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On the convergence of normalizations of real analytic surfaces near
hyperbolic complex tangents

Xianghong Gong

1. Introduction

Let McC2bea real analytic surface with a non-degenerate complex tangent at

p. After a change of coordinates, we may assume that p (0,0) and M has the

form

M:z2 zxzx+yz2x+-yz2x + H(zx,zx), (1.1)

where H(zx, zx is a convergent power séries in zx and zx starting with the third order

terms, and 0 ^ y &lt; oo is the Bishop invariant [3]. The complex tangent is said to be

elliptic if 0 ^ y &lt; 1/2, parabolie if y 1/2, or hyperbolic if y &gt; 1/2. Let A be a root
of yX2 - X + y 0. Then |A| 1 for 1/2 &lt; y &lt; oo. We say that y is exceptional if X

is a root of unity. When 0 &lt; y &lt; 1/2, or y &gt; 1/2 and non-exceptional, J. K. Moser
and S. M. Webster [9] proved that, under the group of formai transformations of
C2, M can be transformed into a surface given by

x2 zxzx+(\+exs2)(yz2x+yz2x), y2 0, (1.2)

in which £ 0, or e ± 1 with s a positive integer. The character of complex

tangents plays an important rôle in the problem of convergence. They showed that
the formai normal form (1.2) can be realized through biholomorphic mappings if
0 &lt; y &lt; 1/2, while the divergence of normalizations occurs, as a rule, near hyperbolic

complex tangents.
In this paper, we shall first consider real analytic surfaces which are formally

équivalent to a quadric

Qy :z2 zxzx+ yz\ -hyz\.

This corresponds to the case c 0 in (1.2). One says that X satisfies the Diophantine
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550 XIANGHONG GONG

condition, if X is not a root of unity, and

in which S and c0 are positive constants with c0 &gt; 1. We hâve

THEOREM 1.1. Le* M9 given by (1.1), &amp;?. a real analytic surface with a

hyperbolic complex tangent at 0. Assume that M is formally équivalent to a quadric
Qy. Then M is actually équivalent to the quadric through biholomorphic mappings,

provided that its corresponding X is a root of unity, or satisfies the Diophantine
condition.

In [7], W. Klingenberg proved the existence of a pair of asymptotic curves on
surfaces near a hyperbolic complex tangent, where only the Diophantine condition
(1.3) is assumed. It is unknown whether Theorem 1.1 still holds without the

Diophantine condition. Apparently, one encounters with a problem analogous to
the normalization for area-preserving mappings [11].

A real analytic surface in C2 is said to be holomorphically flat if it can be

transformed into a real hyperplane through biholomorphic mappings. A fundamen-
tal resuit in [9] is the discovery of a pair of involutions intrinsically attached to a

real analytic surface near a non-degenerate complex tangent. The holomorphic
flatness of a real analytic surface corresponds to the existence of non-constant
holomorphic functions invariant under its pair of involutions. We notice that

examples of real analytic surfaces with hyperbolic complex tangents, which cannot
be holomorphically flattened, were constructed by E. Bedford [1], Moser and

Webster [9]. However, our next resuit indicates that the holomorphic flatness is not
équivalent to the convergence of normalizations for surfaces near hyperbolic
complex tangents. This contrasts with the theory of Hamiltonian Systems or
symplectic mappings, where the convergence of normalizations is équivalent to the

existence of invariant functions (see [2], [14], [6]).
We now state the following:

THEOREM 1.2. Let e and eij9 with i +j ^ 3, be positive numbers. Suppose that

M is a holomorphically flat real analytic surface given by (1.1) with

H(zl9zl) H{zX9 zx). Assume that 1/2 &lt; y &lt; oo. Then there exists a holomorphically

flat real analytic surface

M:z2 qf(zl9zl)^H(zuzl)9 H(zuzx) =H(zl9 zx) O(3),
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which cannot be transformed into the Moser-Webster normal form through any
biholomorphic mapping, while \y — y\ &lt;e, and \HhJ — HtJ\ &lt; ctJfor i +j ^ 3.

The paper is arrangée as follows. In section 2 we state an analogue of Theorem
1.1 in « dimensional case, which is reduced to the problem of the linearization for
an elliptic pair of involutions. The convergence proof, for the latter, is given in
sections 3 and 4, where a KAM argument is used to deal with the small divisors

problem. In section 5, we discuss the divergence of normalizations for elliptic pairs
of involutions with a fixed invariant function, where the small divisors are used in
a similar way as in [4], [12]. The proof of Theorem 1.2 is given in section 6.

2. A pair of involutions

Throughout the discussion of the paper, a formai transformation of Cn is

defined by/(z) (/i(z),... ,fn(z)), where fk(z) is a formai power séries in z without
the constant term, and the linear part of/(z) is an invertible linear transformation.
Let M c Cn be a smooth real submanifold of dimension n. Assume that p e M is a

complex tangent point of M, i.e. TpM nJTpM ^ {0}. For œ dzx a • • • a dzn,

write

û&gt; \m pv,

where v is a real volume form of M, and p is a C-valued smooth function. We hâve

p(p) 0. The non-degeneracy for the complex tangent of M at p is defined by

dp(p) #0, on TpMnJTpM. (2.1)

One can see that TPM nJTpM is a two dimensional real space. Let Tph0) be the

space of vectors of type (1,0) in TpMnJTpM®C. Then the Bishop invariant (see

[15]) is given by

1 Xp
Xp

where X spans T{pmM.
Consider the quadric in C&quot; defined by

2.2)



552 XIANGHONG GONG

where qy(zuzx) =zlzl + yz\ + yz\ for l/2&lt;y&lt;oo, and ^(z,^,) =z\ + z\. Put

/? 0. We now assume that M is équivalent to (2.2) through a formai transformation.

By truncating the formai transformation, we may further assume that, for a

biholomorphic change of coordinates, M is given by

n qy(zl9zx) + H(zuzux\ x (x2,..., *„_,),

where each of H{zx ,zux) and/a(z,, zx, x) is a convergent power séries starting with
the third order terms. For 1/2 &lt; y &lt; oo, we let y be a root of

It is easy to see that \k\ 1. We assign X y/— 1 for y oo.

An analogue of Theorem 1.1 in the higher dimensional case is the following.

THEOREM 2.1. Let M be a reaï analytic submanifold given by (2.3) with
1/2 &lt; y ^ oo. Suppose that the corresponding X is a root of unity, or satisfies the

Diophantine condition. Assume that M isformally équivalent to Qy. Then there exists

a biholomorphic mapping which transforms M into Qy.

One notices that, under the non-degeneracy assumption (2.1), the complex
tangent may further satisfy one of the following degeneracy conditions:

(i) dp 0 on T$&gt;0)M,

(ii) dp 0 on r&lt;,10)M,

(iii) dp a dp =0 on TpM9

which correspond to the cases y oo, y 0 and y 1/2, respectively. Theorem 2.1

includes the first case. The case y 0 was discussed by J. K. Moser in [8], where an
analogue of Theorem 2.1 for y 0 was proved. For the parabolic complex tangent,
a typical case of real Lagrangian surfaces was also investigated by S. M. Webster
in [16]. The real Lagrangian surfaces of complex tangents are always formally
équivalent to the quadric Ql/2 under unimodular transformations. However, one

may not be able to transform the surfaces into Ql/2 by any convergent mapping, as

shown in [5].
The proof of Theorem 2.1 is based on the theory about a pair of involutions

introduced in [9]. To describe the intrinsic involutions, we replace (z, z) by (z, w) in
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(2.3) and consider the complexified submanifold in C2w as follows

Zn &lt;l(Zl ]

H&gt;M &lt;

Mc:

553

(2.4)

We shall use (z,,wl9x) as the coordinates to identify Mc with Cn. The projections
7T,(z, w) z and 7t2(z, w) w, restricted to Mc, induce two double-sheeted branched

coverings. Let (z\, w&apos;l9 jc&apos;) T,(zl9 wl9 x) be the covering transformations for n2.
Then we hâve

q(z i, z\, ^cO -h z,, x\

By the implicit function theorem, we get

1 l
y

l

Let p be the restriction of the anti-holomorphic involution (z, w) k&gt; (h&gt;, z) to Mc.
Then p(z,, wl5x) (h^,, zl9 je). Notice that Mc is invariant under p9 and

n2 c o 7i! o p for c(z) z. Hence, the covering transformation t2 for tt1 satisfies the
relation t2 pr{p.

We change the notation and let

(2.5)

Under the new coordinates, the pair of involutions is given by

(2.6)
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in which fj,gj, hJ(X start with the second order terms. Meanwhile, the anti-holomor-
phic involution p and reality condition on t, and t2 are given by

p(£, n, o (Ê Ï, Ô, t2({, rj, o p*ip(&amp; n9 0- (2.7)

We say that a biholomorphic mapping/satisfies the reality condition if p/p =/.
The intrinsic property of the pair of involutions, generated by a real analytic
submanifold in the form (2.3), implies that two submanifolds are équivalent
through biholomorphic mappings in Cn, if and only if their corresponding pairs of
involutions are équivalent through a biholomorphic mapping which satisfies the

reality condition (see [9], p. 263).
For a quadric Qy with 1/2 &lt; y ^ oo, it is easy to see that its pair of involutions

is given by

c/ i ^ 2 T \2\ 1

n&apos; ï&amp; (2.8)

c; C«, 2£«£#i-i.

Thus, Theorem 2.1 is reduced to

THEOREM 2.2. Let {xl9 t2, p} be a pair of involutions given by (2.6) and (2.7).
Suppose that X is a root of unity, or satisfies the Diophantine condition. Assume that
there exists a formai transformation Y such that YTjY~1 t*. Then there is a

biholomorphic mapping which satisfies the reality condition and transforms {t15t2}
into {rf,T?}.

The proof of the theorem will be given in the following two sections.

3. Basic estimâtes

We need some notations. For a multi-index / (i2, ...,/„_ i), put

If X is not a root of unity, we let m 0; otherwise, we choose m to be the smallest

positive integer with X2™ 1. For a formai power séries a(£, rj9 f2,..., £,_,), we
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use the following notations

PAS, *, 0 Z «,,,,/W,
i —j c mod (m)

Let \j/ be a transformation given by

e=0, ±1.

555

(3.1)

(3.2)

(3.3)

(3.4)

where u, v9 w are power séries starting with the second order terms. \\i is said to be

partially normalized if

We also call \j/ a normalized transformation if it satisfies a further condition
P+lu 0.

Let {t1? t2, p} be as in Theorem 2.2. Assume that W is a formai transformation
such that t*. Then

Hence, rfS^O)&quot;1 ° y linearizes Tj and t2. From now on, we assume that {t,, t2} can
be linearized by a formai transformation

n, 0 «, 0 + (f«, «j, 0, v&amp; if, 0, IF({, v, 0),

in which t/, V, Wstart with the second order terms. By tPx]T~i xf, we see that
U, V, W satisfy

(3.6)
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Following V. A. Pliss [10], we consider the following approximate équations

(3.7)

in which rf dénotes the lowest order of non-vanishing homogeneous ternis of/J, gJt h}

0 1,2), and

\?2 ¦¦ + [fJlu-2, etc.

The existence of a solution (u9 v, w) to (3.7) will not foliow directly from the

theory of normal forms given in [9], because hère A can be a root of unity. The

assumption that (3.6) has a formai solution (£/, V9 W) will be used to prove the
existence of a solution (u, v, w) to (3.7). In fact, we shall prove that there is a unique
solution (m, v, w) to (3.7), which satisfies the normalizing condition (3.5). Moreover,
the corresponding transformation ^ defined by (3.4) satisfies the reality condition,
whenever xx and t2 satisfy the reality condition (2.7). Eventually, through the
method of rapid itérations (i.e. KAM theory), we shall construct a séquence of
transformations, whose formai limit transformation is actually convergent and
linearizes the pair of involutions {t,, t2}.

There are 2n équations in (3.7) for n unknowns w, v and u&gt;a (2 &lt;&gt; a ^ n — 1). To
solve for m, v and wa9 we need to find the compatibility conditions on the right hand
side of (3.7). For simplicity, let us drop the subscript d and superscript 2d - 2 for
a moment. Obviously, the first two équations and the third one in (3.7) imply

&amp; + ^ot/=0«*y + Vt/, .7 1,2. (3.8)

Given (3.8), one can then get rid of the second équation in (3.7). Now it is easy to
see that (3.7) implies

u o tf o t? - Pu - -/, o tî + k2f2 o tJ,

t;oTfot2*^I2t; I/;oTfotf-Â5r2, (3.9)

W o T* o tj — W —A| o tj — A2.

Notice that for a power séries /, we hâve Po(f° Xj) Po/ Thus, (3.8) implies
that the last équation in (3.9) is solvable. The first two équations in (3.9) are
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solvable if and only if

Since P±\(f° t*) (PT\f) ° t*, the above is équivalent to

/&gt;-,(/i-A2/2)=0. (3.10)

As an immédiate conséquence of (3.5) and (3.10), the first équation of (3.7) gives

-P1(/1oT*). (3.11)

It is easy to see that, under the condition (3.5), u - Pxu9 v and wa are uniquely
determined by (3.9). Thus, (3.8) and (3.10) are the compatibility conditions to solve

w, v, w from (3.7). Furthermore, m, v and w are uniquely determined by (3.5), (3.9)
and (3.11).

LEMMA 3.1. Let {xJ9 p} be as in Theorem 2.2. Then (3.7) has a unique solution
(w, v, w) satisfying (3.5). Moreover, the transformation {//(Ç, rj9 f) (Ç + w,

rj + v, C + w) satisfies the reality condition \fj © p p o ^.

/. We need to verify (3.8) and (3.10). Assume that there is a formai
transformation V which linearizes {t,}. Then

o t, T,*

Comparing the terms of both sides up to order d — 1, we get

in which ÎP0 Z^} [^P]^. Therefore, replacing W by «V1 ° ^ we may assume that

£ ij, 0 « + ^(^ 1. 0, * + K({, rj, C), f + ^«, if, 0)

linearizes tl5 t2, while t/, F and FF contain no terms of order less than d.

We now see that the linearized équation (3.7) is obtained from (3.6) by
collecting terms up to order 2d-2. Hence, w [C/]2/&quot;2, v [V]%*-2 and

w [W]Y~2 satisfy (3.7). Thus, we hâve verified the compatibility conditions (3.8)
and (3.10).
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Next, we show that tfr«, ij, Q « + w«, ij, 0, i; + K£, *, 0, C + &quot;(£, ij, 0) sa-

tisfies the reality condition. The reality condition means that m, v, w hâve real
coefficients. Conjugating the first équation in (3.7), we get

Notice that kx À2. Since t2 pt,p, we hâve f2 xx and/&gt; =/,. Therefore, we see

that w and v satisfy the first équation in (3.7). Similarly, one can also show that w,

v and w satisfy the rest of équations in (3.7). Clearly, (3.5) implies that

p_xv Powa 0. Now, the uniqueness of solutions to (3.7) implies that

Û W, V V, W W.

Therefore, the transformation \jt satisfies the reality condition.

Let us keep the notations in Lemma 3.1 and set

f; ^oT;o^» T; + (u,*;), y 1,2. (3.i2)

Then we hâve

fj^UotjOlj/-1 -AjVoll/-1 +fjO )]/-*,

j j \l/~\ (3.13)

hj=W oXj o{j/-{ —W olj/&apos;1 -{- hj o{f/-1.

Notice that m, v, w start with terms of order d. One can obtain from (3.13) that

[/A2/-2 u o T; -xjV + [fj]2/~2 o,

in which (3.7) is used. Similarly, one can show that g, and A, start with terms of
order 2d — 1. Dénote by ord(r) the lowest order of non-vanishing terms of fp g,
and hja. Then we obtain

ord(f)^2ord(r)~l. (3.14)

The above estimate is crucial to apply the KAM method, which means that the

original functional équation is well approximated by the approximate équations
(3.7) at least on the level of formai power séries.
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Let Ar {(Ç,rj9 Ç) eCn\ \Ç\, \rj\, |(| ^ r}. Given holomorphic functions

ufii - - - -&gt;fn defined near âr, we dénote

i, • • • Jn)\\r max {|jj(z)|; z g Ar9 1 *j &lt; n}.

For r{ and t2 given by (2.6), we put

||t - i*|r max {||t! - tf ||r, ||t2 - tf ||r}.

We now give an estimate for the solution to (3.7) as follows.

LEMMA 3.2. Let (w, v, w) be the solutions to (3.7), which satisfies the condition
(3.5). Assume that h is a root ofunity, or satisfies the Diophantine condition (1.3). If
t} is holomorphic near Ar, then we hâve

IIt-t*||
||(ii, », w) ||(1 _ 9)r

&lt; cocx
&quot;

gl
&quot;r, / [S] + 2 + n,

in which cx dépends only on b and n, and cx &gt; 1.

Proof. From (3.9), we hâve

kJ~l

,i,a/ -Av,/}» *&apos; -7 # -1 mod (m),

-,)1 l^1 ~Jh2,*MI + *l,«,«.y./}» &apos; -y * 0

From (3.11), we get

uttJj -¥itJtij&gt; * -J l mod (m)-

In view of the Diophantine condition on X and Cauchy inequalities, we obtain

k,,/l * *02&apos;(i +y+o&apos;d/i^i+1/2,^/D
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in which k i +y +1/|. Hence, for (£, rj, Q e A(ï_0)r, we hâve

2,

where Cj (/ — l)^&quot;1&quot;!. One can obtain similar estimâtes for w2, w3,..., wn_, and
t?, so the lemma is proved.

To control the involutions defined by (3.12), we need the following.

LEMMA 3.3. Let ^(z) be holomorphic on A(l_e)r. Assume that

Then for 0 &lt; r &lt; 1 and 0 &lt; 9 &lt; 1/3, ^ has an inverse on Jo _ 30)r9 and

t~1(Aii-30)r)cA(l_2e)r9 \lf{A{l_e&gt;)czAr. (3.15)

Proof. Clearly, we hâve ij/(A(l _0)r) c Jr. Let ^(z) (^^z),..., ^rt(z)). We put

||# - Id||(1 _2ey

From Cauchy inequalities, we get

Mlo-a»*»*»• (3-16)

Fixing w € J(1 _ 3ô)r, we consider the mapping rw(z) w -I- z — ^(z). Clearly, we
hâve |^(0)| ^ 02r//i. Hence, (3.16) gives

\\TW ||(1 _20)r ^ (1 - 30)r + ^ + ||# - Id||(1 _20)r(l - 20)r ^ (1 - 20)r.

From (3.16), we also know that Tw : J(1_ 2^r ^^(1-2^ is a contraction mapping.
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By the fixed-point theorem, one obtains the inverse mappings of ^ from A(l _ 39)r

into A{l_20)r. D

We now give estimâtes for the high order terms in ij.

LEMMA 3.4. Let {xJ9 p] and ^({, t], Ç) (^ + u, r\ + v, Ç + w) be as in Lemma
3.2. Assume thaï xx and x2 satisfy

||t-t*|L^ — --02r. (3.17)
cQcx n

Then for 0 &lt; r &lt; 1 and 0 &lt; 6 &lt; 1/4, we hâve fy(zj(1 _30)r) c Ar and

^T-T^Ul-e)2^^-1. (3.18)

Proof. Clearly, one can get (3.15) from (3.17), Lemmas 3.2 and 3.3. Notice that
T*(^n-2«)r) 4i-29)r- Then (3.17) gives t,(J(1 _29)r) &lt;= A0_e)r. Combining with
(3.15), we hâve ^(^.^JcJ,,

The first identity in (3.13) gives

\\fj\\(\-Wr * \\V\\o-e)r + ||«||(.-«y + l//||(l-flr

fj vanishes at the origin with order ^2 ord (t) — 1, the Schwarz lemma gives

3c0c1/l-4flVord&lt;T&gt;-1

0l v

The rest estimâtes for g, and hJ0L can be obtained in a similar way from the last two
identities in (3.13).

4. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2 through a KAM argument.
Let tj0) si, (j 1,2). We consider the approximate équations (3.7) for the

involutions {xf\ t^0)}. The solution (u, v, w) to (3.7) define a transformation ^0 as
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in Lemma 3.4. Dénote ^0 ° ij0) © tf/^1 by tJ1}. Since ^0 satisfies the reality condition,

{TJVf} is a pair of involutions satisfying the reality condition t^ px\l)p.
Obviously, {r\l\ t£!)} is still linearizable by formai transformations. We repeat this

process and obtain a séquence of pairs of formally linearizable involutions

Let &lt;/fc be the order of {x\k\ t^}. Then (3.14) gives that dk+l^2dk-l. This implies
that dk &gt; 2k + &apos;. In particular, i/&apos;œ, lim^^o, \frk » • ¦ ¦ o i/r0 is formally well-defined and
satisfies the reality condition ^/x — pty^p. It is also clear that ^/x ° x} ° ij/^1 t*.

Next, we show that i/^ converges near the origin. Let 0 &lt; r &lt; 1. Set

A: =0,1,...,

We need a numerical resuit.

LEMMA 4.1. Let 9k and rk be as above. Then there exists an e9 0 &lt; e &lt; 1, such

that for any séquence of non-négative numbers {ôk}k 0, ifôo&lt;cô$ and

(4.1)

then we hâve

** k&quot;cocl&apos;n
hTk&apos;

Proof Clearly, 5J+ Jô^ -* 1 as k -? oo. On the other hand, we hâve

Notice that the quantity in the brace tends to — 1. Since 2k/0k -* + oo as fe -? oo, we
hâve
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Hence, it follows from (4.1) that there exists k0, independent of Sk, such that

*k +1 * àh6Uxlôt, for * ^ max {k0, N - 1}. (4.3)

From (4.1), one can choose e &gt; 0 so small that if ô0 ^ eô$, then

ôj*S*9 0&lt;j£ko.

Then (4.3) gives (4.2). D

To continue our proof for Theorem 2.2, we put

Let rk, ô% and e be as in Lemma 4.1. Since/j0) and gj0) vanish at the origin of order

^2, then for a small r0 and the e given in Lemma 4.1, we hâve

Thus, Lemma 3.4 shows that (4.1) holds for N 1. Now Lemma 4.1 gives (4.2) for
N 1. Inductively, one can prove that for ail h

Now (3.15) implies that ^(4* + I) c 4fc- Hence,
is well defined. Notice that

Thus, we see that \j/ôl ° &apos; &apos; &apos; °&amp;kl -^ô1 ° &apos; &apos; &apos; ° ^k-1 vanishes at the origin with
order ^dk. Applying the Schwarz lemma, we obtain

fc-1 11(1/4)1

Since 0 &lt; r &lt; 1 and &lt;4 ^ ^ +1, we see that {i^^1 o&gt; &gt; • oij/kl }«L0 converges to
on A(l/4)r. The proof of Theorem 2.2 is complète.
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5. Intégrais of a pair of involutions

In this section, we shall first recall the Moser-Webster normal form for a pair
of involutions. Then for a pair of involutions generated by a surface M in C2, we
shall show that the existence of intégrais for involutions is équivalent to the
existence of a holomorphic function whose restriction to M is real-valued. Finally,
we shall prove that there exist elliptic pairs of involutions, which hâve intégrais, but
cannot be transformée into the normal form.

Consider an elliptic pair of involutions {xux2} given by

t,«, n) (V/ +/,(£ *), Kxt&gt; +«,(&amp; n)\ *i a îi, \M i- (s.i)

We assume that x{ and x2 satisfy the reality condition

T2«, n) P*iP&amp; rj), p(£, rj) ({, rç). (5.2)

We now state the Moser-Webster normal form as follows.

THEOREM 5.1 (Moser-Webster [9]). Let xx and t2 be a pair of involutions

given by (5.1) and (5.2). Assume that k is not a root of unity. Then there exists a

unique normalized transformation \j/ which satisfies the reality condition and trans-
forms Xj into

T?(Ç*,r,*) (AJ(Ç*r,*)n*,A-l(Ç*r,*)Z*), j 1,2, (5.3)

where Ax l/A2 is a formai power séries in Ç*rj*, of which the constant term is L

We shall call (5.3) the normal form of pairs of involutions although one can
further normalize (5.3) to get a full set of invariants. However, as shown in [9], the

normal form 1.2) can be realized by convergent transformations, if and only if the

normalized transformation \j/ in (a) converges.
We now discuss the compatibility condition involved in (5.1) and (5.2). Since x2

is completely determined by t, and p, we need only to find the compatability
condition for x x, to be an involution. Write

t: (54)

From t2 Id, we hâve

# #) + «i«. *), (5-5)
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in which ei dépends on the coefficients of/and g with order less than k. Inductively,
one can show that t is completely determined by/. Conversely, for each holomorphic
function/without constant and linear ternis, there exists an involution t such that

X

71, o T({, Yj) - Xfl /(£, fl).

In fact, for the transformation ^(£, fj) (£, rj + Xf(Ç9 rj))9 we hâve

«, If), I{ + g(Ç9 I,)),

in which t0 is the linear involution (£, rç) h-* (Arç, X^). This also shows that a single
involution is always linearizable when its linear part is given by t0.

An intégral oîxx and t2 is defined to be a holomorphic function AT which satisfies

One also defines a formai intégral to be a formai power séries satisfying the above
relation. Assume that A in (5.1) is not a root of unity. Then from the normal form
(5.3), we see that {tl9 x2} has a formai intégral k(Ç, rj) ^*r/*.

Next, we want to show that any formai intégral K can be written as a formai

power séries in k. To see this, we need to find a power séries a(t) ZfL0 ***** such

that K a ok. Clearly, a0 £(0). Assume that there exist a0,..., a{ik _ 1)/2] such that

[&lt;*-l)/21

^«,V)= Z a,*^, if)+£«,*),
7 0

where £&quot; is a formai power séries in { and rj of order ^ A:. Obviously, E is a formai
intégral of t7 (7 1, 2). Let

Then £&quot; is invariant by &lt;p. This implies that

Since A is not a root of unity, it is easy to see that homogeneous terms of order k
are given by

even.
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Hence, we obtain

[k/2]

which implies that K is a formai power séries in k.
Now, if AT is a non-constant convergent power séries invariant under the pair of

involutions, then there is a formai power séries &lt;p(t) such that K q&gt; o k. Assume
that cp(t) — &lt;p(0) vanishes of order k. It is easy to see that

is still a convergent power séries invariant under the pair of involutions, while K
starts with the quadratic term. Certainly, one may also assume that K has real
coefficients.

We now prove the following resuit which is contained in [9].

PROPOSITION 5.2. Let M be a real analytic surface defined by (1.1). Assume

that 1/2 &lt; y &lt; oo and its corresponding X is not a root of unity. Then M is

holomorphically flat near 0, if there is a non-constant holomorphic function f defined
near 0 such that f \M is real.

For the proof, assume that/is holomorphic near 0 e C2, and/fo, z2) =Â^\ » ^2)

on M. Through the totally real embedding M c Mc,/is extended to a holomorphic
function which is invariant under xl and t2. Dénote the extended function by
K(Ç9 rj). From the above discussion, we may further assume that the extension of K
has real coefficients and starts with the quadratic term in ^ and rj. From

{, rj) 0(2), we see that /Zl(0) 0. We now hâve

in which the terms omitted are in the form z\zJ2 with /-f 2/&gt;2. Notice that
f(zl9z2) =f{zl, z2) on M. Now (1.1) gives that b - 0, and a à # 0. This proves
that M is holomorphically flat.

Let 3 be the set of elliptic pairs of involutions {tj, t2}, given by (5.1) and (5.2),
such that Çri is their intégral. Dénote by ï the set of biholomorphic transformations
which hâve the form

|/i| l and a(0) 1. (5.6)

Then Z acts on 3 by the conjugation.
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THEOREM 5.3. Let el9e2,.. be a séquence of positive numbers. Assume that

{t15t2} is an elliptic pair of involutions in 3- Then there exists a biholomorphic
mapping \j/ e 3 such that the pair of involutions fj \j/rl \j/ ~l and f2 pxx p cannot be

transformée into the normal form through any biholomorphic transformation, while
X Àfi2 is not a root of unity, and

|/i-l|&lt;e,, \aj\&lt;Cj, fory&gt;0.

Proof. We shall recursively détermine the conditions on \i and coefficients of
a(Ç) such that the unique normalized transformation W normalizing the pair of
involutions {t,,t2} diverges. Let

tU rj) iMr -&apos;(£, n) (h, + r(£, n\ X~^ + stf, ri)).

Then we hâve

Hence

[^i #k+1 (&amp; i) [rit+1 (té, im) -
in which e2 dépends only on the coefficients of a(Ç) with order less than k. In the

following discussion, we shall dénote by e,({, rj) the error ternis which are deter-
mined by the coefficients of a(Ç) with order less than k. We also hâve

Thus, from the last two identities, we obtain

M* + i(tf, m) V**£S + &amp;k+lakflk+l + AfU,«, if) + e4«f i|). (5.7)

Let *P((^, fy) (£ + t/(^, ^/), // + K({, &gt;y)) be the unique normalized transformation

which normalizes {f1,f2}. Theorem 5.1 gives

Hence

»i n f2lfc +, «, if) [f/]* +, (X2{, X-2!/) + [rt +, (X- &quot;fl,
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Now, for i #7 -f 1, i +j k + 1, the compatibility condition (5.5) gives the foliow-
ing solution

^ £*.&quot;&gt;_£
&quot; + e^ im(X&apos;-&apos;-1) + *7-&quot;- (5-8)

Substituting (5.7) into the above, we get

—°*k+l +elk+l0. (5.9)

We need the following.

LEMMA 5.4. Let ^ôn}^=0 be a séquence of positive numbers. Given X with
\X\ 1, there exists X, \X\ 1, such that X is not a root of unity, \X — X\ &lt; &lt;50, and

for a séquence ofpositive integers nk-+ao.

Let us assume the lemma and continue the proof. Put

By Lemma 5.4, there exist X and a séquence nk-+co such that X is not a root of
unity, and

Assume that ex &lt; 1. Then for a suitable choice of root \i (XX)l/2, we hâve

Hence
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We now can choose the coefficients ay. We may assume that ek &lt; 1. Put

dj 0, for jïtnk.

We define ank recursively as follows: If

Im Xw* 4»*&gt;

we put an/c 0; otherwise, we take

It is easy to see that in both cases, we hâve

K+i,o|&gt;J*2*, for ail*.

Therefore, L/(£, rj) diverges. This proves Theorem 5.3.

We now follow Siegel [12] to give a proof for Lemma 5.4. One may assume that
for ail n, ôn &lt; 1. Let X ean9. Clearly, one may also assume that A is not a root of
unity. Choose integers p and q so large that

\p0-q\&lt;\, p

Dénote p by nQ. Let nx be the smallest positive integer satisfying

Recursively, we define nk to be the smallest positive integer such that

xôïx_x. (5.10)

Let 0 q/p + I£L i nil and X eanê. We first show that X is not a root of unity.
To see this, we assume that there exists a positive integer x such that x0 € Z.
Choose * so large that nk_x&gt;2x. Then we get

(5.11)
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The left side is an integer, because «, | nk_ x for 0 ^ j&apos; £ k — 1. However, for the right
side, we use (5.10) and obtain

££t,jïk rij nk jf0 nk

which leads a contradiction. Thus, k is not a root of unity.
To obtain the required estimate in the lemma, we write

Then /fc nkq/p + 2*., #!*/«, e Z. Using (5.10), we get

y n*
&lt;2

&quot;k &lt;l ô

Hence

l\ï4n J

We hâve proved Lemma 5.4.

6. Proof of Theorem 1.2

Theorem 5.3 provides examples of holomorphically flat real analytical surfaces

which cannot be transformed into normal forms through any biholomorphic
mapping. In fact, we shall show that such surfaces form a dense set, as stated in
Theorem 1.2.

We first discuss the relation between the defining function of a real analytic
surface and its pair of involutions. Dénote by $k+i the set of homogeneous

polynomials of degree k +1 in zl,wl, which satisfy the reality condition
A(zi,w1)=Â(h&gt;1,z1).

Fix a convergent power séries H(zl9wl) such that H(zl9 w{) 0(3) and

H{wuzx) H(zl9 Wj). For each he$k + l9 we consider the holomorphically flat
surface

M : z2 qJzu zt) + H(zl9zx) + h(zuzî).
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Let {t1s t2} be the pair of involutions generated by M. For t xl9 we write

x(zx, wx - zx - - wx + p{zx, wx wx

Let ^(zl5 wx) /f(zls W|) + /j(zl5 wt). By the définition of involution tl5 we hâve

^y(zl5 Wx) + //(Zj, W^ ^v( — Z! Wj +/?(Zi, W^, Wx I

Simplifying the above, we get

zX9wx) Ël -zx--wx+p(zX9wx),wx\

-H(zx,wx)+yp(zx,wx)2.

Hence

(2yz, + w^IpltCz,, wx) hl -z, -- w,, w, j - A(z1? wx)+e%(zuwx\ (6.1)

where e8 dépends only on y and the coefficients of H with order less than k + 2.

Let (£, rç) r^Zi, h&gt;,) be the transformation defined by (2.5). Then in the new
coordinates (£, fy), T! and t2 are given by (5.1) and (5.2). For a power séries p in Zi
and wl9 let us dénote by p* the power séries p o T]~l. Then (6.1) becomes

/JA (1 - I2)(2y - A).

Obviously, TA transforms &amp;k+x into the set §£+1 of homogeneous polynomials of
degree k + 1 with real coefficients. Let

In (6.2), substituting h* by af+u we get a solution/(£, rç) to (6.2), given by

rUL n) ^E (j£
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in which e$ is the solution / to (6.2), where A* is replacée by 0. In particular,
£*(&lt;!;, rj) dépends only on y and the coefficients of H with order less than k 4- 2. Put

max

in which dfc+i,^ are coefficients of ak + ltX(zl9Wi). Notice that the binomial
coefficients of (£ -f tj)k are bounded by 2k. Then from (2.5), we hâve

Therefore, for |X- &gt;l| &lt; |X~- l|/4, one has

l|-*-1 cf+1. (6.3)

We now can prove Theorem 1.2. Put ek min {etJ; i +j k}. Applying Lemma
5.4, we find X, |X| 1, such that for a séquence kj-+co

Clearly, we may assume that A has been so chosen that the corresponding y is

non-exceptional and it satisfies |y — y| &lt;e. We also assume that (6.3) holds.

Next, we détermine the coefficients of H recursively. Assume that [H]j (j ^ k)
has been given. Put Hk(zuz{) =*T%[Ê\j(zuzx). To find [^+1» we consider the
involutions {ti,T2} generated by the surface given by

z2 qM&gt;Zx)+Hk{zuzx)+ f [H\(zuzx).
k+ 1

Write

*(i, ri) (k +A«, $,), k + fo(É, i|)) + O(*: + 1),

in which fk-i,gk-i dépend only on y and Hk. Assume that the normalized
transformation !P({, if) ({ + U(ï9 if), r; 4- F({, &gt;y)) transforms {t,, t2} into {tf, tf }
of the form (5.3). Using the formula (5.8), we get

(6.4)

in which ^10^-y dépends only on y and coefficients of ir with order less than k + 1.



Real analytic surfaces near hyperbohc complex tangents 573

We now détermine Hk +, as follows. We put [H\k +1 [H]k +, in the case either
k # kj +1, or k kj + 1 with

Im, .f.

where /is the solution to (6.2) of which A* 0. Otherwise, for k fcy 4-1, we set

*)+&lt; ^)

For the chosen [H\k +,, let us dénote by

f,«, if) (X»; Â 1

the involution generated by M. Assume that fi and t2 are normalized by the

transformation £(£, if) (£ + J7({, i/), »; + fitf, if)).
Recall that yi is the solution / to (6.2), in which h* is substituted by

[H — H]k +, ° Tj &apos;. For the second choice of [H]k + j, we hâve

fk ~fk

Hence

fo,k ~fo,k Y~*— fà* •

Thus, for k k} + 1, we obtain

Im

Im,

Now (6.4) gives
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This proves that the unique normalized transformation W diverges. Therefore M
cannot be transformée into the normal form through any biholomorphic transformation.

Acknowledgement

This paper is a part of author&apos;s thesis, I am grateful to my advisor Professor
Sidney M. Webster for his guidance and encouragement.

REFERENCES

1 Bedford, E Levi flat hypersurfaces in C2 with prescnbed boundary, Ann Scuola Norm Sup di
Pisa 9(1982), 529-570

2 Birkhoff, G D Surface transformations and their dynamical applications, Acta Math 43 (1920),
1-119

3 BlSHOP, E Dijferentiable manifolds tn compiex Euchdean space, Duke Math J 32 (1965), 1-22
4 Dulac, H Recherches sur les points singuliers des équations différentielles, J de L&apos;Ecole Poly série

2, 9(1904), 1-125
5 Gong, X, Thesis, Umversity of Chicago, Chicago, August, 1974
6 Ito, H Convergence of Birkhoff normal forms for integrable Systems, Comment Math Helv 64

(1989), 412-461
7 Klingenberg, W, Asymptotic curves on real analytic surfaces in C2, Math Ann 273 (1985),

149-162
8 Moser, J K Analytic surfaces in C2 and their local hull ofholomorphy, Ann Acad Sci Fenn Ser

A I Math 70(1985), 397-410
9 Moser, J K and Webster, S M Normal forms for real surfaces in C2 near compiex tangents and

hyperbolic surface transformations, Acta Math 150 (1983), 255-296
10 Pliss, V A, On the réduction of an analytic System of differential équations to hnear form, Diff

Equation 1 (1965), 111-118
11 Russmann, H Ûber die Normalform analytischer Hamiltonscher Differentialgleichungen in der

Nache einer Gleichgewichtslosung, Math Ann 169 (1967), 55-12
12 SiEGEL, C L On intégrais of canomcal Systems, Ann Math 42 (1941), 806-822
13 SiEGEL, C L Ûber die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichun¬

gen in der Nahe einer Gleichgewichtslosung, Math Ann 128 (1954), 144-170
14 Vey, J, Sur certains systèmes dynamiques séperables, Amer J Math 700(1978), 591-614
15 Webster, S M The Euler and Pontrjagin numbers of an n-manifold in C, Comment Math Helv

60(1985), no 2, 193-216
16 Webster, S M Holomorphic symplecttc normalizatwn of a real function, Ann Scuola Norm Sup

diPisa 19 (1992), 69-86

Department of Mathematics
Umversity of Chicago
Chicago, IL 60637
USA

Current Address
Institute for Advanced Study
School of Mathematics
Princeton, NJ 08540
USA

Received August 30, 1993; May 5, 1994


	On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents.

