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New applications of Luttinger’s surgery

YAKOV ELIASHBERG and LEONID POLTEROVICH

§1. Introduction and main results

Recently Karl Luttinger [L] made a remarkable observation that certain surgeries
along a Lagrangian 2-torus in the standard symplectic space (C?, w) do not change
the ambient topology. As a consequence he found restrictions on isotopy classes of
embeddings T2 — C? which can be represented by Lagrangian ones.

In the present paper, we discuss some new applications of this technique to l/inking
of Lagrangian 2-tori in C2, to contact geometry on the 3-torus as well as to study
of complex structures with pseudo-convex boundary on T? x D2,

1.1. Linking class of totally real tori

A field of lines on a 2-torus is called homotopically trivial if it is homotopic to
the kernel of a non-singular closed 1-form. All homotopically trivial line fields are
homotopic. A 2-torus in C? is called totally real if it has no complex tangent lines.
From now on we denote by Zk( -, -) the linking number, and by J the standard
complex structure on C2. All (co)homology groups considered below are integer.

Assume that L < C? is an embedded oriented totally real 2-torus. Take an
arbitrary non-singular tangent vector field, say v on L which generates a homotopi-
cally trivial field of lines. For a 1-cycle « on L set

o(x) = k(o + &Jv, L),

where ¢ is sufficiently small.

One can easily check that o is a well defined element of H'(L), in particular ¢
does not depend on the choice of v. We call ¢ the linking class of a totally real torus
L (see [P1], [P2]). Note that this class is closely related to the Viro quadratic form.
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As it was shown in [P1] for each cohomology class ¢ € H'(L) there exists a totally
real embedding L — C? whose linking class is equal to 6. However for Lagrangian
submanifolds the situation is quite different. Namely, we prove the following result
which was conjectured in [P1], [P2].

THEOREM 1.1.A. The linking class of every embedded Lagrangian torus in C?
vanishes.

The theorem is proved below in 3.1.
As a consequence we obtain the following

COROLLARY 1.1.B. (see [P1]). Let M = C? be an embedded closed 3-manifold
whose characteristic foliation admits an embedded invariant 2-torus L. If L divides M
then the restriction of the characteristic foliation to L is homotopically trivial.

Proof. Notice that L is a Lagrangian torus. Let / be the field of Euclidian normal
lines to M along L. Then the field J/ is tangent to the characteristic foliation on L.
The needed assertion easily follows now from 1.1.A. O

1.2. Giroux’ theorem

Homotopically trivial fields of lines on T2 allow to identify canonically (up to
a homotopy) the cotangent bundle 7*T?2 with T2 x R? (with this language the zero
section is identified with T2 x {0}).

THEOREM 1.2.A. Consider an embedded Lagrangian torus in T*T? = T? x R?
which does not intersect the zero section and is homologous to it. Then its projection
to R* — {0} is homotopic to a point.

This result was conjectured by J.-C. Sikorav in [S] who verified it under an
additional assumption that the torus is Lagrangian isotopic to the zero section. It was
proved recently by E. Giroux (see [Gi]) using, in particular, some tools from contact
geometry. We give here a different purely symplectic proof (see section 3.2 below).

1.3. Contact geometry of the 3-torus

Consider the 3-torus T2 = S'(0) x T*(x, y), where (6, x, y) (mod 1) are angular
coordinates. Let ¢ = Ker A, where

A = cos 2n0 dx + sin 270 dy

be the standard contact structure.
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We identify H,(T?) with Z @® Z* and the automorphisms group of H,(T>) with
GL(3, Z). Recall [La] that isotopy classes of 3-torus diffeomorphisms are defined by
their action on homology. Let 2 < SL(3, Z) be the stabilizer of the subspace
0 72

THEOREM 1.3.A. An element from SL(3,Z) can be represented by a contacto-
morphism of the standard contact structure £ if and only if it belongs to 9.

The proof which is based on 1.2.A is given in Section 3.4 below.

We apply this theorem in order to construct an infinite sequence of pairwise
non-isotopic tight contact structures on T> with the same Euler class (see Question
8.6.1 in [E2]). Recall that two contact structures are called isotopic if there exists a
diffeomorphism isotopic to the identity which takes one to another. An immediate
consequence of 1.3.A is the following

COROLLARY 1.3.B. For f, g € SL(3, Z), contact structures f, () and g, () are
isotopic if and only if f~! o g belongs to 9.

A theorem by J. Gray states that two contact structures on a compact manifold
which are homotopic through contact structures are isotopic. On the other hand the
image of the standard contact structure £ under an arbitrary diffeomorphism of T3
is homotopic to ¢ through plane distributions.

Hence, we have, in particular

COROLLARY 1.3.C. There exists a sequence £,, n = 0, of contact structures on
T3 such that
(i) &, is contactomorphic to ¢ for every n, and &, =€,
(i) all &, are homotopic to & through two-dimensional distributions;
(iii) for m #n the structures &, and &, are not homotopic through contact
structures on T°>.

Proof. Take a diffeomorphism f of T such that [ /] ¢ @ for every n € Z — {0}.
It follows from 1.3.B and the previous discussion that the structures ¢, = f7 (%),
n=0,..., are homotopic through plane distributions but not through contact
structures. O

REMARK 1.3.D. Giroux in [Gi] used Theorem 1.2.A to construct a tight (see
[E2]) contact structure on 7> which is homotopic (through two-dimensional
distributions) but not isomorphic to the standard contact structure &,. His structure



New applications of Luttinger’s surgery 515

is symplectically fillable (see [E1] for the definition of symplectically and holomor-
phically fillable structures) while at least some of structures constructed above are
holomorphically fillable (see the next section).

1.4. Complex structures on T* x D?

A contact structure on an oriented 3-manifold is called positive if it is (locally)
defined by a 1-form, say 4 with A A dA > 0. A boundary of a complex surface is
called strictly pseudo-convex if its field of tangent lines is a positive (with respect to
the canonical orientation) contact structure.

It was shown in [E1] that the manifold S x D? does not admit a complex
structure with strictly pseudo-convex boundary. In the present section we study the
space of such structures on T2 x D2

THEOREM 1.4.A. There exists a sequence J,, n 2 0, of complex structures with
strictly pseudo-convex boundary on T? x D? such that
(i) any two of them are biholomorphically equivalent and homotopic through
complex structures
(i) for m #n the structures J,, and J, are not homotopic through complex
structures with strictly pseudo-convex boundary.

Proof. We represent ¥V = T2 x R? as the quotient space of C? by the imaginary
lattice iZ2. We still denote by J the induced complex structure on V. Let
(x, ) (mod 1) be angular coordinates on T2 and (r, (mod 1)) be polar coordinates
on R? Set

N=T’xD*={r<1}.

Denote by X = T3 tbe boundary of N. Obviously, X is strictly pseudo-convex
with respect to J since its field of tangent complex lines is just the standard contact
structure ¢ defined in 1.3.

Consider a diffeomorphism F: V -V,

(r’ 09 x,J’)—’("s 0 +2x, xay)9

and set

J,=DF"oJ o DF".
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We claim that the sequence {J,} has the desired properties. Indeed, since F
preserves X we conclude that all J, |y are pairwise biholomorphically equivalent and
with strictly pseudo-convex boundary. Moreover, for n # 0 the restriction of Fto X
does not belong to the group 2 (see 1.3). Therefore for different values of »n the
fields of J,-complex tangent lines to 2 are pairwise non-isotopic through contact
structures on T° (see 1.3.B) and thus we get (ii).

It remains to check that J,, and J, are homotopic through complex structures
for all m and n. In order to do it we notice that the map DF: TV - TV is
homotopic to the identity through fiberwise linear maps whose restriction to each
fiber is an isomorphism (verification of this fact is straightforward and we omit it).
Hence the parametric A-principle for immersions of open manifolds (see [H] or [G2,
2.1.2)) implies that F is homotopic to the identity through immersions V' — V. Let
F,, t € [0; n] be such a homotopy with F, = F and F, = id. Then

J,(v) = (DF;(v)) ™" o J,(F{ (v)) > DF?} (v)
is the desired homotopy between J, and J,. This completes the proof. O

REMARK 1.4.B. It follows easily from a Bennequin-type inequality proved in
[E1l, 4.1] that all complex structures with strictly pseudo-convex boundary on
T? x D? are homotopic one to another through almost complex structures. More-
over, using additional arguments from [G2] one can show that they are homotopic
through complex structures.

REMARK 14.C. Let ¢, be the space of complex structures with strictly
pseudo-convex boundary on N = T? x D2 How to describe the connected compo-
nents of #....] In order to formulate this question in a more precise way define a
diffeomorphism G,,, of N by

Gpn(r, 0,%,y) =(r, 0 + mx +ny, x, y),
and consider a complex structure
Jun=DGppoJoDG_,, _,

which evidently belongs to #,.,. It follows immediately from 1.3.B that for
different pairs of integers (m, n) the structures J,,, represent different connected
components of #,,,. Is it true that each such a component contains some J,,,?
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§2. Surgery along Lagrangian tori
2.1. The standard model

Consider cotangent bundle T*T? of the 2-torus T2 endowed with the standard
symplectic structure w,. Let (x, y)(mod 1) be angular coordinates on the base, and
let (r, 8(mod 1)) be polar coordinates on fibers. We identify the hypersurface
%y = {r =1} with the 3-torus T°(6, x, ), and set No= {r < 1}.

For m, n € Z we define the Dehn twist f,, , : £o— Z, by

@, x, y) = (0, x + mb, y + nb).

Note that f,,, preserves the restriction of w, to TZ,.

2.2. Configurations of marked Lagrangian tori

Let L,,..., L, = C? be a set of embedded disjoint Lagrangian tori. By marking
we mean the choice of a basis in H,(L;), say a;, ;.

Given such a marking, we can identify sufficiently small closed tubular neigh-
bourhood N; of L; with N, by a conformally symplectic diffeomorphism in such a
way that L, goes to the zero section, and the cycles a;, B; correspond to the x- and
y-coordinate cycles respectively. We assume that all N, are disjoint. Set
Z;=0N,~T? and K=C?— Jf_, (IntN;). Let f: X, > X, be some Dehn twists.
Denote by V' a manifold obtained as the sum

K Vrw,z, Nu--- Urwo,z, Ne.
The main observation of Luttinger is the following

PROPOSITION 2.2.A. ([L]). The manifold V associated with an arbitrary
configuration L,, ..., L, of marked Lagrangian tori and an arbitrary sequence
fO, .., f® of Dehn twists is diffeomorphic to C*. In particular, H,(V) = 0.

Proof. Note that V admits a symplectic structure which outside a compact set
coincides with the standard one on C2. It follows immediately from well known
theorems by M. Gromov and D. McDuff (see [G1], [M]) that ¥V is diffecomorphic to
C?, maybe blown up at finite number of points. On the other hand the signature of
V vanishes in view of Novikov’s additivity theorem (we thank R. Gompf for this
argument), and hence the proposition follows. O
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We need below the following corollary of 2.2.A. Set £ =11%;,, N =1IN,. Let
®:H,(2)—->H,(K) be a homomorphism induced by the inclusion, and let
¥ :H,(2)— H,(N) be a homomorphism induced by the composition

LLA)

z

P > N,

where the last arrow is the inclusion.
COROLLARY 2.2.B. The homomorphism
P®(—¥): H\(2) > H(K)®H,(N)

is an isomorphism.
Proof. Consider the Mayer—Vietoris sequence

PB(—¥)
H\(2) — H|(K)® H,(N) — H,(V).

Since H,(V) =0 due to 2.2.A, we have that ® ®(—¥) is an epimorphism. But
H,(2) and H,(K) ® H,(N) are free Z-modules of the same dimension 3k. Hence
® P(—Y) is an isomorphism. O

For our purposes we have to fix a basis in each space H,(X), H,(K), H,(N). Let
hy,a;, by, ..., M, a, b, be a basis in H,(Z) such that for every j the cycles 4;, a;, b;
correspond to 6-, x- and y-coordinate cycles on T? respectively. Let
A, B, ..., A, B, be a basis in H;(N), where for every j the cycles 4;, B
correspond to x- and y-coordinate cycles on T? respectively. Finally, let
H,, ..., H, be the basis in H,(K) which is defined by relations

1, i=j

(here the orientation of L; is determined by the marking).

§3. Proof of main theorems

3.1. Proof of 1.1.A

.Let L = C? be an embedded Lagrangian torus, and let ¢ be its linking class.
Choose a marking a, f on L and apply the construction of 2.2 with respect to a
Dehn twist f,, .
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Recall that using homotopically trivial fields of lines one can define the
canonical trivialisation of the (co)tangent bundle to a 2-torus. Consider a trivialisa-
tion of the normal bundle to L which is obtained from the canonical one of TL by
the multiplication by J. It is easy to see that after the identification of a tubular
neighbourhood of L with N, (see 2.2) this trivialisation coincides with the canonical
one of T*T2

In view of this we have that the maps & : H,(2) - H,(K) and ¥ : H,(2) —»
H,(N) act as follows:

&(h) = H, &(a) = a()H, &o(b) =a(P)H;
Y(h) = mA + nB, Y(a)=A, Y(b) = B.

(The numeration of the basis elements is omitted since we work with one torus).
Hence in the bases (4, a, b) and (H, A, B) the map @ @ ( — ) is given by the matrix

1 o(@ a(f)

—n 0 —1

Its determinant equals to 1 — a(a)m — a(B)n. On the other hand 2.2.B implies that
this determinant equals to +1 for all m and n. Hence a(x) =a(f) =0. This
completes the proof. O

3.2. Proof of 1.2.A

Let us represent a neighbourhood of the zero section in T*T? as a tubular
neighbourhood # of the standard Lagrangian torus L, =S' x S' < C% Let L, be
an embedded Lagrangian torus in % which is disjoint from L, and homologous to
L, inside . The assertion we have to prove can be reformulated as follows: every
cycle e € H,(L,) is unlinked with L,:

¢k(e, L)) =0.

Denote by 7 :4 — L, the natural projection and by t,: H,(L,) = H,(L,) the
induced isomorphism. We need the following simple topological

LEMMA 3.2.A. For every e € H,(L,) the following equality holds:
tk(e, Ly) = k(T e, L),

where we assume that T preserves orientations of L, and L,.
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The proof is given in 3.3 below.

Let o, B, be a marking of L,, and let «; =1,0a,, B, =1,p, be the “coherent”
marking of L,. Set u = ¢k(a,, L,) = (k(ay, L,), v = £k(B,, L,) = ¢k(B,, L,). Choose
disjoint tubular neighbourhoods N,, N, of L,, L, respectively inside %, and apply
the surgery procedure 2.2 associated with Dehn twists fV =f, . and f® =f,  for
some integer m, n. Now consider the action of @ and ¥ in corresponding bases
(hy, ay, by, h,, a,, by) and (H,, A,, B,, H,, A,, B,). A straightforward computation
(which uses also 1.1.A) shows that & @ (— %) is given by the matrix

hy a b ha az ba
H, 1 0 0 0 u v
A -m -1 0 0 0 0
B, -n 0 -1 0 0 0
H; 0 u v 1 0 0
Ay 0 0 0 -m -1 0
B, 0 0 0 -n 0 -1

whose determinant is equal to 1 — (um + vn)?. On the other hand, this determinant
equals to +1 for each choice of m and n due to 2.2.B. Hence u =v =0, and the
desired assertion follows. O

3.3. Proof of 3.2.A

Let v, € H,(L,) (respectively, v, € H,(L,)) be a class Poincare dual to ¢k( -, L,)
(respectively, to ¢k( -, L;)). We have to show that 7 v, =v,, in other words that
1-cycles representing these classes are homologous inside #. Let # be a smooth
embedded 3-chain which spans L, in C? and has the following properties:

® AR is transversal to 0% and to L,;
® RNU ~T?x[0; 1], where T> x {0} =L, and T? x {1} < 0%.

Let &’ be a small shift of # along the field of normals, such that 2 "#' = J
and R’ intersects 04 transversally along a torus L. Note that L and L, are
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homologous inside #. Let Q be a 3-chain such that Q c % and 0Q =L uL,. We
shall assume that Q is an immersed 3-manifold transversal to # and to L,. Finally,
set S =Q U(R’ — %). Note that S is a 3-chain with the following properties:

e S spans L, in C?%
e S is transversal to # and to L, and intersects & inside %.

Set W =S n4AR. Obviously, W is a 2-chain in  whose boundary components
are SNnL, and # nL,. Moreover, l-cycles SNL, on L, and & nL, on L, represent
classes v, and v, respectively. Hence 1,v,=v,, and the proof is complete.

O

3.4. Proof of 1.3.A

Assume that f is a linear automorphism of T? with [ f] € 2. One can easily
check that the form f*A is isotopic to A through contact forms, and hence f is
isotopic to a contactomorphism.

The proof of the inverse assertion is divided into several steps.

(1) We represent T as the hypersurface £, = {r = 1} in T*T? (see 2.1). Then 4
is just the restriction of the standard Liouville form

r cos 216 dx + r sin 2zn0 dy

on T*T2 Let f:T>—>T? be a contactomorphism, that is f*1 =¢@A for some
non-vanishing function ¢(6, x, y). Since « and —a are isotopic through contact
forms, we can assume that ¢ is positive.

(2) We ¢laim that the map F: Z,— T*T?, given in coordinates (r, 8, x, y) on
T*T? by

1
(09 X, y) = (m ’f(09 X, y))

is symplectic, that is F*w, = wy |7z. Indeed,

F*@y = F* d(r - (cos 2n8 dx + sin 2n0 dy))

1
==d(-q; : f"‘l) =di = w,.
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(3) Take a Lagrangian torus L = {6 = const} = X,. Due to the previous step, its
image F(L) is a Lagrangian torus in T*T? disjoint from the zero section. Obviously,
the projection F(L) - R? — {0} (see 1.2) is homotopic to a point if and only if
[f] € 2. The desired assertion follows now from 1.2.A. O
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