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Nilvariétés projectives

YVES BENOIST

1. Introduction

1.1 Une variété affine est une variété C* munie d’un atlas maximal de cartes a
valeurs dans ’espace R"” et dont les changements de cartes sont localement des
éléments du groupe G := Aff (R") des transformations affines de X :=R".

On définit de la méme fagon les variétés projectives a I’aide de I’espace

X:=S" = {demi-droites de R"*'} sur lequel agit naturellement le groupe

G:=SI*(n + 1, R) des matrices de déterminant +1.

Toute variété affine a une structure projective naturelle obtenue en identifiant R”
a un hémisphére de S”.

La donnée d’une structure affine ou projective sur une variété C* connexe W
équivaut a la donnée d’un difféomorphisme local D du revétement universel W de
W dans ’espace X, appelé développante, tel qu’il existe un morphisme du groupe
fondamental I' :=n,(W) dans G, appelé holonomie, avec, pour w dans W et y dans
I', D(yw) = h(y)D(w). Si g est un élément de G, les développantes D et g - D sont
considérées comme équivalentes. Nous supposerons désormais W connexe.

On dit que W est compléte si D est un revétement sur X.

On dit que W est 4 holonomie nilpotente si le groupe d’holonomie H :=h(I') est
un groupe nilpotent; c’est toujours le cas lorsque I" est un groupe nilpotent.

On note Is(W) le groupe (de Lie) des transformations affines ou projectives de
W. Par définition, une transformation ¢ de W est dans Is(W) si il existe un élément
de G, que I’on note encore A(¢), tel que D o ¢ = h(¢) - D. On note [ la composante
connexe de Is(W), K:={¢ € Is(W)/h(¢) =1}, Ky:=K T et I'=h(T) ~I/K,.

Soit 4 le sous-groupe de G formé des matrices diagonales de G a coefficients
positifs. On appelle octants, les orbites de 4 dans X.

Nous dirons que W est octantisable si, pour un choix convenable de la base de
R*+! on a 4 c I. Plus généralement, nous dirons que W est quasi-homogéne si le
groupe Is(W) a une orbite ouverte dans W.
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1.2 On appelle nilvariété une variété compacte difftomorphe au quotient d’un
groupe de Lie nilpotent simplement connexe N, par un sous-groupe discret I'.

Le but de ce papier est I’étude des structures affines ou projectives sur une
nilvariété W, ~ I'\N, de dimension n. Le cas du tore T2 est dii & Nagano et Yagi
(IN-Y)) et a Goldman ([Go]). Bien sir, la nilvariété est 4 holonomie nilpotente. Le
point de départ est la proposition suivante.

PROPOSITION 1. Toute variété affine ou projective compacte a holonomie
nilpotente est octantisable.

PROPOSITION 2. Soient W une variété affine ou projective octantisable et Q une
orbite de I dans W. ~
(i) La restriction de D a I’adhérence Q de Q est un revétement sur son image, de
groupe de Galois K,,.
(ii) Soient I'':=I' "K.T et I'y:=I 1. La variété a coins Fo\é s’identifie, par la
projection naturelle, a une sous-variété fermée a coins du revétement fini
W’:=I"\W de W. En particulier, si W est compacte, I’ 0\5 Iest aussi.

REMARQUES. (1) Les quotients I’ 0\5 sont, heuristiquement, les ‘“briques”
qui servent a construire W. Méme lorsque W est connexe, ces ‘“‘briques” ne sont
pas, en général, deux a deux difféomorphes.

(2) Le cas particulier des variétés a holonomie diagonale a été étudié par J.
Smillie ([Sm]). Dans ce cas, les “briques’ sont associées a des ““éventails simpliciaux
complets”.

(3) Pour des résultats antérieurs sur les variétés affines 4 holonomie nilpotente,
voir [F-G-H], [G-H1] §2.10 et [G-H2] proposition N.

1.3 Une nilvariété W, de dimension n est dite filiforme (ou de classe maximale)
si le (n — 1) terme de la suite centrale descendante de N, est non trivial et si
n 2 3. Par exemple, les nilvariétés de Heisenberg de dimension 3 sont filiformes.

THEOREME 1. Toute structure affine ou projective sur une nilvariété filiforme
est invariante a gauche.

Ceci signifie que, pour une identification convenable W, ~ I'\N,, la multiplica-
tion a gauche sur N, préserve la relevée a W, ~ N, de cette structure.

Un tel énoncé serait faux pour le tore T2 (c.f. [N-Y]) ou pour les nilvariétés de
Heisenberg de dimension 5 (c.f. §5.5).
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THEOREME 2. Il existe des nilvariétés qui n’admettent aucune structure projec-
tive.

Ce théoréme précise et utilise les résultats de [Be] ou nous montrions que
certaines nilvariétés n’admettent pas de structures affines complétes.

1.4 Les propositions 1 et 2 permettent aussi de classifier les structures affines ou
projectives sur le tore T°.

Elles permettent aussi de décrire les variétés compactes de dimension n < 4 qui
admettent une structure projective 3 holonomie nilpotente: ce sont, a revétement
fini prés, les nilvariétés, les sphéres S, les produits S' x S"~'et S' x S' x Z, ol
2, est une surface de genre g = 2.

Ces résultats feront I’objet d’un autre article.

1.5 Notations: Si V est une variété, on note ¥ son revétement universel. Si L est
un groupe de Lie, on note L, sa composante connexe et | = Lie(L) son algeébre de
Lie. Si A est une partie de V, et B une partie de 4, on note A ’'adhérence de A4 et
A — B le complémentaire de B dans A.

En outre, on utilisera librement dans tout cet article les notations introduites
ci-dessus: X, G, D, I',h, H, I, K, I, Ky, Ty, 4,.... Si L est un sous-groupe connexe
de I, on notera Is,(W):={¢ € Is(W)/h(¢) e L}, L la composante connexe de
Is,(W), K, =KnLetI',:=InL.

Je remercie Y. Carriére, D. Fried et J. Smillie pour d’intéressantes discussions
sur ce sujet.

2. Variétés projectives a holonomie nilpotente

Le but de cette partie est de démontrer la proposition 1.

Soit W une variété affine ou projective compacte a holonomie nilpotente. On
choisit un sous-groupe nilpotent connexe maximal N de G tel que [H : H N N] < 0.
C’est possible: il suffit que N contienne la composante connexe de I'adhérence de
Zariski de H.

On montre que P'action de N sur X se reléve en une action de N sur W (§2.1).
Deux paragraphes (§2.2 et 2.3) sont alors consacreés a la description des groupes N
et de leurs orbites dans X. On montre alors que W est octantisable (§2.4).
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2.1 L’action de N sur W

Le lemme suivant est crucial. I généralise une idée de [N-Y].

LEMME. On suppose W compacte et a holonomie nilpotente. Alors, on a
Pinclusion N c I.

DEMONSTRATION. Montrons par récurrence que, pour tout sous-groupe
distingué connexe J de N, I'action de J sur X se reléve en une action de J sur W.
Soient J' < J un sous-groupe distingué connexe de N et Y dans j tels que
i=RY®7j. Notons exp : n— N et éxp : n— N les applications exponentielles. L’él¢-
ment Y induit un champ de vecteurs sur X que ’on reléve en un champ de vecteurs
¥:=D*(Y) sur W. 1l suffit de montrer que ¥ est complet. Car alors, si ¢, désigne
le flot de ¥, I'action de J sur W sera donnée par I’égalité, pour j dans J”,

(Ep(Y) )W = b, (jiw).

Pour W dans W, on note t; >0 le temps pendant lequel on peut intégrer le
champ de vecteurs ¥ a partir du point Ww. Soit I'":={y e I'/h(y) € N}. Montrons
que, pour y dans I'”, on a t,; = ;. Pour cela, notons « : N — N le revétement et
définissons des applications continues ¢ —j, et t —»j, de R dans J’ et J’ par les
égalités:

Jr = expY)h(y)exp(—tY)h(y) ~',

n(J,) =j, et j,=1. On pose alors, pour 0 <t <1t;,
W, =776, ().

La courbe ¢ — W, est une courbe intégrale de ¥ issue de yw car
D(w,) = exp(tY)D(yw).

Donc t,; 2 t;. Et on a I'égalité 7,; =1;.

Comme la variété I'"\ W est compacte, la fonction semi-continue inférieurement
W — t; admet un minorant a > 0. On a forcément a = + co0. En procédant de méme
avec — Y, on prouve que ¥ est compléte. C’est ce que I'on voulait.
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2.2 Groupes nilpotents connexes maximaux

Soit E un espace vectoriel de dimension n + 1, GI(E) le groupe linéaire de E, Z
le sous-groupe des homothéties positives et SI(E) = {g € GI(E)/det(g) = 1}.

L’application N - N:=ZN est une bijection de I'ensemble des sous-groupes
nilpotents connexes maximaux de S/(E) dans I’ensembles des sous-groupes nilpo-
tents connexes maximaux de GI(E). La bijection inverse est donnée par N » N =
NN SIE).

Deux sous-groupes N, = GI(E,) et N, = GI(E,) sont dits semblables si il existe
un isomorphisme de E, sur E, qui échange N, et N,.

Soit N un sous-groupe de GI(E). On dit que N est décomposable si on peut
écrire E=E,@®E, avec E, et E, non nuls et si N« GI(E,) x GI(E,); on a alors
N =N, x N, ou N, = GI(E,) n N; en outre, N est nilpotent connexe maximal si et
seulement N, et N, le sont. Sinon, on dit que N est indécomposable.

On pose, pour d = 1,

N% = {g € GI(R¥/3A >0, g — AId est strictement triangulaire inférieure}
et
NG = {g € GI(C% /31 e C*, g — AId est strictement triangulaire inférieure}.

Ce sont respectivement des sous-groupes nilpotents connexes maximaux de GI(R%)
et GI(R*).

LEMME. Soit N un sous-groupe nilpotent connexe maximal de GI(E).

(a) Il existe une unique décomposition E= @, <, E, telle que N =
N, x - x N, o N; = GI(E;) N N est un sous-groupe nilpotent connexe max-
imal et indécomposable de GI(E;).

(b) Si N est indécomposable, il est semblable @ N% ou NG pour un d = 1.

On dit que N, est un facteur réel (resp. complexe) de N si N, est semblable 4 N§
(resp. N§).

DEMONSTRATION. (a) Evident.

(b) Soit E€ = E & C. Décomposons E€ en une somme directe E€ = @, ES
indexée par les caractéres de n de sorte que, en notant C, le n-module de dimension
1 donné par le caractére a, ’action de n sur ES @ C_, est nilpotente. Comme n
est indécomposable, un seul caractére o apparait. Le théoréme d’Engels et la
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maximalité de n permettent de conclure: si « est réel, N est semblable a Nf; sinon
N est semblable a N€.

NOTATIONS. Un ¢élément g de GI(E) est dit elliptique s’il est semisimple a
valeurs propres de modules 1, hyperbolique s’il est semisimple a valeurs propres
réelles positives, unipotent si g — Id est nilpotent. On note, pour N = N n SI(E),

T = {g € N/g est elliptique},
A = {g € N/g est hyperbolique}

et
U = {g € N/g est unipotent}.

Les trois groupes 7, A, U commutent; T et 4 sont commutatifs, mais U n’est pas,
en général, commutatif. Les groupes 4 et U sont simplement connexes. Le groupe
T est compact, sa dimension est le nombre de facteurs complexes de N. On a
I’égalitée: N = TAU.

2.3 Orbites des groupes nilpotents connexes maximaux
Gardons les notations de 2.2: E=R"*' et S” = {demi-droites de E}.

LEMME. Soit N un sous-groupe nilpotent connexe maximal de SI(E).

(a) N a un nombre fini d’orbites dans S".

(b) Il existe un sous-groupe C ~(Z/2Z)*' du centralisateur de N dans GI(E) qui
agit simplement transitivement sur ’ensemble des orbites ouvertes de N dans
S” (k, est le nombre de facteurs réels de N).

(c) Soit Q une orbite de N dans S". Le morphisme naturel n,(N) — x,(2) est
surjectif. Si Q est ouverte, il est bijectif.

(d) Tout point x de S" admet une base de voisinages ouverts O tels que, pour toute
N-orbite Q dans S", O N2 est connexe.

REMARQUES. — Le groupe CN est I’adhérence de Zariski de N.

— L’énoncé analogue a (d) est faux pour les orbites de N dans I’espace projectif
RP".

—~ L’énoncé analogue a (a) est faux pour les sous-groupes abéliens connexes
maximaux de SI/(E). Cest pourquoi, la classification des structures affines ou
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projectives sur le tore T3 (resp. T") n’est pas plus simple que la classification des
variétés affilnes ou projectives compactes & holonomie nilpotente de dimension 3
(resp. n).

DEMONSTRATION. Cela résulte d’une description explicite des orbites de N
dans S¥: on peut écrire E = @E, de sorte que N,:=N NGI(E,) est nilpotent
connexe maximal et indécomposable. Les orbites de N dans S” sont en bijection
avec les orbites de N dans E — {0}. Les orbites de N dans E sont les produits des

orbites de N, dans E;. On se raméne alors au cas indécomposable:
Si N~ N%, il y a 2d N-orbites dans R? — {0}:

Q'ii={(x1,...,xd)ERd/ixi>0 et x,-‘|="'=x|=0},

pour 1 <i<d;etona C={tId}.
Si N~N§, il y a d N-orbites dans R? — {0}:

Qz‘:{(zls---azd)ecd/zﬁéo et z;_, ==z =0},

pour 1 <i<d;etona C={ld}
Le lemme gst alors évident; pour (d), munir la sphére SV de la métrique
standard et prendre pour O de petites boules centrées en x.

REMARQUES. - Lorsque W est affine, on peut choisir N dans Aff(R"), car
un sous-groupe nilpotent connexe maximal de Aff(R”) est encore maximal dans
Si(n + 1, R). Dans ce cas, N agit sur W par des transformations affines.

— Il résulte de la description de ces N-orbites que, pour un choix convenable de
la base de R"*!, le groupe 4 des matrices diagonales a coefficients positifs laisse
stable chacune de ces orbites.

2.4 Octantisation des variétés projectives a holonomie nilpotente

Montrons que toute variété affne ou projective compacte W a holonomie
nilpotente est octantisable. Cela résulte du lemme 2.1, des remarques précédentes et
du lemme suivant.

LEMME. Soient W une variété affine ou projective et L un sous-groupe connexe
de G qui laisse stable chacune des orbites du groupe I dans X. Alors, on a I’inclusion
Lcl
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DEMONSTRATION. C’est plus simple qu’en 2.1. Tout élément Y de I induit
un champ de vecteurs sur X. Notons ¥ = D*(Y) le relevé a W de ce champ de
vecteurs. Il suffit de montrer que ¥ est complet car alors, le flot 5, de ¥ est dans 1.

Soit W dans W. Par hypothése, on peut trouver une application continue ¢ — i,
de R dans 7 telle que z,D(w) = exp(tY)D(w) Relevons cette application en une
apphcatlon continue ¢ =, de R dans T telle que 10 = 1. Par construction, le chemin
t—-»z,w est une courbe intégrale de ¥. Donc ¥ est complet.

Revenons a notre variété affine ou projective compacte W a holonomie nilpo-
tente. Soit L un sous-groupe connexe de 1. On note L le sous-groupe connexe de [
tel que #(L) = L. Le but du chapitre suivant est de comprendre la décomposition de
W en L-orbites. Trois cas nous intéressent: L =4, N ou I. Le groupe L=4 a
I’avantage de ne pas dépendre de W. Le groupe L = N a l’avantage d’étre bien
adapté a notre probléme. Le groupe L =1 a I’avantage d’étre le plus gros et
d’induire une décomposition canonique de W.

EXEMPLE. Soit W le tore affine W = R* — {0}/, ~ @2x.20c + - ON 2

1={ o)feue>sl
v={(% 3)fa>0xer]

1=GI(2, R).

et

Les A-orbites ouvertes sont des quarts de plan, les N-orbites ouvertes sont des
demi-plans et I a une seule orbite: le revétement universel de R? — {0}.

REMARQUE. Les implications: I' nilpotent = H nilpotent = W octantisable
ne sont pas des-équivalences: on peut construire des variétés affines compactes
octantisables dont le groupe d’holonomie contient un groupe libre non commutatif.
On peut aussi construire des variétés affines compactes a holonomie nilpotente
difffomorphes & T> x Z, ou Z, est une surface de genre g > 2.

3. Variétés projectives octantisables

Le but de cette partie est de démontrer la proposition 2.
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On étudie tout d’abord le groupe des isomorphismes de W (§3.1) ainsi que
quelques propriétés des orbites du groupe / dans S” (§3.2). On montre alors que la
restriction de la développante a I’adhérence  d’une f-orbite est un revétement sur
son image (§3.3). Enfin, on identifie le quotient I O\é a une sous-variété compacte
a coins d’un revétement fini W’ de W (§3.4).

3.1 Le groupe Is(W)

LEMME. Soit W une variété affine ou projective.

(a) Les groupes K et I commutent et on a I’égalité: Is,(W) = K X x o I

(b) Si W est octantisable, le groupe Is,(W) est un sous-groupe normal d’indice
fini de Is(W).

REMARQUE. En particulier, le groupe I'":=I" nIs,(W) est d’indice fini dans
r.

DEMONSTRATION. (a) Le groupe des commutateurs (K, I] est inclus dans
K. Or T est connexe et K est discret, donc [K, [] = 1.

Rappelons que K x g, I est le quotient du groupe produit K x I par le
sous-groupe K, =~ {(ko, kg ')/ko € Ko}. K x ¢, I est un sous-groupe de Is,(W). Mon-
trons qu’il lui est égal. Pour cela, soit y dans Is,(W); quitte 4 multiplier y par un
élément de 7, on peut supposer que 4(y) = 1: y est alors dans K. C’est ce que I’on
voulait.

(b) Il suffit de montrer que le groupe A(Is(W)) a un nombre fini de composantes
connexes. L’algébre de Lie i de 7 contient ’algébre de Lie de 4. Donc i est égale a
son propre normalisateur et le groupe I est ouvert dans son normalisateur N (7).
Ce dernier est un sous-groupe algébrique de G, il n’a donc qu’un nombre fini de
composantes connexes. Notre affirmation résulte alors des inclusions: I <
h(Is(W)) = N (I).

3.2 Les orbites de 1

LEMME. Soient I un sous-groupe connexe de Sl(n + 1, R) contenant A et Q une
orbite ouverte de I dans S".

(a) Tout point x de S” admet une base de voisinages O tel que O N Q2 est connexe.

(b) L’application naturelle n,(I) — n,(S2) est surjective.
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DEMONSTRATION. (a) L’orbite  est une composante connexe de 'ouvert
de Zariski:

2 ={x € S"/les vecteurs v et Yv, pour Y dans i, engendrent R"*'}.

Soient H;:={x =(x;,...,x,,,) € S"/x; =0} et H, ;:==H,n H,. Comme I contient
4, le fermé de Zariski @:=S" — X est inclus dans la réunion des H;. Donc a un
sous-ensemble de codimension supérieure ou égale a 2 prés, @ est une réunion de
certains des H;. Ce qui prouve notre affirmation.

(b) Soit 02 =Q—-Q et (e;,...,e,,,) la base canonique de E=R"*+! Le
groupe 7, (£2) est commutatif et est engendré par les lacets autour des sphéres H, ;
de codimension 2 telles que H, ; 1 022 est ouvert dans 0Q. En effet, si H; ; et H,, sont
deux telles sphéres, les ensembles {i, j} et {k, !} sont disjoints.

Supposons par exemple que H,,., est ouvert dans 0Q2. Comme I préserve
H,, ., laction de I sur I'espace vectoriel de dimension 2: F:=E/., . induit
un morphisme forcément surjectif

P I— SI(F) ~ Gl+(F)/{homothéties positives}

Pour conclure, il suffit de montrer que p induit une surjection de =,(I) dans
7, (SI(F)).

Pour cela, on va construire une section ¢ : SI(F) — I, c’est a dire un morphisme
tel que p o 0 = Id. Comme sl(2, R) est simple, le morphisme dp : i — sl(F) admet une
section do : sl(F) »i. Celle-ci s’intégre en un morphisme & : SI(F)— I = SI(E).
Comme SI(E) est algébrique, ¢ factorise en une application o : SI(F) - 1. C’est la
section cherchée.

3.3 La restriction de D a I’adhérence d’une orbite

Ce paragraphe est consacré a la démonstration de la proposition 2 (i). Com-
mengons par le lemme:

LEMME. Soit W une variété affine ou projective octantisable et Q une orbite
ouverte de I dans W.

(a) Le groupe K, agit proprement discontinument sur W.

(b) La développante induit par passage au quotient un difféomorphisme

K\Q 5 Q:=D(®)
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DEMONSTRATION. (a) Plus généralement, pour toute variété projective, le
groupe K des transformations projectives & holonomie triviale agit proprement
discontinument sur la variété.

Il suffit de montrer que si k, est une suite d’éléments de K et x, une suite de
points tels que lim,_, , x, = x et lim,_, . k,x, = y, alors la suite k, est constante
pour n > 0. Pour cela, on remarque que D(x) = D(y) et on choisit des voisinages
ouverts O, et O, de x et y tels que la développante induise des bijections notées D,
et D, de ces ouverts O, et O, sur un méme ouvert O de S”. Pour n » 0, x,, est dans
O, et y, est dans O,, on a alors knlo.=D;"' o D,. Donc la suite k, est constante.

(b) Comme Q (resp. Q) est localement fermee dans S” (resp. W), la topologle
induite par cette inclusion coincide avec la topologie d’espace homogene sous I.

L’application développante D : Q—>Q est un difféeomorphisme local équivariant
entre espaces homogeénes, c’est donc un revétement.

Soit Gal(Q : Q) = {diffeomorphismes g de Q tels que D g = D} le groupe de
Galois du revétement. On a le diagramme commutatif:

() — K,

| I

1,(Q) — Gal(Q : Q)

La fléche 2 est surjective d’aprés 3.2.b. La fléche 4 est évidemment surjective. La
fléche 3 est injective car un élément de K, qui a un point fixe dans W est I'identité.
Donc K, s’identifie a Gal(Q2 : Q).

~

DEMONSTRATION DE LA PROPOSITION 2 (i). On peut supposer
ouverte. Soient W :=K,\W et Q:=K,\Q. La développante D induit par passage au
quotient un homéomorphisme local D : W —S". On veut montrer que D est un
homéomorphisme de € sur son image. _ _

1 suffit de montrer que, pour toute suite v, dans € et tout point v de € tels que
lim,_, . D(v,) = D(v), on a lim, , ., v, = v. Ceci montrera simultanément I'injectivité
de Dl,; et la continuité de I’application inverse. Quitte a remplacer les points v, par
des points proches, on peut supposer que v, est dans Q. Soit ¢ = D(v). Choisissons,
grice a 3.2.a, des voisinages ouverts O, de v dans W et O, de c dans S, tels que
2 N O, est connexe et 15]0 est un homéomorphisme de O, sur O,.. On va montrer
que, pour n >0, v, est dans 0, ce qui prouvera que lim,,_, v, = v. Pour cela, soit
v’ un point auxiliaire dans 2n0,. Soit n > 0 de sorte que D(v,) est dans Q.. Les
points D(v") et D(v,) sont dans 2 N O,. 1l existe alors un chemin continu dans
QN 0. les rejoignant. On reléve ce chemin en un chemin continu dans Q N0, qui



458 YVES BENOIST

relie le point v’ & un point, noté v, tel que D(v,) = D(v,). Le lemme 3.3 prouve
alors que v, =v,. Donc v, est dans O,.

3.4 Le groupe I',,

DEMONSTRATION DE LA PROPOSITION 2 (ii). On peut supposer
h(I") < I. L’ensemble I - O est fermé dans W car, comme / contient 4, tout compact
de W ne recontre qu’un nombre fini de J-orbites. Donc I'image de @ dans la variété
compacte W ~ I'\W est fermée. D’aprés le lemme ci-dessous, cette image s’identifie
a l’espace quotient I' 0\6 qui est donc compact lorsque W est compacte.

LEMME. Soit W une variété affine ou projective octantisable. Soit y dans Is,(W)
et Q une orbite de T dans W. Les affirmations suivantes sont équivalentes:
(i) yel
(ii) pour toute I-orbite Q' dans W, on a y(é') =Q’
(iii) y(Q) =@
(iv) YD) nQ # .

DEMONSTRATION. (i) = (ii) = (iii) = (iv): clair.

(iv) = (i): Quitte a multiplier y par un élément de I, on peut supposer que
h(y) = 1. Soient v, et w, dans € tels que yv,=w,. On a D(v,) = D(w,). La
proposition 2(i) prouve alors qu’il existe k, dans K, tel que w, = ky,v,. Donc y =k,
est dans T.

4. Variétés projectives a holonomie nilpotente

Soit W une variété affine ou projective a holonomie nilpotente. Cette partie est
un pot-pourri de diverses propriétés de W qui joueront un rdle dans la démonstra-
tion des théorémes 1 et 2 au chapitre 5. Soit N un sous-groupe nilpotent connexe
maximal de G qui rencontre H en sous-groupe d’indice fini de H.

4.1 Le groupe Isy(W)
Comme en 3.1, on remarque que le groupe I'":=I N Isy(W) est d’indice fini

dans I et que I’on a Iégalité Is, (W) = K x X, N (lorsque N est simplement connexe,
cette égalité devient: Is, (W) = K x N). La proposition et le lemme suivants sont
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analogues a la proposition 2 et au lemme 3.4. Ils se démontrent de la méme fagon
en remplagant le lemme 3.2 par les points (c) et (d) du lemme 2.3.

PROPOSITION. Soient W une variété affine ou projective compacte a holonomie
nilpotente. On garde les notations ci-dessus. Sozt Q une orbite de N dans W.
(1) La restriction de D a I’adhérence A de Q est un revétement sur son image, de
groupe de Galois K. 3
(i) La variété a coins T'y\Q est compacte et s’identifie, par la projection
naturelle, a une sous-variété a coins du revétement fini W":=T"\W de W.

LEMME. Avec ces notations. Soit y dans Isy(W). Les affirmations suivantes sont
équivalentes:
() yeN
(i) y(92) =
(iii) Q)N Q # &.

~

-~

4.2 La décomposition y = t,t,a,u,

Gardons les notations de 4.1 et rappelons la décomposition N = TAU de 2.2.

LEMME. [l existe un sous-groupe d’indice fini I'"" de I’ et des morphismes de
groupes T, tA aetudeI'" dans K, T, A et U tels que, pour tout y dans I'", on a
Y =1, ty a,u,.

DEMONSTRATION. Soit I'":=T N Isy(W). Pour y dans I'”, on note ¢, a, et
u, les composantes de A(y) sur T, A et U. Les groupes A et U s’identifient au groupes
A et U. 1l suffit donc de construire un morphlsme Y t de sorte que 7, = h(t ). Le
morphisme t s’en déduira par la formule 7, = y(tya u,) !

Remarquons que le morphisme ¢ : I'" — T contient [I’ ”, I'"] dans son noyau. Le
groupe I'"/[I’", I'"] est abélien et de type fini car W est compact. Donc il existe un
sous-groupe d’indice fini I'” de I'" tel que I'"/(II"", "] " I'") est abélien libre. On
reléve dans T I'image d’une base, ce qui fournit le morphisme t: I'" - T souhaité.

4.3 Ou N agit transitivement sur W
DEFINITION. Une structure affine ou projective sur un groupe de Lie connexe

N, de dimension n est dite invariante a gauche si la multiplication a gauche par un
élément de N, préserve la structure.
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On a une correspondance:

structures projectives actions projectives de N,
. . Y > .
invariantes a gauche sur N, sur S” avec une orbite ouverte

ou l'action est donnée par I’holonomie et ou I'orbite ouverte est I'image de la
développante.

DEFINITION. Une structure affine ou projective sur une nilvariété Wy~ I'\N,
est dite invariante a gauche si, pour une identification convenable de W, avec I'\N,,
la relevée a W, ~ N, de cette structure est invariante a gauche.

Pour une telle structure, on peut choisir le groupe N de telle sorte que N agisse
transitivement sur W,. Le lemme suivant est une sorte de réciproque.

LEMME. Soit W une structure affine ou projective compacte telle que I' est
nilpotent. Soit N wun sous-groupe nilpotent connexe maximal de G tel que
[H : HAN] < 00. On suppose que N agit transitivement sur W. Alors W est une
nilvariété munie d’une structure invariante a gauche.

REMARQUE. Si on remplace I’hypothése “I' nilpotent” par “H nilpotent”, la
conclusion du lemme n’est valable que pour un revétement fini de W.

EXEMPLE. La bouteille de Klein affine W = R? — {0}/, - 2x.—2,)-

DEMONSTRATION. Par hypothése N a une seule orbite dans W et la
développante D : W — S” est un revétement sur son image Q. D’aprés le lemme 2.3,
I'application naturelle 7,(N) -, () est bijective, donc I'action de N sur W est
effective. Autrement dit, le groupe N est simplement connexe. Soit I'":=T N
Isy(W). D’aprés le lemme 4.1, on a linclusion I'" < N. Il existe un unique
sous-groupe connexe N, de N contenant I'” et tel que I'"\ N, est compact (voir [Ra]
chapitre 2). Bien siir, N, est nilpotent et simplement connexe.

Montrons que N, agit simplement transitivement sur & = W. En effet, comme
I'” agit proprement sur € et est cocompact dans N,, N, agit aussi proprement sur
@ et donc, pour tout w dans @, le stabilisateur de w dans N, est trivial. D’autre part,
comme I'"\@ et I'"\N, sont compacts, il résulte de I’affirmation ci-dessous que

dim (N,) = rg (I'") = dim (£).

Donc N, agit simplement transitivement sur W.
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Pour conclure, il suffit de montrer que I' est inclus dans N,. Soient N, =T - N,
et K le stabilisateur dans N, d’un point w de W. Le groupe K est fini et le groupe
N, est une produit semi-direct de K par N,. Soit k¥ un élément de K. Il existe un
élément n, de N, tel que y :=kn, est dans I'. Soient ny = (y)! > (115)? > - - - la suite
centrale descendante de n,. Les actions adjointes Ad k et Ady préservent cette
filtration et coincident sur les sous-quotients (n,)?/(1,)'*!. Comme I est nilpotent,
Ad (y) est unipotent et Ad k£ aussi. Or comme K est fini, Ad k est d’ordre fini. On
en déduit successivement que Ad k =1, kK commute & N,, I’action de k sur € est
triviale et enfin k = 1. Donc K =1 et I' = N,. Ceci termine la démonstration.

AFFIRMATION (voir [Se]). Soit I';, un groupe discret sans torsion qui agit
proprement sur une variété (sans bord) contractile Y. Notons cd(I')) la dimension
cohomologique de I'| (si I, est nilpotent et de type fini, c’est le rang de I'y). Alors on
a linégalité

cd(I’'y) < dim (Y)

avec égalité si et seulement si I')\'Y est compact.

4.4 Un critére de complétude
Gardons les notations de 4.1.

LEMME. Soit W une variété projective compacte a holonomie nilpotente. Si N a
une orbite compacte dans D(W) alors W est compléte.

REMARQUE. Il n’y a que deux orbites compactes possibles pour N, les points
et les grandes cercles (c.f. 2.3).
4
DEMONSTRATION. (a) Montrons que, pour toute N-orbite Q dans W, I'im-
age D(@ est compacte. Par hypothése, c’est vrai pour au moins une N-orbite fermée
Q,. D’aprés la proposition 4.1, les groupes nilpotents de type fini I'y et K agissent
proprement sur éo et les quotients K \ﬁo et I'y \QO sont compacts. L’affirmation
4.3 appliquée au revétement universel de .(50 prouve que rg (I'y) =rg (Ky). Ce rang
est égal 4 0 ou 1 d’aprés la remarque précédente.
Si rg (I'y) =0. La proposition 4.1 prouve que 9 est compact et D(ﬁ) I’est aussi.
Si rg (I'y) = 1. Il existe un sous-groupe fermé P (resp. Q) de N isomorphe a R
tel que [Iy : PnFN] < oo (resp. [Ky : Q nKy] < o0). Les groupes P et Q agissent
proprement sur Qetla proposition 4.1 prouve que le quotient P\ﬁ est compact. En
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appliquant l'isomorphisme de Thom pour la cohomologie de Cech a support
compact (c.f. [Iv] chap. 7) aux deux fibrés @ »P\Q et @ »Q\@ de fibres
isomorphes a R, on en déduit que

H°(Q\Q, R) ~ H'(8, R) ~ H(P\&, R) ~ R.

C’est a dire que Q\é est compact. Donc D(@ ~ Ky \5 est aussi compact.

(b) Munissons la sphére S” de sa métrique standard. Pour montrer que D est
un revétement, il suffit de vérifier la propriété suivante de relévement des chemins:
pour tout chemin continu w:]0,e] = W tel que s:==Dow:]0,e] »S” est un
segment de grand cercle paramétré par l'arc, la limite lim,_ , w(?) existe.

Pour cela, choisissons une orbite Q de N dans S” et ¢ > 0 tels que s(]O, ) = 2
(c.f. 2.3). Soit Q P'orbite de N dans W telle que w(]0, ¢]) = Q. Comme D|g est un
revétement sur son image D(!?) qui est compacte, on peut trouver une suite ¢, qui
tend vers 0 telle que w(eg,) converges vers un point w, de 9. Mais alors,
lim, _ , w(f) = wy. Cest ce que I'on voulait.

4.5 Ou I’holonomie est unipotente

On identifie, pour —1 <p <n —1, la sphére S” a la partie de S” définie par
’annulation des n — p premiéres coordonnées . .. ainsi S~! = !

LEMME. Soit W une variété projective compacte a holonomie dans le groupe
N = NB_ | des matrices unipotentes triangulaires inférieures. Soit p la dimension
minimale des orbites de N dans D(W).

— Si p <n —2, la développante D identifie W avec S" — "~ .

— Si p=n—1, D identifie W au revétement universel de S" —S"~2.

— Si p =n, D identifie W a une composante connexe de S" —S"~!.

REMARQUES. Dans ce dernier cas W est affine compléte. Ce lemme permet
donc de retrouver le résultat suivant de [F-G-H]: “Toute variété affine compacte a
holonomie unipotente est compléte”.

~ 11 existe des structures projectives sur T2 pour lesquelles la développante D
n’est pas un revétement sur son image ([S-T] et [Go)).

DEMONSTRATION. Le cas p =n est évident. Supposons p <n —1. Les
orbites de N dans S” sont données, en coordonnées homogeénes par

F={RY (e X)X, >0 ot X =" =x,=0},
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pour 1 <i < n + 1. Elles sont contractiles, il résulte donc de 4.1 et de I’affirmation
4.3 que I'y:==I NN est de rang égal a p.

L’une des deux N-orbites de dimension p, par exemple Q@ =Q/}_,, est dans
D(W). Soit Q' =Q,_ ,et0=8"— Q’ le plus petit voisinage ouvert N-invariant de
Q. Soit Q une orblte de N dans W telle que D(Q) = Q et soit O le plus petit
voxsmage ouvert N-invariant de Q. La developpante D induit un difféeomorphisme
de O sur O. On ne peut pas avoir W O car O est dlffeomorphe aR"etrg(lN) <n.
11 existe donc une N-orbite fermée Q dans O telle que D(Q ') = Q’. Soit O’ le plus
petit voisinage ouvert N-invariant de ©’. La développante D induit un difféomor-
phisme de O’ sur 0’'+=S"— Q.

Sip <n—2,0nO’ est connexe. Donc D induit un difféomorphisme de O U 0’
sur O U0’ =S8"—S”1. Par suite, O U0’ est fermé dans W et W~0u0’ =
§"—-s 1

Si p=n-—1, 0n0O’ a deux composantes connexes. Le méme raisonnement
permet d’identifier W 4 un ouvert du revétement universel de $”— S” 2 réunion
d’ouverts O, que la developpante identifie 4 O ou & O’. En particulier, on peut
ranger les orbites de N en une suite €, indexée par un intervalle / de Z telle que Q
est ouverte pour i pair et fermée pour / impair et Qz,i < 62, La variété W est
difféomorphe a R”, donc rg (I') = n et I' # I' . 1l existe alors un élément y de I qui
ne laisse stable aucune N-orbite. Ceci n’est possible qui si / = Z. Donc W s’identifie
au revétement universel de S”" — S"~ 2 Ce qui termine la démonstration.

5. Nilvariétés projectives

Le but de cette partie est de démontrer les théorémes 1 et 2.

Soit W = W, ~ I'\N, une nilvariété projective de dimension n 2 2. On montre
que, si le centre de N, est de dimension 1, le morphisme d’holonomie est injectif
(§5.1).

En particulier, les nilvariétés construites dans [Be] n'ont pas de structures
projectives (§5.2).

On suppose maintenant n, filiforme. Les idées précédentes permettent de
montrer que I’holonomie est unipotente, c’est & dire que l'on peut prendre
N = NR,,. L’espace vectoriel E:=R"*! a alors une structure de n,-module fidéle
nilpotent. En outre, le module gradué E qui lui est naturellement associé est “fil”.
Une propriété des modules “fils” démontrée en appendice (le corollaire A.2) permet
de conclure que N a une seule orbite dans W et donc que notre structure projective
est invariante a gauche (§5.3).

Cette démarche est justifiée par l'exemple suivant: il existe des structures
projectives a holonomie unipotente sur les nilvariétés de Heisenberg de dimension
5 qui ne sont pas invariantes a gauche (§5.4).
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5.1 Injectivité de I’holonomie

LEMME. Soit W, = I'\N, une nilvariété projective de dimension n > 2 telle que
le centre Z de N, est de dimension 1. Alors I’holonomie h :I' - SI*(n + 1, R) est
injective.

REMARQUE. L’holonomie du tore de Hopf C*/,..,, n’est pas injective.

DEMONSTRATION. Supposons par I'absurde que h n’est pas injective et
reprenons les notations du chapitre 4 avec W = W,. Comme I est sans torsion,
I' nKer (h) est infini et on peut remplacer I' par un sous-groupe d’indice fini. On
peut donc supposer (lemme 4. 2) que h(I') est inclus dans N = TAU et qu’il existe
des morphismes de groupes 1, £, a et u de I' dans K, T, A et U tels que, pour tout
ydans I', on a y =1,t,a,u,.

Notons Z,:=Z NI le centre de I'; c’est un sous-groupe isomorphe a Z ([Ra]
proposition 2.17). Donc, pour tout sous-groupe distingué J # 1 de I le sous-groupe
Z,;=2ZnJ est d’indice fini dans Z. Pour montrer que h est injectif, il suffit de
montrer que u_est injectif. Pour cela, il suffit de voir que 7, ¢ et a ne sont pas
injectifs. Pour £ et a, c’est évident car T et 4 sont commutatifs.

Supposons donc par I’absurde que 7 est injectif. Les groupes 'y =I'nN =
{y/r,eKy} et Ky=K NN =KnT sont alors des groupes abéliens de type fini
dont les rangs vérifient I'inégalité rg (I'y) <rg (Ky).

Soit 2 une orbite fermeée de N dans W La proposition 4.1 prouve que I' agit
proprement sur Q avec un quotient Iy \Q compact. Or le groupe K, agit propre-
ment sur Q. Il resulte alors de l'affirmation 4.3 que rg(I'y) =rg (Ky) et que
I’espace quotient Ky \Q est compact. On en déduit que la N-orbite I' = D(Q) est
compacte. Le lemme 4.4 prouve alors que W est compléte. Contradiction avec
n22.

REMARQUE. Cette démonstration prouve aussi que, sous les hypothéses du
lemme, le groupe d’holonomie A(I') est discret.

5.2 Une nilvariété non projective

PROPOSITION. Soit W, ~ I'\N, une nilvariété de dimension n telle que n, a un
centre de dimension 1 et n, n’a pas de représentations linéaires fidéles de dimension
n + 1. Alors Wy n’a pas de structures projectives.

REMARQUE. La construction de telles nilvariétés est 'objet de [Be]. Le
théoréme 2 est donc une conséquence de cette proposition.
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DEMONSTRATION. Procédons par I’absurde et gardons les notations de 5.1.
On peut supposer h(I') « N = TAU. D’aprés le lemme 5.1, le morphisme u : I' > U
est injectif. D’aprés [Ra], il se prolonge en un morphisme continu # : No— U.
Comme N, n’a pas de représentations fidéles, # n’est pas injectif. Son noyau Ker &
est un sous-groupe distingué connexe de N,, il contient donc le centre Z de N, et
aussi I' nZ ~ Z. Ceci contredit 'injectivité de u.

5.3 Structures projectives sur les nilvariétés filiformes

DEMONSTRATION DU THEOREME 1. Soit W = W, ~ I'\ N, une nilvariété
filiforme munie d’une structure affine ou projective. On veut montrer que cette
structure est invariante a gauche. Reprenons les notations précédentes.

Il suffit de montrer que N a une seule orbite dans . En effet, le lemme 4.3
prouve alors que W est isomorphe & une nilvariété projective invariante a gauche
Wo~T'\Ng. On conclut en remarquant que les groupes N, et Ng sont isomorphes
car ils contiennent des réseaux isomorphes.

Supposons donc, par I'absurde, que N a plusieurs orbites dans W. On peut
supposer que le groupe d’holonomie H est inclus dans N. Le lemme 5.1 prouve que
le morphisme d’holonomie 4 : I' = N est injectif. Comme le (n — 1)®™ terme de la
suite centrale descendante de I' est non trivial, il en est de méme de celui de N. La
classification des sous-groupes nilpotents connexes maximaux de S/(n + 1, R) don-
née en 2.2 ne laisse que deux possibilités:

1 0
N=N®, = ou
* 1
[ (a 0 0 ) A
N=NBxR*=< | * a 0 aveca >0 /.
L 0 . 0 a™" )

Dans ces deux cas, le groupe N est simplement connexe et N s’identifie 4 N. Le
morphisme A : I' — N se prolonge en un morphisme / : N,— N ([Ra] chapitre 2). De
cette fagon, 'espace E:=R"*! est un ny-module. On note (e, ..., e,, ) la base
canonique de E.

Soit p la dimension minimale des orbites de N dans W.Onap<n-—1, par
hypothése, et p 2 1 d’aprés le lemme 4.4. Comme ces orbites sont contractiles (voir
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2.3), la proposition 4.1 et laffirmation 4.3 donnent I’égalité rg (I'y) = p. Donc
[l :T'y] = oo et il existe une infinité de N-orbites dans W (lemme 4.1).

Soit P le plus petit sous-groupe connexe de N, qui contient I',. C’est un groupe
de dimension p tel que I'y \ P est compact. Comme I'y, est distingué dans I', P est
distingué dans N,. Soit Z un élément non nul du centre de n,. L’élément Z est dans
p. )
D’autre part, le groupe P agit proprement sur W (via 4 : Ny— N ~ N), car 'y
agit proprement sur W. En particulier, chaque élément non nul de p induit (via la
différentielle dh : 1o — 1) un champ de vecteurs sur S" qui ne s’annule pas sur I’ouvert

D(W).

PREMIER CAS. N ~N® x R* .
Soit ((ny), i 2 1) la filtration centrale descendante de n,. Comme Z est dans
(ng)”~ 1, on a, avec a #0:

Ze,=ae, et Ze;=0 pour i = 2.

Comme le champ de vecteurs sur S” induit par Z ne s’annule pas sur D(W), cet
ouvert D(W) est inclus dans I"'une des deux composantes connexes X’ de S” — "~ 1.
Par exemple X’ = {R* (x,, ..., x,,;)/x; >0}. L’ouvert X” contient exactement trois
N-orbites Q, Q, et Q_ défines respectivement par les conditions: x,,, ;, >0, x,,,=0
et x,,,<0. On montre alors comme en 4.5 que la développante D induit un
difféomorphisme de W sur X”. Donc N n’a que trois orbites dans W. Contradiction.

DEUXIEME CAS. N ~NR®_,.

L’holonomie est unipotente. Comme N a une infinité d’orbites dans W le lemme
4.5 assure que p =n — 1 et que W s’identifie, via la développante, au revétement
universel de S" — S" 2. L’algébre de Lie p est un idéal de codimension 1 de n,, elle
contient donc [ny,, n,].

On pose E':=E, E'*':=ny,E''pour i 21, E:=E/E'*' et E== @ ,,, E,.
L’espace vectoriel E est un fi,-module gradué, ou #i, est I'algébre de Lie filiforme
graduée associée & la filtration centrale descendante de n, (voir A.1). Montrons tout
d’abord le lemme:

LEMME. E est un #iy-module gradué fil fidéle de dimension n + 1.

DEMONSTRATION. L’élément Z est dans (1,)” . On peut donc écrire, avec
a, B,y dans R:

Ze,:——ae,, +Ben+l et Ze2=yen+l'
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Comme Z est dans p, il n’a pas de zéros dans S”" — S" ~2 Donc a # 0 et y # 0. Ceci
n’est possible que si, pour 1<i<n+1, dimE =1. Donc E est un module fil.
L’inégalité « # 0 prouve aussi que Iaction induite par Z dans E est non nulle et
donc que E est un fi,-module fidéle. Ce qui prouve le lemme.

Terminons la démonstration du théoréme 1 dans ce dernier cas. Soit Y un
élément de (ny)"” 2 qui n’est pas colinéaire a4 Z. Le corollaire A.2 prouve que, d’'une
part, n est pair supérieur ou égal a 4 et, en particular Y est dans p, et que, d’autre
part, on a I’égalité Ye, = Ae, , ; avec A dans R. Quitte & remplacer Y par Y — (4/y)Z,
on peut supposer que Ye,=0: le champ de vecteurs induit par Y s’annule sur
S" — §"~ 2, Cette contradiction termine la démonstration du théoréme 1.

5.4 La nilvariété de Heisenberg de dimension 5

Une nilvariété de Heisenberg est une nilvariété W, ~ I'\ N, telle que I’algébre de
Lie n, est une algébre de Heisenberg de dimension 2k + 1: elle admet une base
X,..., X, Y,,..., Y, Z avec, pour seuls crochets non nuls, [X;, Y;] = Z lorsque
1<i<k.

L’exemple suivant prouve qu’il existe des nilvariétés I'\N, telles que N, a un
centre de dimension 1 qui ne satisfont pas la conclusion du théoréme 1.

EXEMPLE. Il existe, sur les nilvariétés de Heisenberg de dimension 5, des
structures projectives a holonomie unipotente qui ne sont pas invariantes a gauche.

Rappelons que le groupe N¥ = {matrices 6 x 6 unipotentes triangulaires in-
féerieures} agit sur la sphére S°~R®—{0}/z. en préservant la sphére S°:=
{R* (x,,...,X¢)/x, = x, =0}. Pour construire notre exemple, nous utiliserons le
lemme:

LEMME. Il existe une sous-algébre de Lie n, de n& isomorphe a I’algébre de
Heisenberg de dimension 5 et un idéal q de n, de dimension 4 tels que

(1) L’action sur S° — S> du groupe correspondant Q est propre.

(ii) Le centralisateur de n, dans sl(6, R) est inclus dans n&.

CONSTRUCTION DE L’EXEMPLE. Prenons un réseau I', de N, tel que
I'y:=T;Q est un réseau de Q Remarquons que I', /I’ est isomorphe a Z et notons
y +— n, un morphisme de I'; dans Z dont le noyau est I'y. Notons 1 un générateur
du 7, de S§°—S3. Comme N§ est simplement connexe, il agit aussi sur la variété
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projective $5='S? revétement universel de S°— S3. Soit
[={y™ eIs(S°— S?)Jy e I',}.

Le quotient Wy:=T \(55783) est une nilvariété de Heisenberg munie d’une
structure projective qui n’est isomorphe & aucune structure projective invariante a
gauche.

En_effet, sinon il existerait un sous-groupe de Lie nilpotent connexe N de
Is(S° — §3) qui contiendrait I" et agirait simplement transitivement sur S°— =s?,
L’adhérence de Zariski de son image A(Ng) contiendrait N, et serait donc unipo-
tente d’aprés (ii). On aurait alors A(Ng) = N, = N&. Mais le groupe N2 n’agit pas
transitivement sur S° — S3. Contradiction.

DEMONSTRATION DU LEMME. Prenons

r r N D
0 0O 00 0O
0 O 00 0 O
no=< Y= - Z g g g g a,b,c,d,e) e RS
e b+c a b 0 0
9 _ —b—c e c d 0 0 j J

et q={Y eny/a =d}. On vérifie aisément que n, est isomorphe a I’algébre de
Heisenberg, que son centralisateur dans sl(6, R) est inclus dans nf et que q est un

idéal de n,.
Vérifions la propriété (i). Pour cela, notons encore (e, .. ., ¢;) la base canon-
ique de E:=R® et E? le sous-espace vectoriel engendré par (es, . .., €). Le couple

(ny, q) a été choisi de sorte que le fait suivant, dont la vérification est un calcul
laissé au lecteur, soit vrai:

FAIT. Pour tout élément non nul Y de q, le noyau Ker (Y) est inclus dans E>.

Pour (x, y) dans R? — {0}, on pose F, , :=xe, + ye, + E>. Ce sont des espaces
affines stables par Q. Le fait précédent prouve que les orbites de Q dans E — E*
sont de dimension 4. Ce sont donc les espaces F, ,. Donc I’application

0 x (R*—{0}) » E— E*

(g, (x, ¥)) — g(xe, + ye,)
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est un diffeomorphisme. On en déduit que Q agit proprement sur S°> — S3. Ce qui
termine la démonstration du lemme.

Appendice: Modules fils sur les algébres de Lie filiformes

Le but de cet appendice est de décrire les modules gradués fils sur les algébres
de Lie filiformes graduées engendrées par leurs éléments de degré 1. Cet appendice
compléte le §3.4 de [Be] et sera appliqué en 5.3 4 P'algébre de Lie n,.

A.1 Algebres de Lie filiformes

Soient n une algébre de Lie nilpotente de dimension n sur un corps K de
caractéristique 0 et n’ la suite centrale descendante: n':=n et n'*!:=[n!, n], pour
i 2 1. Soient fi;:==ni/ni*! et ft= @ .07, c’est une algébre de Lie graduée sur
N*={1,2,...}; elle est engendrée par ses é¢léments de degré 1. Soit I, :=
sup {i/n’ # 0} la longueur de la suite centrale descendante. On a bien siir [, <n — 1.

DEFINITION. ([Ve]) n est dite filiforme si n >3 et si /, =n — 1.

On a alors, pour i =2,...,n, codim () =1i.
L’algébre de Lie n est filiforme si et seulement si it est filiforme.

EXEMPLES. Soit {, l'algébre de Lie graduée de base T, X = X;,..., X,_,,
avec n 2 3 telle que d°T =d°X =1 et

[T, X;1=X, ., pouri=1,...,n—2
[X;, X;1=0 pourij=1

— Soit g,, I'algébre de Lie graduée de base T, X = X}, ..., Xy, _,, Y, _, dvec
q 23 telle que d°T=d°X =1 et

(7, X;1=X:1: pouri=1,...,29 -3
{T,qu—zl':o

[X:, X;] =(—1)i5i,2q—l—jy2q—l pour i,j 2 1



470 YVES BENOIST

LEMME ([Ve]). Toute algébre de Lie filiforme graduée engendrée par ses élé-
ments de degré 1 est isomorphe a §, pour n 23 ou a g,, pour q < 3.

A.2 Modules gradués fils

Soit n une algébre de Lie filiforme. Un fi-module gradué V= @ ,_, V, est dit
fil si, pour tout i, dim V, < 1; il est dit indécomposable s’il n’est pas somme directe
de deux sous-modules gradués non nuls. Pour décrire les fi-modules fils, il suffit de
décrire ceux qui sont indécomposables et fidéles, car un f,-module (resp. g,-mod-
ule) qui n’est pas fidéle est un f,_;-module.

Soit donc V un fi-module gradué fil indécomposable et fidéle de dimension p, et
vy,...,0, une base homogeéne de V telle que d°v; = i. Pour définir le module V, il
suffit de se donner les éléments 4, € P':=Ku{0}, pour i=1,...,p — 1, tels que
Xv; = A; Tv; (lorsque 4; = oo, cette égalité doit se lire: Tv; = 0); en effet, comme V est
indécomposable, la famille 7v;, Xv; engendre V, ,.

Lorsque #t = {,, ces modules sont classifiés dans le §3.4 de [Be].

Lorsque it = g,,, voici la classification.

PROPOSITION. Soient ¢ 23 et V un g,,-module gradué fil indécomposable et
fidéle, alors V est un des modules du tableau ci-dessous.

Dans ce tableau, le diagramme associé & chaque module est construit de la fagon
suivante: un arc ~—~ relie les i*™ et (i + 1)®" points si et seulement si Tv; # 0; un
arc en pointillé signifie que Tv; peut étre nul ou non nul. Et de méme pour les arcs
— avec Xv,.

NOM DEFINITION | PARAMETRE DIAGRAMME DIM
qu )‘i =a(;6i'l— aeP - {O} Mq 2q
i,2¢g—1
By | M7 (Qq;a?s)a&'l QP {0} | e~ 2
1,2q—2
As = ab; o+ 12 2q
G’ (2 — 2)ad; 2;2_1 a e P -{0} NN 2
D2a+1 A 2000§5¢,2+ 1 /_\2-/\~-/_\_2/q_iq+1 9 +1
1,29—1
g2.-MODULES FILS FIDELES INDECOMPOSABLES

COROLLAIRE. Soient i= @ - fi; une algébre de Lie filiforme graduée de
dimension n engendrée par ses éléments de degré 1 et V = @D+ V, un fi-module

i=1

gradué fil fidéle de dimension n + 1. Alors n est pair et #1, _,V,=0.
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DEMONSTRATION DU COROLLAIRE. Si fi =f,, la proposition 3.4 de [Be]
prouve que 7 est pair et que V est un module, appelé D} 1!, qui a pour diagramme

1 2 n n+1

LI .

On a alors X, _,V,=(ad T)"~3X) V,=0.
Sin=2q = 6etii=g,, le lemme prouve que V¥ est le module D**! qui a pour
diagramme

1 2 2q 2g+1

W

On a encore X, ,V,=(ad T)"~3X)V,=0.

DEMONSTRATION DE LA PROPOSITION. On suit celle de la proposition
3.4 de [Be]. On a bien siir p:=dim (¥) = 2q. On choisit 4 dans K — {0} tel que,
pourtouti=1,...,p—1, u#1/A,onpose T'=T — uX et on choisit la base v; de
sorte que T'v;=v;,,. On a alors Xv,=4v,,, ou A;=4,;/(1 —u4;). On a les
relations:

Er:[X,,X,_Jv; =0, pourr=3,...,2g—2 et i=1,...,p—r

Fr=1' 1T, X, v =0, pouri=1,...,p—2g+ 1.

Ces relations se réécrivent:

r—2 r—2
E;: Al ) (*l)jC’}—z'1§+,~+n>= §+r—|(z ("U’C’r_zl?w)
' .

j=0

J

2g—3 )
F?"—l :(1+ﬂ/1,’-)< (_l)jcqu—3}“2+j+l>
=0
; 2(]‘—3 . .
=(1 +“A;+2q——2)( Y (“‘l)jCJZq-3)';+j)'
j=0

(a) Montrons qu’il existe au moins un A; nul. Sinon, soit u; = 1/4}, ’équation
E} sécrit u! +u;,,=2u.,,. Les p; sont en progression arithmétique: on peut
trouver «, f dans K tels que, pour tout i, u; = ai + f. Posons w, = 4}---4;_,v;. On
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calcule alors

Tw,=u; + w41,
XW,- = WH_I puiS
Xw, = — D/ 'w, et

[T, X5, _,]w, =(2q — 2)!052"*2”’24-

Ceci contredit 1’égalité F279-1,

(b) Montrons que parmi deux 4; consécutifs, il y en a au moins un qui est nul.
Sinon, griace a (a), on pourrait remplacer ¥V ou son dual par un sous-quotient de
dimension 4 tel que 4745 # 0 et A5 =0. Mais alors ’équation E3 s’écrit 145 = 0.
Contradiction.

(c) Montrons que sur 2g — 1 valeurs 4] consécutives, au moins deux sont non
nulles. Sinon on pourrait remplacer V par un sous-quotient de dimension 2q tel que

AM==4_1=0,4;#0,4;,,="-=45_,=0,avec 1 <] <2¢q — 1. Mais alors
I’équation F29-! s’écrit A; = 0. Contradiction.
(d) On peut donc trouver r,s > 1 tels que A, #0, A, ,=--"=4,,,_,=0,

A,,s#0. Montrons que s =2¢g —3 ou 2g —2. D’aprés (¢), on a s <2g —2. Si
s < 2q — 4, on pourrait remplacer ¥ ou son dual par un sous-quotient de dimension
s+3tel que A #0, A,=---=1,=0, A,,,#0, A, ,. Mais alors I’équation E5*?
s’écrit 114, ; = 0. Contradiction.

Il résulte de cette discussion que les entiers r et s ne dépendent que de V et qu’on
est dans un des quatre cas suivants:

(i) (s=29—-2, r=1, p=2q). L’équation F}*~' s%écrit 4, = —4,,_, #0. Le
module V est de type A.

(i) s=2g—3, r=1, p=2q). Léquation F¥-! gécrit A, =
(29 — 3)Ay, 1 #0. Le module V est de type B.

(iii) (s =29 — 3, r =2, p =2¢). L’équation F}* ' s’écrit 4, _, = (29 —3)4, #0.
Le module V est de type C.

(iv) s=2q—3,r=2,p=2q+1). Les équations F}~! et F3~' s%écrit
Aog_1=(2q —3)Ay et A, =(29 — 3)A,, _,. Donc 4, = 4,, _, = c0. Le module
V est de type D.

Ceci termine la démonstration de la proposition.
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