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Superrigidity for the commensurability group of tree lattices

A. LUBOTZKY, S. MOZES AND R. J. ZlMMER

Introduction

Let T Tk be a fc-regular tree (k ^3), A Aut (r) the group of automor-
phisms of T. A is a locally compact group which has a number of properties in
common with non-compact simple Lie groups G: e.g., A is essentially a simple

group ([Ti]), has the Howe-Moore property ([LM]), and its représentation theory
is quite similar to that of rank one Lie groups (cf. [FTN]). In [BL1] rigidity
properties of A were established which show that to a large extent T is determined

by A. For example if A acts non-trivially on some tree 7&quot; then T is nothing more
than a decorated version of a barycentric subdivision of T. It is also shown there

that every automorphism of A cornes from an automorphism of T and hence it is

inner. (This last resuit was proved earlier in [Zn].) Thus, the results of [BL1] can be

considered as a tree analogue of the work of E. Cartan - relating simple Lie groups
to their associated symmetric spaces.

In analogy to the well-developed theory of lattice subgroups of Lie groups, there
is an ongoing program of investigating lattices in A. If F is such a lattice in A, we
dénote the commensurizer of F (or &quot;the commensurability group of f&quot;) by
C C(F) {g e A | gFg ~l n F is of finite index in F and in gFg~ *}. If we think of
A as analogous to a simple real algebraic group G(U) and F as an analogue of the

arithmetic group G(Z), then C(F) plays the rôle of G(Q), the Q-rational points of
G. The goal of this paper is to establish for C some superrigidity results of the same

flavor as the work of Borel-Tits ([BT]) on G(Q). (The methods, however, are

entirely différent).
In [BK] Bass and Kulkarni studied cocompact =uniform) lattices in A. Among

the many interesting results they proved are:

(a) Any two uniform lattices Fx and F2 of A are commensurable after conjuga-
tion; Le., there exists g e A such that g~xFxgnF2 is of finite index in F2 and

in g~lFxg. (This was proved earlier in a différent language in [Le].) This
shows that if F is a uniform lattice in A then the group C C(F) is

independent of F up to conjugacy, and we dénote it by C Cr.

523



524 A. LUBOTZKY, S. MOZES AND R. J. Z1MMER

(b) CT is dense in A. (This was later extended to arbitrary locally finite uniform
trees in [Li].)

Hère is the main resuit of this paper.

THEOREM 1. Let T=Tkbe the k-regular tree, A Aut (T\ C the commen-
surability group of a uniform lattice F ofA. Let p : C -? Aut (Tf) be a minimal action

of C on a tree T. Then either p can be extended to an action of A on V or
lr(p(y)) Ofor every y e F where lT is the length function ofT (Le., for every y e F,
p(y) has a fixed vertex or a fixed edgé) in which case p(F) is compact.

In Chapter 3 we construct for every k a uniform lattice F in A Aut (Tk) which
has no faithful embedding into a compact subgroup of A. Thus if p is an
automorphism of C, Theorem 1 can be used to give:

COROLLARY 2. If p : CTk-&gt;CTm is an isomorphism, then k =m and p is

induced by an automorphism of Tk. Hence Aut (C) NA(C), the normalizer of C in
A.

This answers a question raised in [BL1].
We leave open the question whether NA(C) C. This is équivalent to a question

raised in [BK]: Let Fx and F2 be two uniform lattices with C(rx) C(F2). (Hère we

mean really equal not just conjugate!) Does this imply that T, and F2 are
commensurable?

Note in Corollary 2 that both groups CTk and CTm are subgroups of the
&quot;abstract commensurability group&quot; of the free group on two generators (see [BK]).

We give two proofs of Theorem 1. The first in Chapter 2 is elementary. We
describe the éléments of C C(F) using periodic maps from T to
5^ as Perm {1,..., k}. This interprétation seems to be of independent interest. To
illustrate its usefulness we give along the way a proof of the Bass-Kulkarni resuit

[BK] that C is dense in A. We then show that two éléments of F which hâve the

same hyperbolic length are actually conjugate in C. This puts severe restrictions on
the possible length functions defined onf£C and hence on actions of C on trees.
This will imply Theorem 1.

In Chapter 4 we présent a différent proof which is along the Unes of Margulis
superrigidity, i.e., uses methods of ergodic theory. The reader may recall that while

Margulis superrigidity was proved for lattices in higher rank simple Lie groups (and
A is analogous to a &quot;rank-one group&quot;), Margulis indeed proved a type of
superrigidity for commensurability groups of lattices in simple Lie groups of
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arbitrary positive real rank when the commensurability group is not discrète. He
used it to prove the theorem that a lattice in such a group is arithmetic if and only
if its commensurability group is non-discrete. While our proof of Theorem 1 has a
similar structure some additional issues arise which need to be overcome.

This more complicated proof has however some advantages as it proves a

stronger theorem. In particular it is valid for non-uniform lattices F as well. (See

Chapter 4 for the précise formulation.) A warning is in order: for non-uniform
lattices, C(F) is not necessarily dense, as shown by an example in [BL2].

Two more results are proved in Chapters 5 and 6 respectively:

THEOREM 3. C is not a linear group over any field.

THEOREM 4. IfF^D^C with [D : F] oo, then D cannot be the fundamen-
tal group of any complète Riemannian manifold of curvature —b2 £ K £ — a2 &lt; 0.

A resuit similar to Theorem 4 holds also in the classical context if F G(Z) and

C G(Q).
Finally we remark that the methods of this paper extend without difficulty to the

case r is a bi-regular tree. Following this work, some of the results of this paper
were extended to more gênerai trees and spaces by M. Burger and S. Mozes in &quot;Cat

— 1) spaces, divergence groups and their commensurators&quot; (a preprint).

§1. Preliminaries, notations and conventions

In this chapter we will présent some définitions and notation to be used later
and collect some basic results. Let Tk be a A&gt;regular tree for some fixed 3 £ k e N.
Let A Aut (Tk) with its natural topology. Let A + be the index two subgroup of
A generated by ail the vertex stabilizers. This is the group of ail automorphisms of
Tk which préserve the two-coloring of Tk. By Tits [Ti], A+ is a simple group.

Let G be a group acting on a tree T. We define the length function lT:G-+Z
by lT(g) nainxe ^ d(x, gx) where \T\ is the géométrie realization of T, and d{ •, •

is the distance function on T. Notice that if g e G is an involution then lT(g) 0.

lT satisfies lT(gn) \n\lr(g). If lT(g) ± 0 then the set {x e \T\ \ d(x, gx) /r(#)}
forms an infinité Une on which g acts by translation. This Une is called the axis of
g. Two éléments g,, g2 € A having lTk(gi) ^(^2) 9* 0 are conjugate in A. Let dT
dénote the boundary of the tree, i.e., its space of ends. Thus, e € dT is an

équivalence class of rays in T where two rays are équivalent if they are within
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bounded distance of one another. TudT has a natural topology making it a

compact space (cf. [FTN]).
An action of G on T extends in a natural way to an action on the space TudT.

An action of G on dT is called minimal if dT does not contain any nontrivial closed
G invariant proper subset. An action of G on T is called minimal if

(i) dT contains more than two points;
(ii) G acts minimally on dT and

(iii) T is the minimal G invariant subtree of T.

Given G acting on a tree T the intersection of ail the closed connected nonempty
G-invariant subsets of TudT, which we dénote by XG, is a nonempty set whose
intersection with T,XG XGnT is either empty, a line or the unique G-invariant
subtree on which G acts minimally. Recall [B, 7.7] that if Gx &lt; G is of finite index
then XGl — XG, Notice that when the boundary dXG =XGndT contains at least
three points the action of G on XG may be reconstructed from its action on dXG.
In particular Aut (Tk) acts faithfully on dTk.

The stabilizer B &lt; A of a point e g dTk is an extension by Z of an ascending
union of compact subgroups and hence is amenable.

We shall also use the observation that if a group G acting on a tree T such that
lT(G) {0} then G stabilizes a vertex, an edge or an end. Moreover if G is finitely
generated then it must stabilize either a vertex or an edge.

In section 2 we will use colored graphs. AH of thèse graphs are fc-regular. By a

coloring we will always mean edge coloring by h colors such that the k edges

meeting at a vertex hâve différent colors. We remark that our graphs may, and will,
contain multiple (differently colored) edges.

§2. Commensurizers as periodic recolorings

Let r be the free product of k cyclic groups of order two Zt &lt;a, &gt;,

1 1,...,*. Let J be the (right) Cayley graph of F with respect to {al9... 9 ak},
i.e., y € F is adjacent to yat via an edge &quot;colored&quot; by an i 1,..., k. Tis a colored
fc-regular tree. Let A be the full group of automorphisms of T not necessarily
preserving the coloring. T is identified via its left action on T with the subgroup of
color preserving automorphisms. Let K Stab^ (e) where e is the vertex of T
corresponding to the identity of F. For every vertex t of T we dénote by t the

unique élément of F taking e to t. Clearly FK A and KnF {l}. Let

r : K-+ Perm {ax,..., ak } Sk be the homomorphism sending each élément of K to
its induced action on the edges adjacent to e.
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Every automorphism g e A induces a map ag : T-+K defined as follows:

^g{t)=git)-logot (2.1)

and let âg\T-*Sk Perm {al9.. 9ak}

ëg=roGg (2.2)

The next proposition summarizes the properties of à and a:

PROPOSITION 2.1.

(i) For every y € F, and t e T, oy(i) 1 and ây(t) 1.

(ii) Compatability: If tx and t2 are adjacent via an Le., tx • at —12, then

êg(h)(al)=êg(ti)(al).
(iii) The cocycle condition: &lt;rglg2(t) ogx(g2i) ° cg2(t).
(iv) For every y e F, g s A, and t e T, ayg(t) ag(t).
(v) For every g e A and t e T, dg-\(t) =âg(g~lt)~l.

The proof is straight forward and we omit it. Instead, we will try to motivate the

définition of â: The action of g on the tree takes every vertex t to some vertex g(t)
and hence the neighbors of / are taken to the neighbors of g(i). Thus the colored
edges coming out of / are mapped to the colored edges coming out of g(t). This
induces a permutation of colors which we denoted âg(t). Property (i) of the

proposition expresses the fact that the action of F is color preserving. Property (ii)
is just the assertion that the image of an edge is well defined.

It is clear from formula (2.1) that the pair (g(e), ag(é)) détermines g completely.
Moreover, (g(e), âg) also détermines g, but note that we should know âg(t) for
every t e T. In fact one can easily visualize how g is &quot;developed&quot; from the local
information dg(t), t eT.

Conversely, let (t, â) be such that t e T and â is a map from T to Sk satisfying
the compatability condition (i.e., condition (ii) of Proposition 2.1). Then, (t, à)
defines a unique automorphism g of T. Clearly g e K if and only if t e.

Let now C C(F) be the commensurability group of F in A, i.e.,

C(F) {g e A | g~lFg n F is of finite index in F}.
The fact that g e A is actually in C can be recognized from âg :

PROPOSITION 2.2. Let g be an élément of A. Then g e C if and only if dg is

periodic as a function on T, i.e.9 there exists a finite index subgroup Fo of F s.t.
&lt;rg(ôt) ag(t) for every S e Fo.
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Proof. Assume g e C. Then there exists Fo ^ F of finite index such that
gfog~l &lt;&gt; F. So for S e To there exists y e F such S g~lyg. We then hâve:

1 &lt;r,(0 â,-,w(f) ôg-x(ygi)dy{gi)âg{t)

Conversely if àg(ôt)=âg(t) for every ô e Fo, then we want to show that
gFog~l £ F. Indeed we hâve for ô e Fo and y =gôog~l:

1 âê(t) âg-hg(t) &amp;g-i(ygt)*7(gi)&amp;g{t) ^te

Hence êg(ôi)âg(t)~l cry(g0 and from the assumptions we have âY(gt) 1. Since t
is arbitrary it follows that y préserves the coloring and hence belongs to F.

As we can always replace Fo by a smaller sublattice, it will be convenient to
assume henceforth that F0^A+; thus T-+F0\T is a covering. Let geC and
To &lt; T be as in the preceding proposition. Let Y F0\T be the quotient graph. Let
.yo e Y be the image of e 6 T. 7 is a finite fc-regular colored graph. The proposition,
together with the compatability condition, implies that âg defines a recoloring of the

graph Y, such that if we let p(y) e Sk be the permutation of the colors {al9... ,ak}
of the k edges coming out of the vertex y s Y and n : T -&gt; Y be the natural covering

map, then âg(t) p(n(t)).
Conversely, starting with a finite colored fc-regular pointed graph (Y9y0), then

Fis covered by Twith a unique covering map n which préserves colors and satisfies

n(e) y0. Thus F F0\T for some finite index Fo ^ T. Given a recoloring p of the

edges of Y, we can define a map t :T~+Sk by t(f) =p(7r(r)). Clearly this t is

periodic and satisfies the compatability condition. Hence for every t0 e T, the pair
(f0, t) détermines an automorphism g e C such that g(e) t0 and âg t.

We have:

PROPOSITION 2.3. There is a correspondence between éléments of F\C and

recolorings of k-regular finite pointed graphs.

The correspondence in Proposition 2.3 is not one to one. Namely, given an
élément of F\C we could have taken a smaller sublattice FxCzFqCzF leading to a

graph F =*rx\Tcovering Y F0\T.
The following simple observation is singled out for future use:
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PROPOSITION 2.4. Let (Y,y0) be a finite k-regular pointed graph colored by
the colors {al9..., ak}, let p be ù recoloring Y and h the corresponding élément of
C nK. If a closed path based at y0 colored by (atl, ai2,..., al{) is recolored by

h conjugates the éléments alx • al2 al{ of F to
X

Another useful way of reconstructing g g C from the recoloring of the pointée!

graph (Y, y0) (F0\T, é) and a vertex t0 e T is the following: The original coloring
of Y defines a unique color preserving covering map n sending e to y0. The new
coloring and t0 détermine a unique covering map n&apos; from T to Y, sending t0 to y0
and respecting the new coloring. For every t g T, n&apos;([t0, g(t)]) =n([e, t]) where

[ti,t2] dénotes the géodésie path going from tx to t2. This last condition clearly
détermines g uniquely.

The following observation is of some interest.

PROPOSITION 2.5. An élément geCnK is of finite order if and only if for
some k-regular pointed graph (Y, y0) and its recoloring p associated with g9 the two
colored pointed graphs are isomorphic.

Proof If g g C nK is of finite order m then we can find a sublattice Fo &lt; F such

that gFog-1 =T0. (Take Fo= O^^Tg&apos;1). As the two colored pointed graphs
associated with g are (F0\T, Foe) and (gFog~l\T, gFog~le) it follows that for our
g they are isomorphic. Conversely assume that the two colored graphs, (Y, y0) and
its recoloring, are isomorphic. Notice that the covering group of a pointed colored

graph is determined by the colorings of ail the closed paths based at the base point.
Since the two colored graphs are isomorphic they hâve the same covering group,
i.e., gFog~l — Fo. Hence powers of g correspond to recoloring of the same graph
F0\T. There are only finitely many such possible colorings so for some n &gt;0, gn

corresponds to the trivial (color preserving) recoloring which implies that gn g F.
Since it is also in K it is the identity élément 1. Alternatively, from gFog ~l Fo it
follows from [BK 6.4] that &lt;g, To&gt; générâtes a lattice f and so g e fn K which is

finite. D

Proposition 2.3 can be used to give a new proof for the following resuit due to
Bass and Kulkarni [BK, 4.25]. (A far reaching generalization of this resuit was

proved by Liu [Li].)

PROPOSITION 2.6. C is dense in A.

Proof It suffices to show that C n K is dense in K, since FK A and F £ C. To
this end, let g e K and r eN. We want to prove that there exists h e C which



530 A LUBOTZKY, S MOZES AND R J ZIMMER

induces the same action as that of g on the bail Br(e) of radius r around e. By
Proposition 2.3, it suffices to find a finite fc-regular pointed graph (Y, y0) together
with a recoloring such that the automorphism h it defines acts on Br(X) as g. Let
Yo be the fc-regular graph obtained by taking two copies Bf (e) and B~ (e) of the

colored finite tree Br(e). Dénote by S?(e) (resp: S~(e)) the sphère of radius r
around e in B+ (resp: B~ (e)). The graph Y is obtained by Connecting each vertex

v in S? (e) to its &quot;twin&quot; in S ~ (e) by k — 1 edges colored by the missing k — 1 colors
around v in Bf(e). Let y0 e Y be the vertex e of 2? + (e). The action of g on 2?r(e)

gives automorphisms of Bf(e) and B~(e) which can be combined together (and
extended on the edges of Y\Y0) to give an automorphism g of (Y, y0). Note that the
extension from Yo to Y is not unique. The automorphism g induces a recoloring of
(Y, y0) by giving every edge the color of its image under g. By Proposition 2.3 the

recoloring induces an automorphism h e CnK. Clearly h acts on Br(e) in the same

way as g.

REMARKS 2.7. The élément h constructed in the proof has finite order by
Proposition 2.5. So as in [BK] we in fact prove that the set of éléments of C n K of
finite order is dense in K. Moreover, the proof actually shows that given r eN and

gl9... 9glin K9 there exists hl9 A; e C such that for every 1 &lt;&gt;i &lt;&gt; l, ht coïncides

with gt on Br(e) and hx,..., ht generate a finite subgroup of C.

We are ready to prove the following superrigidity resuit for C.

THEOREM 2.8. Let To be an arbitrary uniform lattice in A, C C(r0) its

commensurability group in A and p : C -&gt; Aut (7&quot;) a minimal action ofC on a tree 7&quot;.

Then either lr(p(y)) =0 for every y ef0 or 7&quot; w the tree obtained from T by

subdividing each edge into m segments for some fixed m and p is conjugate to the

original action. In particular p extends to an action of A on T&apos;.

We will break the proof into a few propositions which might hâve independent
interest. We first notice that it suffices to prove the theorem for our original

f &lt;a, &gt;*•••* (ak &gt; since Fo is conjugate to a lattice commensurable to F so

C(r0) is conjugate to C(F). Moreover if F and Fo are commensurable then

lT{p(F)) {0} if and only if lT(p(F0)) {0}. From now on we will assume Fo F.

The crucial observation for the proof of the theorem is the following:

PROPOSITION 2.9. Let x and y be non-trivial éléments ofF. Then the following
three conditions are équivalent:

(à) x and y are conjugate in A.

(b)/r(x)«/rO0.
(c) x and y are conjugate in C.
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Proof. Clearly (c) implies (a) and (a) implies (b). To prove (b) implies (c),
assume first that lT{x) lT(y) 0. This implies that both x and y are of finite
order, in fact of order two as this is the only possible torsion in F. As F is a free

product of the order two groups (at &gt;, i 1,..., k, it follows that x is conjugate to,
say, at and y to ar It is easy to see that at and a3 are conjugate in C. Assume now
It(x) — lr(t) / &gt; 0. First note that by replacing x and y by conjugates within F we

can assume that x — al{ aH and y aJx ajr Indeed we can conjugate
them in F to make their axes (see sec. 1) pass through e, in which case lT(x) is equal
to the distance between e and x on the Cayley graph. Note that

aln^aln + l,aJn^aJn + lforn \,...,l-l andaM ^ at{9 aJx^aJr By Proposition 2.4

it suffices to find a fc-regular pointed graph (Y,y0) colored by {au..., ak) and a

recoloring of it, such that there exists a closed path in Y based at y0, colored by
(ûm, atl) and recolored by (aJl9..., a^). Hère is such a graph: Let Yo be a pair
of twîn cycles Z+ and Z~ of length /, both colored (al{9 al2,..., ati). Complète
them to a fc-regular graph Y by Connecting each pair of twin vertices with k — 2

edges colored by the k — 2 missing colors. The recoloring of Y is given by coloring
the twin cycles by (aJl9..., a^) and extending it to a légal coloring of Y (which
clearly can be done). This complètes the proof of the proposition.

The length function lT can be described explicitly on F: A word alx ah of
F iai &gt;*•••* (ak &gt; is cyclically reduced if atj ^ atj + {

for j 1,..., r — 1 and

al{ # ah. (Note that words of length one are not cyclically reduced). Every élément

of T of infinité order is conjugate in f to a unique cyclically reduced word. A
cyclically reduced word y =al{ alr is a hyperbolic élément whose axis passes

through the origin e of T and lT(y) r.

PROPOSITION 2.10. Let p : C-&gt; Aut (r) be an action of C on a tree T. Then

either lr(p(y)) ®for every y e F or there exists m e N such that lr(p(y)) — m &apos; ItO)
for every y e F.

Proof Dénote m&apos;= lr(p(axa2)) and m&quot; lT(p(ala2a3)). Now, lT(p{yn))
nlT(p(y)) for every y e F and n e N, and Proposition 2.9 implies that (ûfj^)3 is

conjugate in C to (ala2a3)2. Thus 3#T 2m&quot;, showing that m m&quot;/3 W/2 is an
integer. We claim that lr(p(y)) mlr(y) f°r every y in T. Indeed if /r(y) r / 0

then y is conjugate in F to a cyclically reduced word alx ah where r &gt; 1. By

Proposition 2.9, y2 is conjugate in C to (axa2)r. Hence

^r(p(?2)) \lAiaxa2Y)

=-m&apos;= mr mlT(y)
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Now, if lT(y) 0 then y is conjugate in F to one of the at and it is of order 2.

Its image under p must be also of finite order and so lr(p(y)) 0.

PROPOSITION 2.11. Let p :C-+Aut(T&apos;) be a minimal action such that

lr(p(n) ï {0}. Then p(F) acts minimally on T.

Proof. If F&apos; is a finite index subgroup of F then lr{p{T)) # {0} if and only if
/r(/&gt;CO) # {0} in which case the minimal subtree T&apos;pin is equal to Tp(n (see [B2,
7.7]). Now, if c 6 C then there exists a finite index subgroup F&apos; of F such that
cF&apos;c~x is of finite index in F. Thus, p{c)T&apos;p{n p(c)T&apos;pin r;(crv_,} T&apos;pir)9 i.e.,

Tp(n is C-invariant and so Tp(n TP{C). D

We are ready now to prove Theorem 2.8:

Let p : C -*&gt; Aut (7&quot;) be a minimal action such that lT(p{F)) # {0}. By Proposition

2.11 it defines a minimal F action whose length function, by Proposition 2.10,
satisfies lT(p(y)) mlT(y) for some fixed m # 0 and every y e F. We know one such

minimal action: this is the minimal action of F on the tree T(m) obtained from T by
dividing every edge of T into m segments. But the length function of a minimal
action completely détermines the tree and the action up to conjugation [AB, 7.13

(b)]. So T Tim\ As Aut (J(/w)) Aut (T) =Av/e can ignore the subdivision and
further assume that p(y) y for every y s F. We want to prove now that p{c) c

for every c e C. Let c € C and say p(c) —d g A. Since p(F) T, /?(&lt;:) also commen-
surizes F and hence p(C) ç C. Hence d eC. There exists F&apos; of finite index in F for
which c&quot;xT&apos;c £ F and d~lF&apos;d ^ T and both are of finite index. Now for y e F&apos;:

c~lyc= p{c ~ lyc) p(c) &apos; lp(y)p(c) d~lyd

i.e., d~lc centralizes F&apos;. By [BK, Proposition 6.1], ZA(F&apos;) {1} and so d c. This
complètes the proof of the theorem.

REMARKS 2.12.

(i) We do not know whether Theorem 2.8 can be strengthened to conclude that
either p can be extended to A or lT(p{c)) 0 for every c € C. A somewhat
related open problem is whether the index two subgroup C+ CnA+ of
C is a simple group. Proposition 5.1 might be useful in this direction. A
simple application of it shows that if N &lt; C+ with NnF # {1} then N
contains F+ FnA + (See proposition 5.1.)

(ii) The proof of Theorem 2.7 extends without difficulties to show that if
p ,c+ =CnA + -?Aut (F&apos;) is a minimal action of C+ on a tree T&apos; then
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either lr(p(F+)) {0} or p can be extended to A*. However, it does not
apply to an arbitrary subgroup D with F £ D ^ C and dense in A. In
Section 4 we will reprove Theorem 2.8 in a much more gênerai form which
contains this case.

Finally, we mention that the main idea of the proof of Theorem 2.8, i.e., the

recovery of the length function, can also be used to prove a rigidity theorem for A.
Of course, this also follows from the results in [BL], [Zn].

PROPOSITION 2.13. Let T be a tree on which A acts minimally and A+ acts

non-trivially. Then T is an m-subdivision of T and the action is conjugale to the

original action.

Proof. Again, we just hâve to make sure that lr(g) mlT(g) for some fixed

m e N and every g e A. Note that A + is an infinité simple group so once it acts

non-trivially, the action must be faithful and so m # 0. Now every two éléments of
the same positive translation length on T are conjugate in A. Eléments for which

lT(g) 0 lie inside pro-finite groups, so for them /r(g) 0 as well ([Bl, Theorem

5.2]). This implies lr(g) mlT(g) for some fixed m eN and ail g e A and complètes
the proof of Proposition 2.13 in the same way as in the proof of Theorem 2.8.

§3. Automorphisms of the commensurability group are géométrie

We continue hère with our notations from Chapter 2, i.e., Tis the fc-regular tree

and C C(F) the commensurability group of a uniform lattice F in A Aut (F).
By [BK, Cor. 4.8] every two uniform lattices in A are commensurable after

conjugation, so C is independent of F up to conjugation. The main goal of this

chapter is to prove:

THEOREM 3.1. Every automorphism ofC is &quot;géométrie&quot;, Le., ifx:C-+C is an

automorphism then there exists g e A such that a(c) =g~lcg for every c e C.

COROLLARY 3.2. Ad : NA(C) -»Aut (C) is an isomorphism, where NA{C) is

the normalizer of C in A and Ad(g)(c) =g~lcg for c e C.

This follows from the fact that the centralizer of C in A is trivial.
We do not know whether every automorphism of C is actually inner, i.e.

whether NA(C) C. This is équivalent to the problem posed by Bass and Kulkarni
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([BK, B.14 II]): Are two uniform lattices with the same commensurability groups,
commensurable to each other?

Theorem 3.1 will follow immediately from Theorem 2.8 once we show that if a
is an automorphism of C C(F) then lT(a(F)) # {0}. Recall that lT((x(F)) 0 if
and only if F stabilizes either a vertex, an edge or an end (JAB, (7.5)]). Since F is

finitely generated once it stabilizes an end it stabilizes a vertex as well. So altogether
we would like to construct a uniform lattice F of A which can not be embedded in
a stabilizer of an edge or a vertex.

The reader is referred to [BK, (7.2)] for the method of construction of uniform
lattices in Aut (T). We will use the notation and terminology of [BK]. We will deal

separately with k 3, k — 4 and k ^ 5, with k 4 being the most difficult case.

3.3. A construction of F for k 3

Let r be the lattice of Aut (jT3) given by the foliowing graph of groups:

#_3 2t 1 3^

Hère C4 &lt;jc&gt; is the cyclic group of order 4 and the inclusion &lt;(1, 2)&gt; c&gt; C4 is

given by (1, 2) -+x2. The rest of the inclusions are the obvious ones.

We claim that a(F) cannot stabilize an edge or a vertex. Indeed the stabilizer of
an edge in Aut (T3) is a pro-2 group and hence cannot contain a(S3) &lt; oc(F).

Assume now that a(F) is contained in the stabilizer AT of a vertex. K is mapped
via a homomorphism q&gt; onto P, the permutation group of the three edges at this

vertex, with a pro-2 kernel. Hence \f/ q&gt; o a induces a homomorphism from r to
S3. The restriction of ^ to C4 &lt; F must map x2 to the identity. Hence the restriction
of \j/ to S3 &lt; F also maps (1,2) to the identity. As the conjugates of this élément

generate S3 it follows that a(53) is contained in the kernel of cp, which is impossible.

3.4. A construction of F for k 4

The stabilizer of a vertex or an edge in T4 is a pro-solvable group. Hence any

group H embedded in either is necessarily residually solvable. In particular such a

group H satisfîes [H, H] # H. Wcwill construct a uniform lattice F containing a

non-trivial subgroup Fo which satisfies [F0,r0]=F0. This implies that Fo, and

hence F, cannot be embedded in the stabilizer of an edge or a vertex.
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Following D. Goldschmidt [G (3.6)] we define the following groups:

B &lt;a, b, s | a4 1, b4 1, [a, b] 1, s2 1, a3 b,bs a}

S (Z/4Z x Z/4Z) xi Z/2Z

Px {B, x | x3 1, ax b9bx a-1b-\xs x~ly^ (Z/4Z x Z/4Z) xi 53

j and P2 are both finite groups of order 96 containing the subgroup B of index 3.

We hâve the following graph of groups:

13 3 1

Z/4Z x Pl P{ P{ B P2 P2 Z/4Z x P2

It defines a uniform lattice F in Aut (T4).
F contains a subgroup F0 Pl*P2. In order to conclude that for any embedding
a : C-&gt;Aut (T4), a(F) cannot stabilize a vertex or an edge it suffices to show:

PROPOSITION 3.5. [r0, Fo] Fo.

Proof We compute first P\j[Pu P\\. By examining the defining relations of Pl9

we see that Px /[Px, Px ] £ Z/2Z and a,b,xe [Px, P! ] whereas ^ has a nontrivial image
in this quotient.

Similarly we hâve P2/[P2, P2] £ Z/4Z and y e [P2, P2], a[P2, P2] b[P2, P2] a

generator of P2/[P2, P2] and s[P2, P2] û2[P2, P2].

Let ç&gt; : Fo^&gt;rol[Fo, Fo] be the natural map. The image of Px and P2 generate
Fo ro/[Fo,rol The maps ç :Pi-+F0 factor through maps q&gt; : Pi/[Pi9 Pt] -&gt;f0.

The élément a e 5 Px nP2 has trivial image in PX/[PX, PJ hence also trivial image
in f0. Since its image in P2/[P2, P2] générâtes the latter we conclude that (p(P2) is

trivial. Moreover using s[P2,P2] =a2[P2,P2] it follows that cp(s) =identity. Since

s[Px,Px] is a generator of PX/[PX, Px] we conclude that (p(Px) is trivial and hence

F0/[F0, Fo] is the trivial group.

We remark that Fo may be realized as a uniform lattice in Aut (T3). As stabilizers

in Aut (T3) are prosolvable this gives an alternative construction for k 3.

3.6. A construction of F for k ^ 5

The stabilizer of an edge is a profinite group whose Jordan-Holder factors are

simple groups of orders smaller than \Ak |. Hence a lattice F containing Ak cannot
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be embedded in the stabilizer of an edge. The stabilizer of a vertex is a profinite
group K having a homomorphism q&gt; to Sk whose kernel is a profinite group having
Jordan-Holder factors which are simple groups of orders smaller than \Ak |. F will
be constructed in such a way that it contains both Ak and a finite group H having
an élément 1 i=-z e AknH and such that this élément is in the kernel of any
homomorphism from H to Sk. Since Ak is simple this implies that Ak is in the kernel
of the homomorphism q&gt; o a, which is impossible.

Hère is a method to construct a lattice with the above désirable properties:
Consider the following graph of groups

k 1 kl 1 k 2 14 11 11 21 31 kll k

• • • —• • • • •— ¦ m m

A
k

A
k 1

A
k 2 A 4

A
3

**
3 ^3.2! ^33! ^3 (k - »)• C3 k&apos;

where A3 is the alternating group operating on {1 .j} and fixing {j + 1,...,«}.
C3 f &lt;jc, &gt; is the cyclic group of order 3 • i! and C3 $ is embedded in C3 (ï+1}, by
xt x\X • C3 is identified with A3 by x} 1, 2, 3). The sum of the indices at each

vertex is ^ k and one can easily add new edges and vertices in order to complète it
to a graph of groups defining a uniform lattice of Aut (Tk). This enlargement of the

graph can be carried out in many ways. Each way will give a différent lattice F.
Each such lattice F will hâve the following crucial property:

The élément 1,2, 3) x, is embedded in H C3 # (xk &gt; and satisfies

(1, 2, 3) xk. Hence any homomorphism ij/ of H to S* maps .*! (1, 2, 3) to the

identity. Thus if i// ç&gt; o a, where a is the embedding of T into Aut (Tk) mapping
T into a stabilizer K of a vertex and q&gt; is the homomorphism from K into the

permutation group of the k adjacent edges, we conclude that ^((1, 2, 3)) identity
and since Ak is simple ^04*) {identity}. It follows that Ak is embedded in the
kernel of q&gt; which is a profinite group whose Jordan-Holder factors are finite
simple groups of order &lt; \Ak |, which is impossible.

REMARKS 3.7. (1) We hâve actually proved slightly more than promised: We
showed that for every k ^ 3, a uniform lattice F in A Aut (Tk) can be found such

that for every monomorphism a : F -+A, lTk(oc(F)) ^ {0}. Thus if a : C C(F) -+A
is a minimal action of C on Tk9 it is obtained, by (2.8), from a conjugation in A.

(2) However, there are non-minimal faithful actions of C on Tk. In fact there

are even non-minimal faithful actions of A on T. This can be seen by the following:
Replace Tk by a barycentric subdivision of Tk and then &quot;graft&quot; trees on the new
vertices to make it Â&gt;regular. The resulting tree is a fc-regular tree. The action of A

on the original tree extends to an action on the larger tree which is non-minimal.
(3) Notice also that the proof shows that if CTfc is isomorphic to CTm then

k =w.
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(4) What we do not know how to prove is the following: Given a monomor-
phism a : C-+Aut (T) where T is another tree, /r(a(r)) # {0}. However we can
show the following:

* There exists an infinité ascending séquence of uniform lattices in Aut
&lt;&gt; F(2) &lt;&gt; such that J U£ i HO is not a residually finite group.

As A is a subgroup of C C(T(1)), it implies that for any faithful action a of
C on a tree T\ oc(A) cannot fix a vertex. We do not know how to show that cc(A)

cannot fix an end. Having done so we could get a stronger rigidity resuit.
Hère is a sketch of how * is proved for k 4 (simple modifications will adapt

the construction to k 3 and to k ^ 5):
Recall the following construction of lattices from [BK (7.4)]: Let M Z/2Z.

For each r &gt; 0, put Vr Mz/rZ, the group of set fonctions X : Z/rZ-&gt;M. Define

ar g Aut (Fr) by ocr(X)(i) JT(î + 1). Let Wr {XeVr\ X(0) 0 e M} a AT&quot;*)•

Let Z/ be the graph of groups

where the edge group Wr is mapped into Vr in two ways: once by the identity map
and once by the automorphism ar. As in [BK (7.4)] if r\r&apos; the graph of groups Lr
covers Lr- and the corresponding lattice Tr embeds in Fr&gt;. The group Vr embeds in
the Vr&gt; by mapping (x, xr) -+(xl9..., xr9 xu xr,..., *,,..., xr). Notice
that this embedding is compatible with the embedding of Wr in Wr.. The group Tr
is generated by Vr and / subject to the relations t~l(0, x2,..., xr)t (x2, x3,...,
xr, 0) where x, e Z/2Z. Now let r(i) T(l+1}! and i \JTL\r(i). We daim that ^
is not residually finite. In fact the élément 1, 1) e V2 £ F( 1) has trivial image in any
finite image q&gt; : F -» F.

Let (^ : F-*F be given. Choose /0 &gt; 1*1 and let hk (1, 1,..., 1, 0,..., 0) 6

V(lQ+iy, 1 ^ k ^ (/0+ 1)! the vector having fc l&apos;s and the rest 0. Clearly for some
1 ^ k &lt; l ^ 1^1 H-1 we hâve &lt;?(/**) &lt;p(/i/). Hence ht - A* belongs to the kernel of (p.

Using conjugation by t~l we conclude that ht_k eker (cjo). By repeated use of
conjugation by tl~k and the fact that l — k divides (/0+l)! we deduce that
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i eker&lt;p. Since the embedding of T(l) in r(/0+i) is such that (1,1) is

identified with h(lQ+ly its image is trivial.

§4. Superrigidity via ergodic theoretic methods

Let T be a regular tree, with automorphism group Aut (T). Let T c Aut (T) be

a lattice and C(F) the commensurizer of r in Aut (T). We emphasize that we do
not assume that T is a uniform lattice. Let D be a group with F aD c C(f). Let
5 be an arbitrary tree (for which 35 has at least 3 points) and n : D -» Aut (S) a

homomorphism. The aim of this section is to prove:

THEOREM 4.1. Assume n(D) acts minimally on dS. Then either:

(i) n(F) has compact closure in Aut (S); or
(ii) n extends to a continuous homomorphism n : D-+ Aut (S) where D is the

closure of D in Aut (T). In particular, if D is dense, n ex tends to a

homomorphism Aut (T) -&gt; Aut (S).

REMARKS.
(1) The proof of this theorem is very much in the spirit of the proof of

Margulis&apos; superrigidity theorem for lattices in semisimple Lie groups with a
dense commensurizer. (See [Zi, section 6.2].) There are of course a number
of différent features in our présent situation, and we invite the reader to

compare the proof below with that of [Zi, section 6.2].

(2) The condition (i) in the statement of the theorem cannot in gênerai be

replaced by the stronger assertion that n(D) has compact closure. We do not
know, however, whether this may be possible for the case in which D is the

full commensurizer of a uniform lattice. An instructive example is the case

of D HX(Q), the rational norm one quaternions. This group commensur-
izes //,(Z[l/p]) for each p, which is a lattice in SL2(QP) and hence a

uniform lattice in Aut (Tp+l). However, if we fix one prime p, we see that
by acting on the tree Tq+l for another prime q, that D does not act

precompactly, that the homomorphism does not extend to D (by results of
[Zi, chapter 10]), but that Hx(l\\lp]) does act pre-compactly.

We begin the proof of this theorem with some preliminaries. First, we consider

some gênerai properties of Aut (S) acting on dS. We recall the following:

LEMMA 4.2. Suppose an e Aut (S) and an -&gt; oo. Then there are:

(i) a subsequence anj, and

(ii) points x,y edS (not necessarily distinct) such that if z eôS and z ^ x, then
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Proof. Let p e S be any vertex. Since S u dS is compact, for some subsequence

amp-+y for some y eSudS. Since an-+ao it follows that y edS. If for every
z e dS, amz-+y then the lemma holds. Otherwise for some x g dS we hâve after
passing to a further subsequence «,, #w x -&gt;jc0 for some x0 e dS, xo^y.

Let z edS, z #jc. We want to show that aMz-&gt;y. Indeed if for some
subsequence ak of an we had akz-+z0 such that z0 # y then considering the images of the
géodésie in S Connecting x and z we conclude that akp^y would hâve been

impossible.

We shall be applying this resuit in a variety of ways. If Zis a compact metrizable

space, we let M(X) be the space of probability measures on X. Thus, M(X) is a

compact convex separable set with the weak-*-topology. We let M2(X) c M(X) be

the measures supported on at most 2 points, MX(X) c M2(X) the measures suppor-
ted on a singleton (so we can identify MX(X) s X), and M\(X) &lt;= M2(X) the set of
measures which are either in MX{X) or assign measures 1/2 to each point in the
support. We hâve MX{X) c M°2(X) c M2(X\ and thèse are ail closed subsets of M(X).
From Lemma 4.2, we immediately deduce, via the argument of [Zi, Lemma 3.2.1]:

LEMMA 4.3. // an e Aut (S), a* -» oo, ^, v e M(ôS) with anfi-+v9 then

v g M2(dS). D

From this, we conclude:

LEMMA 4.4. Consider the action of Aut (5) on M(ôS). Every orbit in {the open
set) M(dS) — M2(dS) is closed in M(ôS) — M2(dS) and the stabilizer ofany point in
this set is compact. D

We shall need information not just on M(dS) but on measurable functions into
this space. Let (Y, v) be a standard measure space. If A&quot; is a second countable
metrizable space, we let F(Y9 X) be the space of measurable functions Y-+ X with
two functions being identified if they agrée v — a.e. We give F(Y, X) the topology
of convergence in measure, which is a separable metrizable topology. If Xo c X, we

clearly hâve a natural inclusion F(Y, Xo) c F(Y9 X). If a group G acts on X, it also

acts on F(Y, X). For functions into M(X), we let F2(7, M(X)) be those functions

/for which there are two points xx,x2eX (not necessarily distinct) such that for
a.e.t e Y,f(t) has support in {xx,x2}.

LEMMA 4.5. Let (Y, v) be any standard measure space. Then

(i) F2(Y, M2(dS)) c F(Y, M(dS)) is closed and Aut (S)-invariant.
(ii) Let G F(Y, M(ôS)) - F2(Y, M2{dS)). Then for any fe0, Aut (S) •/ is

closed in 0.
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Proof. (i) is clear. To see (ii), suppose feF( Y, M(dS)) and an -f-+g. If an is

bounded, then g g Aut (S) •/. If not, by passing to a subsequence we can assume

an -¥ oo and (by Lemma 4.2) that there are points x, y, w g dS such that for z ^ x,
an(z) -+y, and that an(x) -+w. We can also assume (again by passing to a
subsequence) that an •/(/) -+g(t) for û.é&gt;. / g Y. It follows that for a.e. /, g(0 g M(3S) is

supported on {y, w}, i.e. g $ 0.

We shall also need the following gênerai fact from [Zi] about when a homomor-
phism of groups has a pre-compact image.

LEMMA 4.6. ([Zi, Proposition 5.1.9.]) Suppose Y is an ergodic T-space {where
F is any locally compact group) such that F is also ergodic on Y x Y. {The measure
on Y is only assumed to be quasi-invariant under F.) Suppose n : F -+H is a

homomorphism to a locally compact group H and that there is a measurable F-map
Y -* H/K where K is compact. Then n(F) is compact.

We now turn to the proof of Theorem 4.1, using many of the ideas of Margulis&apos;

superrigidity theorem, as described in
We assume n :D-+ Aut (S) and that n(F) is not compact.

LEMMA 4.7. There is a measurable F-map cp : dT-+M°2(dS).

Proof. The F action on ÔT is amenable by [Zi, Corollary 4.3.7] and the fact that
Aut (T) is transitive on dTwith amenable stabilizer. It follows from [Zi, Proposition
4.3.9] that there is a measurable T-map q&gt; : ôT-+M(dS). Since the T-action on dT
is ergodic, it follows that either &lt;p(dT) a M2(dS)(a.e.) or (p(dT) c M(dS) -
M2{dS). The former case, we can clearly obtain such a map to M\{dS) which is just
the assertion we want, so it suffices to consider the latter case. By Lemma 4.4, the
action of Aut (S) on M(dS) — M2(dS) is tame (or &quot;smooth&quot; in the regrettable
terminology of [Zi]) (Cf. [Zi, Theorem 2.1.14]) and it follows that the map
(p : dT-&gt;(M(dS) - M2(dS))/Aut (S) is essentially constant since F is ergodic on dT.

(Cf. [Zi, Proposition 2.1.11].) In other words, q&gt;(dT) lies in a single Aut (S&gt;orbit in
M(ôS) — M2(dS). Letting K be the compact (by Lemma 4.2) stabilizer of a point in
this orbit, we can view q&gt; as a F-map dT -? Aut (S)/K. Since F is ergodic on dT x dT
(this is équivalent to the ergodicity of the &quot;géodésie flow&quot; on F\T), Lemma 4.6

applies to show that n(F) is compact, contrary to our assumption.

We wish next to assert that we can obtain a map as in Lemma 4.7 that is

actually a D-map. We remark that if D is not discrète, it will not in gênerai act

amenably on dT, so that one cannot simply replace F by i) in the above arguments
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(cf. [Zi2].) The key to obtaining a Z&gt;-map is a suitable uniqueness assertion for &lt;p

as in Lemma 4.7.

LEMMA 4.8. Suppose there is a measurable F-map (p : dT^&gt;M°2{dS) - Mx{ôS).

If A c F is offinite index and \j/ : dT -&gt; M2(dS) — Mx{dS) is a measurable A-map,
then (p ij/ a.e.

Proof. Suppose not. Then for a set of positive measure in dT, supp (ç(t) +
will consist of 3 or 4 distinct points. Since (p + \j/ is A -équivalent and A acts

ergodically on dT (since A is itself a lattice) we hâve that for a.e. t e T,

supp (cp(t) + ^(/)) consists of 3 or 4 distinct points. Let X{t) be the equidistributed
measure on supp {&lt;p{t) + ij/(t)). Then k : dT-+M(dS) - M2(dS) is a A-map. How-
ever, the proof of Lemma 4.7 shows that this implies n(A) is compact. Hence n(F)
is compact as well, yielding a contradiction.

LEMMA 4.9. Suppose there is a measurable F-map ç : dT-+Mx(dS) but that
there is no such T-map dT^&gt;M°2(dS) - Mx(dS). If A c F is offinite index and
ij/ : dT-+Mx{dS) is a measurable A-map, then cp \j/ a.e.

Proof. Suppose not. Then (using ergodicity of A on dT as in the proof of
Lemma 4.8), \{q&gt; +^r) : dT-»M°2(dS) - Mx(dS) is a A-map. By hypothesis, this
cannot be a JH-map. Let {y,} be a finite set of représentatives for F/A. Then

2, Jj
&apos; (&lt;P + &lt;A) will be a T-map (where A e F acts on F(3jT, M(dS)) by

(A /)(/) =7r(A)/(A-10). Letting n(t) be the measure that is equidistributed on
supp((£yyy •((? +*A))(0)&gt; we deduce that n:dT-+M(dS) is a T-map. Further-

more, since &lt;p -f ^ is not T-equivariant, we hâve fi : dT-&gt;M(dS) — M2(dS). Once

again, the proof of Lemma 4.7 would imply n(F) is compact, a contradiction.

COROLLÂRY 4.10. There is a measurable D-map q&gt; : dT-+M°2(dS).

Proof. (Cf. [Zi, Lemma 6.2.7) If deD, let d act on F(dT9 M20{dS)) by
(d /)(0 n(d)f(d-l(t)). Let (p be as in either Lemma 4.8 or Lemma 4.9. If d 6 D,
choose A c F of finite index such that dAd~x a F. The map d • &lt;p is then dAd~l
equivariant, and hence by 4.8 and 4.9 we hâve d - cp cp9 i.e. ^ is a Z&gt;-map.

COROLLARY 4.11. There is a measurable D-map (p : D -+M°2(dS).

Proof. Since Aut (T) is transitive on dT, we can view q&gt; as a D-map
Aut (r) -?M5(3S). Since D a Aut (r) is closed, by Fubini cp defines a measurable

/)-map on almost every Z)-orbit in Aut (T). Since each of thèse can be identified
with D itself as a 2)-space, the resuit follows.
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Set G D.
Now consider the map &lt;Ê : G-+F(G, M%(dS)) given by &lt;P(g)(a) cp(ga). Then

for d eD, &lt;P(dg)(à) cp(dga) n(d)&lt;P(g)(à), i.e., 0 is a Z&gt;-map, where Z&gt; acts on
F(G, M°2(ÔS)) by (d -f)(g) 7i(&lt;/)/(g). If 0(g)eF2(G, M°2(ÔS)) for some g, then
q&gt; : G -&gt; M^CdS) takes on at most 2 values. This implies that there is a set in 35 with
at most 4 points that is D-invariant. Since D acts minimally on dS and dS has at
least 3 points by hypothesis, this would imply that there is a set with 3 or 4 points
that is D-invariant. However, this implies that D leaves a finite set in S itself
invariant, and hence that n(D) is compact. This also contradicts our assumptions.
Therefore we deduce that for ail g e G, &lt;P(g) g F(G, M°2(dS)) - F2(G, M°2(dS)).

By Lemma 4.5, Aut (S) acts tamely on G =F(G9 M20{dS)) -F2(G9 M°2(dS)).
The map S : G -»$/Aut (S) is D-invariant (since &lt;P is a Z)-map) and by ergodicity
of D on G, we deduce that S is essentially constant. Summarizing, we hâve:

LEMMA 4.12. There is a co-null set GocG such that ail &lt;P(g), g e Go, lie in a

single Aut (S)-orbit in 0. D

We will need the following property of #.

LEMMA 4.13. Fix goeGo. Then the stabilizer of &lt;P(g0) in Aut (S) is trivial.

Proof. Let K c Aut (S) be the stabilizer. Thus, K {A e Aut (S) \ A(&lt;P(go)(a))

- ®(go)(a) for &lt;*•£• « g G}. Thus we clearly hâve

K {A g Aut (5) | A(cp(a)) &lt;p(a) for #.&lt;?. aeG}.

Then A&apos; c Aut (S) is closed, and since ç is a D-map the essential range of cp is

D-invariant which implies that n(D) a NAut(S)(K). To prove the lemma, it therefore
suffices to see that K fixes a point in ôS. For then the set of AT-fixed points on dS

will be closed and D-invariant, and since D acts minimally on dS, K fixes ail points
on dS. Since Aut (S) is faithful on dS, this would imply K is trivial.

We recall q&gt; : D -+M2(dS), and that we hâve seen in the discussion preceding
Lemma 4.12 that q&gt; is not essentially constant. Since each A e K fixes almost ail
cp(g), it follows from Fubini that there is a co-null set GX&lt;=.G such that for g eGx
almost every élément of K fixes q&gt;{g). Therefore K fixes q&gt;(g) for ail g eGx. If
q&gt;(G) c Mi(dS)(a.e.), then in particular K fixes a point of dS. Therefore, we are
reduced to considering the case &lt;p(G) aM2(dS) — Ml(ôS)(a.e.), where we deduce

that there are distinct 2-point sets, say {x, y} and {z, w}, in 35, that are fixed by K.
Let a (resp p) be the set of points in S on the géodésie in S from jc to y (resp.

from z to w). Then a and p are ^-invariant. If x, y, z, w are ail distinct points, then
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the set of points s g S minimizing d(s, a) + d(s, jS) is finite and ^-invariant. This

implies (perhaps by the usual argument of passing to the barycentric subdivision of
S) that there is a AT-fixed point in S. On the other hand, if {x,y, z,w} has only 3

distinct points (say y w), then an/? is a géodésie ray from a uniquely defined

point s0 e S to y e dS. This point s0 is then clearly tf-fixed. Thus, in either case, we

may assume there is a AT-fixed point 5*0 g S. Since n(D) normalizes K, n(d)s0 is

K-ûxed for ail d g D, and since n(D) is not compact, we can find dne D such that
n(dn)s0 converges in S SudS to a point in 35. This will also be À^-fixed, and this

complètes the proof of the lemma.

Completion of Proof of Theorem 4.1. If g g Gogôl, then

&amp;(ggo) &lt;r(g)&amp;(go) f°r some a(g) g Aut (S).

(This is simply the assertion that &lt;P(G0) a Aut (S)(&lt;P(g0)).) Furthermore, a(g) is the

uniquely defined élément of Aut (S) with this property by Lemma 4.13. It is then

easy to verify that g is measurable and a{gh) a(g)a(h) for almost ail

(g, h) g G x G. It follows [Zi, B.2] that there is a homomorphism (j0 : G -?Aut (S)
such that (T0 a a.e. This means that for a.e. g, (p(ggoa) 0o(g)&lt;p(goa) f°r a-e- #»

which is clearly équivalent to the assertion that &lt;p(ga) (T0(g)(p(a) for almost every
a. Fix d e D. Then for a.e. g, this holds for dg9 i.e. (p(dga) ao(dg)(p(a) for a.e. a,

so that q&gt;(dga) — (T0(d)a0(g)(p(a) for a.e. a. For a.e.g, we hâve 0-o(g)(p(a) &lt;P(ga) f°r
a.e. a, so we deduce that for a.e. g, (p(dga) ao(d)(p(ga) for a.e. a. This clearly
implies q&gt;{da) ao(d)(p(a) for a.e. a, and hence that ^(rf)&quot;1^^) fixes q&gt;(a) for a.e.

a. However, the essential range of cp is a D-invariant closed subset of ôS, and by

minimality of the D-action on dS, the essential range of q&gt; is ail of dS. This implies
n(d)~l(T0(d) fixes ail dS, and hence 7i(d) co(d). This complètes the proof.

The methods of this section may be used to obtain the following.

THEOREM 4.14. Let k be a localfield of characteristic 0 and n :D-&gt;Hk where

H is a non-compact almost simple k-group. Then either n(F) is compact or n extends

to D. n

§5. Linear représentations of C

In this section we show that C has no faithful linear représentation. We begin

with a corollary of proposition 2.9 which is of independent interest:
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PROPOSITION 5.1. Let F &lt;a, &gt; * &lt;a2&gt; * • • • (ak &gt; be as in Section 2. Let N
be a non-trivial normal subgroup of C. Then N contains F + FnA+.

Proof. Let l^neN. Then there exists 1#(5gT such that ô ^n~lôneF. It
follows that y ô~ln~lôn e F nN is a nontriviai élément. If y is an élément of
order 2 then it is conjugate (in F and hence in C) to one of the generators at0 and

it follows that at e N VI &lt;&gt;i &lt;&gt;k and we hâve F a N. Hence we can assume y is of
infinité order. It follows that y is conjugate to some cyclically reduced élément
y&apos; alx ah e NnF where r lT(y) ^ 2.

By Proposition 2.9 there exists some c e C such that c~ly&apos;c aM ah _xb
where 6 a3 for some y # /l5 ir. Hence the élément y&apos;~xc~ly&apos;c 0fè is in NnF. We
hâve lT(alrb) 2 and by Proposition 2.9 we conclude that ail the éléments À e F
with /(A) 2 are in NnF. Since thèse generate F+ it follows that F+ czN.

THEOREM 5.2. /« &lt;z«y /mear représentation of C over any field F, F has finite
image. In particular C does not hâve a faithful linear représentation.

Proof. Let p : C -? GL(«, F) be a linear représentation. Dénote by G c GL(n, F)
the Zariski closure of the image p(C) of C. Let iî &lt; G be the radical of G. Consider
the linear représentation p : C -*G/R. (We may view G/R as embedded in
GL(h, F)). We will show that p(F) is finite. This will imply that the image p(F) is

solvable by finite and hence that Fnkercp ^ {1}. By Proposition 5.1, this would
show that F/(ker cpnF) is finite. Assume that p(F) is infinité. Our goal is to show

that we can realize the représentation of C in a linear représentation over a finitely
generated field. Hence we can replace, when convenient, C by a subgroup of finite
index. Let H be the connected component of the Zariski closure of p{F). It is

normalized by p{C) (and hence by G/R). H is semisimple since its radical is a

characteristic subgroup and hence gives a normal solvable subgroup of G/R and

must be trivial. It follows that we can replace C by a subgroup of finite index C
so that for c e C the map h -&gt;p(c)~lhp(c) is an inner automorphism of H. Notice
also that since the centralizer in C of F is trivial we did not change the kernel. We

can décompose the connected semisimple group H as a product of simple groups.
It is enough to consider one such simple factor at a time. Thus we hâve a

homomorphism C -+ S where S is a connected simple group which is the Zariski
closure of the image of F. Choose some linear irreducible représentation of S and

let n : C-+GL(V) be the composed représentation. Since F is finitely generated it
follows that n(F) is a linear représentation over some finitely generated field F. The

image of any finite index subgroup of F is irreducible and hence by Burnside&apos;s

theorem contains a basis for End (V). Given an élément c g C it conjugates some
finite index sublattice of F into F and hence its adjoint action on End (F), when
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written as a matrix with respect to some fixed basis of End(K), gives a matrix
with entries in the finitely generated field F.

Recall that a finitely generated field may be embedded inside a local field. Thus
we hâve shown that if we hâve a linear représentation of C such that p(F) is

infinité then there exists a linear représentation t of C over a totally disconnected
local field (with t(F) infinité). We shall need the following lemma.

LEMMA 5.3. Let k be a totally disconnected local field. Then the orders of
finite order éléments in GL(m, k) are bounded.

We postpone the proof of the lemma. Using the arguments in the proof of 2.6

(see also remark 2.7) we can construct torsion éléments in C of arbitrarily large
order. In particular we obtain a non-trivial torsion élément c € C such that
r(c) 1. There exists some l^yef so that y ^c~lyc e F. It follows that
1 ^c~lycy~l cfnKer/. Using Proposition 5.1 it follows that t(F) is finite and
this complètes the proof of Theorem 5.2.

Proof of Lemma 5.3. Let v : k -+Z be a discrète valuation on k9 O c k its ring
of integers and Fg its residue field, g =pr. A finite order élément in GL(m,k) is

conjugate to an élément in GL(m, O)9 which is a virtually pro-p group. If
char k 0 then, as is well known, it has a finite index torsion free subgroup. So

we may assume char k =p &gt; 0. Since GL(m, O) is virtually pro-p the only possible
high torsion may corne from high powers of p. An élément g e GL(m, O) such that
g^ 1 is necessarily unipotent and unipotent éléments are of order p.

We remark that Theorem 5.2 does not apply to arbitrary non-discrete sub-

groups D with F czD c C. For example consider the group D of rational quater-
nions as embedded in PGL2(QP) &lt;= Aut (Tp+l). This group clearly admits faithful
linear représentations. However using Theorem 4.14 one can show that if
F a D a C and D is dense in A then there does not exist a faithful linear

représentation of D over a field of characteristic 0.

§6. Relation with manifolds of négative curvature

Let T be a fc-regular tree and F c Aut (T) a lattice. Suppose fcDc C(F).
We wish to investigate when D may be the fundamental group of a complète
Riemannian manifold of négative curvature. The main resuit of this section is the

following.
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THEOREM 6.1. Suppose [D : F] oo. Then D is not isomorphic to the funda-
mental group of a complète Riemannian manifold of curvature K with
-b2 £K£ -a2 where a,beU,a&gt;0.

REMARKS.
(a) Since free groups are fondamental groups of negatively curved manifolds,

clearly F itself may be such a fondamental group.
(b) It follows from Theorem 6.1 that if F &lt;=. D c C(F) with [D : F] oo, then D

is not free. This can also be shown directly by purely group theoretic

arguments.
(c) If D is a lattice in a higher rank semisimple group, then D is also not

isomorphic to such a fondamental group. This can be shown in a number of
ways, e.g. see [SZ].

The proof of Theorem 6.1 uses many of the same arguments as in section 4.

Therefore, we shall only indicate hère what additional argument is necessary. The
basic step in proving 6.1 is the following analogue of Theorem 4.1.

LEMMA 6.2. Let D be as in Theorem 6.1 and set G D, the closure in Aut (T).
Let M be a complète simply connected Riemannian manifold with sectional curvature
bounded away from 0 and — oo. Let n : D -? Iso (M) be a homomorphism. Then

either:

(i) n(D) is compact; or,
(ii) n{D) fixes a 1 or 2 point set in dM; or,
(iii) 7i extends to a continuous homomorphism G -&gt;Q where Q is a subquotient of

Iso (M) defined as follows.
There is a measurable D-map q&gt; : G -^M\(jdM) {with D acting on dM via n). Let H
be the subgroup of Iso (M) pointwise fixing the essential range ofç, N NlsoiM)(H)
and Q N/H. Then n(D) c N and the projection D -+Q of n extends to G.

To prove Lemma 6.2, we need the following well-known analogue of Lemma
4.2.

LEMMA 6.3. If hn e Iso (M) and hn -? oo, then by passing to a subsequence we

can find x, y € dM such that for z e dM, z # x, we hâve hn(z) -*y.

The proof of Lemma 6.2 now follows that of Theorem 4.1, using Lemma 6.3 in
place of Lemma 4.2, with the exception that Lemma 4.13 is not available. (We
recall that the proof of 4.13 used that n{D) acted minimally on dS, which we do not
assume hère.) However, the argument following the proof of Lemma 4.13 yields
conclusion (iii) above.
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We now prove Theorem 6.1 from Lemma 6.2. If D is the fundamental group of
a manifold of négative curvature, let n : D -+ Iso (M) the discrète embedding as

isometries of the universal covering. Since D is infinité, clearly n(D) cannot be

compact. The subgroup of Iso (M) fixing a 1 or 2 point set is amenable and since

D contains a free group and n(D) is discrète, we clearly cannot hâve (ii) in Lemma
6.2. It therefore remains to show that (iii) is impossible. Since G is totally
disconnected and not discrète (since D is not discrète owing to the fact that F is a

lattice and [D : F] oo), we can choose a compact open infinité subgroup KœG.
The group g is a real Lie group and hence the homomorphism K -+ Q given by (iii)
of Lemma 6.2 is trivial on a subgroup Ko c K of finite index. The group
Do D nK0 is infinité and we hâve n(D0) c H. Now consider the essential range
of cp. This is a n{D)-invariant subset of M\{dM). If it intersects dM £
Mx(dM) &lt;= M^idM), it must contain at least 3 points in dM, otherwise we are in
situation (ii) which we hâve shown is impossible. But if it contains at least 3 points
in dM then H is compact by Lemma 6.3. Since n(D0) c H and n(D0) is infinité and

discrète, this is also impossible. So we can assume the essential range is in
M\{dM) — Mx(dM). Once again, if the essential range is a single point, we are in
situation (ii), or if not, H permutes a 3 or 4 point set in dM. This implies H is

compact, completing the proof as above.
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