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New applications of Luttinger&apos;s surgery

Yakov Eliashberg and Leonid Polterovich

§1. Introduction and main résulte

Recently Karl Luttinger [L] made a remarkable observation that certain surgeries

along a Lagrangian 2-torus in the standard symplectic space (C2, œ) do not change
the ambient topology. As a conséquence he found restrictions on isotopy classes of
embeddings T2 -&gt; C2 which can be represented by Lagrangian ones.

In the présent paper, we discuss some new applications of this technique to linking
of Lagrangian 2-tori in C2, to contact geometry on the 3-torus as well as to study
of complex structures with pseudo-convex boundary on T2 x D2.

1.1. Linking class of totally real tori

A field of lines on a 2-torus is called homotopically trivial if it is homotopic to
the kernel of a non-singular closed 1-form. Ail homotopically trivial Une fields are

homotopic. A 2-torus in C2 is called totally real if it has no complex tangent lines.

From now on we dénote by &lt;fk( •, • the linking number, and by / the standard

complex structure on C2. AU (co)homology groups considered below are integer.
Assume that L c C2 is an embedded oriented totally real 2-torus. Take an

arbitrary non-singular tangent vector field, say t; on L which générâtes a homotopically

trivial field of lines. For a 1-cycle a on L set

a(oc) tk((x. + eJv, L),

where e is sufficiently small.
One can easily check that a is a well defined élément of Hl(L), in particular a

does not dépend on the choice of v. We call a the linking class of a totally real torus
L (see [PI], [P2]). Note that this class is closely related to the Viro quadratic form.
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As it was shown in [PI] for each cohomology class a e HX{L) there exists a totally
real embedding L -+ C2 whose linking class is equal to a. However for Lagrangian
submanifolds the situation is quite différent. Namely, we prove the following resuit
which was conjectured in [PI], [P2].

THEOREM 1.1.A. The linking class of every embedded Lagrangian torus in C2

vanishes.

The theorem is proved below in 3.1.

As a conséquence we obtain the following

COROLLARY l.l.B. (see [PI]). Let McC2 be an embeddedclosed 3-manifold
whose characteristic foliation admits an embedded invariant 2-torus L. IfL divides M
then the restriction of the characteristic foliation to L is homotopically trivial.

Proof Notice that L is a Lagrangian torus. Let / be the field of Euclidian normal
Unes to M along L. Then the field // is tangent to the characteristic foliation on L.
The needed assertion easily follows now from 1.1.A.

1.2. Giroux&apos; theorem

Homotopically trivial fields of lines on T2 allow to identify canonically (up to
a homotopy) the cotangent bundle T*T2 with T2 x R2 (with this language the zéro
section is identified with T2 x {0}).

THEOREM 1.2.A. Consider an embedded Lagrangian torus in T*J2 T2xR2
which does not intersect the zéro section and is homologous to it. Then Us projection
to M2 — {0} is homotopic to a point.

This resuit was conjectured by J.-C. Sikorav in [S] who verified it under an
additional assumption that the torus is Lagrangian isotopic to the zéro section. It was

proved recently by E. Giroux (see [Gi]) using, in particular, some tools from contact

geometry. We give hère a différent purely symplectic proof (see section 3.2 below).

1.3. Contact geometry of the 3-torus

Consider the 3-torus T2 Sl(0) x T2(x, y), where (0, x, y) (mod 1) are angular
coordinates. Let Ç Ker A, where

A cos 2n9 dx -h sin 2nO dy

be the standard contact structure.
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We identify HX(T3) with Z©Z2 and the automorphisms group of HX(J3) with
GL(3, Z). Recall [La] that isotopy classes of 3-torus diffeomorphisms are defined by
their action on homology. Let 2 c SL(3, Z) be the stabilizer of the subspace

O0Z2.

THEOREM I.3.A. An élément from SL(3,Z) can be represented by a contacte*-

morphism of the standard contact structure Ç if and only if it belongs to Q).

The proof which is based on 1.2.A is given in Section 3.4 below.

We apply this theorem in order to construct an infinité séquence of pairwise
non-isotopic tight contact structures on T3 with the same Euler class (see Question
8.6.1 in [E2]). Recall that two contact structures are called isotopic if there exists a

diffeomorphism isotopic to the identity which takes one to another. An immédiate

conséquence of 1.3.A is the following

COROLLARY I.3.B. Forfge SL(3, Z), contact structures /„(£) andg+(Ç) are

isotopic if and only iff~x ° g belongs to 2.

A theorem by J. Gray states that two contact structures on a compact manifold
which are homotopic through contact structures are isotopic. On the other hand the

image of the standard contact structure £ under an arbitrary diffeomorphism of T3

is homotopic to £ through plane distributions.
Hence, we hâve, in particular

COROLLARY I.3.C. There exists a séquence Çn, n &gt; 0, of contact structures on
T3 such that

(i) Çn is contactomorphic to £ for every n, and Ço £;

(ii) ail Çn are homotopic to Ç through two-dimensional distributions;
(iii) for m # n the structures £m and Çn are not homotopic through contact

structures on T3.

Proof. Take a diffeomorphism/of T3 such that [fn] $ Q) for every n e Z - {0}.
It follows from 1.3.B and the previous discussion that the structures ^n =/£(£)&gt;

n 0,..., are homotopic through plane distributions but not through contact
structures.

REMARK I.3.D. Giroux in [Gi] used Theorem 1.2.A to construct a tight (see

[E2]) contact structure on T3 which is homotopic (through two-dimensional

distributions) but not isomorphic to the standard contact structure £0. His structure
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is symplectically fillable (see [El] for the définition of symplectically and holomor-
phically fillable structures) while at least some of structures constructed above are

holomorphically fillable (see the next section).

1.4. Complex structures on T2 x D2

A contact structure on an oriented 3-manifold is called positive if it is (locally)
defined by a 1-form, say X with À a dX &gt; 0. A boundary of a complex surface is

called strictly pseudo-convex if its field of tangent Unes is a positive (with respect to
the canonical orientation) contact structure.

It was shown in [El] that the manifold S2 x D2 does not admit a complex
structure with strictly pseudo-convex boundary. In the présent section we study the

space of such structures on T2 x D2.

THEOREM 1.4.A. There exists a séquence Jn, n ^ 0, of complex structures with

strictly pseudo-convex boundary on T2 x D2 such that

(i) any two of them are biholomorphically équivalent and homotopic through

complex structures \

(ii) for m ^n the structures Jm and Jn are not homotopic through complex

structures with strictly pseudo-convex boundary.

Proof We represent V T2 x R2 as the quotient space of C2 by the imaginary
lattice il}. We still dénote by J the induced complex structure on V. Let

(x,y)(mod 1) be angular coordinates on T2 and (r, 0(mod 1)) be polar coordinates

on IR2. Set

N T2xB2={r£ 1}.

Dénote by I — T3 tbe boundary of N. Obviously, I is strictly pseudo-convex
with respect to / since its field of tangent complex Unes is just the standard contact
structure Ç defined in 1.3.

Consider a diffeomorphism F : V-*V9

(r, d, x, y) -&gt; (r, 9 + 2x, x, y),

and set

J=DF&quot;oJoDF-n.
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We claim that the séquence {Jn} has the desired properties. Indeed, since F
préserves E we eonclude that ail /„ \N are pairwise biholomorphically équivalent and
with strictly pseudo-convex boundary. Moreover, for n # 0 the restriction of F to I
does not belong to the group @ (see 1.3). Therefore for différent values of n the
fields of /„ -complex tangent lines to Z are pairwise non-isotopic through contact
structures on T3 (see 1.3.B) and thus we get (ii).

It remains to check that Jm and /„ are homotopic through complex structures
for ail m and n. In order to do it we notice that the map DF : TV -&gt; TV is

homotopic to the identity through fiberwise linear maps whose restriction to each

fiber is an isomorphism (vérification of this fact is straightforward and we omit it).
Hence the parametric A-principle for immersions of open manifolds (see [H] or [G2,
2.1.2]) implies that Fis homotopic to the identity through immersions K-&gt; V. Let

Fnt g [0; n] be such a homotopy with F0 F and Fn id. Then

JM {DFnt(v))-x « Jn(FUv)) o

is the desired homotopy between Jo and /„. This complètes the proof. D

REMARK I.4.B. It follows easily from a Bennequin-type inequality proved in

[El, 4.1] that ail complex structures with strictly pseudo-convex boundary on
T2 x D2 are homotopic one to another through almost complex structures. Moreover,

using additional arguments from [G2] one can show that they are homotopic
through complex structures.

REMARK I.4.C. Let fconv be the space of complex structures with strictly
pseudo-convex boundary on N T2 x D2. How to describe the connected compo-
nents of #convl In order to formulate this question in a more précise way define a

diffeomorphism Gmn of N by

Gmtn(r, 0, x, y) (r, 0 + mx -I- ny9 x, y),

and consider a complex structure

which evidently belongs to #conv. It follows immediately from 1.3.B that for
différent pairs of integers (w, n) the structures Jmn represent différent connected

components of #conv. Is it true that each such a comportent contains some Jm&gt;nl
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§2. Surgery along Lagrangian ton

2.1. The standard model

Consider cotangent bundle T*T2 of the 2-torus T2 endowed with the standard

symplectic structure co0. Let (x,y)(mod 1) be angular coordinates on the base, and
let (r, 0(mod 1)) be polar coordinates on fibers. We identify the hypersurface
Zo {r 1} with the 3-torus T3(0, x,y)9 and set N0={r £l}.

For m, n e Z we define the Dehn twist fmn : Io-&gt; Eo by

(0, x, j&gt;) -&gt; (0, jc + m0, j&gt; -h /î0).

Note that/mw préserves the restriction of coo to TI0.

2.2. Configurations of marked Lagrangian tori

Let Zq,..., Lk c C2 be a set of embedded disjoint Lagrangian tori. By marking
we mean the choice of a basis in Hx{Lj), say a,, jSy.

Given such a marking, we can identify sufficiently small closed tubular neigh-
bourhood Nj of L7 with No by a conformally symplectic diffeomorphism in such a

way that L, goes to the zéro section, and the cycles aJ9 pj correspond to the x~ and

j-coordinate cycles respectively. We assume that ail N; are disjoint. Set

Ij dNj « T3, and K C2 - (Jf= i (IntNj). Let /o) :Zj-*Zj be some Dehn twists.
Dénote by F a manifold obtained as the sum

Nk.

The main observation of Luttinger is the following

PROPOSITION 2.2.A. ([L]). The manifold V associated with an arbitrary
configuration Ll9...,Lk of marked Lagrangian tori and an arbitrary séquence

/(1),... ,/(*} of Dehn twists is diffeomorphic to C2. In particular, HX(V) =0.

Proof Note that V admits a symplectic structure which outside a compact set

coincides with the standard one on C2. It follows immediately from well known
theorems by M. Gromov and D. McDuff (see [Gl], [M]) that Fis diffeomorphic to
C2, maybe blown up at finite number of points. On the other hand the signature of
V vanishes in view of Novikov&apos;s additivity theorem (we thank R. Gompf for this

argument), and hence the proposition follows.
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We need below the following corollary of 2.2.A. Set Z =111,, N UNj. Let
: Hx (I) -+ Hx (K) be a homomorphism induced by the inclusion, and let
: Hx (I) -? H, (N) be a homomorphism induced by the composition

where the last arrow is the inclusion.

COROLLARY 2.2.B. The homomorphism

&lt;P®(-W): HX(I)^HX(K)®HX(N)

is an isomorphism.

Proof. Consider the Mayer-Vietoris séquence

HX(I) &gt; HX(K)®HX(N)

Since HX(V) 0 due to 2.2.A, we hâve that #®(-¥0 is an epimorphism. But
HX{I) and HX{K)®HX{N) are free Z-modules of the same dimension 3k. Hence

^ © — W) is an isomorphism.

For our purposes we hâve to fix a basis in each space HX(I\ HX(K), HX(N). Let
A,, ax, bx,..., hk, ak, bk be a basis in /f, (I1) such that for every j the cycles A,, Û,, fe,

correspond to 0-, x- and ^-coordinate cycles on T3 respectively. Let
Ax, Bx,... ,Ak, Bk be a basis in HX(N), where for every j the cycles ^4,,!?,

correspond to x- and j&gt;-coordinate cycles on T2 respectively. Finally, let

H Hk be the basis in Hx (K) which is defined by relations

(hère the orientation of L3 is determined by the marking).

§3. Proof of main theorems

3.1. Proof oflA.A

Let L c C2 be an embedded Lagrangian torus, and let a be its linking class.

Choose a marking a, P on L and apply the construction of 2.2 with respect to a

Dehn twist /w,n.
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Recall that using homotopically trivial fields of Unes one can define the
canonical trivialisation of the (co) tangent bundle to a 2-torus. Consider a trivialisa-
tion of the normal bundle to L which is obtained from the canonical one of TL by
the multiplication by J. It is easy to see that after the identification of a tubular
neighbourhood of L with No (see 2.2) this trivialisation coincides with the canonical
one of T*T2.

In view of this we hâve that the maps # : Hl(Z)-*Hl{K) and V : HX(Z) -+

HX(N) act as follows:

&lt;P(h) H, &lt;P(a) a(ot)H, *(*) a(P)H;

V(h) =mA+ nB, W{a) A, V{b) B.

(The numération of the basis éléments is omitted since we work with one torus).
Hence in the bases (h, a9 b) and (H, A, B) the map &lt;P © — V) is given by the matrix

Its déterminant equals to 1 — a(a)m — cr(P)n. On the other hand 2.2.B implies that
this déterminant equals to ± 1 for ail m and n. Hence &lt;x(a) a{p) 0. This
complètes the proof.

3.2. Proof of 1.2.A

Let us represent a neighbourhood of the zéro section in T*T2 as a tubular
neighbourhood °U of the standard Lagrangian torus Lx S1 x S1 c C2. Let L2 be

an embedded Lagrangian torus in % which is disjoint from Lx and homologous to
Lx inside °U. The assertion we hâve to prove can be reformulated as follows: every
cycle e e Hl(L2) is unlinked with L,:

Dénote by ti^-^L, the natural projection and by r* : HX(L2) -+HX{LX) the
induced isomorphism. We need the following simple topological

LEMMA 3.2.A. For every e e HX(L2) the following equality holds:

where we assume that x préserves orientations of Lx and L2.
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The proof is given in 3.3 below.
Let a2, P2 be a marking of L2, and let a, TJ|ea2, fix t+/?2 be the &quot;cohérent&quot;

marking of Lx. Set u /fc(a,, L2) /Jfc(a2, L0, t? Sk(puL2) ^032, L,). Choose

disjoint tubular neighbourhoods Nx, N2 of L,, L2 respectively inside &lt;%, and apply
the surgery proœdure 2.2 associated with Dehn twists /(1) =/m,n and /(2) =/„,„ for
some integer m, n. Now consider the action of O and W in corresponding bases

(hx,ax,bx, h2, a2i b2) and (//!,Ax,Bl9H29 A2, B2). A straightforward computation
(which uses also 1.1.A) shows that #©(-¥0 is given by the matrix

ai h2 a2 6j

1

—m

—n

0

0

0

0

-1

0

u

0

0

0

0

-1

v

0

0

0

0

0

1

—m

—n

u

0

0

0

-1

0

v

0

0

0

0

-1B2

whose déterminant is equal to 1 — (um -h vri)2. On the other hand, this déterminant
equals to ± 1 for each choice of m and n due to 2.2.B. Hence u v 0, and the

desired assertion follows. D

3.3. Proof of 32A

Let vx e Hl(Ll) (respectively, v2 e HX(L2)) be a class Poincare dual to tk( •, L2)
(respectively, to tk{ •, Lx)). We hâve to show that %+v2 vx, in other words that
1-cycles representing thèse classes are homologous inside ^. Let &amp; be a smooth
embedded 3-chain which spans Lx in C2 and has the following properties:

• 0t is transversal to #2f and to L2;
m 3t n® « T2 x [0; 1], where T2 x {0} Lx and T2 x {1} a d&lt;%.

Let 0tf be a small shift of M along the field of normals, such that 0tc\0t* 0
and âtf intersects d&lt;W transversally along a torus L. Note that L and L2 are
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homologous inside &lt;%. Let Q be a 3-chain such that gcf and dQ LuL^. We

shall assume that Q is an immersed 3-manifold transversal to 0t and to Lx. Finally,
set S g u($&apos; - #). Note that S is a 3-chain with the following properties:

• S spans L2 in C2;

• S is transversal to dt and to L, and intersects

Set W SntM. Obviously, W is a 2-chain in ^ whose boundary components
are SnLx and dtc\L2. Moreover, 1-cycles S nLx on Li and ^ nL2 on L2 represent
classes t;1 and v2 respectively. Hence x^v2 — vu and the proof is complète.

3.4. Proofof\3.A

Assume that/is a linear automorphism of T3 with [/] e^. One can easily
check that the form f*X is isotopic to A through contact forms, and hence / is

isotopic to a contactomorphism.
The proof of the inverse assertion is divided into several steps.

(1) We represent T3 as the hypersurface Io {r 1} in T*T2 (see 2.1). Then A

is just the restriction of the standard Liouville form

r cos 2n0 dx + r sin 2nO dy

on T*T2. Let / : T3 -? T3 be a contactomorphism, that is /*A &lt;pA for some

non-vanishing function &lt;p(0, x, y). Since a and —a are isotopic through contact

forms, we can assume that q&gt; is positive.

(2) We daim that the map F : I&quot;o-&gt; r*T2, given in coordinates (r, 0, x,^) on
T*T2 by

is symplectic, that is F*œ0 co0 |rr- Indeed,

F* &lt;/(r • (cos 2tc0 dx + sin

¦dk =œ0.
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(3) Take a Lagrangian torus L {9 const} c Io. Due to the previous step, its
image F(L) is a Lagrangian torus in T*T2 disjoint from the zéro section. Obviously,
the projection F(L) -* IR2 — {0} (see 1.2) is homotopic to a point if and only if

2. The desired assertion follows now from 1.2.A.

REFERENCES

[El] ELIASHBERG, Y., Filling by holomorphic dises and its applications, London Math. Soc. Lect. Notes
Ser. 151 (1991), 45-67.

[E2] Eliashberg, Y., Contact 3-manifolds twenty years since J. Martinet&apos;s work, Ann. Inst. Fourier 42

(1992), 165-192.

[Gi] Giroux, E., Une structure de contact, même tendue, est plus ou moins tordue, Preprint, 1992.

[Gl] Gromov, M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985),
307-347.

[G2] Gromov, M., Partial differential relations. Springer, 1986.

[H] Hirsch, M., On imbedding differential manifolds into Euclidean space, Ann. Math. 73 (1961),
566-571.

[L] Luttinger, K., Lagrangian tori in IR4, Preprint, 1992.

[La] Laudenbach, F., Topologie de la dimension trois: homotopie et isotopie, Astérisque, 12, 1974.

[M] McDuff, D., The structure ofrational and ruled symplectic 4-manifolds, JAMS 3 (1990), 679-712.
[PI] Polterovich, L., New invariants of embedded totally real tori and one problem of Hamiltonian

mechanics, in: &quot;Methods of Qualitative Theory and the Theory of Bifurcations&quot;, Gorki, 84-90
(1988), in Russian.

[P2] Polterovich, L., Strongly optical Lagrange manifolds, Math. Notes Ac. Se. USSR, 45 (1989),
152-158.

[S] Sikorav, J.-C, Quelques propriétés des plongements lagrangiennes, Preprint, 1990.

Department of Mathematics
Stanford University
Stanford, CA 94305
USA

and

School of Mathematical Sciences

Sackler Faculty of Exact Sciences

Tel Aviv University
Ramat-Aviv
Israël

Received April 26, 1993; May 1993


	New applications of Luttinger's surgery.

