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Manifolds of even dimension with amenable fundamental group

BENO ECKMANN

0. Introduction

0.1. If the fundamental group G of a closed (orientable) 4-manifold X is infinite
and amenable then the Euler characteristic y(X) is =0. This has been proved in a
previous paper [E] using the Felner criterion for amenability [F], in a geometrical
version. If X is aspherical, i.e., an Eilenberg-MacLane space K(G, 1) (whence G a
Poincaré duality group of dimension 4, in short a PD*-group) then 3(X) = x(G) =0
by [E], Corollary 2.3.

The main purpose of the present paper is to examine, conversely, 4-manifolds X
as above assuming y(X) = 0. We recall (see [E], Section 0.3) that infinite amenable
groups G have one or two ends, i.e., H'(G; ZG) =0 or Z. It is easily seen that the
universal cover X of X has integral homology H,(¥)=H,(X)=0 and
H,(X) = H(G; ZG). We will prove (Theorem 3.4):

(A) If x(X)=0 then H,(X) = H*G;ZG), the “second end-group” of G.
From this we get the result

(B) If H\(G; ZG) = HXG; ZG) =0 then x(X) = 0 implies that X is contractible,
whence X = K(G, 1) and G is a PD*-group.

These statements can be expressed in terms of the Hausmann-Weinberger
invariant ¢(G), see [H-W], for finitely presented groups G (Corollaries 2.5 and 3.6):

(C) If G is infinite amenable then q(G) is 20. If H\(G; ZG) = HXG; ZG) =0
then q(G) = 0 implies that G is a PD*-group.

In the context of these results it is of interest to look at 2-knot groups G since
for these g(G) is always =0; see Section 4 below.

0.2. The proofs make use of (reduced and non-reduced) /,-cohomology of the
infinite cell-complex X combined with the free cocompact action of G on X. The
main tool then is a lemma of Cheeger-Gromov [Ch-G], see Section 2.2. We apply
it not only to get the results for y(X) =0 but also to give a new proof of the
statement y(X) = 0 above. This is done in the more general context of a closed
manifold of even dimension n =2k 24 which, if kK > 2, is aspherical up to the
middle dimension k; for n = 4 there is no asphericity assumption.
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502 BENO ECKMANN

These 2k-manifolds can be used to define a new invariant y,(G) for groups G of
type F., k = 2, generalizing the Hausmann-Weinberger invariant ¢(G). For G of
type F, (i.e., finitely presented) one has y,(G) = ¢(G).

0.3. Section 1 contains various facts concerning /,-cohomology of X, ordinary
cohomology of X, and G-cohomology of X for G-module coefficients such as /,G
and ZG. They go a little beyond the minimum necessary for the following sections
in view of later use.

0.4. Section 2 deals with y(X) =0 for the 2k-manifolds as above and with
7x(G), Section 3 with the vanishing of y(X) and the main results. Section 5 is an
appendix on the “partial Euler characteristic” of groups G fulfilling certain finite-
ness conditions; the results appear already in [E] but are given new proofs by the
l,-cohomology methods of the present paper.

0.5. Our results on 4-manifolds should be compared with some of those given
by Hillman [H] for the case of ‘“‘elementary amenable” groups, which constitute a
special, but important class of amenable groups. The results of [H] are, however,
more general in another sense, namely that G need only have a non-trivial normal
subgroup which is elementary amenable.

0.6. Although this paper deals with amenable groups we want to emphasize that
the results above on 4-manifolds and the invariant ¢(G) are valid for other types of
groups, in particular for all finitely presented groups with vanishing first J,-Betti
number; see Section 6 below (Addendum).

1. Infinite cell-complexes and /,-cohomology

1.1. For a cell-complex X with ;X =G and a G-module 4 we consider
cohomology with local coefficients H(X; 4); i.e., G-cohomology Hi(X; A) of the
universal cover, relative to the G-module 4 (G operates on the cell complex X and
on A). A special situation occurs if X is a finite complex and G an infinite group,
with regard to the coefficient modules ZG and /,G (the Hilbert space of linear
combinations X, _; ¢, X, ¢, € R, with £, ¢2 < 0); G operates on ZG and on /,G by
left translations.

Namely, one has for the cochains Ci{(X;ZG) = Homy(C,(X), ZG) and
Ci(X; I,G) = Homy(C;(X), I,G) the isomorphisms

(1) Ci(X,26) = Ci.(X; 2),

(2) C(X; L,G) = Ciyp(X; R).
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CL_ is the group of finite cochains of X, and C/{,) the group of l,-cochains (functions
f(a;) of the cells o, of X with X, f(6,)* < ). The corresponding cohomology
groups are respectively H iomp()? ; Z), cohomology with compact support; and
Hi, (X; R), l,-cohomology of X.

1.2. For the convenience of the reader we recall the proof of (1) an (2).

We choose a (finite) ZG-basis {t,;} of the chain group C;(X) corresponding to
the cells.of X (one cell in each G-orbit). Given f e C{(X; ZG) = Homy;(C;(X), ZG)
we put g(xt;) =m,_, € Z where f(1;) =X, m,_x; clearly g is a finite cochain in X.
Conversely, given g € Ci, X; Z) we put f(z;) = X, g(x '1;)x € ZG. The correspon-
dence f+— g yields the isomorphism (1). Note that it is independent of the choice of
basis {7,}: Indeed if we replace t; by yt;, y € G, then g(xt,) =g(xy ~'yt;) =m),
where f(yt;) =X, m,yx =X mx, ie., m, =m,_,; thus gxt,) =m), 1 =m,_, as
before.

Similarly, given fe C{(X;1,G) we put g(x1,) =c,-: where f(z;) =X, c,x with
X, c2 < o0. Then

Y, glo)*= Z Y g(x1,)? < o0,

all o

so g is an /,-cochain. This yields the isomorphism (2). We summarize:

PROPOSITION 1.1. For a finite cell complex X (with infinite fundamental group
G) the cohomology groups with local coefficients H'(X; ZG) and H'(X;l,G) are
isomorphic respectively to H',, (X; Z) and H,,(X; R) of the universal cover X of X.

Remark. Everything above holds if instead of X we take any free cocompact
G-space (=cell complex) Y with Y/G=X; G is a factor group of =, X. The
isomorphisms are of interest only if G is infinite.

1.3. We will also consider reduced l,-cohomology of X, denoted by A(X). It
differs from Hi,)(X; R) by 6Ci5 ' (X; R) being replaced by its ,-closure 6Ciz; . It
imbeds equivariantly and isometrically in Z’, the kernel of é : C{;) » C{5 ', and its
von Neumann dimension relative to G is denoted by f;(X rel. G), cf. [Ch-G].

There is an obvious map & of H 22)()? ; R), i.e. the G-cohomology group

i (X; 1,G) based on G-homomorphisms C;(X) —/,G, into the ordinary cohomol-
ogy group H(X; /,G) disregarding the G-action on X and /,G. Under that map &
the closure of 6C'~'(X;,G) goes to 0. Indeed, the /-limit f of a sequence of
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i-coboundaries is =0 on the i-cycles; it thus defines ¢ : 0C,(X) — I,G which can be
extended to all of C;_, (since ,G is divisible, i.e. Z-injective), and ¢ = f.

PROPOSITION 1.2. The natural map H(X; ,G) - H(X; I,G) factors through
the reduced /,-cohomology group H'(X).

Of course H'(X; ,G) can be regarded as a ZG-module through the action of G
on X and on /,G. The image of & lies in the invariant part H{(X; I,G)°.

1.4. The map @ : H%(X; ,G) » H(X; ,G)® occurs in a well-known exact
sequence, available if X is (» — 1)-connected, i.e., if 7,(X) =0 for 1 <i <n (de-
duced from the spectral sequence of the covering X — X):

0- H"(G; 1,G) » H5(X; L,G) 5 H'(X; 1,G)® > H"*+ \(G; 1,G) » Hi* ' (X; 1,G).

There is, of course, an analogous exact sequence for ZG-coefficients. The coefficient
map ZG - 1,G by inclusion yields, in combination with Proposition 1.1, the
commutative diagram

g @’ g
0— H"(G; ZG) — H(%; Z) — H"(X; 2G)S —> H"*\(G; ZG)

| | [ | (4)

0— H"(G; ,G) — H(’Z)(f; R) — H"(X; ,G)° — H"*'(G; ,G)

1.5. There is a further natural map ¥ : H,)(X; R) —» H'(X; R); it clearly factors
through H(X) since the limit of a sequence of /-coboundaries is an ordinary
coboundary.

1.6. There is an /,-homology analogue of the above statements for /,-cohomol-
ogy; we leave it to the reader. We just remark that it is based on the boundary
operator @ : Ciy, — Ci5" instead of the coboundary d : Cj,, — C{3;'; and that the
reduced homology groups H,(X) are isometrically isomorphic to the H{(X) — in-
deed, they are both isomorphic to the intersection Z(X) N Z;(X) in Ci,,, where Z'
denotes the cocycle subspace, Z; the cycle subspace of Ci,,, and Z(X)Z, X) is
(a) the orthogonal complement of 6C(3; ' in Z', (b) the orthogonal complement of
dC5! in Z; (Hodge-de Rham decomposition of C{)). We further remark that this
yields a simple proof of I,-Poincaré duality for a closed n-manifold X by using (2)
and ordinary Poincaré duality of X; one gets H{(X) = H, (X)= A"~ {(X) as
Hilbert G-modules.
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2. Closed manifolds of dimension n =2k and an invariant for groups of type F,

2.1. We take for X a closed orientable (differentiable) n-manifold, n =2k = 4
which if k£ > 2 is (k — 1)-aspherical; i.e., with #;(X) =0 for 1 <i <k. We assume
again G = n,(X) infinite.

We note that H,;(X¥) =0 for 1 <i <k, and that H,,(X) = 0 since G is infinite (if
in ordinary homology coefficients are not indicated they are meant to be Z).

PROPOSITION 2.1. For k < i < 2k one has H,(¥) =~ H*-G; ZG).

Proof. H,(X) = H¥*./(X) = H*~/(X; ZG) by Poincaré duality. But since X is
(k — 1)-aspherical H(X; ZG) = H'(G; ZG) for 0 < i < k. If n = 2k =4, there are no
asphericity assumptions, and one simply has H;(X) = H'(X; ZG) = H'(G; ZG).

If the “end-groups” HG;ZG) are 0 for 0 <i <k then H,(X) is the only
homology group of X which is possibly non-zero. If moreover H,(X) =0 then X is
contractible, X is a K(G, 1), and G is a PD%*-group.

2.2. We now consider the Euler characteristic x(X)=2X7_,(—1)a, =
Tr_o(—1)B:(X); o is the number of i-cells of a cell-decomposition of X, and
B:(X) = dimg H,(X; Q) the i-th Betti number. We recall ((Ch-G] and [E]) that x(X)
can also be expressed by the reduced Betti numbers B;(X rel. G) as

x(X) = ‘ZO (—1)B,(X rel. G).

B.(X rel. G) is the von Neumann dimension of H'(X) considered as a Hilbert
G-module.

A lemma of Cheeger-Gromov [Ch-G] tells that if G is amenable then the natural
map H{(X)- H{X;R) is injective. From our assumptions it follows that
H(X;R)=0 for 0 <i <k whence A{(X)=0 and B,(Xrel. G) =0 for 0<i<k
(B, =0 since G is infinite). By Poincaré duality for the B; (cf. 1.6, or [L-L],
Proposition 4.2) it follows that §;(X rel. G) =0 for k < i < 2k. The Euler character-
istic can thus be expressed by B, alone:

THEOREM 2.2. Let X be a closed orientable n-manifold, n = 2k, which for k > 2
is (k — 1)-aspherical, and with infinite amenable fundamental group G. Then

(X)) = (=1D*B (X rel. G).
COROLLARY 2.3. For X as in Theorem 2.2 one has
(=D (X) 20.

This is due to the fact that B, is a non-negative real number.
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In the case n =4 there are no asphericity assumptions and we get the result
proved by a different method (“Felner sequence”) in [E]:

THEOREM 24. Let X be a closed orientable 4-manifold with infinite amenable
Sfundamental group G. Then x(X) is 20.

Or in terms of the Hausmann-Weinberger invariant ¢(G):

COROLLARY 2.5. For a finitely presented infinite amenable group G the
invariant q(G) is =0.

2.3. For manifolds X as considered in 2.1 the fundamental group G = =, (X) is
of type F, (finitely presented and of type FP,). Indeed, the (finite) k-skeleton of a
cell-decomposition of X can be extended to a K(G,1) by attaching cells of
dimensions >k.

Conversely there exists for any group G of type F,, k =2, a closed orientable
2k-manifold with 7,(X) =G and =;(X) =0 for 1 <i < k. To find X one starts with
any closed orientable differentiable 2k-manifold M with n,(M) =G. For k > 2,
type FP, of G guarantees that n,(M) = H,(M) is finitely generated as a ZG-mod-
ule. Thus 7,(M) can be annihilated by a finite number of surgeries in M (see [M]),
and there results a closed manifold M’ with n,(M") =G, n,(M’) =0. If kK > 3 then
n;(M’) is finitely generated over ZG, and the procedure can be repeated until one
has a manifold X as required.

Now we define for a group G of type F,, k = 2, the invariant y,(G) to be the
minimum of (—1)*y(X) for all 2k-manifolds as above with n,;(X) =G, =n;(X) =0
for 1 <i <k. The minimum exists since

) k—1
(=D uX) = Bu(X) +2 ; (—D*4B:(X)

k-1
=B(X)+2 Y} (=D**Bi(G)

0

and B,(X) 2 B(G).
Clearly y,(G) = q(G).

COROLLARY 2.6. For an infinite amenable group G of type F,,k =2, the
invariant y,(G) is 0.
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3. The vanishing of y(X)

3.1. We return to a closed orientable manifold X of even dimension n = 2k as
in Section 2, aspherical up to the middle dimension k (if £ > 2) and with infinite
amenable fundamental group.

If ¥(X) =0 then by Theorem 2.2 B.(X rel. G) = 0, whence H%(X) =0. We will
show that this implies, in addition to Proposition 2.1, H,(X) = HXG; ZG).

Since X is (k — 1)-connected we can use (part of) diagram (4) with exact rows

~ @ ~
0— HXG; ZG) — Honmp(X; 2) — HYX; ZG)°
| T
O—’Hk(G;lzG)—"Hfz)(X; R) — HYX;L,G)°
Since @ factors through A*(X) (see Proposition 1.2) which is 0 if y(X) =0 the map

Ht, (X, 7) 5 HYX; 2G)° 5 HYX; 1,G)

is =0. The coefficient map @ is injective since H*~'(¥; —) =0. Thus &' =0 and
HYG; Z2G) = HY,.,(X; Z) =~ H(X).

THEOREM 3.1. Let X be a compact orientable n-manifold, n = 2k, which for
k >2 is (k — 1)-aspherical, and with infinite amenable fundamental group G. If
x(X) =0 then

H,(X) = HXG; ZG).

We recall that H,(X) =0 for 0<i <k, and that H,(X) =@ H*~YG; ZG) for
k <i <2k (by Proposition 2.1); whence

COROLLARY 3.2. Let X be as in Theorem 3.1. If y(X) =0 and H(G; ZG) =0
for 0 <i <k then X is contractible, X a K(G, 1), and G is a PD*-group.

In terms of the invariant y,(G) defined in 2.3:

COROLLARY 3.3. If G is an infinite amenable group of type F,, k 2 2, with
H{(G;ZG) =0 for 0 < i <k, then y,(G) =0 implies that G is a PD*-group.
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3.2. Again n =2k =4 does not require any asphericity assumptions:

THEOREM 3.4. Let X be a closed orientable 4-manifold with infinite amenable
fundamental group G. If x(X) =0 then H,(X) = H*G; ZG).

COROLLARY 3.5. If for X as in Theorem 3.3, H(G; ZG) = H¥G; ZG) =0
and x(X) =0 then X is a PD*-group.

We recall that H'(G; ZG) must be 0 or Z; it is =Z if and only if G is virtually
infinite cyclic; whence

COROLLARY 3.6. If G is a finitely presented infinite amenable group, not
virtually infinite cyclic, with H(G; ZG) =0, then q(G) =0 implies that G is PD*-
group.

4. Amenable 2-knot groups

4.1. A 2-knot, or a knot in dimension 4, is a differentiable embedding
f: 82— 5% of the 2-sphere into the 4-sphere. The group G is called a 2-knot group
if there is a 2-knot such that the fundamental group =,(S* — f(S?)) of the comple-
ment is = G. For such a group one has H,(G) =Z and H,(G) =0 (cf. Kervaire
[KD.

Let C be the closed complement of f(S?) in S*, obtained by removing an open
tubular neighborhood of f(S?). Clearly n,C =G, and dC is homeomorphic to
f(58?) x S'. Attaching a handle V> x S! to dC (‘“‘surgery along f(S?)”) yields a
closed 4-manifolds X, with m;, X =G, H, X = H,G = Z, and H,X = 0. The invariant
q9(G) is 22 —-2,(G) + B>(G) =0, and ¢(G) < x(X) =0.

Thus one has quite generally ¢(G) = 0 for all 2-knot groups.

4.2. If the 2-knot group G is amenable then Theorem 3.3 can be applied,
whence

THEOREM 4.1. Let G be an amenable 2-knot group, not virtually Z, and X the
closed 4-manifold obtained by surgery from a 2-knot with fundamental group G. Then
HXG; ZG) = H,(X).

COROLLARY 42. If G is an amenable 2-knot group with
HY(G; ZG) = H¥G; ZG) =0 then X is contractible, and G is a PD*-group.
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4.3. Remark. Since H,(G) = Z for a 2-knot group (actually for any knot group)
one can write G as an HNN extension over a finitely generated group; if G is
amenable the HNN extension must be ascending, i.e. G = Hyy, (cf. [E], p. 389).
Here H also being amenable is either finite or has one or two ends.

If H is finite then G is virtually infinite cyclic, i.e. G has two ends. If H has one
end, and if we assume that H is almost finitely presented, then
HY(G; ZG) = H¥G; ZG) = 0 by [B-G], thus G is a PD*-group. If H has 2 ends it
must be infinite cyclic ={a); this yields G =<a, p | pap ~' = a*) where H,(G) =Z
forces k to be =2.

4.4. Remark. All 2-knot groups with 2 ends are determined by Hillman in [H2],
Chapter 4. All elementary amenable 2-knot groups which are PD®*-groups are
virtually solvable (cf. [H-L]) and thus torsion-free virtually polycyclic; all such
2-knot groups have been determined in [H2], Chapter 6.

5. Partial Euler characteristic of groups

5.1. In this appendix we use the method of /,-cohomology to prove results
concerning the “partial Euler characteristic’” of an amenable group G which were
already established earlier [E], partly by an entirely different method.

We assume that G is of type F,,; i.e., G admits a K(G, 1) which has a finite
m-skeleton (G is of type FP,, and finitely presented if m = 2). We denote by X the
m-skeleton of K(G, 1) and consider its Euler characteristic y(X). The minimum
value of (—1)"y(X) for all such K(G, 1) is written g,,(G). The minimum exists since
B:(X) = B;(G) for i <m and B,,(X) = B,,(G).

5.2. Since H,(X¥)=0 for 0 <i <m the Cheeger-Gromov lemma yields, for
amenable G, H(X) =0 for 0 < i <m, whence B,(X rel. G) =0 for these i. Thus

1X) =(=1)"B,(X rel. G).

THEOREM 5.1. For an infinite amenable group G of type F,, the group invariant
q.(G) is 20.

We recall that this yields explicit results of the following type: If G is a finitely
presented infinite amenable group then the defect d(G) is <1, cf. [E].

5.3. The vanishing of g,,(G) is of special interest. It means that there is a certain
K(G, 1) — with finite m-skeleton X — such that y(X) =0.
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From 5.2 it follows that this implies f,,(X rel. G) =0, whence A™(X) =0. The
map ¥ : H3(X; R) > H™(X; R), see (5) in 1.5, factors through A™(X) and is
therefore =0.

We now consider an arbitrary finite subcomplex S of X. The restriction of X to
S yields the commutative diagram

. ¥=0 ~
HEG(X; R) — H™(X; R)

l 1

HE,(S; R) — H™(S; R)

The vertical maps are surjective due to exactness of the relative sequence of X
modulo S, and to the fact that there are no (m + 1)-cells.

Thus H™(S; R) = Hom(H,,(S), R) =0. As H,(S) is Z-free, it must be 0. Thus
H,,(X) =0, and X is contractible; i.e., we can take X = K(G, 1).

THEOREM 5.2. If for an infinite amenable group G of type F, the group
invariant q,,(G) =0 then G admits a finite K(G, 1)-complex of dimension <m; in
particular the cohomology dimension cdG is <m.

5.4. We finally remark that results such as Theorems 2.2 and 5.1 hold in the
more general setting of [E], Section 5: namely for a group G of the appropriate type
which need not be amenable, but is an extension G/N = A of an infinite amenable
group A by a normal subgroup N with B;(N) finite for the respective i. These results
can be established by the /,-cohomology methods of the present paper. One takes,
instead of X, the covering space ¥ corresponding to the subgroup N of G, which is
a free cocompact A-space. Since H(Y; R) = H(N; R) has finite R-dimension and
H{(Y) - H'(Y; R) is injective, H(Y) must be 0 (H(Y) is an invariant subspace of
C{»(Y; R) and cannot be of finite R-dimension unless it is 0). Thus B:(Y rel. A) =0
and the arguments are as before. — These remarks, of course, do not apply to the
“converse’ statements concerning the vanishing of the Euler characteristic.

6. Addendum® on groups with vanishing first /,-Betti number
6.1. For any finite complex X with fundamental group G, i.e., for any finitely

presented group, B,(X rel. G) depends on G only; it can be written B,(G). If
X is a closed orientable 4-manifold with n,(X) =G, and if §,(G) =0, then

)

®January 1994
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2(X) = B,(X rel. G). Thus all arguments of Sections 2 and 3 concerning 4-manifolds
can be carried through. Moreover, via the /,-signature theorem, one can obtain
statements concerning the signature of X. We plan to return to these aspects in a
separate paper.

6.2. Here we only note as an immediate consequence of Proposition 1.1 that
finitely presented groups G with the Kazhdan (T') property have §,(G) = 0. Indeed,
(T) implies H'(G;L,G) =0; but HYG;,G) = H'\(X; ,G) = Hy(X), and since
H},(X) maps onto H'(X) it follows that f,(X rel. G) = §,(G) =0.
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