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On minimal annuli in a slab

Y1 FANG*

One of three beautiful theorems about a minimal annulus in a slab proved by
Max Shiffman, [11], says that,

THEOREM 1. If A is a minimal annulus in a slab S = R?, and I' = 0A is a pair
of circles lying in the boundary planes of the slab, separated by the interior of A, then
for every plane P which is contained in the slab S, A NP is a circle. In particular, A
is embedded.

In [4], it is proved that the same conclusion is true if we replace the boundary
circles in Theorem 1 by parallel straight lines and assume A is properly embedded.
Furthermore, Toubiana has proved that if two straight lines lying in distinct
parallel planes, but the two straight lines are not paralle]l to each other, then they
cannot bound any proper minimal annulus in the slab bounded by the two parallel
planes.

In this article we will give generalizations of the results stated above, with a
unified proof.

We will denote P, = {(x, y, z): z = t}, and assume that the boundary planes of
the slab are parallel to P,; and we can further normalize the slab S such that
S=8S(-1,1)={(x,y,2): =1 <t <1}. We will prove

THEOREM 2. Suppose A = S(—1, 1) is a proper minimal annulus in a slab and
A(1)=AnP,, A(—1) = AN P_, are straight lines or circles.

(1) If both A(1) and A(—1) are circles, then A(t) =AnP, is a circle,
—1 <t < 1. In particular, A is embedded.

(2) If A(1) or A(—1) is a straight line and the other one is a circle, and A is
embedded, then A(t) = ANP, is a circle, —1 <t <1.

(3) If A(1) or A(—1) are both straight lines, A is embedded, then A(f) = AN P,
is a circle, —1 <t <1.

*1991 Mathematics Subject Classification Primary 53A10; Secondary 35P99. The research described
in this paper is supported by Australia Research Council grant A688 30148. The author would like to
thank the referee for pointing out mistakes in the previous version.
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REMARK 1. The first part of Theorem 2 is exactly the Theorem 1, we will give
it a simpler, straightforward proof, essentially in the same way as the proof of the
other cases. We will see that the third part of Theorem 2 implies the result in [4].
The second part of Theorem 2 is new.

Let A = S(—1,1) be a proper minimal annulus such that 4(1) =4 NP, and
A(—1) = An P_, are straight lines or circles, 04 = A(1) U A(—1). In the case that
there is only one straight line, we will always assume that 4(1) is a straight line.
Then the conformal structure of the interior of A is equivalent to the interior of

Ar={zeC:1/R <|z| < R},
for some 1 < R < c0. In fact the interior of A4 is conformally equivalent to

{zeCip<|z|<P,0<p <P < 0},
for some p and P. Since 4 has 1-dimensional boundary dA4 which is separated by
the interior of 4, so 0<p and P <oo. Hence let R=./P/p>1, then
Int(A4) = Int(A4,).

There is a conformal harmonic immersion

X:Ag—C o S(—1,1),
where C is a subset of d4; and X({|z| = R} — C) = A(1), X({|z|=1/R} - C) =
A(—1). If A(1) and A(—1) are both circles, then C = &; if only A(1) is a straight
line, then C c{|z|=R}; if A(1) and A(—1) are both straight lines, then

Cn{z|=R}# T, Cn{z|=1/R} # . When C # & we assume that X is an
embedding. The Enneper—Weierstrass representation of A is

X(Z) = Re f (wh s, CU3) + V,
1
where V = (aq, b, 0) € R?, and

(1 - g*2)f(2) dz,

S N

w1=

w1 =5 (1 +2@)f ) &, )

w; = g(2)f(2) dz,
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where g is the Gauss map and f is a holomorphic function. Since X is proper, the
third coordinate function X?, which is harmonic, X* | ({|z| =1/R} - C) = —1 and
X*|({z]=R}—=C) =1, and —1 < X?|Int(4g) < 1, can be extended to whole A4,
such that X3 |{|z|=1/R} = —1 and X*|{|z| =R} =1. By the uniqueness of the
Dirichlet problem

{Au =0 in Int(4 z)
ul{lz|=1/R} =1, u|{lz|=R}=1,

where Int(4y) is the interior of Az, we have

1
log R

X3= log |z|,

and

d 1 1 1
w; = f(2)g(z) dz = o (log R log z) dz = log R 2 dz.

Hence

1 1
log R zg(z)

@) =

Thus by (1) we have

1 1
" log R;dz’

and X can be represented as

1 Pl i 1
X0 =io g Reﬁ (5;(1/5' ~2).5 (/g +8). ;) dz+V, ©
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Let

o 1 o
g(z) = n=z-—ao a,z", E_(;j = n;z—oo bnzn9 (3)

then (2) gives a minimal annulus if and only if
Im(bo) =Im(ay),  Re(by) = —Re(ao). (4)

The conformal factor of A4 is

1 1 2
ANle— o o—— | —+ ) 5
4(iog RF <|g| el (5)
and the Gauss curvature is
4 log RIZHgHg’I]2
K= — . 6
[ (1+[gP? &

The Gauss map g of the minimal annulus 4 has the features as stated in the
following lemma.

LEMMA 1. Let X:A(R) —C—>S(—1,1) be a properly immersed minimal
annulus, A = X(A(R) — C). Then the Gauss map g of A has neither zero nor pole in
the interior of Ag.

If A1) and A(—1) are both straight lines, then C = {p, q}, |p| =R, |q| =1/R; if
only A(1) is a straight line then C = {p}; In both cases, g can be extended to a
neighborhood of Ag as a meromorphic function.

Furthermore, the extended Gauss map § : Ar > Cu {0} takes zero or oo on C,
and C is the only point set in Ay, such that at which ¢ takes zero or .

Proof. If g achieves a zero or pole in the interior point z of A, then the tangent
plane of 4 at X(p) is P,, t =log|z|/log R. It is well known that the preimage
X ~'(A(?)) contains an equiangular system at z, of at least order 4. This contradicts
that X ~'(A(#) = {|z| = r = R}, as seen easily from the Enneper—Weierstrass repre-
sentation. This contradiction proves that g has neither zero nor pole in the interior
of A,. Since dA is analytic, by Hopf boundary maximum principle, we known that
at each point p € 04, the co-normal of A4 has non-zero third component, hence the
normal vector of A at p is not vertical, hence for any z € X~ '(p), g(z) #0 or oo.
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If A(1) is a straight line, we can assume that A(1) is parallel to the y-axis in R,
then the unit normal vector of A along A(1) is in the xz-plane. Let C, =
C n{|z| = R}, we see that g and g~ is real on {|z| = R} — C,. Hence using (3), g
and g ' can be extended to {R < |z| < R?} by

g(z) =gR?2) = ), a,R¥z7 "=} a,z",

1
gz g(Rz/z)

Z b,R?™z-"=Y bz

for R < |z| < R?, where a, =a_,R™?", b, =b_,R~?". By (4), we see that we can
use g to substitute g in the Enneper—Weierstrass representation (2). Then we get a
minimal surface

X:{1/R <|z| < R¥} —C,>S(—1,3).

Since X is properly immersed, the surface & = X({1/R <|z| < R*} — C}) is properly
immersed and contains a complete minimal annular end. By Cone Lemma of [5],
this annular end has finite total curvature. By a theorem of Osserman, ([10],
Theorem 9.1 and Lemma 9.5, pages 81—2) this annular end has the conformal
structure of a punctured disk, and the Gauss map of &% can be extended to the
puncture. In particular, C, = {p} is a single point, g can be extended to p, and g(p)
is either zero or oo by the Enneper—Weierstrass representation, otherwise X(z) will
remain bounded near p. _

Similar treatment applies to the case that A(—1) is also a straight line. The
proof of the lemma is complete. O

REMARK 2. Let R be the rotation of = angle around the straight line A(1) in
R3, by Schwartz Reflection Principle, 4 U R(4) is a properly embedded minimal
surface. By uniqueness it must be ¥ = 4 U R(4), where & is the surface we got in
Lemma 1. In particular,

jKdA =1_[ KdA, @)
4 2 )y

where K is the Gauss curvature, and dA4 is the area element of A.

We would like to calculate the plane curvature of each A(f) =4AnP,
—1 << 1. At any point of A(f), draw a tangent vector to the curve A(¢), and let
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¥ be the angle made by this tangent vector with the positive x-axis. ¥ maybe is a
multivalued function, but we will see that y is a harmonic function. To see this,
consider the normal vector of the curve A nP,, and its angle with the positive
x-axis, ¢. If we orient the surface such that the normal is inward to the unbounded
component of S(—1+4+¢1—€)—A4 in S(—14+¢,1—¢), for every ¢ >0 small
enough, then we have Yy = ¢ + n/2. By Lemma 1, g # 0 or o in the interior of 4.,
hence the normal vector must be g/|g| € R% and so ¢ =arg g =Imlog g, thus ¢ is
harmonic, so is . Now suppose that s is the arc length parameter of the curve A(?),
notice that X ~'(A4(?)) = {z: |z| =r = R'}, write z = r ¢®, we can calculate the curva-
ture of A(¢) as follows:

d d d dz
K=y,=¢, = = (Imlogg) = Im(a-; log g) = Im(a—g log g —‘Z;)

g’ dz db g8 . . i g’
= — e e} = S A = R I B
m(g des) Im(g izr r—'A e zg

Here we have used the facts that on the curve {|z| =r =R},

gg— =ire® =iz, and ds=A|dz|=Ardf.

Calculation shows that

1 2_1 ’\2 ’ "o o n2
,x9=1m[_hg_l,*(z§'~) AT ¢ a4, ]

2 gP+1\ ¢ g g
Let
1|gP-1 ( g’)’ g g”g-—(g’)z]
u =rAxy =Im| = z>=) —z=>=—-2z?2=2>=° 1 8
’ [2 eP+1\" ¢ g g’ )

then simple calculation shows that

8lg’|?

Au = “W u, (9)
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By (5) and (6), we have

Blg? _ 1. (+[gf)’

—e 1 —_ 2
(1+]gPH?* 27 (log R)Yzlgf? 2KA”

Hence u is a Jacobi field.

REMARK 3. The Jacobi field u is the same as in [11], page 79, formulas (8),
(9), and (10), where it is denoted by g in ¥, H plane.

Remember that
AA = A —2 A,

where 4, is the Lapalacian under the metric ds? = A%dz|®. If ' = A(1) VA(—1)
consists of straight lines or circles, then x, =0 on 04z — C, hence on Ax — C u
satisfies

AAu_zKu=O,

(10)
u|(@A4r—C)=0.

By the definition of u, we see that to prove Theorem 2 is equivalent to prove that

u=0.
Now it is easy to prove the first part of Theorem 2. In fact since
k =A"'r"! Re(zg’/g) and Re(zg’/g) > 0 on 04, Re(zg’/g) is harmonic, hence «k is
positive on all of 4., thus each A(¢) is strictly local convex. The total curvature of
each A(r) must be 2n by continuity, hence each A(¢) is strictly convex. In particular,
A is embedded. Now u|dA, =0, u is an eigenfunction corresponding to the
eigenvalue 0 to the operator L, =4, —2K. And since ¥ must have at least one
maximum and one minimum on each A(f), x, and so u changes sign, if u # 0. Since
the eigenfunction corresponding to the first eigenvalue never changes sign, 0 is not
the first eigenvalue of L,, hence A,(Int(4g)) <0. It is well known that g is a
conformal diffeomorphism from the interior of A, to C and Q =g(Int(4;)) is a
proper domain of S?=Cu{co} under the assumption that each A(¢) is a strictly
convex Jordan curve. (In fact it is a local diffeomorphism by Re(zg’/g) > 0 hence
g’ #0, and a geometric, [8], or an analytic, [3], argument shows that g is
one-to-one.) The eigenvalue problem of L, is equivalent to the eigenvalue problem
of the operator A45.+ 2, where A4g. is the sphere Lapalacian. Therefore,
A, (Int(AR)) + 2 = 4,(Q), the latter is the eigenvalue for Ag.. Since €2 is a proper
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subdomain, 4,() > 2, which contradicts to A,(Int(4z)) < 0. This contradiction
proves the first part of Theorem 2.
To complete the proof of Theorem 2, we need two more lemmas.

LEMMA 2. Suppose that A< S(—1,1) is a proper minimal annulus,

A(l) = AN P, is a straight line, A(—1) =AnNP_, is a circle or straight line, and
0A = A(1) UA(—1). Then

j KdA > —4n,
A
if A(—1) is a circle; and
f KdA = —4n,
A
if A(—1) is also a straight line.

Proof. We will use the extended surface % in the proof of Lemma 1 to calculate
the total curvature of A. Notice that & has an embedded flat annular end
corresponding to the point p. Take Y, = ¥ nS,, where S, is the sphere in R’
centered at origin of radius p. Denote the compact ball bounded by S, by B, and

let 0,=%n(R’-B,). If A(—1) is a circle, take p large enough, such that
0% < B,, then using Remark 2 and the Gauss—Bonnet theorem.

f KdA=—2n—f Kgds — xgds—j K, ds.
¥ -0, R(A(—-1)) A(=D Y,

By a theorem of Jorge and Meeks, [7], when p - 0, X, = Y ,/p approaches to a
geodesic of the unit sphere S? in a C® way, thus

f Kgds —2m,  p—o0.
YP

Notice that the other two integrals are larger than —2zn because A(—1) and
R(A(—1)) are circles. We have

J‘ KdA > —8n.
L4

By (7), we conclude that the total curvature of A is larger than —4n.
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For the proof of the case that 4(—1) is also a straight line, we quote a lemma
in [4] listed below, which implies that our surface has total curvature —4n, notice
that 4 has genus 0. O

We only state the part of that lemma in [4] that is useful to us.

LEMMA 3. Suppose A is a properly embedded minimal surface that is bounded
by a pair of lines L = Lyu L, and lies in a slab between parallel planes, P = P, P,
with L, = P;. Then A extends by Schwartz Reflection to a singly-periodic embedded
minimal surface &, invariant under a screw motion T, where T is R o R,, R, being
rotation by n about L,. If A has genus k, & |T has genus (2k + 1), two flat ends and
total curvature —4n(2k + 2).

The strategy of the proof of Theorem 2 is then as follows. The zero set of u divides
A into subdomains, called nodal domains. If u can be continuously extended to 4,
such that u | 34, =0, then u is an eigenfunction corresponding to the eigenvalue 0
for the operator L, on these nodal domains. By a theorem of Barbosa and do
Carmo, [1], the total curvature of each such nodal domain is less than or equal to
—2n, hence the total curvature of 4 must be less than —2kmn, if we have k nodal
domains. If k = 2, we get a contradiction to Lemma 2. Thus we must have u =0,
which is equivalent to each A(?) is a circle, for —1 <t < 1.

By the four-vertex-theorem, see [6], which says that the zero set of k, divides
each A(?) into at least four components, —1 < ¢ < 1, if k, # 0. Hence there are at
least four nodal domains.

Lemma 4 below will prove that u is actually continuous on Az, with u | 94, = 0.
Thus we will get the anticipated contradiction.

LEMMA 4. Let A be as in Theorem 2, p, q be as in Lemma 1, and u be as defined
in (8). Then u is continuous on Ag and u |0A, =0.

Proof. Without loss of generality, we can assume that p = R. By Lemma 1, we
can assume that the Gauss map g has limit zero at p = R, then g can be extended
to the disk D, centered at z = R, as a holomorphic function g, and let { =z — R,

8(2) = (z — R)"h(z) = {"h(0),

where h is a holomorphic function and A(0) #0. Since R corresponds to an
embedded flat end, and that end intersects P, at a straight line, we have n =2.
Please see [12] for the argument or just see it from Lemma 3, since & has total
curvature —8n, so the Guass map should be a degree 2 map.



426 Y1 FANG
For convenience, we will write g instead of g. Then

_£() _ 2R @)
6@ RV

and

g£@ a1 &
Zg(z) { +k§0 %l

a, =2R. Then

( g(z)) a?—l 2a_,a,
Z

= k
) "ot T

g@\__a.R a, 5 k-1
7 (z g(z)) 72 z +{+R kgl ka Lk

Since a_, = 2R,

1
—2~a2,1 —a_,R=0.

Since

h'(2) © h'(z)\® h'(R)
2 ~ R L (h(z))z &R R T 7- "
h’'(R)

Gy=2+R— R

We would like to calculate a,. The Weierstrass representation for the extended
surface & is

A
N
il
<}
0Q | wes
x
N~
Oq| —
4
o
SN
&
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as commented in the proof of Lemma 1. Again we will write g instead g. Let C be

a loop around z = R in a small disk. Then since X : {z: I/R <|z| < R’} — {R} = R?
is well defined and

X(z) =Re j (0, @3, w3),
Po

we must have

1 /1
Re LZ (@ - g(z)) dz =0,

1 /1
—Im LZ_Z (E(B +g(z)) dz =0,

~1—dz=j ‘—1d2=0,
C

cz8 4

since g(z)/z is holomorphic at z = R. Hence we know that the residue of 1/zg(z) at
z = R is zero. Then we have

o 1 h'(2)
- 211_1’1}( (—.zzh(z) B zhz(z))
_ 1 h’'(R)

~  R2W(R) RKX(R)

Hence
H®R) 1
hWR) R’
and
a0=2+Rh(R) 1.
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Then a_]ao“’a__l =0 and

__( g(z)) e (zg'(z))
(2) dz \ g()
1a2,~2a_,R a_,ay—a_,

- _ _ _ 1 (e o] e o]
=_5 CZ B 1 C ‘——2—k20 bka_(C+R)k§] kaka—l

)
= Z ckcka
k=0

hence
_ g'(2) g'(2)
Ae) = ( g(Z)) & (z g(Z))
is holomorphic near z = R. Now consider the function
g1 ( g (Z)) g'(2)
YO=0+kp Ve ) * ( (z))

note that our function u is Im U. U(z) can be rewritten as

1 gk g@\ [, 1\ go}
vl = ( (>) Zdz<zg<z))+(‘ 1+|g|2)(zg<z))

= d(2) + P(2).

Note that

g'(2)
J ( g(2) )

is holomorphic and since |g]* =|z — R|*|h(2)|* = |C|*}|h(2) [%,

_1_ 1 k+1|g|2k — 72 - —1)k+ 1|k -1 2k
C2(1 1+|g,2) Z( D*+ gl Ck;( )+ |h(z)|

is a C* complex function in a neighborhood of R. Thus

1 1 g'(z)
Pla= cz( 1+1g|2)c( g(z))
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is a C* complex function near z = R, so is U(z). In particular, u(z) = Im U(z) is C*®
near z = R. Hence u(R) =0, since on |z| = R, if z # R, then u(z) = 0 by (10). Hence
u can be continuously extended to p = R such that u(p) =0. The proof for g is
exactly the same, if we note that either g or g —! can be regarded as the Gauss map,
therefore we can always assume g has a double zero at gq. O

The proof of Theorem 2 is complete.
From the proof we see immediately that

COROLLARY 1. Suppose that A = S(—1,1) is a proper minimal annulus. If
A(l1) =A NP, is a straight line and A is embedded in a neighborhood of A(1),
A(—1)=ANP_, is a circle, and the total curvature of A is larger than or equal to
—8n. Then each A(t) = AnP,, —1<t <1, is a circle. In particular, A is embedded.

Proof. We only need to point out that we can still use the four-vertex theorem,
even some level sets A(r) may not be Jordan curves. But it is shown in [6], that all
curves which have exactly two vertices are curves which have exactly two simple
loops, on each loop the curvature is positive or negative, hence its total curvature
must be 0. a

The minimal annuli which can be foliated by circles or straight lines, but not all
straight lines, were classified by Enneper and B. Riemann in the 19th century, given
by elliptic integrals. See [9], pages 85-90 for detail, or see [4] or [12] for a
representation using elliptic functions. The facts are, all of those circles are in
parallel planes; if any two circles are coaxial, the surface is a piece of a catenoid, the
only rotational minimal surface; if the circles are not coaxial, then the surface has
two parallel straight lines lying in parallel planes, as boundary. Based on these
facts, we have proved that

COROLLARY 2. Let Ly=P,, L_,< P_, be two parallel straight lines. If
I' = L,uL_, is the boundary of a properly embedded minimal annulus A in S(—1, 1),
then A is one of the Riemann’s examples.

Finally, we have a non-existence theorem.

COROLLARY 3. Let L, = P,, L_, c P_, be two straight lines, and they are not
parallel to each other. Then I' = L,uL_, cannot bound an properly embedded
minimal annulus in S(—1,1).

Corollary 2 is the main theorem of [4], in which it is proved via the elliptic function
theory. Corollary 3 is a result of Toubiana [12].
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