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Nilvariétés projectives

Yves Benoist

1. Introduction

1.1 Une variété affine est une variété C00 munie d&apos;un atlas maximal de cartes à

valeurs dans l&apos;espace IRW et dont les changements de cartes sont localement des

éléments du groupe G-=AÏÏ (Rw) des transformations affines de X&apos;&gt;=Mn.

On définit de la même façon les variétés projectives à l&apos;aide de l&apos;espace

Xi=§&quot; {demi-droites de IRW+1} sur lequel agit naturellement le groupe

G&apos;=Sl±(n + 1, R) des matrices de déterminant ± 1.

Toute variété affine a une structure projective naturelle obtenue en identifiant R&quot;

à un hémisphère de S&quot;.

La donnée d&apos;une structure affine ou projective sur une variété C°° connexe W
équivaut à la donnée d&apos;un difféomorphisme local D du revêtement universel W de

W dans l&apos;espace X, appelé développante, tel qu&apos;il existe un morphisme du groupe
fondamental F -&gt;=nx(W) dans G, appelé holonomie, avec, pour w dans W et y dans

r, D(yw) h(y)D(w). Si g est un élément de G, les développantes D et g © D sont
considérées comme équivalentes. Nous supposerons désormais W connexe.

On dit que W est complète si D est un revêtement sur X.
On dit que W est à holonomie nilpotente si le groupe d&apos;holonomie H-=h(F) est

un groupe nilpotent; c&apos;est toujours le cas lorsque F est un groupe nilpotent.
On note Is(ffî) le groupe (de Lie) des transformations affines ou projectives de

W. Par définition, une transformation &lt;f&gt; de f^est dans Is{W) si il existe un élément
de G, que l&apos;on note encore /*(&lt;£), tel que D o 0 h{&lt;j&gt;) © D. On note /la composante
connexe de h(W)9 K&apos;-={&lt;f&gt; eIs{W)lh{&lt;j)) 1}, Ko^Knîet I-.= h(î) ^îjK^.

Soit A le sous-groupe de G formé des matrices diagonales de G à coefficients

positifs. On appelle octants^ les orbites de A dans X.
Nous dirons que W est octantisable si, pour un choix convenable de la base de

Un+ \ on a A a I. Plus généralement, nous dirons que W est quasi-homogène si le

groupe Isffi) a une orbite ouverte dans W.
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1.2 On appelle nilvariété une variété compacte difféomorphe au quotient d&apos;un

groupe de Lie nilpotent simplement connexe No par un sous-groupe discret F.
Le but de ce papier est l&apos;étude des structures affines ou projectives sur une

nilvariété Wo ^ F\N0 de dimension n. Le cas du tore T2 est dû à Nagano et Yagi
([N-Y]) et à Goldman ([Go]). Bien sûr, la nilvariété est à holonomie nilpotente. Le

point de départ est la proposition suivante.

PROPOSITION 1. Toute variété affine ou projective compacte à holonomie

nilpotente est octantisable.

PROPOSITION 2. Soient W une variété affine ou projective octantisable et Û une
orbite de T dans W.

(i) La restriction de D à l&apos;adhérence Û de Û est un revêtement sur son image, de

groupe de Galois KQ.

(ii) Soient F&apos;.= F r\K.Î et F0&gt;=F ni. La variété à coins F0\Ô s&apos;identifie, par la

projection naturelle, à une sous-variété fermée à coins du revêtement fini
W&apos;&gt;=F&apos;Xffi de W. En particulier, si W est compacte, F0\Ù l&apos;est aussi.

REMARQUES. (1) Les quotients F0\Û sont, heuristiquement, les &quot;briques&quot;

qui servent à construire W. Même lorsque W est connexe, ces &quot;briques&quot; ne sont

pas, en général, deux à deux diflféomorphes.
(2) Le cas particulier des variétés à holonomie diagonale a été étudié par J.

Smillie ([Sm]). Dans ce cas, les &quot;briques&quot; sont associées à des &quot;éventails simpliciaux
complets&quot;.

(3) Pour des résultats antérieurs sur les variétés affines à holonomie nilpotente,
voir [F-G-H], [G-Hl] §2.10 et [G-H2] proposition N.

1.3 Une nilvariété Wo de dimension n est dite filiforme (ou de classe maximale)
si le (n — \)ème terme de la suite centrale descendante de No est non trivial et si

n ^ 3. Par exemple, les nilvariétés de Heisenberg de dimension 3 sont filiformes.

THÉORÈME 1. Toute structure affine ou projective sur une nilvariété filiforme
est invariante à gauche.

Ceci signifie que, pour une identification convenable Wo^ F\N0, la multiplication

à gauche sur No préserve la relevée à ffî0 ^ No de cette structure.
Un tel énoncé serait faux pour le tore T2 (cf. [N-Y]) ou pour les nilvariétés de

Heisenberg de dimension 5 (cf. §5.5).
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THÉORÈME 2 // existe des mlvanétés qui n&apos;admettent aucune structure projec-
twe

Ce théorème précise et utilise les résultats de [Be] où nous montrions que
certaines mlvanétés n&apos;admettent pas de structures affines complètes

1.4 Les propositions 1 et 2 permettent aussi de classifier les structures affines ou
projectives sur le tore T3

Elles permettent aussi de décrire les variétés compactes de dimension n &lt;&gt; 4 qui
admettent une structure projective à holonomie mlpotente ce sont, à revêtement

fini près, les mlvanétes, les sphères §w, les produits S1 x §&quot;~l et S1 x S1 x Ig où

Ig est une surface de genre g ^ 2

Ces résultats feront l&apos;objet d&apos;un autre article

1.5 Notations: Si V est une variété, on note V son revêtement universel Si L est

un groupe de Lie, on note Le sa composante connexe et I Lie(L) son algèbre de

Lie Si A est une partie de F, et B une partie de A, on note Â l&apos;adhérence de A et

A — B le complémentaire de B dans A
En outre, on utilisera librement dans tout cet article les notations introduites

ci-dessus X, G, D, T, h, //, /, K, /, Kq, Fo, A, Si L est un sous-groupe connexe
de /, on notera IsL{W) ={(/&gt; e Is(W)/h((j)) e £}, L la composante connexe de

IsL{W\ KL =KnL et rL =TnL
Je remercie Y Carrière, D Fned et J Smillie pour d&apos;intéressantes discussions

sur ce sujet

2. Variétés projectives à holonomie nilpotente

Le but de cette partie est de démontrer la proposition 1

Soit W une variété affine ou projective compacte à holonomie nilpotente On

choisit un sous-groupe mlpotent connexe maximal N de G tel que [H HnN] &lt; oo

C&apos;est possible il suffit que N contienne la composante connexe de l&apos;adhérence de

Zanski de H
On montre que l&apos;action de N sur X se relève en une action de $ sur W (§2 1)

Deux paragraphes (§2 2 et 2 3) sont alors consacrés à la description des groupes N
et de leurs orbites dans X On montre alors que W est octantisable (§2 4)
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2.1 Uaction de N sur ffî

Le lemme suivant est crucial. Il généralise une idée de [N-Y].

LEMME. On suppose W compacte et à holonomie nilpotente. Alors, on a
V inclusion N a I.

DÉMONSTRATION. Montrons par récurrence que, pour tout sous-groupe
distingué connexe / de N9 l&apos;action de J sur X se relève en une action de J sur W.

Soient 7&apos;c/ un sous-groupe distingué connexe de AT et Y dans j tels que
j UY © j&apos;. Notons exp : n -* N et éxp : n -» fit les applications exponentielles. L&apos;élément

Y induit un champ de vecteurs sur X que l&apos;on relève en un champ de vecteurs

f ;==/)*( Y) sur W. Il suffit de montrer que f est complet. Car alors, si &lt;£, désigne
le flot de f, l&apos;action de Jsur W sera donnée par l&apos;égalité, pour/dans J&apos;,

(éxp(tY)j)w &lt;j&gt;t(jw).

Pour w dans W, on note t$ &gt; 0 le temps pendant lequel on peut intégrer le

champ de vecteurs f à partir du point w. Soit r&quot;-.= {y eT/h(y) eN}. Montrons

que, pour y dans F&quot;, on a ty$ /#. Pour cela, notons n : fit-+N le revêtement et

définissons des applications continues / -*jt et t -&gt;Jt de IR dans /&apos; et J&apos; par les

égalités:

j, -exp(tY)h(y)exp(-tY)h(y)-\

n(Jt) =j, et Jo 1. On pose alors, pour 0

La courbe / -*w, est une courbe intégrale de f issue de yw car

Donc tyt è: t$. Et on a l&apos;égalité ty$ t$.
Comme la variété F&quot;\^est compacte, la fonction semi-continue inférieurement

w -* t$ admet un minorant a &gt; 0. On a forcément a -f oo. En procédant de même

avec - F, on prouve que f est complète. C&apos;est ce que Ton voulait.
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2.2 Groupes nilpotents connexes maximaux

Soit E un espace vectoriel de dimension «4-1, Gl(E) le groupe linéaire de E, Z
le sous-groupe des homothéties positives et Sl(E) {g e Gl(E)/det(g) 1}.

L&apos;application N-+N-&gt;=ZN est une bijection de l&apos;ensemble des sous-groupes
nilpotents connexes maximaux de Sl(E) dans Fensembles des sous-groupes nilpotents

connexes maximaux de Gl(E). La bijection inverse est donnée par N -+N
NnSl(E).

Deux sous-groupes Nx c Gl(EY) et N2 c Gl(E2) sont dits semblables si il existe

un isomorphisme de Ex sur E2 qui échange Nx et N2.
Soit N un sous-groupe de Gl(E). On dit que N est décomposable si on peut

écrire E EX@E2 avec ZTj et E2 non nuls et si N a Gl(Ex) x Gl(E2); on a alors

N N{ x N2 où Nt~ Gl(El )nN; en outre, TV est nilpotent connexe maximal si et
seulement Ni et N2 le sont. Sinon, on dit que N est indécomposable.

On pose, pour d ^ 1,

#5 {g e GliU^/lX &gt; 0, g - kld est strictement triangulaire inférieure}

et

Nj {g e (//(CO/BA e C*, g - AW est strictement triangulaire inférieure}.

Ce sont respectivement des sous-groupes nilpotents connexes maximaux de

et Gl(U2d).

LEMME. Soit N un sous-groupe nilpotent connexe maximal de Gl(E).
(a)// existe une unique décomposition £= ©i^^kEt te^e Que $

Nx x - - - x Nkoù Nt Gl(E,)nN est un sous-groupe nilpotent connexe maximal

et indécomposable de Gl(Et).
(b) Si N est indécomposable, il est semblable à N^ ou Nj pour un d ^ 1.

On dit que Nt est un facteur réel (resp. complexe) de N si Nt est semblable à ÏÏ*
(resp. #

DÉMONSTRATION, (a) Evident.

(b) Soit Ec E (X)R C. Décomposons 2sc en une somme directe Ec ® a ^«
indexée par les caractères de n de sorte que, en notant Ca le n-module de dimension
1 donné par le caractère a, l&apos;action de n sur E% ®c C_a est nilpotente. Comme n
est indécomposable, un seul caractère a apparaît. Le théorème d&apos;Engels et la
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maximalité de n permettent de conclure: si a est réel, N est semblable à N^ ; sinon

N est semblable à N^.d

NOTATIONS. Un élément g de Gl(E) est dit elliptique s&apos;il est semisimple à

valeurs propres de modules 1, hyperbolique s&apos;il est semisimple à valeurs propres
réelles positives, unipotent si g — Id est nilpotent. On note, pour N NnSl(E),

T={ge N/g est elliptique},

A ={g e N/g est hyperbolique}

et

U {g e N/g est unipotent}.

Les trois groupes T, A, U commutent; T et A sont commutatifs, mais U n&apos;est pas,
en général, commutatif. Les groupes A et U sont simplement connexes. Le groupe
T est compact, sa dimension est le nombre de facteurs complexes de N. On a

l&apos;égalité: N TAU.

2.3 Orbites des groupes nilpotents connexes maximaux

Gardons les notations de 2.2: E Mn+l et §&quot; {demi-droites de E}.

LEMME. Soit N un sous-groupe nilpotent connexe maximal de Sl(E).
(a) N a un nombre fini d&apos;orbites dans S&quot;.

(b) // existe un sous-groupe C ^ (Z/2Z)*1 du centralisateur de N dans Gl(E) qui
agit simplement transitivement sur l&apos;ensemble des orbites ouvertes de N dans

Sn (kx est le nombre de facteurs réels de N).
(c) Soit Q une orbite de N dans S&quot;. Le morphisme naturel nx(N)^&gt;nx(Q) est

surjectif. Si Q est ouverte, il est bijectif.
(d) Tout point x de Sn admet une base de voisinages ouverts O tels que, pour toute

N-orbite Q dans S&quot;, O nQ est connexe.

REMARQUES. - Le groupe CN est l&apos;adhérence de Zariski de N.

- L&apos;énoncé analogue à (d) est faux pour les orbites de N dans l&apos;espace projectif
KPW.

- L&apos;énoncé analogue à (a) est faux pour les sous-groupes abéliens connexes
maximaux de Sl(E). C&apos;est pourquoi, la classification des structures affines ou
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projectives sur le tore T3 (resp. Tn) n&apos;est pas plus simple que la classification des

variétés affines ou projectives compactes à holonomie nilpotente de dimension 3

(resp. ri).

DÉMONSTRATION. Cela résulte d&apos;une description explicite des orbites de N
dans S^: on peut écrire E=@Et de sorte que Nt&apos;&apos;=NnGl(EJ est nilpotent
connexe maximal et indécomposable. Les orbites de N dans Sw sont en bijection
avec les orbites de N dans E — {0}. Les orbites de N dans E sont les produits des

orbites de Nt dans Er On se ramène alors au cas indécomposable:
Si N ~ N%, il y a 2d AT-orbites dans Rd - {0}:

Ùf {(xl,...,xd)eMd/±xl&gt;0 et xt_ • • • xx 0},

pour 1 &lt; i &lt;, d\ et on a C {±Id}.
Si N c* N%, il y a d JV-orbites dans U2d - {0}:

Ql^{(zu...,zd)GCd/zl¥=0 et z,_x • • • z, =0},

pour 1 &lt; / &lt; d; et on a C {Id}.
Le lemme çst alors évident; pour (d), munir la sphère S^ de la métrique

standard et prendre pour O de petites boules centrées en x.

REMARQUES. - Lorsque W est affine, on peut choisir N dans Aff(Rn), car
un sous-groupe nilpotent connexe maximal de Aff(IRw) est encore maximal dans

Sl(n + 1, R). Dans ce cas, N agit sur W par des transformations affines.

- Il résulte de la description de ces TV-orbites que, pour un choix convenable de

la base de JR&quot; + 1, le groupe A des matrices diagonales à coefficients positifs laisse

stable chacune de ces orbites.

2.4 Octantisation des variétés projectives à holonomie nilpotente

Montrons que toute variété aflfne ou projective compacte W à holonomie
nilpotente est octantisable. Cela résulte du lemme 2.1, des remarques précédentes et

du lemme suivant.

LEMME. Soient W une variété affine ou projective et L un sous-groupe connexe
de G qui laisse stable chacune des orbites du groupe I dans X. Alors, on a l&apos;inclusion

Lczl.
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DÉMONSTRATION C&apos;est plus simple qu&apos;en 2 1 Tout élément Y de I induit
un champ de vecteurs sur X Notons £)?(Y) le relevé à W de ce champ de

vecteurs II suffit de montrer que f est complet car alors, le flot &lt;j&gt;t de f est dans /
Soit w dans W Par hypothèse, on peut trouver une application continue t -? it

de M dans / telle que itD(w) exp(tY)D(w) Relevons cette application en une
application continue t -? it de IR dans / telle que i0 1 Par construction, le chemin

t -+itw est une courbe intégrale de F Donc f est complet

Revenons à notre vanété affine ou projective compacte W a holonomie nilpo-
tente Soit L un sous-groupe connexe de / On note L le sous-groupe connexe de /
tel que h{£) =L Le but du chapitre suivant est de comprendre la décomposition de
W en £-orbites Trois cas nous intéressent L J, N ou / Le groupe L Ja
l&apos;avantage de ne pas dépendre de W Le groupe L N a l&apos;avantage d&apos;être bien
adapté à notre problème Le groupe L / a l&apos;avantage d&apos;être le plus gros et
d&apos;induire une décomposition canonique de W

EXEMPLE Soit W le tore affine W U2- {0}/(x y)~{2x2ix+y)) On a

et

Les A -orbites ouvertes sont des quarts de plan, les JV-orbites ouvertes sont des

demi-plans et / a une seule orbite le revêtement universel de M2 - {0}

REMARQUE Les implications F mlpotent =&gt; H nilpotent =&gt; W octantisable

ne sont pas des équivalences on peut construire des variétés affines compactes
octantisables dont le groupe d&apos;holonomie contient un groupe libre non commutatif
On peut aussi construire des variétés affines compactes à holonomie nilpotente
difféomorphes à T3 x Ig où Eg est une surface de genre g ^ 2

3. Variétés projectives octantisables

Le but de cette partie est de démontrer la proposition 2
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On étudie tout d&apos;abord le groupe des isomorphismes de ffî (§3.1) ainsi que
quelques propriétés des orbites du groupe / dans S&quot; (§3.2). On montre alors que la
restriction de la développante à l&apos;adhérence Ù d&apos;une /-orbite est un revêtement sur
son image (§3.3). Enfin, on identifie le quotient F0\â à une sous-variété compacte
à coins d&apos;un revêtement fini W de W (§3.4).

3.1 Le groupe Is{W)

LEMME. Soit W une variété affine ou projective.
(a) Les groupes K et I commutent et on a l&apos;égalité: Isf(ffî) K x Kq I.
(b) Si W est octantisable, le groupe Is((W) est un sous-groupe normal d&apos;indice

fini de Is{W).

REMARQUE. En particulier, le groupe r&apos;-=r nIsf(W) est d&apos;indice fini dans

r.

DÉMONSTRATION, (a) Le groupe des commutateurs [K, î] est inclus dans
K. Or / est connexe et K est discret, donc [K, î] 1.

Rappelons que K x Kq î est le quotient du groupe produit K x î par le

sous-groupe Ko ^ {(&amp;0, kol)/k0 e Â^}. K xKo/est un sous-groupe de Ist(W). Montrons

qu&apos;il lui est égal. Pour cela, soit y dans ÏSj{W)\ quitte à multiplier y par un
élément de /, on peut supposer que h{y) 1: y est alors dans K. C&apos;est ce que l&apos;on

voulait.
(b) II suffit de montrer que le groupe h(Is(W)) a un nombre fini de composantes

connexes. L&apos;algèbre de Lie t de / contient l&apos;algèbre de Lie de A. Donc t est égale à

son propre normalisateur et le groupe / est ouvert dans son normalisateur NG(I).
Ce dernier est un sous-groupe algébrique de G, il n&apos;a donc qu&apos;un nombre fini de

composantes connexes. Notre affirmation résulte alors des inclusions: / cz

h(Is(W))

3.2 Les orbites de I

LEMME. Soient I un sous-groupe connexe de Sl(n -h 1, R) contenant A et Q une

orbite ouverte de I dans Sn.

(a) Tout point x de S&quot; admet une base de voisinages O tel que O nQ est connexe.

(b) L&apos;application naturelle nx(I) -&gt;7r,(O) est surjective.
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DÉMONSTRATION, (a) L&apos;orbite Q est une composante connexe de l&apos;ouvert

de Zariski:

Z*={x e Sn/les vecteurs v et Yv, pour Y dans t, engendrent Rn + *}.

Soient Ht «= {jc (jcj xn +, e Sn/xl 0} et HtJ -&gt;= HtnHj. Comme / contient
A9 le fermé de Zariski &lt;p.= §n — Z est inclus dans la réunion des Ht. Donc à un
sous-ensemble de codimension supérieure ou égale à 2 près, 0 est une réunion de

certains des H,. Ce qui prouve notre affirmation.
(b) Soit dQ Q-Q et (el9... ,en+l) la base canonique de E Rn+l. Le

groupe nx(Q) est commutatif et est engendré par les lacets autour des sphères HtJ
de codimension 2 telles que HtJ n dQ est ouvert dans dQ. En effet, si HtJ et Hkl sont
deux telles sphères, les ensembles {i9j} et {k,l} sont disjoints.

Supposons par exemple que Hnn +, est ouvert dans dQ. Comme / préserve
^n,«+1&gt; l&apos;action de / sur l&apos;espace vectoriel de dimension 2 : F&apos;-=E/^eit ,en_o induit
un morphisme forcément surjectif

p :I^Sl(F) - G/^(F)/{homothetiesposmves}

Pour conclure, il suffit de montrer que p induit une surjection de te,(/) dans

Pour cela, on va construire une section a : Sl(F) -? /, c&apos;est à dire un morphisme
tel que p © a Id. Comme sl(2, M) est simple, le morphisme dp : t -? sICF) admet une
section do : sl(F) -? t. Celle-ci s&apos;intègre en un morphisme &lt;x : SÎ(F) -? / c ^/(J?).
Comme S7(2s) est algébrique, (î factorise en une application c : Sl(F) -? /. C&apos;est la
section cherchée.

3.3 La restriction de D à Vadhérence d&apos;une orbite

Ce paragraphe est consacré à la démonstration de la proposition 2 (i).
Commençons par le lemme:

LEMME. Soit W une variété affine ou projective octantisable et Q une orbite
ouverte de î dans W.

(a) Le groupe Ko agit proprement discontinument sur W.

(b) La développante induit par passage au quotient un difféomorphisme
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DÉMONSTRATION, (a) Plus généralement, pour toute variété projective, le

groupe K des transformations projectives à holonomie triviale agit proprement
discontinument sur la variété.

Il suffit de montrer que si kn est une suite d&apos;éléments de K et xn une suite de

points tels que lim^^ xn x et \imn^OC)knxn y, alors la suite kn est constante

pour n &gt; 0. Pour cela, on remarque que D(x) D(y) et on choisit des voisinages
ouverts Ox et Oy de x et y tels que la développante induise des bijections notées Dx
et Dy de ces ouverts Ox et Ov sur un même ouvert O de Sw. Pour n &gt; 0, xn est dans

Ox et yn est dans Oy, on a alors kn\Ox D~l oDx. Donc la suite kn est constante.

(b) Comme Q (resp. Q) est localement fermée dans Sw (resp. W), la topologie
induite par cette inclusion coïncide avec la topologie d&apos;espace homogène sous /.
L&apos;application développante D : Q -? Q est un difféomorphisme local équivariant
entre espaces homogènes, c&apos;est donc un revêtement.

Soit Gal{Q : Q) {difféomorphismes g de Q tels que D o g D} le groupe de

Galois du revêtement. On a le diagramme commutatif:

71,(1) ~U Ko

nx{Q) -^ Gal(Q : Q)

La flèche 2 est surjective d&apos;après 3.2.b. La flèche 4 est évidemment surjective. La
flèche 3 est injective car un élément de Ko qui a un point fixe dans W est l&apos;identité.

Donc #0 s&apos;identifie à Gal(Q : Q).

DÉMONSTRATION DE LA PROPOSITION 2 (i). On peut supposer Q

ouverte. Soient W&gt;= K0\lfr Gt Q&apos;=K0\Q. La développante D induit par passage au

quotient un homéomqrphisme local D : H^-»SW. On veut montrer que D est un
homéomorphisme de Ù sur son image.

Il suffit de montrer que, pour toute suite vn dans Ù et tout point v de Ù tels que
lim^oo D(vn) D(v)9 on a lim^^ vn v. Ceci montrera simultanément Finjectivité
de 25^ et la continuité de l&apos;application inverse. Quitte à remplacer les points vn par
des points proches, on peut supposer que vn est dans Q. Soit c D(v). Choisissons,

grâce à 3.2.a, des voisinages ouverts Ov de v dans W et Oc de c dans Sw tels que
QnOc est connexe et D\Ov est un homéomorphisme de Ov sur Oc. On va montrer
que, pour n &gt; 0, vn est dans Ovi ce qui prouvera que lim,^^,, v. Pour cela, soit
v&apos; un point auxiliaire dans QnOv. Soit n &gt; 0 de sorte que D{vn) est dans Oc. Les

points /5(i;&apos;) et D(vn) sont dans flnOt. Il existe alors un chemin continu dans

QnOc les rejoignant. On relève ce chemin en un chemin continu dans Q nOv qui



458 YVES BENOIST

relie le point vf à un point, noté v&apos;ny tel que D(p&apos;n) =Ô(vn). Le lemme 3.3 prouve
alors que vn ~v&apos;n. Donc vn est dans Ov.

3.4 Le groupe FQ

DÉMONSTRATION DE LA PROPOSITION 2 (ii). On peut supposer
h{F) c /. L&apos;ensemble F • Û est fermé dans JÎ^car, comme /contient A, tout compact
de ffî ne recontre qu&apos;un nombre fini de /-orbites. Donc l&apos;image de â dans la variété

compacte Wc* F\West fermée. D&apos;après le lemme ci-dessous, cette image s&apos;identifie

à l&apos;espace quotient F0\â qui est donc compact lorsque W est compacte.

LEMME. Soit W une variété affine ou projective octantisable. Soit y dans

et Q une orbite de îdans W. Les affirmations suivantes sont équivalentes&apos;.

(i)?e/
(ii) pour toute î-orbite Q&apos; dans W, on a y(Q&apos;) Q&apos;

(iii) y(Q)=Q
(iv)

DÉMONSTRATION, (i) =&gt; (ii) =&gt; (iii) =&gt; (iv): clair.

(iv) =&gt;(i): Quitte à multiplier _y par un élément de /, on peut supposer que
l. Soient v0 et w0 dans Û tels que yvo wo. On a D(v0) D(w0). La

proposition 2(i) prouve alors qu&apos;il existe k0 dans K$ tel que w0 kovo. Donc y k0

est dans /.

4. Variétés projectives à holonomie nilpotente

Soit W une variété affine ou projective à holonomie nilpotente. Cette partie est

un pot-pourri de diverses propriétés de W qui joueront un rôle dans la démonstration

des théorèmes 1 et 2 au chapitre 5. Soit N un sous-groupe nilpotent connexe
maximal de G qui rencontre H en sous-groupe d&apos;indice fini de //.

4.1 Le groupe

Comme en 3.1, on remarque que le groupe F&quot;*= F nIsN(ffî) est d&apos;indice fini
dans F et que l&apos;on a l&apos;égalité IsN(ffi) K x Kn N (lorsque N est simplement connexe,
cette égalité devient: IsN(W) ~K x N). La proposition et le lemme suivants sont
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analogues à la proposition 2 et au lemme 3.4. Ils se démontrent de la même façon
en remplaçant le lemme 3.2 par les points (c) et (d) du lemme 2.3.

PROPOSITION. Soient W une variété affine ou projective compacte à holonomie
nilpotente. On garde les notations ci-dessus. Soit Q une orbite de N dans W.

(i) La restriction de D à Vadhérence Û de Q est un revêtement sur son image, de

groupe de Galois KN.

(ii) La variété à coins FN\Û est compacte et s&apos;identifie, par la projection
naturelle, à une sous-variété à coins du revêtement fini W&quot;*=F&quot;\ffi de W.

LEMME. Avec ces notations. Soit y dans IsN(W). Les affirmations suivantes sont
équivalentes:

(i) yeN
(ii) y(O)=O
(iii)

4.2 La décomposition y xytyayuy

Gardons les notations de 4.1 et rappelons la décomposition N TAU de 2.2.

LEMME. // existe un sous-groupe d&apos;indice fini F&apos;&quot; de F et des morphismes de

groupes x, t, a et u de F&apos;&quot; dans K, f, A et Û tels que, pour tout y dans F&apos;&quot;, on a

y=ryîyayuy.

DÉMONSTRATION. Soit F&quot;&apos;-=F nIsN(W). Pour y dans F&quot;, on note ty, ay et

uy les composantes de h(y) sur T, A et U. Les groupes A et Û s&apos;identifient au groupes
A et U. Il suffit donc de construire un morphisme y i-+ ty de sorte que ty h(ty). Le

morphisme t s&apos;en déduira par la formule zY y(tyayuy)~l.
Remarquons que le morphisme t : r&quot;-&gt; T contient [F&quot;, F&quot;] dans son noyau. Le

groupe F&quot;I[F&quot;, F&quot;] est abélien et de type fini car W est compact. Donc il existe un

sous-groupe d&apos;indice fini F&apos;&quot; de T&quot; tel que F&apos;&quot;I{[F&quot;, F&quot;]r\F&apos;&quot;) est abélien libre. On
relève dans t l&apos;image d&apos;une base, ce qui fournit le morphisme t :rm-+f souhaité.

4.3 Où N agit transitivement sur W

DÉFINITION. Une structure affine ou projective sur un groupe de Lie connexe

No de dimension n est dite invariante à gauche si la multiplication à gauche par un

élément de No préserve la structure.
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On a une correspondance:

f structures projectives | J actions projectives de No |
(invariantes à gauche sur No) (sur Sw avec une orbite ouverte]

où Faction est donnée par l&apos;holonomie et où l&apos;orbite ouverte est l&apos;image de la
développante.

DÉFINITION. Une structure affine ou projective sur une nilvariétè Wo ^ F\N0
est dite invariante à gauche si, pour une identification convenable de WQ avec F\N09
ta relevée à Wo ~ No de cette structure est invariante à gauche.

Pour une telle structure, on peut choisir le groupe N de telle sorte que N agisse
transitivement sur Wo. Le lemme suivant est une sorte de réciproque.

LEMME. Soit W une structure affine ou projective compacte telle que F est

nilpotent. Soit N un sous-groupe nilpotent connexe maximal de G tel que
[H : H nN] &lt; oo. On suppose que N agit transitivement sur W. Alors W est une
nilvariétè munie d&apos;une structure invariante à gauche.

REMARQUE. Si on remplace l&apos;hypothèse &apos;T nilpotent&quot; par &quot;H nilpotent&quot;, la
conclusion du lemme n&apos;est valable que pour un revêtement fini de W.

EXEMPLE. La bouteille de Klein affine W U2 -
DÉMONSTRATION. Par hypothèse fî a une seule orbite dans W et la

développante D : W -* S&quot; est un revêtement sur son image Q. D&apos;après le lemme 2.3,
l&apos;application naturelle nx(N) -?7r,(O) est bijective, donc l&apos;action de fit sur W est

effective. Autrement dit, le groupe N est simplement connexe. Soit r&quot;.= rn
IsN(ffî). D&apos;après le lemme 4.1, on a l&apos;inclusion F&quot;czN. Il existe un unique

sous-groupe connexe No de N contenant T&quot; et tel que r&quot;\N0 est compact (voir [Ra]
chapitre 2). Bien sûr, No est nilpotent et simplement connexe.

Montrons que A^o agit simplement transitivement sur Ù W. En effet, comme
T&quot; agit proprement sur Ù et est cocompact dans A^o, No agit aussi proprement sur
Û et donc, pour tout w dans S, le stabilisateur de w dans No est trivial. D&apos;autre part,
comme r&quot;\û et r&quot;\N0 sont compacts, il résulte de l&apos;affirmation ci-dessous que

Donc No agit simplement transitivement sur
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Pour conclure, il suffit de montrer que F est inclus dans No Soient N{ F No
et K le stabilisateur dans Nx d&apos;un point w de W Le groupe K est fini et le groupe
Ni est une produit semi-direct de K par No Soit k un élément de K II existe un
élément n0 de NQ tel que y kn0 est dans F Soient n0 (rto)1 =&gt; (n0)2 =&gt; la suite
centrale descendante de n0 Les actions adjointes Ad A: et Ad y préservent cette
filtration et coïncident sur les sous-quotients (no)V(no)l+ Comme F est mlpotent,
Ad (y) est umpotent et Ad k aussi Or comme K est fini, Ad k est d&apos;ordre fini On
en déduit successivement que Ad k 1, k commute à No, l&apos;action de k sur Ù est

triviale et enfin k 1 Donc AT 1 et F c No Ceci termine la démonstration

AFFIRMATION (voir [Se]) Soit Fx un groupe discret sans torsion qui agit
proprement sur une variété (sans bord) contractile Y Notons cd(Fx) la dimension

cohomologique de Fx (si Fx est mlpotent et de type fini, c&apos;est le rang de Fx) Alors on
a Vinegalite

cd(Fx)

avec égalité si et seulement si Fx\ Y est compact

4 4 Un critère de complètude

Gardons les notations de 4 1

LEMME Soit W une variété projectwe compacte à holonomie nilpotente Si N a

une orbite compacte dans D( W) alors W est complète

REMARQUE II n&apos;y a que deux orbites compactes possibles pour N, les points
et les grandes cercles (c f 2 3)

DÉMONSTRATION (a) Montrons que, pour toute fi-orbite Q dans W, V

image D(Ù) est compacte Par hypothèse, c&apos;est vrai pour au moins une iV-orbite fermée

Qo D&apos;après la proposition 4 1, les groupes nilpotents de type fini FN et KN agissent

proprement sur Qo et les quotients KN\Q0 et FN\Q0 sont compacts L&apos;affirmation

4 3 appliquée au revêtement universel de Qo prouve que rg (FN) rg (KN) Ce rang
est égal a 0 ou 1 d&apos;après la remarque précédente

Si rg (FN) 0 La proposition 4 1 prouve que Ù est compact et D(ù) l&apos;est aussi
Si rg (FN) 1 II existe un sous-groupe fermé P (resp Q) de N isomorphe à IR

tel que [FN PnFN] &lt; oo (resp [KN QnKN] &lt; oo) Les groupes P et Q agissent

proprement sur Q et la proposition 4 1 prouve que le quotient P\Ù est compact En
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appliquant Fisomorphisme de Thom pour la cohomologie de Cechà support
compact (cf. [Iv] chap. 7) aux deux fibres Ô-&gt;P\Ô et Ô-+Q\Ô de fibres

isomorphes à M, on en déduit que

H°c(Q\â, R) ûî Hlc(â, R) a H°C(P\Q, R) - R.

C&apos;est à dire que (?\(I est compact. Donc /)((?) ^KN\Û est aussi compact.
(b) Munissons la sphère S&quot; de sa métrique standard. Pour montrer que D est

un revêtement, il suffit de vérifier la propriété suivante de relèvement des chemins:

pour tout chemin continu w : ]0, e] -* W tel que s &gt;=D o w : ]0, e] -&gt; Sw est un
segment de grand cercle paramétré par l&apos;arc, la limite lim,_^0 w(t) existe.

Pour cela, choisissons une orbite Q de N dans S&quot; et £ &gt; 0 tels que s(]0, s]) c Q

(cf. 2.3). Soit Q l&apos;orbite de N_ dans W telle que w(]0, e]) c Q. Comme D\â est un
revêtement sur son image D(Ù) qui est compacte, on peut trouver une suite en qui
tend vers 0 telle que w(sn) converges vers un point w0 de Q. Mais alors,

lim^o w(t) w0. C&apos;est ce que l&apos;on voulait.

4.5 Où Vholonomie est unipotente

On identifie, pour — 1 &lt;&gt;p &lt;&gt; n — 1, la sphère S^ à la partie de §w définie par
l&apos;annulation des n — p premières coordonnées ainsi S~l 0!

LEMME. Soit W une variété projective compacte à holonomie dans le groupe
N JV]J+ j des matrices unipotentes triangulaires inférieures. Soit p la dimension

minimale des orbites de N dans D(W).
- Si p ^ n — 2, la développante D identifie W avec Sn — S&apos;&apos; ~ l.

- Si p « — 1, D identifie W au revêtement universel de Sw — S&quot; &quot;~2.

- Si p n, D identifie W à une composante connexe de Sn — §w~ *.

REMARQUES. Dans ce dernier cas W est affine complète. Ce lemme permet
donc de retrouver le résultat suivant de [F-G-H]: &quot;Toute variété affine compacte à

holonomie unipotente est complète&quot;.

- Il existe des structures projectives sur T2 pour lesquelles la développante D
n&apos;est pas un revêtement sur son image ([S-T] et [Go]).

DÉMONSTRATION. Le cas p=« est évident. Supposons p^n-\. Les

orbites de N dans Sw sont données, en coordonnées homogènes par

Q* «{R* •(*„...,*B+,)/±x,&gt;0 et *,._, ••. *,=()},
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pour 1 £ i ^ n + 1. Elles sont contractiles, il résulte donc de 4.1 et de l&apos;affirmation

4.3 que FNt=F nfî est de rang égal à p.
L&apos;une des deux iV-orbites de dimension p, par exemple Q £?+_,,, est dans

D{W). Soit Q&apos; Qn-p et O S&quot; - Q&apos; le plus petit voisinage ouvert iV-invariant de
Q. Soit Q une orbite de N dans W telle que Z)(D) Q et soit (5 le plus petit
voisinage ouvert ^-invariant de d. La développante D induit un difféomorphisme
de Ô sur O. On ne peut pas avoir ffî Ô car (5 est difféomorphe à Un et rg (F) &lt; n.

Il existe donc une ^-orbite fermée Q&apos; dans (5 telle que D(Û&apos;) G&apos;. Soit Ô&apos; le plus
petit voisinage ouvert iV-invariant de Q&apos;. La développante D induit un difféomorphisme

de Ô&apos; sur O&apos;t=Sn-Q.

Si p ^ « — 2, O n O&apos; est connexe. Donc i) induit un difféomorphisme de ô u (5&apos;

sur OuO/ Sw-S/&apos;~1. Par suite, &lt;5u&lt;5&apos; est fermé dans W et W~OkjO&apos;

Si pa»-l, O r\O&apos; a deux composantes connexes. Le même raisonnement

permet d&apos;identifier ^ à un ouvert du revêtement universel de Sw - Sw ~ 2 réunion
d&apos;ouverts Ôt que la développante identifie à O ou à O&apos;. En particulier, on peut
ranger les orbites de N en une suite Qt indexée par un intervalle / de Z telle que Qt

est ouverte pour / pair et fermée pour / impair et Q2l±\&lt;^ Ù2i. La variété W est

difféomorphe à Mn, donc rg (F) n et F # FN. Il existe alors un élément y de F qui
ne laisse stable aucune ^-orbite. Ceci n&apos;est possible qui si / Z. Donc W s&apos;identifie

au revêtement universel de S&quot; — Sn~2. Ce qui termine la démonstration.

5. Nilvariétés projectives

Le but de cette partie est de démontrer les théorèmes 1 et 2.
Soit W Wo~ F\N0 une nilvariété projective de dimension n £ 2. On montre

que, si le centre de No est de dimension 1, le morphisme d&apos;holonomie est injectif
(§5.1).

En particulier, les nilvariétés construites dans [Be] n&apos;ont pas de structures
projectives (§5.2).

On suppose maintenant n0 filiforme. Les idées précédentes permettent de

montrer que l&apos;holonomie est unipotente, c&apos;est à dire que l&apos;on peut prendre
N N*+,. L&apos;espace vectoriel £*= IR&quot;*

&apos;

a alors une structure de n0-module fidèle

nilpotent. En outre, le module gradué È qui lui est naturellement associé est &quot;fil&quot;.

Une propriété des modules &quot;fils&quot; démontrée en appendice (le corollaire A.2) permet
de conclure que N a une seule orbite dans W et donc que notre structure projective
est invariante à gauche (§5.3).

Cette démarche est justifiée par l&apos;exemple suivant: il existe des structures
projectives à holonomie unipotente sur les nilvariétés de Heisenberg de dimension
5 qui ne sont pas invariantes à gauche (§5.4).
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5.1 Injectivitè de Vholonomie

LEMME. Soit Wo F\N0 une nilvariété projective de dimension n ^ 2 telle que
le centre Z de No est de dimension 1. Alors Vholonomie h : F -?Sr/±(w + 1, U) est

injective,

REMARQUE. L&apos;holonomie du tore de Hopf C*/Z~2z n&apos;est pas injective.

DÉMONSTRATION. Supposons par l&apos;absurde que h n&apos;est pas injective et

reprenons les notations du chapitre 4 avec W=W0. Comme F est sans torsion,
F nKer (h) est infini et on peut remplacer F par un sous-groupe d&apos;indice fini. On
peut donc supposer (lemme 4.2) que h{F) est inclus dans N TAU et qu&apos;il existe
des morphismes de groupes t, t, a et u de F dans AT, f, A et 0 tels que, pour tout
y dans f, on a y x7tyayUy.

Notons Zri=Znf le centre de F; c&apos;est un sous-groupe isomorphe à Z ([Ra]
proposition 2.17). Donc, pour tout sous-groupe distingué J ^ 1 de F le sous-groupe
Zj*=ZnJ est d&apos;indice fini dans Zr. Pour montrer que h est injectif, il suffit de

montrer que u est injectif. Pour cela, il suffit de voir que t, t et a ne sont pas
injectifs. Pour Tet a, c&apos;est évident car f et A sont commutatifs.

Supposons donc par l&apos;absurde que t est injectif. Les groupes FN FnN
{y/xyeKN} et KN KnN Knf sont alors des groupes abéliens de type fini
dont les rangs vérifient l&apos;inégalité rg (FN) &lt;&gt; rg (KN).

Soit Q une orbite fermée de $ dans W. La proposition 4.1 prouve que FN agit
proprement sur Q avec un quotient FN\Q compact. Or le groupe KN agit proprement

sur Q. Il résulte alors de l&apos;affirmation&apos; 4.3 que rg(r^) =rg(^) et que
l&apos;espace quotient KN\Q est compact. On en déduit que la iV-orbite F =D(Q) est

compacte. Le lemme 4.4 prouve alors que W est complète. Contradiction avec

REMARQUE. Cette démonstration prouve aussi que, sous les hypothèses du
lemme, le groupe d&apos;holonomie h(F) est discret.

5.2 Une nilvariété non projective

PROPOSITION. Soit Wo ^ F\N0 une nilvariété de dimension n telle que n0 a un

centre de dimension 1 et n^n&apos;a pas de représentations linéaires fidèles de dimension

n + 1. Alors Wo n&apos;a pas de structures projectives.

REMARQUE. La construction de telles nilvariétés est l&apos;objet de [Be]. Le
théorème 2 est donc une conséquence de cette proposition.



Nilvariétés projectives 465

DÉMONSTRATION. Procédons par l&apos;absurde et gardons les notations de 5.1.

On peut supposer h(F) a N TAU. D&apos;après le lemme 5.1, le morphisme u : F -+U
est injectif. D&apos;après [Ra], il se prolonge en un morphisme continu û:N0-+U.
Comme No n&apos;a pas de représentations fidèles, û n&apos;est pas injectif. Son noyau Ker û

est un sous-groupe distingué connexe de No, il contient donc le centre Z de No et
aussi F nZ ~ Z. Ceci contredit l&apos;injectivité de u.

5.3 Structures projectives sur les nilvariétés filiformes

DÉMONSTRATION DU THÉORÈME 1. Soit W=W0~ r\N0 une nilvariété
filiforme munie d&apos;une structure affine ou projective. On veut montrer que cette

structure est invariante à gauche. Reprenons les notations précédentes.
Il suffit de montrer que N a une seule orbite dans ffî. En effet, le lemme 4.3

prouve alors que W est isomorphe à une nilvariété projective invariante à gauche
Wq ~ F\N&apos;O. On conclut en remarquant que les groupes No et N&apos;o sont isomorphes
car ils contiennent des réseaux isomorphes.

Supposons donc, par l&apos;absurde, que N a plusieurs orbites dans ffî. On peut
supposer que le groupe d&apos;holonomie H est inclus dans N. Le lemme 5.1 prouve que
le morphisme d&apos;holonomie h : F -&gt;N est injectif. Comme le (n — \)ème terme de la
suite centrale descendante de F est non trivial, il en est de même de celui de N. La
classification des sous-groupes nilpotents connexes maximaux de Sl(n + 1, R) donnée

en 2.2 ne laisse que deux possibilités:

1 0

1

ou

a

*

0

0

a

0

0

Ô

a~n

avec a &gt; 0

Dans ces deux cas, le groupe N est simplement connexe et # s&apos;identifie à N. Le

morphisme h : F -*Nsç prolonge en un morphisme fi : No-+N ([Ra] chapitre 2). De

cette façon, l&apos;espace £:=IRW+1 est un n0-module. On note (el9..., en+ x) la base

canonique de E.

Soit p la dimension minimale des orbites de Ê dans W. On a p ^ n — 1, par
hypothèse, et p ^ 1 d&apos;après le lemme 4.4. Comme ces orbites sont contractiles (voir
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2.3), la proposition 4.1 et l&apos;affirmation 4.3 donnent l&apos;égalité rg(FN) =p. Donc
[F : FN] oo et il existe une infinité de N-orbites dans ffî (lemme 4.1).

Soit P le plus petit sous-groupe connexe de No qui contient FN. C&apos;est un groupe
de dimension p tel que FN\P est compact. Comme FN est distingué dans F, P est

distingué dans No. Soit Z un élément non nul du centre de n0. L&apos;élément Z est dans

P-

D&apos;autre part, le groupe P agit proprement sur ffî via h : No -&gt; N en N), car FN
agit proprement sur ffi. En particulier, chaque élément non nul de p induit (via la
différentielle dh : n0 -&gt; n) un champ de vecteurs sur S&quot; qui ne s&apos;annule pas sur Vouvert

PREMIER CAS. N ^ N® x R*
Soit ((rto)&apos;, i ^ 1) la filtration centrale descendante de n0. Comme Z est dans

~ &apos;, on a, avec a # 0:

Zé»j a^rt et Ze, 0 pour i ^ 2.

Comme le champ de vecteurs sur S&quot; induit par Z ne s&apos;annule pas sur D{\fr)r cet

ouvert D(^) est inclus dans l&apos;une des deux composantes connexes X&apos; de S&quot; — SM ~ *.

Par exemple X&apos; {U% (xl,..., xn +, )jxx &gt; 0}. L&apos;ouvert Z&apos; contient exactement trois
iV-orbites Q+ Qo et D_ défines respectivement par les conditions: xn +, &gt; 0, xn +, 0

et atw + 1&lt;0. On montre alors comme en 4.5 que la développante D induit un
difféomorphisme de W sur X&apos;. Donc iV n&apos;a que trois orbites dans W. Contradiction.

DEUXIÈME CAS. N a N*+,.
L&apos;holonomie est unipotente. Comme JV a une infinité d&apos;orbites dans W le lemme

4.5 assure que p n — 1 et que ^ s&apos;identifie, via la développante, au revêtement
universel de Sw — Sw~2. L&apos;algèbre de Lie p est un idéal de codimension 1 de n0, elle

contient donc [%, n0].

On pose El.= E, ElJhl^noEl &apos;pour i 2&gt; 1, Ê^=El\El^x et Ê-= ®ti:lËt.
L&apos;espace vectoriel Ê est un n^ -module gradué, où n0 est l&apos;algèbre de Lie filiforme
graduée associée à la filtration centrale descendante de ïXq (voir A.l). Montrons tout
d&apos;abord le lemme:

LEMME. Ê est un n^-module gradué fil fidèle de dimension n -f-1.

DÉMONSTRATION. L&apos;élément Z est dans (no)w~ &apos;. On peut donc écrire, avec

a, p, y dans R:

t et Ze2**yeH+t.
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Comme Z est dans p, il n&apos;a pas de zéros dans S* — Sw ~2. Donc a ^ 0 et y # 0. Ceci
n&apos;est possible que si, pour 1 ^ i ^ n + 1, dim Ët — \. Donc £ est un module fil.
L&apos;inégalité a # 0 prouve aussi que l&apos;action induite par Z dans Ë est non nulle et

donc que Ë est un n0-module fidèle. Ce qui prouve le lemme.

Terminons la démonstration du théorème 1 dans ce dernier cas. Soit Y un
élément de (nQ)n~2 qui n&apos;est pas colinéaire à Z. Le corollaire A.2 prouve que, d&apos;une

part, n est pair supérieur ou égal à 4 et, en particular Y est dans p, et que, d&apos;autre

part, on a l&apos;égalité Ye2 Àen + l avec X dans IR. Quitte à remplacer Y par Y — (À/y)Z,
on peut supposer que Ye2 0: le champ de vecteurs induit par Y s&apos;annule sur
S&quot; — S&quot; ~2. Cette contradiction termine la démonstration du théorème 1.

5.4 La nilvarièîé de Heisenberg de dimension 5

Une nilvariété de Heisenberg est une nilvariété Wo ~ F\N0 telle que l&apos;algèbre de

Lie n0 est une algèbre de Heisenberg de dimension 2k + 1 : elle admet une base

Xx,.. Xk9 Yl9. Yk, Z avec, pour seuls crochets non nuls, [Xn Yt] Z lorsque
i &lt;; i &lt;&gt; k.

L&apos;exemple suivant prouve qu&apos;il existe des nilvariétés F\NQ telles que AT0 a un
centre de dimension 1 qui ne satisfont pas la conclusion du théorème 1.

EXEMPLE. // existe, sur les nilvariétés de Heisenberg de dimension 5, des

structures projectives à holonomie unipotente qui ne sont pas invariantes à gauche.

Rappelons que le groupe N% {matrices 6x6 unipotentes triangulaires
inférieures} agit sur la sphère S5 ^ IR6 — {0}/R!^ en préservant la sphère S3 *=

{R^jcj, x6)/xl jc2 O}. Pour construire notre exemple, nous utiliserons le

lemme:

LEMME. // existe une sous-algèbre de Lie n0 de nj* isomorphe à l&apos;algèbre de

Heisenberg de dimension 5 et un idéal q de n0 de dimension 4 tels que

(i) L&apos;action sur S5 — S3 du groupe correspondant Q est propre.
(ii) Le centralisateur de n0 dans sï(6, M) est inclus dans n&quot;.

CONSTRUCTION DE L&apos;EXEMPLE. Prenons un réseau T, de No tel que
rN.=zrxniQ est un réseau de Q Remarquons que F,/Fo est isomorphe à Z et notons

y *-&gt;nyun morphisme de F, dans Z dont le noyau est FN. Notons t un générateur
du nx de S5 — S3. Comme N* est simplement connexe, il agit aussi sur la variété
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projective S5 — S3 revêtement universel de S5 — S3. Soit

r := {ytny g Is(§5~S3)/y e F,}.

Le quotient W0&apos;&gt;=F\(§5 - S3) est une nilvariété de Heisenberg munie d&apos;une

structure projective qui n&apos;est isomorphe à aucune structure projective invariante à

gauche.
En effet, sinon il existerait un sous-groupe de Lie nilpotent connexe N&apos;o de

Is(S5 — S3) qui contiendrait F et agirait simplement transitivement sur S5 —S3.
L&apos;adhérence de Zariski de son image h(N&apos;Q) contiendrait No et serait donc unipo-
tente d&apos;après (ii). On aurait alors h(N&apos;o) =Noc:Nt. Mais le groupe N® n&apos;agit pas
transitivement sur S5 — S3. Contradiction.

DÉMONSTRATION DU LEMME. Prenons

0

0

—c

-d
e

b-c

0
0

a
b

b + c

e

0

0

0

0

a
c

0

0

0

0

b

d

0

0

0
0

0

0

0
0

0

0
0

0

/(a, b, c, d, e) e IR5

et q {Yeno/tf =*/}. On vérifie aisément que n0 est isomorphe à l&apos;algèbre de

Heisenberg, que son centralisateur dans sl(6, IR) est inclus dans n^ et que q est un
idéal de rv

Vérifions la propriété (i). Pour cela, notons encore (el9..., e6) la base canonique

de E*=U6 et E3 le sous-espace vectoriel engendré par (e39..., e6). Le couple
(n0, q) a été choisi de sorte que le fait suivant, dont la vérification est un calcul
laissé au lecteur, soit vrai:

FAIT. Pour tout élément non nul Y de q, le noyau Ker (Y) est inclus dans E3.

Pour (jc, y) dans M2 — {0}, on pose F(xy) -=xel +ye2 + E3. Ce sont des espaces
affines stables par Q. Le fait précédent prouve que les orbites de Q dans E — E3

sont de dimension 4. Ce sont donc les espaces F{x&gt;y). Donc l&apos;application

Q x(R2-{0}) -*E-E3
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est un difféomorphisme. On en déduit que Q agit proprement sur S5 - S3. Ce qui
termine la démonstration du lemme.

Appendice: Modules fils sur les algèbres de Lie filiformes

Le but de cet appendice est de décrire les modules gradués fils sur les algèbres
de Lie filiformes graduées engendrées par leurs éléments de degré 1. Cet appendice
complète le §3.4 de [Be] et sera appliqué en 5.3 à l&apos;algèbre de Lie n0.

AA Algèbres de Lie filiformes

Soient n une algèbre de Lie nilpotente de dimension n sur un corps K de

caractéristique 0 et n1 la suite centrale descendante: nl*=n et nl4&quot;1î=[n1, n% pour
/ ^ 1. Soient nt*=rï/nt + l et n-— ©,^oS,: c&apos;est une algèbre de Lie graduée sur
N* {1,2,...}; elle est engendrée par ses éléments de degré 1. Soit /„ «=

sup {i/nl ^ 0} la longueur de la suite centrale descendante. On a bien sûr /„ ^ n — 1.

DÉFINITION. ([Ve]) n est dite filiforme si n ï&gt; 3 et si /„ n - 1.

On a alors, pour i 2,. n, codim (n&apos;) i.

L&apos;algèbre de Lie n est filiforme si et seulement si n est filiforme.

EXEMPLES. Soit frt l&apos;algèbre de Lie graduée de base T, X Xu Xn_l9
avec n ^ 3 telle que d°T d°X 1 et

[*,,*;] =0 pour*&apos;j;&gt;l

- Soit Q2q l&apos;algèbre de Lie graduée de base T, X Xï9..., Xlq_2, Y2q-U avec

q :&gt; 3 telle que d°T d°X=\ et

[T9X2q_2] =0
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LEMME ([Ve]). Toute algèbre de Lie filiforme graduée engendrée par ses
éléments de degré 1 est isomorphe à frt pour n ^ 3 ou à Q2q pour q ^ 3.

A 2 Modules gradués fils

Soit n une algèbre de Lie filiforme. Un n-module gradué F= ® /eZ Vl est dit
fil si, pour tout /, dim K, ^ 1; il est dit indécomposable s&apos;il n&apos;est pas somme directe
de deux sous-modules gradués non nuls. Pour décrire les n-modules fils, il suffit de
décrire ceux qui sont indécomposables et fidèles, car un \n -module (resp. gn-module)

qui n&apos;est pas fidèle est un \n _, -module.
Soit donc V un n-module gradué fil indécomposable et fidèle de dimension p, et

vl9... ,vp une base homogène de V telle que d°vl i. Pour définir le module F, il
suffit de se donner les éléments Ât e Pl*=Ku{ao}, pour / 1,...,/? — 1, tels que
Xvt XtTvt (lorsque A, oo, cette égalité doit se lire: Tv, — 0); en effet, comme F est

indécomposable, la famille Tvt, Xvt engendre Fl+1.
Lorsque n f,,, ces modules sont classifiés dans le §3.4 de [Be].
Lorsque n g24/» v°ici la classification.

PROPOSITION. Soient q &gt; 3 et V un Q2(,-module gradué fil indécomposable et
fidèle, alors V est un des modules du tableau ci-dessous.

Dans ce tableau, le diagramme associé à chaque module est construit de la façon
suivante: un arc /^*^ relie les ieme et (i -h l)eme points si et seulement si Tvt ^ 0; un
arc en pointillé signifie que Tv, peut être nul ou non nul. Et de même pour les arcs

^-^ avec Xvt.

NOM DEFINITION PARAMETRE DIAGRAMME DIM

AI* 2q
2q

(2q-2)a6%,l 2q-1 2q

Clq
{2q~2)a6x,2q-i

1 2
2q

À, OOÔtt2 + 1 2 2q 2q+1
2g+ 1

fl2ç-MODULES FILS FIDELES INDECX)MP()SABLES

COROLLAIRE. Soient n= ®&quot;~\ n, une algèbre de Lie filiforme graduée de

dimension n engendrée par ses éléments de degré 1 et V= ® ?** V, un n-module

gradué fil fidèle de dimension «4-1. Alors n est pair et nn_2V2 0.
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DÉMONSTRATION DU COROLLAIRE. Si n fM, la proposition 3.4 de [Be]

prouve que n est pair et que V est un module, appelé D&quot;$l, qui a pour diagramme

n n+1

On a alors Xn _ 2 V2 (ad T)n ~ \X) V2 0.

Si n 2q ^ 6 et n %2q&gt; Ie lemme prouve que V est le module D2q + l qui a pour
diagramme

1 2 2q 2q+1

On a encore Zw _ 2 F2 0.

DÉMONSTRATION DE LA PROPOSITION. On suit celle de la proposition
3.4 de [Be]. On a bien sûr /?:=dim (V) £ 2q. On choisit pi dans K - {0} tel que,

pour tout i 1,..., p — 1, [i # 1/A,, on pose T T — \iX et on choisit la base vt de

sorte que T&apos;vt vl+l. On a alors Xv, A&apos;,vl

+ l où k\ kj(\ — juA,). On a les

relations:

£&apos; : [Xx, Xr_l]vl 0, pour r 3,..., 2q — 2 et i 1,... ,p — r

F^~l :[T,X2q-2]Vi=0&gt; P°ur &apos; l,...,p-2q + l.

Ces relations se réécrivent:

(a) Montrons qu&apos;il existe au moins un X\ nul. Sinon, soit /z^ 1/AJ, l&apos;équation

£&quot;? s&apos;écrit /x^ +/iJ/+2== 2/iî+i. Les /ij sont en progression arithmétique: on peut
trouver a, /? dans K tels que, pour tout /, \i\ ai H- jS. Posons wf AJ • • -^_,»,. On
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calcule alors

Xwt wt +, puis

XjW^U-W-^+j et

[T, X2q_2]w^(2q -2)\oc2q-2w2q.

Ceci contredit l&apos;égalité F\q-X.
(b) Montrons que parmi deux X\ consécutifs, il y en a au moins un qui est nul.

Sinon, grâce à (a), on pourrait remplacer V ou son dual par un sous-quotient de

dimension 4 tel que k\X&apos;2±§ et A3 0. Mais alors l&apos;équation É\ s&apos;écrit X\X2 0.

Contradiction.
(c) Montrons que sur 2q — 1 valeurs X\ consécutives, au moins deux sont non

nulles. Sinon on pourrait remplacer V par un sous-quotient de dimension 2q tel que
X\ • • • X\_, 0, X] # 0, X&apos;l+ • • • X2q_ 0, avec 1 &lt; / &lt; 2q - 1. Mais alors
l&apos;équation F2q~x s&apos;écrit X\ 0. Contradiction.

(d) On peut donc trouver r, s &gt; 1 tels que X&apos;r # 0, A^+ ••• X&apos;r

+ S _, 0,

A^ + 5 ^ 0. Montrons que s 2# - 3 ou 2q—2. D&apos;après (c), on a 5 ^ 2^ - 2. Si

s ^ 2^ — 4, on pourrait remplacer F ou son dual par un sous-quotient de dimension
s + 3 tel que X\ ï 0, X2 • • • X&apos;s 0, A;+, # 0, A; + 2. Mais alors l&apos;équation ^ + 2

s&apos;écrit A&apos;,&gt;1^+1 =0. Contradiction.
Il résulte de cette discussion que les entiers r et s ne dépendent que de V et qu&apos;on

est dans un des quatre cas suivants:

(i) (s 2q - 2, r 1, p 2#). L&apos;équation F\q- l s&apos;écrit 2, -X2q_ x # 0. Le
module F est de type A.

(ii) (s 2q - 3, r 1, /&gt; 2q). L&apos;équation F\q~l s&apos;écrit Xx

(2q - 3)X2q_ j ^ 0. Le module V est de type B.

(iii) (5 2q - 3, r 2, /? 2g). L&apos;équation Ff* &quot;x
s&apos;écrit A2&lt;7_ (2q - 3)A2 # 0.

Le module V est de type C.

(iv) (s=2q-3,r 2,p=2q+ 1). Les équations F\q~l et F22q~l s&apos;écrit

A2&lt;?_ j (2# — 3)A2 et X2 (2g — 3)A2&lt;7_,. Donc X2 X2q_x co.Le module
V est de type D.

Ceci termine la démonstration de la proposition.
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