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Rank and symmetry of Riemannian manifolds

J.-H. ESCHENBURG and C. OLMOS*

Dedicated to Wilhelm Klingenberg on the occasion of his 70th birthday

Let M be a complete irreducible Riemannian manifold. A k-flat in M is a
complete connected flat totally geodesic immersed submanifold of dimension k. The
rank of M is the maximal dimension k such that every geodesic in M lies in a k-flat.
Examples of manifolds of rank k are locally symmetric spaces of rank k. If M has
sectional curvature K < 0, it is an open conjecture that these are the only examples
for k = 2. This has been proved in many special cases (cf. [BBE], [BS], [BGS], [ES),
[EH), [H]). In particular it is true if M is homogeneous [H]. On the other hand, if
K > 0, there are homogeneous counterexamples [SS]. However, in these examples,
the various k-flats are very different. What happens if we require that any two
k-flats are isometric? More precisely, let us assume:

(I) A group G of isometries of M acts transitively on the set of pairs (p, F)
where F is a k-flat and p € F.

In the case k = 1, these are two-point-homogeneous spaces which are known to
be rank-one symmetric (cf. [W], [Hg], [Sz]). Using the classification of strongly
isotropy irreducible Riemannian manifolds, Heintze, Palais, Terng and Thor-
bergsson recently obtained the following result [HPTT]:

THEOREM A. If M is compact of rank k and satisfies (I), the M is globally
symmetric of rank k.

The noncompact case is still open. The case kK =2 was recently solved by E.
Samiou. In the present paper, we omit the dependence of the point in Condition (I)
and discuss the following weaker condition which no longer implies homogeneity.

*Supported by A. V. Humboldt-Foundation and Univ. Nac. de Cordoba
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(II) A group G of isometries of M acts transitively on the set of k-flats.

THEOREM B. If M is compact of rank k satisfying (II), then M is locally
symmetric of rank k. Moreover, if any k-flat is one-to-one immersed and intrinsically
symmetric, then M is globally symmetric.

(In fact we prove a slightly more general result, cf. Theorem B’, Ch. 2). The
additional hypothesis for M being globally symmetric is necessary; if we omit it, the
flat Kleinian bottle is a simple counterexample. For £ = 1, following an idea of E.
Heintze, we do not need compactness:

THEOREM C. A complete Riemannian manifold M with the property that I(M)
acts transitively on the set of geodesics, is globally rank-one symmetric.

In fact, we will prove a local statement which implies Theorem C (cf. Ch. 6).

We have started our work on this subject with a conceptual proof of Theorem
A which is mainly as follows. We consider the action of the group G = I(M) on the
tangent bundle TM, equipped with the Sasaki metric {{, >)> which makes the vertical
and the horizontal distributions (defined by the Levi-Civita connection) perpendic-
ular. We noticed that the G-orbits on TM are perpendicular to the tangent spaces
of any flat totally geodesic submanifold (cf. Ch. 1). This observation essentially goes
back to R. Hermann [Hr]. For a rank-k manifold satisfying (I) this means that the
horizontal distribution is tangent to the G-orbits. Thus, parallel vectors along a curve
remain in the same G-orbit. In particular, the holonomy orbits are contained in the
orbits of the isotropy group, and by the Berger-Simons holonomy theorem and our
Theorem C, M is locally symmetric. An argument involving the deck group of the
universal cover of M then finishes the proof (cf. Ch. 5).

If we only assume (II), the G-orbits are not large enough to contain all horizontal
curves. Instead, we look for a collection of G-orbits, namely G.P, where P, for some
v € TM is the set of all vectors being tangent to the same k-flat as v and parallel to
v. It turns out that in an open and sense subset of TM, these G.P, are manifolds and
form a foliation which is perpendicular and transversal to the tangent spaces of the
k-flats. Again, the horizontal distribution is tangent to these (larger) manifolds, and
we get local symmetry by applying the Berger-Simons theorem to the local holonomy
group; the local rank-one factors have to be treated separately (cf. Ch. 4, 6).

1. The Hermann Lemma on the tangent bundle

Let (M, {, >) be a Riemannian manifold. Then there exists a natural Riemannian
metric {{, >> on the tangent bundle TM of M. Let ¥ (M) and #(M) be the
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vertical and horizontal distributions of TM (with rspect to the Levi-Civita connec-
tions on M). Then ¥" (M) L # (M) with respect to <<, »>. Moreover {({, > |yun
is the usual metric on the fibers of n : TM — M and <<, > |, is such that 7 is
a Riemannian submersion., So, if v,,v,: (—¢, €) - TM are C' with v,(0) = v,(0),

. 02(0)>

LEMMA 1. Let (M, <, )) be a complete Riemannian manifold and let G be a Lie
subgroup of I(M) with bounded Killing fields. Let e be a parallel Jacobi field along
some geodesic y : R— M with y(0) = p, y’(0) = v. Then the orbit Gv is perpendicular
at v to the vertical submanifold v+ R -e(0) c T,M < TM.

Proof. If A € L(G) and g(t) = exp t4, we have to show that

[t )
D
_ <E St e(0)>

dt
vanishes. Recall that

D

(W1 (0), 05(0)Y> = < () (0), (m0,) (0)) + <3t—

D
RICs

0
a . g(t)yv = 3175 oo g()y(s)
D
= % 5 A"))(S)a
hence

d
x=_ (A .y(s), e(s) ).

S |o

Since x +— A.x is Killing, A.y is a Jacobi field, and since e is parallel, we have

2

% {A.y(s), e(s)) =0.
s

Thus
(A(s), e(s)> =a + bs

for some a, b € R. But since A4 is bounded, we get » =0 and therefore, a =0. [J
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COROLLARY. Let (M, {,)) be a complete Riemannian manifold and G a Lie
subgroup of I(M) with bounded Killing fields. Let F be a complete flat totally geodesic
immersed submanifold (called a ““flat”) in M and w € T,F. Then the orbit Gw is
perpendicular to the vertical submanifold T,F. O

2. The set of regular vectors

From now on, let M be a complete irreducible Riemannian manifold with the
following property.

(ITII) There is a k-dimensional flat (k-flat) F in M and a Lie subgroup G of I(M)
with bounded Killing fields such that G.TF = TM.

Clearly, (II) implies (III) if M is compact and of rank k. We will prove the
following generalization of Theorem B:

THEOREM B’. Let M be complete irreducible satisfying (III). Then M is locally
symmetric of rank K. Moreover, if all k-flats in M are one-to-one immersed and
intrinsically symmetric, then M is globally symmetric.

The proof of this theorem will be finished in Ch. 5.
Consider the G-equivarient smooth map

¢:Gx TF—>TM

P(g,v) =gv =gy

By (III), ¢ is onto. Sard’s theorem says that the set of regular values of ¢ has full
measure. Therefore, the subset

R={weTM;3(g v)ed '(W:do |, is onto}
(called the set of regular vectors) is open and dense in TM.

LEMMA 2. For any w € R, there is exactly one k-flat F,, tangent to w and any
parallel Jacobi field e along the geodesic v, is tangent to F,. Moreover, # N TF is
dense in TF.

Proof. Let U be an open subset of G x TF where d¢ has constant rank. By
equivariance, we may assume U = G’ x (TF)’ where G’ is a neighborhood of 1 € G
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and (TF)’ an open subset of TF. Making U smaller if necessary, we may assume
that ¢(U) is a submanifold & of TM. Let (g,v) e U and w = ¢(g, v). Then w is
tangent to the flat F, :=gF, and

T,¥ =imdp |, =T,TF, + T,Gw. (1)

Suppose that there is a parallel Jacobi field e along y = y,, which is not tangent to
F,. Since F,, is totally geodesic and flat, we may assume e L F, . It follows that the
vertical vector &(0) =d/dt |, (w + te(0)) € T,, TM is perpendicular to the first term
on the right hand side of (1). By Lemma 1, é(0) is also perpendicular to the second
term. Hence, é(0) L T, %.

In particular we have shown that F, is the only &-flat tangent to w. (A k-flat
F’ is called % -flat if an open subset of TF” belongs to &#.) It follows that for any

(& v) €@ | U)~'(w),
$({g} x TF) = TF,.

Thus the foliation of U =G’ x (TF)’ by the second factor induces the smooth
foliation

ITF we—TF, NS

of &, by applying the submersion ¢ |U:U —&. Making U even smaller (if
necessary), we may assume that & = ¢(U) is diffeomorphic to a product S’ x (TF)’
such that 7% becomes the foliation by the second factor. Since any g e G’
preserves this foliation on & Nng~ (%), each Killing field 4 € L(G) induces a
tangent vector field 4, on the transversal manifold %, and we have A4,(s") =0 for
some s’ € &’ if and only if exp t4 leaves invariant the k-flat corresponding to
{s’} x (TF)’. Thus, for any w € & n TF, the connected component of the stabilizer
G, is contained in G, = {g € G; g(F) = F} (by uniqueness of F,) and

T, TFnT,Gw =T,Ggw.
So by (1), we have

dim & =dim TF + dim Gw — dim G w

=dim TF + dim (G/GF).
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In particular, this holds if & is an open subset of # which shows that
dim TF + dim (G/Gf) = dim TM.

Therefore, any such & has full dimension and must be an open subset of #.

If # N TF were not dense, we could find an open subset (TF)’ of TF such that
rank(d¢) is constant but not maximal on {1} x (TF)’. By equivariance of ¢, the
same would be true on some open subset U of G x TF which we have excluded.

O

Remark. The uniqueness of the flat F,, tangent to w € # shows that # is in fact
the set of regular values of ¢.

3. The local holonomy
On the set # of regular vectors, we have introduced the smooth foliation
ITF :w—TF,

where F,, is the unique k-flat through w. (The smoothness of this foliation can also
be seen using the arguments in [BBE], Lemma 2, where the Jacobi operator
R(,7.)y. has to be replaced by its square, for sake of definiteness.)

The tangent distribution 79 % of this foliation splits into its horizontal and
vertical parts:

TTF =V F @HNF
where

(}V‘g—)w = %fw = Tan(w)Fw9
(HF), =H,%,=T,P,

where P, = TF,, is the set of vectors which arise from w by parallel transport along
curves in F,. Now from Equation (1) in the previous section we get for all w € #:

T,TM = T,Gw + (X F), + (¥ F),. ()

LEMMA 3. The distribution (¥ %)* on R is integrable with integral leaf G.P,
through v € R, where P, =P,NAR.
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Proof. Let g e G and v e #NTF. Let w € P,. Recall that G is the subgroup of
G which leaves the flat F invariant. We have

¢~ '(g.w) ={(gh~', hw); h € G¢}.

Thus

Tiemy(® ~'(g.w) = {(—g4, Aw); A € L(Gr)}.

Since G has bounded Killing fields, 4 € L(G ) induces an infinitesimal translation
on F. Thus Aw is tangent to P, and

T(g,w)(qs—l(g'w)) < T(g,w)(G X P;)

So G x P, is a submanifold of ¢ ~!(#) containing the fibres of the submersion
¢:¢d " Y(R) >R Therefore G.P,=¢(G x P,) is a smooth submanifold of £.
Clearly

T,(G.P)) = T,,Gw + (¥ F),,

which shows that T,(G.P;) is the orthogonal complement of (¥ %),, (cf. (2) and
Lemma 1).

Remark. There are no singular orbits on £, i.e. the orbits of G define a smooth
foliation on £. In fact, let w € # and G,, its stabilizer subgroup. If X € L(G,,) then
exp tX preserves the k-flat F,, (by Lemma 2). Since G has bounded Killing fields,
exp tX is a translation. But (exp ¢X).n(w) = n(w) and therefore exp tXs, = id for all
t € R. So (G,), = (G**), where G*» = {g € G: g fixes pointwise F, }. Thus (G, ), is
the same group for all w’ € F,, which shows that all orbits have the same dimension.

COROLLARY. If w € # and p = n(w) is its base point, then
T, (Pk°w) LT,T,F,

where ®° denotes the local holonomy group of M at p (cf. [KN], p. 94).

Proof. On 2, the horizontal distribution #'M = (¥ .#)1 is contained in
(¥ #)*. Thus, by Lemma 3, any w € # has a neighborhood #,, in # such that any
horizontal curve in %, starting at w stays in G.P,,. Let B.(w) c %,,. By the theorem
in the appendix, there exists a neighborhood N of 1 € 2 such that any ¢ € N is
the parallel transport along a piecewise C'-loop B starting and ending at p with
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length L(B) <e. Thus, the horizontal lift § of B starting at w has also length <e
which shows f c #,,. Hence f = G.P,,, and in particular, ¢.w € G.P/, since @.w is
the end point of B. Thus, if ¢+ ¢, is a smooth curve in N with ¢, =1, then

d
T bo.weT,(G.P,) L(VF),=T,T,F,

which finishes the proof. O

Now by the Berger-Simons holonomy theorem (cf. [Be], [S]), the curvature
tensor on n(#) is parallel unless we have locally a Riemannian product with a
factor with transitive holonomy. This will be considered in the next section.

4. Local factors with transitive holonomy

Consider w € £ with base point n(w) = p. There exists a simply connected open
neighborhood M’ of p in M such that the holonomy group @ of M” at p equals the
local holonomy @ of M at p. By the de Rham theorem, perhaps making M’
smaller if necessary, we may assume that M’ splits metrically as

M,=MOXMlX"'ka

with p =(py, P1, - - ., Px), and
¢=¢| X"'X¢k

where @, is the holonomy group of M, at p;, acting irreducibly on T, o M; for
j=1,...,k, while M, is the flat factor.

By the Berger-Simons theorem ([Be], [S]), each M; is locally symmetric unless ®;
acts transitively on the unit sphere in 7, M;. Call these latter factors holonomy-tran-
sitive. We will show that those are also locally symmetric:

LEMMA 4. Each holonomy-transitive factor M; of M’ is locally symmetric of
rank one.

Proof. We will show that M, satisfies the assumption of Lemma 6, Ch. 6. Let
7, be a geodesic in M;. We have M’ = M, x M where M contains all other factors.
So y =7, x {g} is a geodesic in M’, for any § € M. This geodesic lies in a k-flat
F’' =g(F) for some g € G. We may assume that F'=F. Since # NTF is dense
in TF (Lemma 2), we may choose a regular vector w e TF with base point
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nw)=p=(p,P) e FAM’'. Let w=(w;,, w). We may assume w; #0. We saw in
Lemma 3 that the holonomy orbit ®.w is perpendicular to T, T,F. Thus ®w; is
perpendicular to n, (T, T,F) = T, T, (n;F) where n; denotes the projection onto the
ith factor on M’, TM', TTM'; But ®,w, is the sphere of radius ||w;| in T, M,.
Therefore, T, (n;F) is one-dimensional, i.e. F;:=mF is a geodesic in M’. Since
y; € n,F, we get F; =y;, and w; is a tangent vector of 7,.

For any Riemannian manifold X, let #(X) denote the space of Killing fields. A
Killing field, being an infinitesimal isometry, can be applied to points of X as well
as to vectors in TX. By Section 3, Equation (2), we have

A M)w+HF+V,F=T,TM".

Applying the ith projection w; (which commutes with the horizontal and vertical
projections), we get

X (M)w+ A F,+ 9, F,=T,TM,.
Since Killing fields on M’ project onto Killing fields on M., we have
A (M).w c X (M;).w;,
thus
HAMw, +H, F +¥,F=T,TM,.
Now we may apply Lemma 6, Ch. 6, to see that M, is locally rank-one symmetric.

This proves the first part of Theorem B’

5. Global symmetry

For any symmetric space X, let Tr(X) denote the transvection group, i.e. the
subgroup of the isometry group /(X)) which is generated by the compositions of any
two symmetries.

LEMMA 5. Let M be complete, locally symmetric of rank k with universal cover
n: X — M. Suppose that there is a connected Lie subgroup G < I(M) with the
following properties:
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(1) The connected component of the lift G of G lies in T:=Tr(X).
(2) G acts transitively on the set of k-flats in M, and any k-flat is one-to-one
immersed and intrinsically symmetric.
Then M is globally symmetric.

Remark. If M satisfies condition (III) for a group G then the universal covering
X of M satisfies also (III) for the lifting group G. Since X is symmetric, any k-flat
has a regular element and it is easy to see that X satisfies also (II) for G. Since the
set of k-flats in a (globally) symmetric space is connected, the connected component
G, acts transitively on the set of k-flats of X and hence also G,=n(G,) acts
transitively on the k-flats of M. Since G, acts with bounded Killing fields, it lies in
Tr(X) (which only says that it acts by translations on the euchdean factor). Thus,
Lemma 5 proves the second part of Theorem B’.

Proof. X is globally symmetric, and M = X/I" where I is a discrete subgroup of
I(X). Let 0 € I(X) be the symmetry at some point x, € X. We have to show that o
descends to an isometry of M, i.e. that

ol =T. (%)

(For any subgroup I'’ < I(X) and t € I(X), we denote by t(I'") the conjugate
subgroup tI'’t ~'.) Let # denote the set of k-flats in X. For any k-flat F e &, let

Ir={gel;gF=F}

SUBLEMMA 1. Each I'r acts as a translation subgroup on F, and

F=Ur1:.

Fe%#

Proof. Let geI',x € X and let y be a geodesic connecting x and gx. There is a
k-flat F € # containing y. By assumption, the k-flat 7(F) = M is symmetric without
selfintersection. So the geodesic loop moy in 7n(F) is a closed geodesic, and
n(F) = n(gF). Thus g € I'.. Moreover, any g € I’ translates the geodesic from y to
gy for any y € F, thus g is a translation on F. O

SUBLEMMA 2. For any te T and Fe #,

Tp) =T
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Proof. G normalizes I', so this holds for any ¢ € G. Since G and hence G, act
transitively on &, we have T = G, - T, where

Tr={teT;tF=F}.
Recall that T is a finite extension (by the Weyl group) of its connected component
(Tr), which acts as translation group on F. Since T is connected, we get already
T=G, (Tr),. Thus let t =g - v with g € G, and t € (Tx),. Then

tTp) =81(I'r) =8(I'r) =T'yp =T . O

Now fix a k-flat F;, through x,. Since n(F;) is symmetric, o | F, descends to the
symmetry of n(F,) at n(x,), and therefore

U(FFO) = FFO = roFo’ ()
Next let F be an arbitrary k-flat and choose g € Tr(X) with
goF = F,.
Since ogo € Tr(X), we have
080(I'r) = I'ogor = I'opy = 0(I's,),
using (*). Hence we get
go(lp) =TI,
and consequently
o(lr) =8 '(T'r)) =Tg-1py=Tor
always applying Sublemma 2. Thus o(I'z) < I' for every flat F, and by Sublemma

1 we get o(I') = I' which shows that ¢ descends to M. This finishes the proof of
Lemma S and Theorem B'.

6. The rank-one case

Let M be a Riemannian manifold, not necessarily complete. A geodesic y in M
will be considered as (part of a) 1-flat, so for any tangent vector v of y we have the
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one-dimensional subspaces J,y (tangent to the curve ¢ — y’(¢)) and ¥,y (tangent to
t—tw) of T,TM. Let X% (M) denote the set of Killing fields (which we apply to
points and to tangent vectors of M).

LEMMA 6. Let M be any Riemannian manifold, possibly not complete, with the
Jollowing property: There is an open subset # of TM such that any geodesic in M has
a tangent vector in & and so that for any v € R,

H(M)o+H,y+V,y=T,TM (3)

Then M is locally rank-one symmetric.

Proof. The tangent vectors of the geodesics form the 2-dimensional foliation
T F @) ={s-y,(0);s €(0, ), t € Dom(y,)}

of TM\{zero section} (notation as in section 3). By assumption, any geodesic y has
a tangent vector v such that the infinitesimal isometry orbit )" (M).v is transversal
to this foliation. In other words, for any w e TM which is sufficiently close to v,
there is a local isometry g, mapping w to a tangent vector of y (note that
tranversality is an open property).

For any p € M we consider

H(M),={AeAHN(M); Ap =0}.

This is a Lie subalgebra of L(O(T,M)), and there is a compact connected subgroup
G, of O(T,M) with L(G,) = #(M),; this is the connected component of the
isometry group_of a small ball in M centered at p. For any nonzero x € T, M, let
G, = G, denote the stabilizer of x, i.e. the group of local isometries fixing p and x.

Clearly, G, does not change under the geodesic flow, more precisely, G, , is
isomorphic to G,, where @,x = y,(¢) denotes the action of the geodesic flow. This
is because g € G, fixes any tangent vector of 7y, in its domain. Moreover, the
isomorphic type of G, cannot change near a regular vector v since any x near v is
mapped to some ®,v by a local isometry g, which conjugates G, and G, , =G,.
Thus, the isomorphic type of G, is locally constant on the unit tangent bundle. In
particular, for any p € M and any two unit vectors x, y € T,M, the subgroups G,
and G, of G, are isomorphic. Hence, all orbits of G on the unit sphere S, M have
the same dimension.
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On the other hand,
H(M),v = (MwnT,T,M.

Hence, if v € # with n(v) = p, then by (3), X' (M),v has codimension 2 or less in
T,T,M. Thus the principal orbits of G, in the unit sphere S,M are hypersurfaces
unless G, acts transitively on S, M. In the first case, the G,-orbits form a family of
homogeneous isoparametric hypersurfaces. These have focal manifolds, i.e. orbits
of lower dimension, but this was excluded. So G, acts transitively on S, M. Now by
Szabo’s local theorem on 2-point homogeneous spaces [Sz], M is locally rank-one
symmetric. O

Now Theorem C follows from Lemma 6 and Lemma 5. Lemma 5 can be used
since any geodesic in M must be a one-to-one immersed circle or line. Namely, if
there exists a geodesic loop, then any geodesic is a loop, so the cut locus distance
is finite and M must be compact. Hence any Killing field X translates a geodesic
(namely the geodesic y, for v = X(p) where |X|| takes its maximum at p), so the
geodesic loop must be a closed geodesic.

Appendix

The goal of this appendix is to prove the fact that parallel translations along
short loops form a neighborhood of the identity in the local holonomy group. This
was used in the proof of the corollary in section 3.

Let G be a Lie group of dimension » and let F < G be such that

(i) F generates (algebraically) G.
(i) F '=F.
(iii) For each f e F there exists y : [0, ¢,) —» F of class C' such that y(0) =e and
Y(ty) =f, for some 1, € [0, ¢,).
For k e N, let
Fi={fi-..-fisfis- - Ju € F},
r*={y:[0,¢) > Fkyis C',y(0) =e}.
Define

S ={y(0):yeI'*} =¥ = L(G).
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Observe:

(i) yel'*=y~'er* and (y ~1)’(0) = —y"(0).
(i) y,eTr* y,elV=1y,y,e ' *J.
(iii) If yel*r>0, then f§F={t—yr-0),21€[0,¢,r H}el* and
7'(0) = ry’(0).

(iv) Sk =Sk
If y,, y, € I'%, then

(@O Oy @y (#) = w(t?)

for some w e I'*, and

w’(0) =[1(0), y2(0)]

(see [KN], Appendix 4). On the other hand, if 7y,,...,y,€TI*, then
Yy ..y, €™ and (y, ... 7,)°(0) =77(0) + - - - + 7,(0). Hence,

Sl + <[S19 Sl]> = S4n’

San + L[San> San]> = Sany2s

Stany2 + {[Stany2> Sam21> < Siamy3»
and so on. Since dim (%) =n we get that after n steps, that S, must be a Lie
subalgebra of %.

LEMMA Al. S(4n)n = g.

Proof. Let fe F and let y e I'' with y(z,) =f for some ¢, € [0, ¢,). Then, for

each 50 €[0,¢,),

Fe=(t >y~ (so)y(t + 50)) € I'?

(cf. [KN], Appendix 4) and therefore 7(0) € S, = Su,~. Hence, 7 is a C' curve
which lies in the left invariant distributions of G defined by S,,,~. Since 7(0) = e we
get that y(z,) € H, where H is the Lie subgroup of G corresponding to S,,.. Since
F generates G we get H = G and hence S, = 9. O
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LEMMA A2. F"" contains a neighborhood of e in G.

Proof. (cf. [KN], Appendix 4). Let y,,...,7,€l'*” be such that
71(0), ..., 7,(0) is a basis of 4. We may assume that y, : [0, €) - F*"" and define
i1 (—€,€) > F4" by

_ o i), if t €[0, ¢)
70 = {yi”‘(—t), if t € (—¢, 0].

Clearly, 7,is C' (i=1,...,n) and (s, ..., s,)—7,(5,)...7,(s,) defines a coordi-
nate system of G near e. Since 7,(s;) . . . 7,(s,) € F"" we get that F®"'" contains
a neighborhood of ¢ in G. O

Now let (M, {, ) be a Riemannian manifold, p € M, and let #”¢ denote the
local holonomy group at p. Let ¢ be such that exp, : B{.(0) = B, (p) is a diffeomor-
phism, where B denotes euclidean balls in 7, M and B balls in M. We may assume
that the holonomy group of B, (p) is ®”¢. In B,,(p) we have also the Euclidean
metric <, ). induced by exp, : B3, o — Bs.(p).

We have that there exist o, f e R, 0 <a, § <1 such that

B length(c) < lengthz(c) < a ' length(c) (I

for all piecewise C'-curves in B, (p).

For each 0 <r <¢ let 4, (resp. AF) be the set of piecewise C' loops through p
of length (resp. Euclidean length) less than r. Let P, (resp. PE) denote the set of all
parallel transports along loops in A4, (resp. A£).

From (I) we get

AarCAfa AngAr (II)
and hence
P, c PE, P,‘,E, cP,. (IIT)

LEMMA A3. For all r € (0, €), P, (resp. Pf) generates algebraically ®".

Proof. Let ¢ : [0, 1] - B,/; be piecewise C' with ¢(0) =p = ¢(1). Then there exist
piecewise C'-curves ¢,,...,¢ :[0,11=B,; with ¢,(0) =¢,(1) =---=¢(0) =
¢,(1) = p and such that

=101, _,° %, where T denotes parallel transport.

(ii) length(c;) <rforalli=1,...,k.



498 J.-H. ESCHENBURG AND C. OLMOS

Br/s

Since the holonomy group of B,; is ®¢ we get that P, generates . From
(IIT) we get now that P£ also generates @ O

THEOREM. For all r € (0, €), P, contains a neighborhood of e in ®"<.

Proof. By (III) it suffices to show that P£ contains a neighborhhod of e in &%,
Let m = (4n)" - n, where n = dim () (cf. Lemma A2). Then, by Lemma A3, P/,
generates &, Let g € PE, and let ¢ : [0, 1] > M belong to A%, such that g =1,.
Let, for s € [0, 1], ¢, : [0, 1] » M be defined by c,(¢) =5 - c(t) (we identify B,,,(p)
with Bf, (0)). Then length.(c,) < length (c).

If g, =1, then (s+>g,) defines a C' curve in Pj,,. We can now apply Lemma
A2 to F = P£,, in order to conclude that (P, )" contains a neighborhood of e in

rim

@<, But (P£,)™ < PE. Hence PE contains a neighborhood of e in @/ O

rim
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