose k so large that n, _, > 2x. Then we get

k-1 oo
nk,,xﬂ—nk_,xg— Y L Y ) i =1 (5.11D)

T N N




570 XIANGHONG GONG

The left side is an integer, because n; | n, _, for 0 < j < k — 1. However, for the right
side, we use (5.10) and obtain

[s o}
XMy _
0< ) =<«
i=k M

XMy _ g

XNy _ 4
<1,
k

w )
ng’ <2
=0

ne ny

-~

which leads a contradiction. Thus, 4 is not a root of unity.
To obtain the required estimate in the lemma, we write

k o
) q Ny My
nb=m=-+>% =+ > —.
P j=1hy j=k+1 Wy

Then I, =n.q/p +ZF_, n, /n; € Z. Using (5.10), we get

X n n 1
Yy F<2—*<—5§,.
J=k+1n} A 4r
Hence
-~ -~ o0 nk
Il""—l|$47t|9nk—lk|s47t Z ——<5”k'
j=k+1 1l

We have proved Lemma 5.4.

6. Proof of Theorem 1.2

Theorem 5.3 provides examples of holomorphically flat real analytical surfaces
which cannot be transformed into normal forms through any biholomorphic
mapping. In fact, we shall show that such surfaces form a dense set, as stated in
Theorem 1.2.

We first discuss the relation between the defining function of a real analytic
surface and its pair of involutions. Denote by $.,, the set of homogeneous
polynomials of degree k+1 in z,,w,, which satisfy the reality condition
h(zl’ wl) = h(wl’ Zl)-

Fix a convergent power series H(z,, w,) such that H(z,,w,) =0(3) and
H(w,, z;) = H(z,, w;). For each h € $,,,, we consider the holomorphically flat
surface

M:z,=q,z,z)+ H(z, z,) + h(zy, Z,).
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Let {t,, 7,} be the pair of involutions generated by M. For t = 1,, we write

1
t(zb wl) = <—Zl _:)';wl +p(Z|, wl)s wl)
Let ﬁ(zl, w,) = H(z,, w;) + h(z,, w,). By the definition of involution z,, we have
2 1
qy(zls wl) +H(zl’ wl) = qv —2Z "";Wl +p(zla wl)9 W,
~ 1
+ H("‘Zl _',};Wl + p(z1, W), Wl)-

Simplifying the above, we get

~ 1
(2yzy +wy)p(zy, wy) = H(“Zl _;Wl + p(z,, wy), Wl)
— H(zy, wy) +1p(z0, w)>

Hence

1
(2yzy + w)) [ple(z1, W) = h(“zl “;Wn Wl) —h(z,, wy) + e5(z;, wy), (6.1)

where e; depends only on y and the coefficients of H with order less than k + 2.

Let (¢, n) = T,(z,, w,) be the transformation defined by (2.5). Then in the new
coordinates (&, ), 7, and 7, are given by (5.1) and (5.2). For a power series p in z,
and w,, let us denote by p* the power series p o T;!. Then (6.1) becomes

(@& — B (&, m) = h*(im, 28) — h*(E m) + €3 (&, ).

— - (6.2)
o0, =(1-2)(1=2y), Bi=(1-2)(2y .

Obviously, T, transforms §, , , into the set H¥, , of homogeneous polynomials of
degree k + 1 with real coefficients. Let

at (&) =n*rl

In (6.2), substituting A* by af, ,, we get a solution f(&, ) to (6.2), given by

R o\ Jog ke — j *
rlt).(éa ") = e 6 n I+ €9 (é, ”)a

ﬁljzo A
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in which e is the solution f to (6.2), where A* is replaced by 0. In particular,
e3 (&, n) depends only on y and the coefficients of H with order less than k + 2. Put

A 4 I,A(Zu wi)) =ag, 0 Ti(zy, w), Ck+1,0 = ma13‘+ {lak+ l,).;i,jl}s

in which a,,,;,; are coefficients of a,,,;(z;,w;). Notice that the binomial
coefficients of (¢ + n)* are bounded by 2*. Then from (2.5), we have

Ck 1.1 < 2k+l|'12 — ll_k—l.
Therefore, for |4 — A| <|4 — 1|/4, one has
Ceard SR~ 1|1 =cp . (6.3)

We now can prove Theorem 1.2. Put ¢, =min {¢;;; i +j = k}. Applying Lemma
5.4, we find i, |l| = 1, such that for a sequence k; - o

Iikj - ll < Ekj_,_lkj__kj.

Clearly, we may assume that A has been so chosen that the corresponding 7} is
non-exceptional and it satisfies [§ —y| <e. We also assume that (6.3) holds.

Next, we deterrmne the coefficients of H recursively. Assume that [H], (j<k)
has been given. Put H,,(z,,z,) = ¥ [H],(zl, z,). To find [H]k+l’ we consider the
involutions {t,, 7,} generated by the surface given by

2= g1, 5) + He(z, 7)) + Y [H) (21, ).

Write
&, 1) = Gin +£o(&, 1), IE + gu(& m)) + Ok + 1),
L&) =f En+ &), g =g_1(&En) +[gl(& n),

in which f; _,,g._, depend only on 4 and ﬁk. Assume that the normalized
transformation Y(&, ) = (£ + U(&, n), n + V(&, n)) transforms {r,, 7,} into {t¥, t¥}
of the form (5.3). Using the formula (5.8), we get

Im /T _ )
Uysms = ~E—§A;,f.—":,%+ew_,-, 2 £k +1, (6.4)

in which e, _ ; depends only on  and coefficients of H with order less than k + 1.
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We now determine ﬁH, as follows. We put [}‘7'],(+l = [H]i +, in the case either

| Im (o) [Im 5| Kk
|Uk + 1.0| =|————="+€0x+10 * s
5 Im A% $ 4cf 1

where fis the solution to (6.2) of which A* = 0. Otherwise, for k = k; + 1, we set

~ - - 1 -
[Hl 1 1(21,2,) = [Hlk 41 (21, 1) + o 1k Li(z1, 2))-
2ck

For the chosen [H], +1, let us denote by

(8, ) = Ui +£u(&, ), IE + 8, ) + Ok + 1)

the involution generated by M. Assume that 7, and £, are normalized by the
transformation ‘17(5, n =&+ (7(6, n,n + 17({, n)).

Recall that f, is the solution f to (6.2), in which A* is substituted by
[H—H),,, T7'. For the second choice of [H],, ;, we have

~

- =_———¢ Ff=
j;c ./;C 2c:+l k+ 17 k,A

Hence

= €kv1
Jox —Jox = : B: L
Ck+1

Thus, for k =k; + 1, we obtain

Im (o) m Ao, —fou)| 1M (Hfo)

+ €10, + 1,0

Im ik | Ok >| Im A% | Im 2%
Im 7' | Kk
4c;:,-+1 !
Now (6.4) gives
T IImell k ;
10 a0l > ottt j=1,2,....

*
4ckj+l
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This proves that the unique normalized transformation 7 diverges. Therefore M
cannot be transformed into the normal form through any biholomorphic transfor-
mation. O
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