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Rank and symmetry of Riemannian manifolds

J.-H. Eschenburg and C. Olmos*

Dedicated to Wilhelm Klïngenberg on the occasion of his lOth birthday

Let M be a complète irreducible Riemannian manifold. A k-flat in M is a

complète connected flat totally géodésie immersed submanifold of dimension k. The
rank of M is the maximal dimension k such that every géodésie in M lies in a k -flat.

Examples of manifolds of rank k are locally symmetric spaces of rank k. If M has

sectional curvature K &lt;&gt; 0, it is an open conjecture that thèse are the only examples
for k &gt; 2. This has been proved in many spécial cases (cf. [BBE], [BS], [BGS], [ES),

[EH), [H]). In particular it is true if M is homogeneous [H]. On the other hand, if
K &gt; 0, there are homogeneous counterexamples [SS]. However, in thèse examples,
the various £-flats are very différent. What happens if we require that any two
A&gt;flats are isometric? More precisely, let us assume:

(I) A group G of isometries of M acts transitively on the set of pairs (/?, F)
where F is a A:-flat and p e F.

In the case k 1, thèse are two-point-homogeneous spaces which are known to
be rank-one symmetric (cf. [W], [Hg], [Sz]). Using the classification of strongly

isotropy irreducible Riemannian manifolds, Heintze, Palais, Terng and Thor-
bergsson recently obtained the following resuit [HPTT]:

THEOREM K. If M is compact of rank k and satisfies (/), the M is globally
symmetric of rank k.

The noncompact case is still open. The case k 2 was recently solved by E.

Samiou. In the présent paper, we omit the dependence of the point in Condition (I)
and discuss the following weaker condition which no longer implies homogeneity.
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(II) A group G of isometries of M acts transitively on the set of &amp;-flats.

THEOREM B. If M is compact of rank k satisfying (II), then M is locally
symmetric of rank k. Moreover, ifany k-flat is one-to-one immersed and intrinsically
symmetric, then M is globally symmetric.

(In fact we prove a slightly more gênerai resuit, cf. Theorem B&apos;, Ch. 2). The
additional hypothesis for M being globally symmetric is necessary; if we omit it, the
flat Kleinian bottle is a simple counterexample. For k 1, following an idea of E.

Heintze, we do not need compactness:

THEOREM C. A complète Riemannian manifold M with the property thaï I(M)
acts transitively on the set of geodesics, is globally rank-one symmetric.

In fact, we will prove a local statement which implies Theorem C (cf. Ch. 6).

We hâve started our work on this subject with a conceptual proof of Theorem
A which is mainly as follows. We consider the action of the group G I(M) on the

tangent bundle TM, equipped with the Sasaki metric &lt;&lt; &gt;&gt; which makes the vertical
and the horizontal distributions (defined by the Levi-Civita connection) perpendic-
ular. We noticed that the G-orbits on TM are perpendicular to the tangent spaces

of any flat totally géodésie submanifold (cf. Ch. 1). This observation essentially goes
back to R. Hermann [Hr]. For a rank-fc manifold satisfying (I) this means that the

horizontal distribution is tangent to the G-orbits. Thus, parallel vectors along a curve
remain in the same G-orbit. In particular, the holonomy orbits are contained in the

orbits of the isotropy group, and by the Berger-Simons holonomy theorem and our
Theorem C, M is locally symmetric. An argument involving the deck group of the

universal cover of M then finishes the proof (cf. Ch. 5).

If we only assume (II), the G-orbits are not large enough to contain ail horizontal
curves. Instead, we look for a collection of G-orbits, namely G.PV where Pv for some

v e TM is the set of ail vectors being tangent to the same Â&gt;flat as v and parallel to
v. It turns out that in an open and sensé subset of TM, thèse G.PV are manifolds and
form a foliation which is perpendicular and transversal to the tangent spaces of the
&amp;-flats. Again, the horizontal distribution is tangent to thèse (larger) manifolds, and

we get local symmetry by applying the Berger-Simons theorem to the local holonomy
group; the local rank-one factors hâve to be treated separately (cf. Ch. 4, 6).

1. The Hermann Lemma on the tangent bundle

Let (M, &lt; » be a Riemannian manifold. Then there exists a natural Riemannian
metric « » on the tangent bundle TM of M. Let V(M) and Jf(M) be the
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vertical and horizontal distributions of TM (with rspect to the Levi-Civita connections

on M). Then iT(M) 1 Jf(M) with respect to « ». Moreover « »
is the usual metric on the fibers of n : TM -&gt;M and &lt;&lt; &gt;&gt; |jt(a/) is sucn tnat n

a Riemannian submersion., So, if vu v2 : — c, ê) -? TM are C1 with vx(0) u2(0

«t&gt;i(0), ^ &lt; (nv2y(0)} + v2(0)

LEMMA 1. Let (Af, &lt; » èe a complète Riemannian manifold and let G be a Lie
subgroup of I(M) with bounded Killing fields. Let e be a parallel Jacobi field along

some géodésie y :M-+M with y(0) =/?, 7 (0) v. Then the orbit Gv is perpendicular

at v to the vertical submanifold v + M &apos; e(0) a TpM c TM.

Proof. If A e L(G) and g(/) exp tA, we hâve to show that

T (V +(i
D
~dt j

0

e(t
0

f(t\ y, ^ J

vanishes. Recall that

D
Jt

hence

g(t)*v
D d

dtds 0,0

D
&quot;ds

A.y(s),

(A.y(s),e(s)}.

Since x h-&gt;v4.x is Killing, A.y is a Jacobi field, and since e is parallel, we hâve

^-2(A.y(s\e(s))=0.
ds

Thus

for some a, b e M. But since A is bounded, we get b 0 and therefore, a 0.
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COROLLARY. Let (M, &lt; » be a complète Riemannian manifold and G a Lie
subgroup ofI(M) with bounded Killingfields. Let F be a complète flat totally géodésie
immersed submanifold (called a &quot;flat&quot;) in M and w e TpF. Then the orbit Gw is

perpendicular to the vertical submanifold T F.

2. The set of regular vectors

From now on, let M be a complète irreducible Riemannian manifold with the

following property.

(III) There is a A&gt;dimensional flat (k-flat) Fin M and a Lie subgroup G of/(M)
with bounded Killing fields such that G.TF TM.

Clearly, (II) implies (III) if M is compact and of rank k. We will prove the

following generalization of Theorem B:

THEOREM B&apos;. Let M be complète irreducible satisfying (III). Then M is locally
symmetric of rank K. Moreover, if ail k-flats in M are one-to-one immersed and

intrinsically symmetric, then M is globally symmetric.

The proof of this theorem will be finished in Ch. 5.

Consider the G -equivarient smooth map

&lt;p :G x TF-+TM

=g.v

By (III), &lt;j&gt; is onto. Sard&apos;s theorem says that the set of regular values of (j&gt; has full
measure. Therefore, the subset

M {w 6 TM ; 3(g, t;) e &lt;t&gt;-\w): d&lt;t&gt; \igtV) is onto}

(called the set of regular vectors) is open and dense in TM.

LEMMA 2. For any w eïM, there is exactly one k-flat Fw tangent to w and any
parailel Jacobi field e along the géodésie yw is tangent to Fw. Moreover, $ nTF is

dense in TF.

Proof. Let U be an open subset of G x TF where d&lt;f&gt; has constant rank. By
equivariance, we may assume U G&apos; x (TF)f where G&apos; is a neighborhood of 1 e G
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and (TF)&apos; an open subset of TF. Making U smaller if necessary, we may assume
that (f)(U) is a submanifold Sf of TM. Let (g, v) e U and w #(g, v). Then w is

tangent to the flat FH -=gF, and

THP im # |(,,p) TH TFH + THGw. (1)

Suppose that there is a parallel Jacobi field e along y yH which is not tangent to
Fw. Since Fw is totally géodésie and flat, we may assume e ±Fn. It follows that the
vertical vector £(0) d/dt |0 (w + te(0)) g TwTM is perpendicular to the first term
on the right hand side of (1). By Lemma 1, ê(0) is also perpendicular to the second

term. Hence, £(0) 1 THSf.
In particular we hâve shown that FH is the only y-flat tangent to w. (A fc-flat

F&apos; is called ^-flai if an open subset of TF&apos; belongs to y.) It follows that for any

Thus the foliation of U G&apos; x{TF)&apos; by the second factor induces the smooth
foliation

of y, by applying the submersion &lt;/&gt; | U : U-+&amp;. Making U even smaller (if
necessary), we may assume that Sf &lt;t&gt;(U) is diffeomorphic to a product 5&quot; x (TF)&apos;

such that ZTïF becomes the foliation by the second factor. Since any g eG&apos;

préserves this foliation on «S^ng&quot;1^), each Killing field A g L(G) induces a

tangent vector field Ax on the transversal manifold Sf\ and we hâve Ax(s&apos;) 0 for
some s&apos; g &amp;&quot; if and only if exp tA leaves invariant the fc-flat corresponding to
{s&apos;} x (TF)&apos;. Thus, for any w g Sf nTF, the connected component of the stabilizer
Gw is contained in GF {g eG; g(F) F} (by uniqueness of Fw) and

TwTFnTwGw TwGFw.

So by (1), we hâve

dim Sf dim TF H- dim Gw - dim GFw

dimTF + dim(G/GF).
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In particular, this holds if y is an open subset of &amp; which shows that

dim TF + dim (G/GF) dim TM.

Therefore, any such ¥ has full dimension and must be an open subset of 0t.

HMnTF were not dense, we could find an open subset (TF)&apos; of TF such that
rank(d(f&gt;) is constant but not maximal on {1} x (TF)&apos;. By equivariance of &lt;/&gt;, the
same would be true on some open subset U of G x TF which we hâve excluded.

Remark. The uniqueness of the flat Fw tangent toive^ shows that ^ is in fact
the set of regular values of (/&gt;.

3. The local holonomy

On the set 0t of regular vectors, we hâve introduced the smooth foliation

: w h+ TFW

where Fw is the unique A:-flat through w. (The smoothness of this foliation can also
be seen using the arguments in [BBE], Lemma 2, where the Jacobi operator
J?(

&gt;

y&apos;w)y&apos;w has to be replaced by its square, for sake of definiteness.)
The tangent distribution T&amp;&amp; of this foliation splits into its horizontal and

vertical parts:

where

Jtw3rw lwrw

where Pw c TFW is the set of vectors which arise from w by parallel transport along
curves in Fw. Now from Equation (1) in the previous section we get for ail w e ^:

Tw TM TwGw + pf^)w + (r&amp;)w. (2)

LEMMA 3. The distribution (tT^)x on M is integrable with intégral leaf G.P&apos;V

through ve0t, where P&apos;V
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Proof. Let g e G and v e M n TF. Let w e P&apos;v. Recall that GF is the subgroup of
G which leaves the flat F invariant. We hâve

Thus

Since G has bounded Killing fields, A e L(GF induces an infinitésimal translation
on F. Thus Aw is tangent to P&apos;v and

So (7 x P; is a submanifold of &lt;$&gt;~x(0l) containing the fibres of the submersion
4&gt;\4&gt;-\0l)-+9t. Therefore G.P&apos;V (j){G x P&apos;v) is a smooth submanifold of ®.
Clearly

which shows that Tw(G.Pfv) is the orthogonal complément of (i^^)w (cf. (2) and
Lemma 1).

Remark. There are no singular orbits on M, i.e. the orbits of G define a smooth
foliation on 0t. In fact, let w e 0t and Gw its stabilizer subgroup. If A&quot; e L(GW) then

exp /X préserves the &amp;-flat F^ (by Lemma 2). Since G has bounded Killing fields,

exp tX is a translation. But (exp L^O^w) n(w) and therefore exp tX\Fw w/ for ail
t e R. So (Gw)o (GH) where GF- {^GG:g fixes pointwise Fw}. Thus (Gw0o is

the same group for ail w&apos; e Fw which shows that ail orbits hâve the same dimension.

COROLLARY. Ifwefâ and p n(w) is its base point, then

Tw(&lt;Pl;c.w)±TwTpFw

where &lt;Pl°c dénotes the local holonomy group of M at p {cf. [KN], p. 94).

Proof. On 0t, the horizontal distribution 3fM (irJt)± is contained in
)±. Thus, by Lemma 3, any w e $ has a neighborhood %w in ^ such that any

horizontal curve in °UW starting at w stays in G.P&apos;W. Let Be(w) c ^w. By the theorem
in the appendix, there exists a neighborhood N of 1 6 #j,oc such that any &lt;p e N is

the parallel transport along a piecewise C!-loop P starting and ending at p with
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length L(p) &lt;e. Thus, the horizontal lift P of P starting at w has also length &lt;e

which shows P c #UW. Hence p &lt;= G.P&apos;W, and in particular, cp.w e G.P&apos;W since cp.w is

the end point of p. Thus, if t h-* &lt;pt is a smooth curve in N with &lt;p0 1, then

-10 &lt;p,.w g tw(g.p&apos;w) i (k^l r^r^F,at

which finishes the proof. D

Now by the Berger-Simons holonomy theorem (cf. [Be], [S]), the curvature
tensor on n($) is parallel unless we hâve locally a Riemannian product with a

factor with transitive holonomy. This will be considered in the next section.

4. Local factors with transitive holonomy

Consider w e âl with base point n(w) — p. There exists a simply connected open
neighborhood M&apos; of p in M such that the holonomy group &lt;P of M&apos; at p equals the
local holonomy &lt;Pl™ of M at p. By the de Rham theorem, perhaps making M&apos;

smaller if necessary, we may assume that AT splits metrically as

M&apos; Mo x M, x • • • x Mk

with p=(p09Px,. .,/&gt;*), and

4&gt; &lt;p{ x • • • x 4&gt;k

where &lt;P, is the holonomy group of Mf at pn acting irreducibly on TpMj for

j 1,.. k, while Mo is the flat factor.
By the Berger-Simons theorem ([Be], [S]), each M} is locally symmetric unless fy

acts transitively on the unit sphère in Tp Mr Call thèse latter factors holonomy-transitive.

We will show that those are also locally symmetric:

LEMMA 4. Each holonomy-transitive factor M, of M&apos; is locally symmetric of
rank one.

Proof We will show that M, satisfies the assumption of Lemma 6, Ch. 6. Let

y, be a géodésie in M,. We hâve M&apos; M, x M where M contains ail other factors.
So y =7, x {q} is a géodésie in M\ for any q e M. This géodésie lies in a fc-flat
F&apos;=g(F) for some geG. We may assume that F&apos; /r. Since 0tr\TF is dense

in TF (Lemma 2), we may choose a regular vector w e TF with base point
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n(w) =p (pnp) € FnM&apos;. Let w (wn w). We may assume wt ^ 0. We saw in
Lemma 3 that the holonomy orbit &lt;P.w is perpendicular to TWTPF. Thus 0twt is

perpendicular to nXTwTpF) TwTPi{ntF) where nl dénotes the projection onto the

ith factor on AT, TM\ TTMf\ But 0twt is the sphère of radius ||w,|| in TpMt.
Therefore, Tpijt.F) is one-dimensional, i.e. Fl-=nlF is a géodésie in M&apos;. Since

yt ç 7r,F, we get F,=yn and w, is a tangent vector of y,.
For any Riemannian manifold X, let Jf(X) dénote the space of Killing fields. A

Killing field, being an infinitésimal isometry, can be applied to points of X as well

as to vectors in TX. By Section 3, Equation (2), we hâve

.w 4- Xw&amp; + irw9 TWTM\

Applying the ith projection nx (which commutes with the horizontal and vertical

projections), we get

).w -h KtFt + %Ft TwTMt.

Since Killing fields on M&apos; project onto Killing fields on M,, we hâve

7T, Jf(M).W CI Jf(M, ).W,,

thus

%F, TwTMt.

Now we may apply Lemma 6, Ch. 6, to see that M, is locally rank-one symmetric.
This proves the first part of Theorem Br.

5. Global symmetry

For any symmetric space X, let Tr(X) dénote the transvection group, i.e. the

subgroup of the isometry group I(X) which is generated by the compositions of any
two symmetries.

LEMMA 5. Let M be complète, locally symmetric ofrank k with universal cover

n : X -* M. Suppose that there is a connected Lie subgroup G cz I(M) with the

following properties:
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(1) The connected comportent of the lift G of G lies in T*= Tr(X).
(2) G acts transitively on the set of k-flats in M, and any k-flat is one-to-one

immersed and intrinsically symmetric.
Then M is globally symmetric.

Remark. If M satisfies condition (III) for a group G then the universai covering
X of M satisfies also (III) for the lifting group G. Since X is symmetric, any &amp;-flat

has a regular élément and it is easy to see that X satisfies also (II) for G. Since the
set of &amp;-flats in a (globally) symmetric space is connected, the connected component
Go acts transitively on the set of A&gt;flats of X and hence also Go n(G0) acts

transitively on the fc-flats of M. Since Go acts with bounded Killing fields, it lies in
Tr(X) (which only says that it acts by translations on the euclidean factor). Thus,
Lemma 5 proves the second part of Theorem B&apos;.

Proof X is globally symmetric, and M XjF where F is a discrète subgroup of
I{X). Let a e I{X) be the symmetry at some point x0 e X. We hâve to show that a
descends to an isometry of M, i.e. that

&lt;r(F)=F. (*)

(For any subgroup F&apos;c:I(X) and x e I(X), we dénote by x(F&apos;) the conjugate
subgroup xF&apos;%-1.) Let &amp; dénote the set of fc-flatsk in X. For any £-flat Fe^, let

FF {geF;gF F}.

SUBLEMMA 1. Each FF acts as a translation subgroup on F, and

r= y rF.

Proof. Let g e F, x e X and let y be a géodésie Connecting x and gx. There is a
À&gt;flat F g 3F containing y. By assumption, the A:-fiât n(F) cMis symmetric without
selfintersection. So the géodésie loop no y in n(F) is a closed géodésie, and

n(F) n(gF). Thus g e FF. Moreover, any g e FF translates the géodésie from y to
gy for any y e F, thus g is a translation on F.

SUBLEMMA 2. For any t e T and
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Proof. G normalizes F, so this holds for any t g G. Since G and hence Go act

transitively on ^, we hâve T GQ- TF where

TF {t eT;tF F}.

Recall that TF is a finite extension (by the Weyl group) of its connectée component
(TF)0 which acts as translation group on F. Since T is connectée, we get already
T G0- (TF)0. Thus let t g • t with geG0 and t g (Tf)0. Then

&apos;(/V) *r(/V) g(rF) /&gt; rtF. n

Now fix a fc-flat Fo through x0. Since n(F0) is symmetric, cr | Fo descends to the

symmetry of n(F0) at n(x0), and therefore

Next let F be an arbitrary &amp;-flat and choose g e Tr(X) with

Since (Xg&lt;r g Tr(X), we hâve

ragaF

using (*). Hence we get

and consequently

always applying Sublemma 2. Thus o(FF) c F for every flat F, and by Sublemma
1 we get a(F) c r which shows that g descends to M. This finishes the proof of
Lemma 5 and Theorem B&apos;.

6. The rank-one case

Let M be a Riemannian manifold, not necessarily complète. A géodésie y in M
will be considered as (part of a) 1-flat, so for any tangent vector v of y we hâve the
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one-dimensional subspaces #evy (tangent to the curve t\-+y&apos;(t)) and i^vy (tangent to
t*-+tv) of TVTM. Let jf(M) dénote the set of Killing fields (which we apply to
points and to tangent vectors of M).

LEMMA 6. Let M be any Riemannian manifold, possibly not complète, with the

following property: There is an open subset $ of TM such that any géodésie in M has

a tangent vector in 0t and so that for any uel,

Jf(M).v + Jtrvy + rvy TVTM (3)

Then M is locally rank-one symmetric.

Proof The tangent vectors of the geodesics form the 2-dimensional foliation

ST3F(v) {s - y&apos;v(t); s e (0, oo), / e Dom(y&apos;v)}

of TM\{zero section} (notation as in section 3). By assumption, any géodésie y has

a tangent vector v such that the infinitésimal isometry orbit Jf(M).v is transversal
to this foliation. In other words, for any w e TM which is sufficiently close to v,
there is a local isometry gw mapping w to a tangent vector of y (note that
tranversality is an open property).

For any p e M we consider

{Ae Jf(M); A.p 0}.

This is a Lie subalgebra of L(0(TpM)), and there is a compact connected subgroup
Gp of 0(TpM) with L(GP) Jf(M)p; this is the connected component of the

isometry group. of a small bail in M centered at p. For any nonzero x e TPM, let

Gx c Gp dénote the stabilizer of jc, i.e. the group of local isometries fixing p and x.
Clearly, Gx does not change under the géodésie flow, more precisely, G#fX is

isomorphic to Gx, where $tx yx(t) dénotes the action of the géodésie flow. This
is because g e Gx fixes any tangent vector of yx in its domain. Moreover, the

isomorphic type of Gx cannot change near a regular vector v since any x near v is

mapped to some $tv by a local isometry gx which conjugates Gx and G^[V s Gv.

Thus, the isomorphic type of Gx is locally constant on the unit tangent bundle. In
particular, for any p e M and any two unit vectors x,ye TPM, the subgroups Gx

and Gy of Gp are isomorphic. Hence, ail orbits of G on the unit sphère SPM hâve

the same dimension.
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On the other hand,

JT(M)pv Jf(M)v n Tv TpM.

Hence, if v eM with n(v) /?, then by (3), Jf(M)pv has codimension 2 or less in
TVTPM. Thus the principal orbits of Gp in the unit sphère SPM are hypersurfaces
unless Gp acts transitively on SPM. In the first case, the G^-orbits form a family of
homogeneous isoparametric hypersurfaces. Thèse hâve focal manifolds, i.e. orbits
of lower dimension, but this was excluded. So Gp acts transitively on SPM. Now by
Szabo&apos;s local theorem on 2-point homogeneous spaces [Sz], M is locally rank-one
symmetric.

Now Theorem C follows from Lemma 6 and Lemma 5. Lemma 5 can be used

since any géodésie in M must be a one-to-one immersed circle or line. Namely, if
there exists a géodésie loop, then any géodésie is a loop, so the eut locus distance
is finite and M must be compact. Hence any Killing field X translates a géodésie

(namely the géodésie yv for v X{p) where ||A&quot;|| takes its maximum at /?), so the

géodésie loop must be a closed géodésie.

Appendix

The goal of this appendix is to prove the fact that parallel translations along
short loops form a neighborhood of the identity in the local holonomy group. This
was used in the proof of the corollary in section 3.

Let C be a Lie group of dimension n and let F c G be such that

(i) F générâtes (algebraically) G.

(ii) F « F
(iii) For each fe F there exists y : [0, cy) -&gt;F of class C1 such that y(0) e and

y(t0) =f, for some t0 e [0, cy).

For k eN, let

^ {/i-...&apos;A;/. A

rk {y :[(U0)-»FA;y is C

Define
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Observe:

(i) yerk=&gt;y-lerk and (y-l)&apos;(0) -y&apos;(0).

(ii) ylerk9y2er&apos;=*&gt;yl.y2erk+&gt;.

(iii) If yerk, r&gt;0, then y {/t-&gt;y(r • t\t e [0, ey.r~1)} e Tk and
y&apos;(0) ry&apos;(0).

(iv) S*c:S*+1.

If yuy2erk, then

for some w e F4k, and

(see [KN], Appendix 4). On the other hand, if y1?. yn e r*, then

yx •... • yw g T*« and (y, • • 7ll)&apos;(0) yJ(O) + • • • + yi(0). Hence,

and so on. Since dim (^) =«we get that after « steps, that S(4n)n must be a Lie

subalgebra of ^.

LEMMA Al. Si4n)n $.

Proof. LQtfeF and let y e Tl with y(/0) =/ for some t0 e [0, ey). Then, for
each Jo e [0, ey%

y:=(t&gt;-*y-l(s0)y(t+s0))er2

(cf. [KN], Appendix 4) and therefore y&apos;(0) e S2&lt;^Si4n)n. Hence, y is a C1 curve
which lies in the left invariant distributions of G defined by 5(4w)«. Since y(0) e we

get that y(r0) g #, where 7^ is the Lie subgroup of G corresponding to S{4n)n. Since

F générâtes G we get H G and hence S^,, ^.
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LEMMA A2. F(4w)&quot; n contains a neighborhood of e in G.

Proof. (cf. [KN], Appendix 4). Let y,,..., yn e r(4w)&quot; be such that
71(0), • • •, y&apos;n(0) is a basis of ^. We may assume that y, : [0, e) -&gt;F(4w)M and define
y&quot; :(-e,e)^F^nby

(0, if t e [0, e)

Clearly, y, is C1 (/ 1,..., n) and (sl9..., sn) •—? yi (^&quot;i
• yn(sn) defines a coordi-

nate System of G near e. Since y, (^,). yw(5w) e F(4w)&quot; &quot;

we get that F{Anr n contains
a neighborhood of e in G.

Now let (M, &lt; » be a Riemannian manifold, p e M, and let 0/o&lt; dénote the
local holonomy group at p. Let e be such that expp : #£(0) -&gt; BAc(p) is a diffeomor-
phism, where BE dénotes euclidean balls in TpM and B balls in M. We may assume
that the holonomy group of B^c(p) is $hl:. In B3c(p) we hâve also the Euclidean
metric &lt; &gt;£ induced by ex/?, : Bfc(0)-+B3c(p).

We hâve that there exist a, /? e U, 0 &lt; a, /? ^ 1 such that

P length(c) ^ lengthE(c) &lt; a&quot;1 length(c) (I)

for ail piecewise C^curves in B3c(p).
For each 0 &lt; r &lt; e let Ar (resp. Af be the set of piecewise C1 loops through /?

of length (resp. Euclidean length) less than r. Let Pr (resp. Pf) dénote the set of ail
parallel transports along loops in Ar (resp. Af).

From (I) we get

A r- AE AE r- A flT*Aard/lr, AprC-Ar ^ll)

and hence

ParczPE, PfrczPr. (III)

LEMMA A3. For ail r e (0, e), Pr (resp. Pf) générâtes algebraically &lt;Ploc.

Proof. Let c : [0, 1] -? Br/3 be piecewise C1 with c(0) =/? c(l). Then there exist

piecewise C^curves cx,.. ck : [0, 1] -&gt; 2?r/3 with c, (0) cx 1) • • • ^(0)
ck(\) =p and such that

(i) xc — xCk o xCk _x
o • • • otc/, where t dénotes parallel transport.

(ii) lengthfe) &lt; r for ail / 1, ...,k.
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Smce the holonomy group of Br/3 îs &lt;Ploc we get that Pr générâtes $
(III) we get now that P? also générâtes &amp;loc

THEOREM For ail r e (0, e), Pr contains a neighborhood of e in &lt;Pl°l

From

Proof By (III) it suffices to show that Pf contains a neighborhhod of e in $loc

Let m (4n)n «, where n dim (&lt;Ploc) (cf Lemma A2) Then, by Lemma A3, Pf/m

générâtes &lt;Ploc Let g e Pf/m and let c [0, 1] -&gt;M belong to Af/m such that g tc
Let, for s e [0, 1], cs [0, 1] -+M be defined by cs(t) s c(t) (we identify Br/m(p)
with Bf/m(0)) Then length^cj &lt; length (c)

If g5 T£i then (s*-+gs) defines a C1 curve in Pfjm We can now apply Lemma
A2 to F P^m in order to conclude that (Pf/m)m contains a neighborhood of e in
&lt;Ploc But (Pf/m)mczPf Hence Pf contains a neighborhood of e in &lt;Ploc
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