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Splitting the spectral flow and the Alexander matrix

Paul Kirk1, Eric Klassen2 and Daniel Ruberman3

1. Introduction

This paper is concerned with a procédure for Computing the spectral flow of a

path of self-adjoint operators of the form Dt *dAt — dA*, where the At are SU{2)
connections on a 3-manifold Z which is split along a torus, and Ao and Ax are flat.
Récent theorems of Yoshida [Y1,Y2] show how to carry this out when Z is

obtained by surgery on a knot, under certain nondegeneracy conditions. Under the

assumption that there is a path At of flat connections on the knot complément and

that the space of flat connections modulo gauge transformation is a smooth
1-dimensional variety near this path, Yoshida shows with an explicit formula that
the spectral flow is determined by the restriction of the path to the boundary torus.

As a conséquence of our main resuit we show that when the path A, has

singularises, the spectral flow is not determined by its restriction to the boundary
torus. We give explicit computations in §6 comparing the spectral flow on a surgery
of a Whitehead double of a knot to the spectral flow on the corresponding surgery
of the Whitehead double of the unknot. Thèse examples hâve paths of flat
connections on the knot compléments whose restrictions to the boundary are the

same, while their spectral flows differ.

Suppose Z Xu Y, where X is the complément of a knot in S3. Let AQ and Ax

be flat connections on Z whose restrictions to X are reducible. Then there are

corresponding flat connections A&apos;o and A\ on Z&apos; X&apos;v Y, where X&apos; is the unknot
complément (Le., a solid torus). In §4 we show that the différence between the

spectral flow from A&apos;o to A\ on Z&apos; and the spectral flow from AQ to Ax on Z is a

classical knot signature, and in fact is equal to the spectral flow of the Alexander
matrix of the knot. Applying this theorem to satellite knots yields examples in
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which Yoshida&apos;s pillowcase resuit fails for paths of représentations having singular-
ities. For this spécial case, Theorem 4.4 gives the précise correction terni needed to
make Yoshida&apos;s theorem apply. In §6, we demonstrate how to calculate this
correction in a number of examples.

By combining this splitting device with the technique of [FS2], we can compute
the spectral flows between arbitrary flat connections on a large class of 3-manifolds
split along tori, including graph manifolds. In §5 we describe the moduli space of
flat irreducible connections on a manifold obtained by gluing together two Seifert-
fibered homology knot compléments X and Y along their boundaries, and show
how to compute the spectral flow between any two such connections using the

techniques of Fintushel and Stern. In this case we obtain an explicit formula which
shows the spectral flow is a sum of 3 terms. The first term involves only X and is

an analogue for Seifert-fibered manifolds with boundary of the R(e) invariant of
Fintushel and Stern. The second term is analogous and involves only Y. The third
term is an &quot;interaction&quot; term arising from the restrictions to the boundary.

Thèse results are applied in §6 to compute the Floer chain complexes of certain
surgeries on twisted Whitehead doubles of torus knots.

To put our results in proper perspective we will explain briefly the algorithm of
Yoshida, in the cases where his work applies. Hère and for the rest of the paper, we
write R(k) for the space of représentations of a group k in SU(2), modulo
conjugation. An elementary but vital fact is that R(Z2) is a 2-sphere with 4 singular
points, called the pillowcase. Suppose that Z is a 3-manifold and that IcZis the
exterior of a knot in Z. Suppose further that p0 and px e R{nx(Z)) are représentations

which happen to lie on a smooth 1-dimensional component of irreducible
représentations of nx(X) which we parameterize as pr Restricting pt to the

boundary torus gives a smooth path in the pillowcase R(Z2). There is a tangent line
field on the complément of the singular points in the pillowcase and Yoshida shows
that the spectral flow is just the degree of the tangent vector field to the restriction
of pt in this line field.

The intuitive reason for this is that each operator in the path whose spectral
flow we are interested in has 1-dimensional kernel when restricted to X, and when
restricted to the neighborhood, S, of the knot. Thèse kernels are identified with the
aforementioned tangent fields, and an eigenvalue (for the operator on Z) passes

through 0 whenever thèse tangent fields coincide.
Yoshida assumes that the two représentations lie on a smooth, 1-dimensional

component of the représentation space of the knot complément and proceeds by
drilling out holes, thus splitting along a higher genus surface where non-degen-

eracy is easier to verify. T. Mrowka [M] has a more gênerai approach - he shows

that in any case there is an infinité dimensional Maslov index which equals the

spectral flow. Under the nondegeneracy conditions, Mrowka identifies this Maslov
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index (via &quot;symplectic réduction&quot;) with the degree of the vector fields in the

pillowcase. However, the réduction process breaks down when the path pt passes

through a singular point of the représentation variety R(n{(X)). More recently
Cappell, Lee, and Miller [CLM] hâve announced a formula which expresses the

spectral flow as a sum of 3 terms given a splitting of a 3-manifold along any surface.

Our results can be viewed as explicitly identifying the terms in their formula in the

spécial cases outlined above.

Our methods do not involve the délicate analysis of [Yl] but instead use the

machinery of the Atiyah-Patodi-Singer index theorem for manifolds with
boundary, together with Wall nonadditivity. Along the way, we clear up some
délicate points about orientations, and about Chern-Simons invariants for SO(3)
bundles which seem confused in the literature.

A few gênerai remarks can be made hère. The results in this paper are of a

computational nature, and as such they provide explicit computations of spectral
flow which can then be combined with the abstract splitting results of [Yl], [M],
and [CLM]. For example, Yoshida shows how to compute the Floer homology of
any surgery on the figure 8 knot starting with only two pièces of data: the image of
the space of SU(2) représentations of the figure 8 knot in the pillowcase, and
Fintushel and Stern&apos;s computation of the Floer homology of Z(2, 3, 7). The

computation then follows from an algorithm, as explained in [Y2]. Similarly, the
results of this paper show how to relate the spectral flow for représentations of
3-manifolds to the spectral flows for simpler 3-manifolds. Thèse computations
dépend on understanding the représentation varieties of 3-manifold groups, and

although this is a hard problem in gênerai there are many partial results. Of course,
Computing the Floer homology will require understanding the boundary operators
in the Floer chain complex, a difficult problem. Although this paper does not
address this question in gênerai we point out that the correction term in Theorem
4.4 is usually even. (This fact is used to compute the Floer homology of certain

graph manifolds.)

2. The pa invariants and spectral flow

We will explain some of the terms which appear in our formula for spectral
flow. See also [T], [F], [FS3]. Our first remark is about orientations. There are two
conventions for orienting the boundary for a 4-manifold N. We will use the

convention &quot;outward normal first&quot;. This is convenient when dealing with differen-

tial-geometric objects, for example, with this convention Stokes&apos; theorem says

f„ dco jdN o).
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Let P-&gt;Zbe a principal SU(«) bundle over a compact, closed, and oriented

Q-homology 3-sphere Z. The bundle P is trivial and a fixed trivialization enables us

to identify the space se of connections on P with the lie algebra valued 1-forms

Qx®su(n).
Given a connection aej/we form its covariant derivative

da : Qp ® su(n) -+Qp+l&lt;g&gt; su(n).

So dab db + [a, b] in the trivialization. Let d* dénote the adjoint. We then define:

Da : Q°® su(n) ®Ql® su(n) ~&gt;Q°(g)su(n) ®Ql® su(n)

by the formula:

The operator Da is self-adjoint and elliptic, and has a discrète real spectrum.
In gênerai, if Dt is a one-parameter family of self-adjoint operators with discrète

spectrum on a Hilbert space, the spectral flow of the family from Do and Dx is the

intersection number of the graph of the eigenvalues of Dt with a line segment from
(0, -S) to (1, S) in [0, 1] x R where ô is a number such that 0 &lt; ô &lt;inf |A|, the

infimum taken over the set of non-zero eigenvalues of Do and Dx. (Note that ail

eigenvalues are real since the operators are self-adjoint.) See Figure 1.

o

-ô

Figure 1
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This is just the différence between the number of eigenvalues which change from
négative to positive and the number of eigenvalues which change from non-negative
to non-positive. (The ô is introduced in case Do or Dx hâve kernel.)

Now if ar, t e [0, 1] is a smooth 1-parameter family of connections we defîne the
Spectral flow from a0 to ax to be the spectral flow of the family of self-adjoint
operators Dar We dénote this by SF(a09ax).

To résolve the dependency of SF(a0, ocx) on the choices made such as the choice
of trivialization, the path at, and the basepoint of Z, we pass to the quotient si\9
of the space of connections modulo gauge transformations. Then the spectral flow
becomes well defined in Z/2fcnZ, where kn is an integer defined as follows. Let
ad : SU(n) -+SU(n2 — 1) be the (complexified) adjoint représentation. Then:

ad* : H\BSU(n2 - 1)) -+H\BSU(n))

takes c2 to knc2. For example k2 — 4 so the spectral flow between two connections
on an SU(2) bundle is well defined mod 8. (See §7 for more détails.)

The spectral flow has the following easily verified properties:
1. SF(a, c) SF(a, b) + SF(b, c) + dim Ker Db. In particular SF(a, a) -dim

KerZ)a.
2. If —Z dénotes Z with the opposite orientation, then

SF(a9 b)(-Z) -SF(a9 b)(Z) - (dim Ker Da + dim Ker Db).

A more sophisticated invariant derived from the spectrum of Da is its eta -invariant,

t]Da(s\ defined for Re(s) &gt; 0 by:

rjDa(s)= X sign(X)\X\-&apos;.
X e SpecDa — 0

In [APS1] it is shown that rjDa(s) meromorphically continues to a function with
a finite value at s 0. Heuristically, rjDa(O) measures whether Da has more positive
or négative eigenvalues.

As a spécial case, suppose that a \nyZ-+SU(n) is a représentation and let
ad a : nxZ -*SU(n2 - 1) dénote the adjoint représentation. Let a be a flat connection
on P with holonomy a and let 0 dénote the trivial SU(n) connection. Then the

quantity rjDa(O) — tjDd(O) is independent of the Riemannian metric and in fact
equals the Atiyah-Patodi-Singer invariant pada(Z) introduced in [APS2]. In
particular, if N is an oriented 4-manifold with oriented boundary Z and

p : %XN -»SU(n2 - 1) extends ad a then

(n2 - 1) Sign N - Sign^ N.
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In this formula Sign^ N dénotes the signature of N with local coefficients in the
fiât bundle defined by p induced by the cup product and the invariant inner product
on su(n) ®C^Cw2-1.

The spectral flow may be expressed in terms of rç-invariants using the main
theorems of [APS1, 2]. One more quantity is needed, the Chern-Simons invariant
of a connection. It is defined for a connection a e se by

cs(à) ——r I Tri Ja Aû+-a Aa Au
87r Jz \ 3 /

where we think of a e Ql ® su(n). In this formula wedging of su{n) valued forms
means to wedge the form parts and matrix-multiply the coefficients. Taken in R/Z,
the Chern-Simons invariants are independent of the choice of trivialization or
gauge transformation. Moreover, the Chern-Simons invariant of a flat connection
is a flat cobordism invariant.

With thèse définitions in place, we can now write the formula for spectral flow.
Although this formula is well-known we could not find it explicitly derived in the
literature and so we give an argument in the last section of this paper. We also show
how to relate the spectral flow to the index of the self-duality operator on Z x /,
suitably oriented. In this formula we assume the group of the bundle is SU{2).

SF(a, b) S(cs(b) - cs(a)) + ±
(rjDh(O) - rjDa(O))

- - (dim Ker Da + dim Ker Dh).

In the spécial case where a and b are flat connections with holonomy représentations

a and p respectively then the kernel of Da is just H°(Z; ad a) © Hl(Z; ad a)
by the Hodge theorem. We then dénote the dimension of the kernel by ha. In this

case the formula becomes:

5F(a, p) i(cs(p) - cs(a)) + \ (pad fi(Z) - pad a(Z)) - \ (ha + *,). (2.1)

In [T] it is proven that if Z is a homology sphère such that Hl(Z; ada) vanishes

for ail irreducible SU(2) représentations a, then Casson&apos;s homology sphère invariant

is equal to

2 M
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where the sum is taken over the finite set of conjugacy classes of irreducible SU(2)
représentations. More generally one must perturb the flatness équations to obtain a

finite sum.

REMARK. Taubes shows his invariant is equal to Casson&apos;s invariant, not its

négative. However, we are using the sign convention of [AM] for Casson&apos;s invariant.
Akbulut and McCarthy first define Casson&apos;s invariant up to an overall sign which
they later nail down by requiring the surgery formula to hold with respect to a

spécifie normalization of the Alexander polynomial. It turns out that the sign (S on

pages 65 and 125 of [AM]) equals — 1. We will see this later in our computations.

In [F], Floer makes use of the fact that spectral flow is well-defined mod 8 to
construct a Z/8-graded chain complex whose generators in dimension k are those

SU(2) représentations a such that SF([0\,[a]) =k Mod 8. The homology of this

complex is called the Floer homology or Instanton homology of Z.

3. The basic géométrie construction

We introduce the géométrie construction which will be our main tool. The idea

is simple: if we can décompose the 3-manifold Z into simpler pièces, say X and Y
and find 4-manifolds with boundary containing X and Y over which the représentations

extend, then we can glue the 4-manifolds together to get a flat cobordism from
Z to a less complicated space for which we can compute the terms appearing in the

formula for spectral flow directly.
So, let Zo be an oriented rational homology sphère and let T cz Zo be a torus

separating Zo into two pièces Xo and Yo. Let fi : nxZ0-&gt;SU(n) be a représentation.

(In our applications fi ad a for some SU(2) représentation a.) Dénote by fix and

fiy the restrictions of fi to Xo and Yo.

Suppose there exist 4-manifolds Mx and MY such that:
1. XoadMx.
2. fix extends over nxMx.
3. dMx X0kj(T2 x I)kjXxLLLx where Lx is some closed manifold, and Xx is

a rational homology knot complément. See Figure 2.

We view Mx as a rel boundary cobordism of Xo to Xx + Lx, and view MY
similarly.

Then we can glue Mx to MY along T x I to get a flat cobordism N with

boundary ZouZxuLxvLY. Hère Zx XxuYx. We orient N so that:
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Txl

Figure 2

The main examples to keep in mind are the following:
1. Xo is the complément of a knot in S3, Xx is the complément of the unknot,

Mx is a flat cobordism from Xo to Xu and MY Y x /. Thus Lx and LY are

empty.
2. XQ is Seifert fibered, Mx is obtained from the mapping cylinder of the Seifert

fibration by deleting neighborhoods of the singularises, and so Lx is a union of lens

spaces and Xx S1 x D2. We will take MY to be Yo x / or, if y0 is also Seifert
fibered, we will construct MY from its mapping cylinder.

Consider now the terms appearing in the formula for the spectral flow between

two flat SU(2) connections. The Chern-Simons invariant can be computed for
splittings along ton in various ways, for example using the results of [KK2]. The hfi

terms are dimensions of cohomology groups which can usually be computed
explicitly. This leaves the p$ invariants. Thèse are not flat cobordism invariants but
from the Atiyah-Patodi-Singer signature theorem we know:

pp(Z0) pfi(Zx) + pfi(Lx) + pfi(LY) - n Sign N + Sign^ N.

In our situation Lx and LY will either be empty or lens spaces, whose pfi invariants
can be computed directly since they hâve finite fundamental groups. It remains then

to compute the signature terms.
Thèse are computed using WalFs non-additivity formula [Wa]. We are gluing

Mx to MY along T x /, so the signature of N differs from the sum of the signatures
of Mx and MY by a correction term which we explain. Fix either trivial R or
non-trivial flat coefficients. We hâve:

Sign N Sign Mx -h Sign MY - Sign W

where W is a non-degenerate bilinear form on the vector space defined as follows.
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Consider:

A Image (H\XouXx) &gt; H\T x {0, 1})),

B Image (H\T x /) &gt; H\T x {0, 1})),

and

C Image (H\YokjYx) &gt; Hl(T x {0, 1})).

Then V is defined on:

Bn(A +C)
(BnA)+(BnC)

Write H\T x {0, 1}) H®H, so that B is just the diagonal subspace. We can
write A Ao® Ax and C C0@C{. There is an isomorphism:

Bn(A+C) (Ao -h Co) nG4, -f C,)

For the définition of the form W we refer to Wall&apos;s paper. In the cases we consider
we will use this isomorphism to show that W is the zéro form.

We end this section with a well-known lemma (see, for example, [H]).

LEMMA 3.1. Let X be a 3-manifold with torus boundary, and let p : nx{X) -?G
be a représentation into some semi-simple Lie group G. Let E be a représentation of
G which has a&apos;non-degenerate, positive-definite, G-invariant inner product. Then the

image of H\X\ Efi) in Hl(ôX; Efi) is half-dimensional.

Proof By Poincaré duality the composition of the cup product and the inner
product E x E -&gt; R

Hl(X; Efi) x H2(X, dX; Ep) &gt; H3(X, dX; R)

is non-degenerate. The orientation of X defines an isomorphism H\X, dX; R) £ R
and one obtains an isomorphism:

Hl(X; Ep) &gt; Hom (H2(X, ÔX; Ep\ R).

Similarly we get H\dX; Ep) -?Hom (Hl(dX; Efi), R).
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Consider now the part of the long exact séquence:

Hl(X; Ep) -U Hl(dX; Efi) -^ H2(X9 ÔX; Efi).

The maps / and g are dual maps with respect to Poincaré duality and so

dim im (/) dim Ker (g) dim H\dX; Ep) - dim im (g) dim Hl(ôX; Efi) -
dim im (g*) dim Hl(dX; Ep) — dim im(/) so that the image of / is half
dimensional.

4. Représentations which are abelian on a knot complément

In this section we consider the set-up of the previous section where Xo is the
exterior of a knot in S3 and a : nxZ0-+SU(2) restricts to an abelian représentation
on Xo. For example, suppose Zo is a homology sphère obtained from surgery on a

satellite of a knot K. Then the companion torus splits Zo into the exterior of K and

surgery on a knot in a solid torus. The représentation space of nxZ0 divides into
two pièces, jR7 and RR depending on whether the restriction of a représentation to
the exterior of K is irreducible or reducible. The pièce RR is naturally homeomor-
phic to the space of représentations of the corresponding satellite of the unknot. So

if we write Zo Xou Wu(Sl x D2) where W is the exterior of a knot in a solid
torus and we are given a path a, of représentations of nx{Xou W) which restrict to
reducible représentations on Xo such that a0 and a, extend over Zo, there is a

corresponding path of représentations of ux(XxkjW) where Xx is the unknot
complément. Restricting thèse two paths to the boundary d(Xt u W) gives the

identical path in the pillowcase, and so one might expect the spectral flow from a0

to a, on Zo to agrée with the spectral flow on Zx Xx u Wu S1 x D2 if the theorem

of Yoshida continued to hold in this setting. We will show that this is not the case

and that the différence is measured by equivariant signatures of K. In terms of
splitting the spectral flow this should correspond to the spectral flow of the path a,

on Xo being non-zero, since as we shall see the dimension of the cohomology of Xo

with coefficients in a, jumps precisely when the Alexander matrix of the knot has

kernel, i.e. when a.(p)2 is a root of the Alexander polynomial of K, where n is the

meridian of K.
So let Xo be the exterior of a knot K in S3 and let YQ be a homology knot

complément. Let Zo Xou Fo, glued in such a way that HX(ZO; Z) 0. (A good
example to keep in mind is to let Zo be l/n surgery on a satellite of K and we split
Zo along the incompressible companion torus.) We suppose that a : nxZ0-+SU(2)
is a représentation whose restriction to Xo is abelian.
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Our first task is to find manifolds Mx, My as in the previous section and

compute their signatures. We thank Steve Boyer for suggesting the statements and

proofs of the following lemma and theorem.
Consider the following 4-manifold. Let U D4uH9 where H is a 2-handle

attached to D4 along K with the zéro framing. Choose a Seifert surface F for K and
let F be the union of F pushed slightly into D4 and the core of the 2-handle. Let
W U - nbd{F). So dW (0-surgery on K)kj(Fx S1). Let B be a handlebody of
genus equal to the genus of F. Then let

Mx= Wu(B xS]).

The proof of the following lemma is then an application of Van Kampen&apos;s theorem.

LEMMA 4.1.
1. nxMx^Z.
2. The map tt, (S3 — AT) ^-tti Mx induced by inclusion is y &gt;-+ [y], where [y] dénotes

the image of y under the abelianization nx(S3 — K) -*Hl(S3 — K) Z.

Notice that Mx can be viewed as a rel boundary cobordism of Xo to
Xx s S1 x D2. Furthermore, from the previous lemma any abelian représentation of
nxX0 extends over nxMx. Extend a over Mx. We next wish to compute the

signature and ad a-signature of Mx. Since B x S1 has a déformation retract

v^1) x S1 in its boundary, Sign (B x S1) 0 and Signada (B x S1) 0. Hence by
Novikov additivity Sign Mx Sign W and Signad a Mx Signad a

W.

To compute thèse signatures, let W be the universal cover of W. Notice that

7i, W s Z. Let

B:H2W x H2W-+Z[t9t~l]

dénote the equivariant intersection form of W.

THEOREM 4.2. H2(W; Z) s(Z[/, t~l])2g®Z where Z[t, t~x] acts trivially on

the Z summand. The matrix for the equivariant intersection form, B, on the free
summand is given by

where V is the Seifert matrix for K, so VtJ lk(xh x+ Furthermore the Z summand

is in Ker B.
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The proof of this theorem follows standard arguments and we only indicate the
idea. Let C be obtained by cutting D4 along F x I where F xOadD4 and F x 1 is

the pushed in Seifert surface. Then the universal cover of D4 — F x 1 is obtained by
gluing a Z&apos;s worth of copies of C in the usual way. This gives a manifold with
second homology the free Z[Z] module on the 2-cycles constructed from dises in C
whose boundary in F are the generators of HXF. Thus the Seifert matrix détermines
the intersection forai on this part of W in the manner indicated.

To get W one adds the universal cover of the 2-handle minus its core, which is

homeomorphic to D2 x / x R. This last pièce contributes the trivial Z in H2 W, and
its intersection with the other part of the homology is trivial since it is carried by
a cycle which lives in the boundary dffi.

For more détails of this construction see [CG], or [Ka].

Let BK(t) dénote the matrix (1 - t)V + (\ - t~l)VT. (Of course BK(t) dépends

on the choice of Seifert surface F.) Recall that the symmetrized Alexander matrix
for K is

Thèse are related by:

Let P : TtiXo-tUil) be a représentation which sends the meridian \ix to em.

Extend fi over Mx. Notice that BK(eie) is hermitian, and AK(eie) is skew-hermitian.

It follows from the previous theorem that the signature of Mx with coefficients

in the flat bundle determined by fi is equal to the signature of BK{eie). Furthermore,
if 9 is not a multiple of 2rc, then BK{eie) is singular if and only if the Alexander

polynomial of K vanishes at eie.

Let us now return to the situation of the preceding section. Let a : nx Zo -&gt; 5(7(2)
be a représentation whose restriction to Xo is abelian. Think of Mx as a flat rel

boundary cobordism of Xo to Xx S1 x D2. By gluing Mx to MY ~ Yox I along
T x /, we obtain a cobordism Nfrom Zo Xou Yo to Zx S1 x D2u(YQx 1) over
which a extends. Notice that Z, is in gênerai a simpler manifold than Zo since it is

just a Dehn filling of Y. (For example, if Zo is a surgery of a satellite of K, then Z,
is a surgery on the corresponding satellite of the unknot.) By conjugating a we may
assume «(&amp;, (T)) lies in the circle of diagonal matrices. Thus if pXf kx dénote the

natural meridian and longitude of K, then &lt;x(Xx) 1 and
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l9

The corresponding adjoint représentation ad a takes Âx to 1 and takes the
meridian to the 3 x 3 matrix:

fe2&apos;6

THEOREM 4.3. Orient N so that dN=-Z0 + Zx. Then:
1. Sign# 0.

2. SignadaiV=-2

REMARK. The idea of the proof is to use Wall&apos;s non-additivity theorem [W]
to show that Signad a N Signad a Mx.

Proof.
1. From the remarks immediately preceding Lemma 3.1 we know that

Sign N Sign Mx - Sign (&lt;F), where ^ is a form on (A0 + C0)n(Ax+Cx)/
(AonAx) -H (ConC{) (see §3 for the définitions). We claim that AO AX and
Co Cx. This obviously implies that W is the zéro form.

Recall that Ao Im [HlX0-+HlT] and Ax Im [H\SX x D2)-&gt;HXT] (say with
real, untwisted coefficients). But since dMx is just 0-surgery on AT, the pair
(Xo^iS1 x D2), T) is homologically the same as (S1 x S2, S1 x S1). Clearly then

^o ^i- Since MK Yo x /, Co C,.
Therefore Sign (W) 0 and, since Sign (7 x /) 0, Wall&apos;s formula gives Sign

N Sign Af^. One can see directly from the construction that Sign Mx Sign
W 0; equivalently Sign Af^ -Sign BK(X) 0.

2. We will again show that AO AX and Co Cx. This time we must use local
coefficients in ad a.

We can identify H1 (A; ad a) with the group cohomology Hl(n{A;ada) for any
path-connected space A and homomorphism nxA -&gt; 51/(2). By taking the first
cohomology with ad a coefficients in the diagram of groups:

nxX0

nxT nxW-ï\ A
TE, (S1 XD2)
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one sees that the map H1 (S1 x D2; ad a) -+Hl(T; ad a) factors through
Hl(X0; ad a) and so Ax c Ao. But now Lemma 4.1 implies that Ao Au since they
are both middle dimensional subspaces. Again Co Cx because MY Yo x /. So ¥
vanishes in this case also. Now Signada(y x /) vanishes since Y x / deforms to its

boundary and so Wall&apos;s theorem implies that Signada N Signada Mx.
The adjoint représentation ad a: nxMx -* U(3) splits into three U(l) représentations

sending the generator to e210, e~2l09 and 1. Thus the signature SignadaM^ is

the sum

Signad „ Mx - Sign BK(e2t0) - Sign BK(e~2&apos;e) - Sign BK( 1).

(the minus signs arise because of our choice of orientations. The orientation which
N inherits from D4 has Zo in its boundary. Since we want dN — Zo + Zx, we must
give it the opposite orientation.) Now Sign BK(l) 0, and since BK(t~x) BK(t)T,
the signatures SignBK(e2l°) and SignBK(e~210) are equal. Therefore

as claimed.

As a conséquence of this theorem we can compare the pad a invariants of Zo and

Zx. In fact,

Pad .(Zi - pad a(Z0) 3 Sign N - Signad „ tf
2SignBK(e2l$).

THEOREM 4.4. Let a0 and a, 6e SU(2) représentations of nxZ0 which are
abelian on the knot complément Xo. By conjugating we may assume that

el0j

with the 0j € [0, n]. If a, is non-central let a} Dim Ker BK(e2l0j), so that

Hl(X0; ad ay S R1 + 2% If ay is central, let a, 0.

Then the différence of spectral flows

is equal to:

Sign BAe2*) ~ Sign BK{e2^) - (a0 -h ax
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If e2t6J is not a root of the Alexander polynomial of K for j 0 and 1 then this
différence is even.

Proof We use the formula of §2 which relates the spectral flow to the Chern-
Simons invariants, the padot invariants, and the Aa/ We first dispose of the h%j.

By Computing with the Mayer-Vietoris séquences of (Zo, XOi Y) and

(Zl9Xl9 Y) (Zl9Sl x D2, Y) with ad a, coefficients one can easily show that
H°(Z0, ad olj) s H°(ZÏ ; ad a,). If the restriction of a, to Xx is trivial or if e2*&apos; is not
a root of the Alexander polynomial of K, then H\X0; ad a,) £ Hl(Xx; ad a,). It
follows that H\Z0; ad a,) s HX{ZX\2À a,). The only case in which the first coho-
mology groups do not agrée is when e2l9j is a root of the Alexander polynomial of
K, in which case Hl(X0; ado,) ^R1 + 2a^ and H\XX\ ad ay) ^R. In this case

2a7. So

Next, we must compare the Chern-Simons invariants. Since the Chern-Simons
invariants are flat cobordism invariants, c^(ao)(Zo) cs(olq)(Zi). Similarly for &lt;xx.

Putting thèse facts together with the formula for spectral flow we obtain:

ai)(Z0) - SFiao, al){Zl) \ ((padai(Z0) - ^..(Z,)) - ((padao(Zo)

i -2 Sign ^(ew0 + 2 Sign

Sign fij,(é?21^) - Sign BK(e2^)

If e210/ is not a root of the Alexander polynomial of K and is not equal to 1, then
Bx(e2t0J) is a non-singular 2g-dimensional matrix and hence has even signature;
moreover a3 =0. If 0, 0 then BK(l) is the zéro matrix so its signature is even.

In the spécial case of a surgery on a satellite of a knot in S3, there are two ways
to interpret this formula as a splitting resuit depending on whether we think of the

separating torus as the boundary of the satellite or the boundary of the companion.
In this setting let W be the complément of the knot in the solid torus, so that Yo
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is a Dehn filling of one of the two boundary components of W. Then if we are given
a path of représentations of n{(X0Kj W) whose restrictions to Xo are abelian, we can
find a path of connections on Zo which are flat on Xo u W. As above this gives rise

to a path of connections on Xx u Yo which is flat on Xl u W, where Xx is the unknot
complément. If we restrict the paths to one of the ton in ôW9 the image

R(Xou W)-*R(T) coincides with the image R(XX u W) -&gt;R(T)for either torus Tin
dW. In particular, restricting to ô(Xou W) and d(Xx u W) gives examples of paths
of représentations of two knots in S3 whose image in the pillowcase coincide, which

are non-abelian in gênerai (see the examples in §6), but for which the spectral flows

(and Floer homology) are différent. In particular, Yoshida&apos;s theorem fails to extend

to this case.

The results of this section can be generalized to include surgeries of satellites of
knots in arbitrary homology sphères Z by replacing the pair (D4, S3) by (M, L)
where M is a 4-manifold bounded by E. The correction term will then involve the

signature of M as well as the Alexander matrix.

5. Splitting the spectral flow for graph manifolds

In this section we consider homology sphères Z XuY where X and Y are
Seifert fibered homology knot compléments. For simplicity we will assume that X
and Y are the compléments of a tubular neighborhood of a regular fiber in a

Seifert-fibered homology sphère. This restriction is not essential but makes some of
the formulas less messy. Nor is it essential to take Z to be a homology sphère.

Finally, one can do the computation for any graph manifold, that is, any 3

manifold obtained by gluing together Seifert-fibered spaces along tori in their
boundary.

We will give a &quot;splitting theorem&quot; for the spectral flow between two connections
whose restrictions to X and Y are irreducible. This theorem expresses the spectral
flow as the sum of 3 terms Fx&gt; FY, and F^ where Fx (resp. FY) dépends only on the

restriction of a to X (resp. Y) and F+ is an interaction term involving the gluing
map 0 :dX-+dY.

This section closely parallels the computations of [FS2] for Seifert fibered

homology sphères, in particular the starting point is the observation of Fintushel
and Stern that Seifert fibered manifolds bound canonical 4-manifolds over which
SO(3) représentations extend. Although our emphasis is différent, the methods are
similar. We refer the reader to their beautiful papers [FS2] and [FS1] for détails.

Seifert fibered manifolds are characterized by the property that their fundamen-
tal groups hâve a cyclic center. Since the centralizer of any non-abelian subgroup of
SU(2) is just ± 1, it follows that any irreducible représentation of the fondamental
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group of a Seifert fibered 3 manifold must send the generator of the center to ± 1,

and hence the adjoint représentation sends this élément to 1.

Given a Seifert fibered manifold X S(F; (al9bx)9...9 (am9 bm)), the mapping
cylinder of the Seifert fibration X -&gt; F is a singular 4-manifold whose singularises
are cônes on L(anbt). Removing neighborhoods of the singularities leaves a 4

manifold Mx whose boundary is the union Lx U L{an bt) together with the Dehn

filling of X which caps off the generic fibers in dX.

The fundamental group of M is the quotient of tc, X by its center. In particular,
if a : nxX-+SU(2) is an irreducible représentation then ad a extends over Mx. This
gives a canonical flat 4-manifold with X in its boundary.

Now let X be the complément of a regular fiber in a Seifert fibered homology
sphère. Sol S(D2; (ax, bx),..., (am9 bm)) and

nxX &lt;*!,..., xm, h | h central, xphbl 1&gt;.

The center of nx X is the cyclic subgroup generated by the generic fiber h.

We assume X has been given some fixed orientation.
Let a : nxX-+SU(2) be an irreducible représentation and let 9 dénote the trivial

SU(2) représentation. Both of thèse send the homotopy class of the regular fiber of
X to ± 1 e SU(2).

From the présentation of nx{X) we see that a must take each xt to a 2a\h root
of 1. Following [FS1], we can unambiguously define the rotation numbers of a to be

the collection of integers /?,,/ 1,..., m so that 0 &lt;&gt; pt £ at and a(jc,) is congugate
to exp(2nipJ2aù in SU(2). To a we associate the integer m^X) which is the

number of xt which are not sent to ±1 by a; equivalently the number of pt strictly
between 0 and at.

The manifold Mx has boundary Xu(T2 x I)v(Sl x D2) U Lx. We orient Mx
so that — XczdMx. Thus we view Mx as a rel boundary cobordism from X to
S1 x D2 + Lx. The représentation ad a extends over nxMx.

LEMMA 5.1.

(1) /fI(M^;R)=0 H2(M^;R).
(2) Hl(X; ad a) s Hl(Mx; ad a) S R2&quot;^-3 and H\MX\ ad a) 0.

Proof,
(1) Let W dénote the mapping cylinder of the Seifert fibration. Since X fibers

over D2, W is contractible, By excision, H\Wy Mx; R) » Hn(cLx, Lx; R), which is

zéro for «=2 or 3. The exact séquence for the pair (W,MX) shows that

Hl(Mx; R) 0 H2(MX; R) since W is contractible.
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(2) Let P be the complément of m small open dises in D2 centered at the images
(under the Seifert fibration) of the singular fibers in X. We décompose Mx as:

xSllx |0, i1
j

In this décomposition, each D2 x S1 x {0} corresponds to a neighborhood of a

singular fiber in X. For each point p e D2 x S1, the arc p x [0, j] corresponds to
half of the mapping cylinder arc emanating from p. Defîne

|~0, ^~h (P x D2) n(D2 xSlx |~0, ^1)

In what follows, we will repeatedly use that fact that if Q is a CW-complex and

p -Tt\Q -&gt; Aut (F) is a homomorphism, then for / 0, 1,

where the latter dénotes group cohomology.
We hâve the présentation

h, M* &lt;*,,. ..9xm\x? l for i 1,. ,/!!&gt;.

We compute Hx(nxMx\ ad a) using the usual bar resolution as follows. A 1-cocycle

a : nxMx -+su(2) is determined by its values on the generators {xx,..., xm}. Using
the cocycle condition on the relations implies that thèse values must satisfy the

équations

0 a(xt&apos;) 1 4- ad &lt;*(*, + • • • + ad &lt;x(xf&lt; ~l)) • a(xt

If a^) ± 1, this implies a(xt) 0. If a(^) # ± 1, this implies (T^) e R2 the

orthogonal complément in su(2) of the one-dimensional subspace fixed pointwise by

ada(^).
It follows that Zl(n{Mx; ad a) s R2w«^&gt;. Since a and hence ad a are irreducible,

^(^M^jada) ^R3, so H\MX\ ada) SR2m«w-3#
Similar (but easier) computations give:
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Also, H°((Sl x D2\; ad a) -+H°(T2; ad a) is surjective since im (a | nx(Sl x D2\)
im(a \nxT2). Clearly,

H\P2 x D2; ad a) H2((Sl x D2\ ; ad a) 0

since thèse spaces are homotopy équivalent to 1-complexes. Plugging this data into
the Mayer-Vietoris séquence for the décomposition (*) above implies that
H2(Mx;ad(x)=0.

Finally, to see that Hl(nxX\ ad a) s Hl(nxMx; ad a), it suffices to check that if
(7 is a 1-cocycle on nxX9 then the relations imply that o{h) 0.

Now let Y S(D2; (c,, dx),..., (cn, dn)) be the complément of the regular fiber
in the Seifert fîbered homology sphère. Assume Y has been given a fixed orientation
and let MY, LY be defined as for X. As before,

nxY=(yx,...,yn,k\k central, yc^kd&apos; 1&gt;.

We glue X to 7 using an orientation reversing map (f&gt; : ÔX-+ÔY to form the
oriented homology sphère Z^. We can then glue Mx to MY along T x / using 0x/
to obtain the 4-manifold N(f)= MxU^My. The oriented boundary of N+ is

— Z&lt;i)-\-Lx-\-LY-\-L(j&gt;, where L^ is the lens space obtained by gluing two solid tori
together along T so that h bounds in one and k bounds in the other. (So for
example, if Z0 is itself Seifert fibered, then (f&gt;(h)=k±l so that L^^S1 x S2.

Another easy case is when &lt;f)(h) and k intersect in one point in which case L^ s S3.)

Let a : nxZ^ -* SU(2) be a représentation whose restrictions &lt;xx and &lt;xr to X and
Y are irreducible. So ad a extends to nxN&lt;t&gt;. We dénote by pt the rotation numbers
of olx and by qt the rotation numbers of ay. We also define ma{X)y m^Y) as before.

LEMMA 5.2.

(1) #2(A^;R)^R2.
(2) IfZj is not Seifert-fibered, then H2(N+; ad a) 0.

(3) IfZ^ is Seifert fibered, then the 4-manifold obtained by gluing S1 x Z&gt;3 to N^
along L^ S1 x S2 isjust Mz {Le. the mapping cyclinder with the cône points
removed).

Proof
1. Using the Mayer-Vietoris séquence for iV^ MxuMY and the previous

lemma we see that Hl(T; R) -? H^N^ ; R) is an isomorphism.
2. With ad a coefficients, the Mayer-Vietoris séquence is:

H\MX\ ad a) ® Hl(MY; ad a) Hl(T; ad a) &gt; H2^ ; ad a) &gt; 0.



394 PAUL KIRK, ERIC KLASSEN AND DANIEL RUBERMAN

Suppose first that the restriction of a to nxT is not central. Then

Hl(T; ad a) £ R2. By conjugating a we may assume that a(ni T) lies in the circle

subgroup of diagonal matrices. The image Hl(Mx; ad a) -+H\T; ad a) is the same

as Hl(X;aà(x) ^&gt;Hl(T; ad a), which is half-dimensional. Thus it suffices to show
that the images H\X\ ad a) -+Hl(T; ad a) and H\Y\ ad a) -*Hl(T; ad a) are
transverse.

Let z e Zx{nx T; ad a) be a cocycle which extends to zx and zY on nxX and nx Y.

By subtracting a coboundary we may assume z(x) e iR for x enxT, where we

identify su(2) with the pure quaternions. Since a is diagonal on the fundamental

group of r, the adjoint action on z is trivial and so z is just an ordinary
homomorphism from Z2 -+ iR. We hâve r(A) zx(h) 0 and z(fc) zr (fc) 0 since

z extends over X and Y. But since Z0 is not Seifert fibered h ^k±l and so z
vanishes on a (rational) basis which implies z 0.

This argument modifies to handle the case when a restricts to a central

représentation of t^ T since in that case the adjoint action is trivial. Thus a cocycle
z e Zl(nx(T); ad a) is just a homomorphism nx(T) -»R3. Again this is trivial if it
vanishes on h and k.

3. We leave this to the reader. Notice that if Z^ is Seifert fibered, then

H2(N&lt;f, ; ad a) is 1-dimensional. However, by gluing S1 x D3 to the boundary we
obtain Mz with H2(MZ; ad a) ^ 0. D

We will temporarily assume that Z^ is not Seifert fibered. Since

H2{N4 ; ad a) 0, Signad a N+ 0. Computing the ordinary signature of N+ is a bit
trickier, and dépends on the choice of orientations. We digress momentarily to
discuss the orientation point.

First note that a Seifert fibered homology sphère T,(al9..., am) has a canonical
orientation as the link of a complex singularity [JN]. If Mz dénotes the deleted

mapping cyclinder of E -+ S2 then H2(MT; R) R and the orientation which makes

Mx négative definite gives S the correct boundary orientation. We are assuming
X E(aI,..., aw)-regular fiber, and Y E(c,,..., cj-regular fiber, but we are

not assuming thè orientations are compatible. So define ex to be ±1 according to
whether or not the fixed orientation of X agrées with the induced orientation as a

subspace of S(a,,..., am) and similarly define er. We hâve oriented Mx so that

dMx~ —X + Lx (rel boundary) where Lx is the union of L(anbt). Thèse lens

spaces hâve a canonical orientation, namely the one induced by the covering
S3 -? £(a3 b) where S3 is oriented as the boundary of the unit bail in C2. With this
orientation, Lx ^x{Ht L(ah b()),

At this point we can express the gluing map $ in coordinates as follows. The

pair of curves mx » #i». •. » xm, lx^htx form an oriented symplectic basis for
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Similarly mY yX9..., yn and lY key. (The lx are not longitudes in the
usual sensé; they are not nullhomologous in X and Y.) Then &lt;f&gt; can be written as a

2x2 integer matrix with déterminant — 1 using thèse bases. Write:

u v

w z

then L^ — L(v, z), and Z^ is a homology sphère if and only if

au + sxv — csy(aw + e^z) ± 1

where a II, at and c II, ct.

LEMMA 5.3. The signature of N^ is equal to bx -h£r.

Proof. Recall that we hâve oriented N^ so that — Z0 cz dN^. We hâve seen that
//2(7V0;R) ^R2. It is convenient to split N^ into Nx=Mxu(Y x I) and

N2 (S1 x D2)uM^ as in Figure 3.

Then H\NX ; R) s R H2(N2; R) and since A^ is the union of TV, and AT2 along
a closed submanifold of their boundary, Sign N^ — Sign Nx +Sign N2. That
Sign Nx sx is a conséquence of the fact proven in [FS1] that the mapping cylinder
Mz for X(a,,..., am) oriented with 5ME — £(«!,..., am) is positive definite. D

The following lemma is easily proven using the Atiyah- Singer G-signature
theorem and the formula from [APS2] which expresses the pp invariants as the
&quot;Fourier transforms&quot; of the G-signature defects.

s&apos;xD2xl

Yxl

MY V

Figure 3
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LEMMA 5.4. Let L(a9 b) be a lens space, orientée as the quotient of
S3^dB4cB4c:C2. Let p :nxUa, b) -+U(\) be a représentation which takes the

gênerator g to e(2mp/a\ Then:

pfi(L(a, b)) — £ cot cos ~&apos; sm *a£x \ a J \a J \ a J

Let p : 7tlL(a9 b) -?50(3) be a représentation. Orient L(a, b) as the quotient of
53 dB4 czB4cC2 where the action is 4 • (z, w) (£*z, £aw). Suppose p(Ça) is a
rotation of angle 2pn/a^0. Then the complexification splits into three U(\)
représentations with rotation numbers 2p, —2p and 0. Thus

4 V Jnbk\ Jnk\ 2 npk\— L cot cot — sin2
ak^x \a \a \a

LEMMA 5.5. Let P : nxL(a, b) -? 50(3) be a représentation with rotation number

p as above. Let r be an inverse for b Mod a. Then

is an integer.

Proof. Let E-+L(a,b) dénote the flat bundle defined by p. Since

H3(BSO(3); Z) =0, this bundle extends over some 4-manifold W. The Pontriagin
form of a connection on this bundle extending p then defines the 50(3) Chern-Si-
mons invariant much as in the SU(2) case. Using the Atiyah-Patodi-Singer
theorem (as in the final section) we see that the index of the self-duality operator
on W is congruent modZ to — 2 times this 50(3) Chern-Simons invariant plus

\/2pp(L(a, b)). The computation of the Chern-Simons invariant may be done in
several ways: by directly writing down the intégral as in §13 in [MMR], or via the

method of [KK3]. For the reader&apos;s convenience we sketch the latter. Notice that the

bundle over either of the two solid tori St, 52 which make up L(a, b) is trivial. So

given a flat connection on L(a, b)9 there are paths of flat connections on the 5, to
the trivial 50(3) connections. Use thèse paths to construct a connection on

L(a, b) x / (L(a, b) x /) uL(a,6)x0(S,x /) KjL{ab)x0(52 x /)

extending the given flat connection. As in [KK3], Chern-Simons invariant may be
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computed as a sum of two intégrais which reduce via Stokes&apos; theorem to intégrais
on T2 x /. The resuit of the calculation is rp2/a, yielding the formula in the lemma.

REMARK. In the case when the représentation /? lifts to an SU(2) représentation,

then we can take p even and —2rp2ja is just 8 times the Chern-Simons
invariant of the 5(7(2) connection. The only subtlety occurs when the bundle over
L(a, b) is non-trivial. This can happen only when a is even.

Let X, 7, a, &lt;j&gt; be as above. Define

and

e -

where a Illal and c Tllcl.
The next lemma appears as Theorem 4.5 of [KK3].

LEMMA 5.6. The Chern-Simons invariant of (Z^, a) is equal to

e% e\ p\u wk2
~£x4a~BïTc~~to~~T{2p

where k is defined by ot(k) — 1)*.

The basic idea is to compute the Chern-Simons intégral séparately on X smd Y
by using an explicit path of flat connections from the given connection to the trivial
connection for each pièce. One then applies Stokes theorem and the définition of
Chern-Simons invariants as the intégral of a 4-form over X x I. See [KK3] for the
detailed proof.

A few brief remarks are in order. The first two terms in this formula are the

analogues of the Chern-Simons invariants of Seifert-fibered homology sphères. In
particular, a représentation of the homology sphère I(au am\ with rotation
numbers pt has Chern-Simons invariant e2xjAa. The third term is a Chern-Simons
invariant of the extra lens space L^9 at least when the 50(3) représentation lifts to
an 5(7(2) représentation.

The last term can be considered a correction term in the following way. The flat
50(3) cobordism N^ shows that the 50(3) Chern-Simons invariants of Z^ equal
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those of the union of lens spaces LX\JLY\JL^ However, one cannot conclude that
the SU(2) Chern-Simons invariants coïncide, firstly because some of the lens

spaces may hâve even order and so the 50(3) représentations do not lift to 5(7(2),
but also because even if they do, the flat cobordism need not lift to an SU(2) flat
cobordism. The best one can say at this point is that thèse Chern-Simons
invariants are equal mod |Z. However, we need the resuit mod Z. Notice that this
last term has denominator equal to 4. This brings to light the technical point that
one loses too much information using the 50(3) cobordism to reach conclusions
about the mod 8 SU(2) spectral flow. This 50(3) cobordism could at best give the

spectral flow mod 2.

We can now prove the main resuit of this section.

THEOREM 5.7. Let a : nx{Z^) -&gt; SU(2) be a représentation of the graph mani-
fold Zq X \J^ Y whose restriction to each pièce is irreducible. Assume Z^ is not
Seifert fibered. Choose p^ e {Q9... 9 v} so that OL{yx- - - yn) is conjugate to

exp (2ni(p+ J2v)). Choose k so that &lt;x(k) -1)*. Finally let C 2 if the restriction

of a to nl T is non-central and 3 if it is central. Then:

£ £

+ z) +^ -l&apos;t cot (!*)cet (2*) sin^!*)cet (2*) sin

- 2 fe + e&gt;- + C (mod 8)-

Proof. Suppose first that a is non-central. Then H°(T; ad a) s R and

H\T; ad a) s R2. Since Z^ is not Seifert fibered, it follows that
HX(X; ad a) ®HX{ Y; ad a) -*H\T; ad a) is onto. From the Mayer-Vietoris
séquence one then has

(hx(Z^) + Ae(Z0)) « mA*) + «r(«) 2.

If a restricts to a central représentation of Jt,(r), then similarly:

X

j) m^(«) + mY(&lt;t) - 3.
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The pad a invariants are computed using the fact that

^) - 3 Sign(A^) + Signadm(

The terms are computed in Lemmas 5.2 and 5.4.
The Chern-Simons invariant is given by Lemma 5.6. The resuit follows using

équation 2.1.

REMARKS.
1. This theorem expresses the spectral flow as a sum of three parts. The first

part involves only X, the second only Y and the third dépends only on the

map $, the restriction of a to n} T, and the orientations.
2. This formula generalizes the resuit of [FS2] for Seifert fibered homology

sphères. Their resuit is:

SF(9, a; !(«„..., flj) =-3-
where

£(a) 3 + m+£- V cot(—i- cot(— sin21-^-

3. We point out the following discrepancy in the literature. From a Kirby
calculus argument it is easy to see that £(2, 3, 5) — + 1 surgery on the
right handed trefoil). Thus Casson&apos;s invariant, as defined in [AM], of
1(2, 3, 5) must equal -1. On the other hand, Taubes in [T] defines the
spectral flow SF(0, a) with the same convention that we do hère and takes his
invariant to be the sum over the irreducible représentations of the spectral
flow mod2. Since R(oï) is always odd by [FS2], it follows that Taubes&apos;

invariant is actually equal to -2 times Casson&apos;s invariant. This arises
because in order to make the surgery formula for Casson&apos;s invariant work
out with respect to the correct normalization of the Alexander polynomial,
there is an extra factor of — 1 introduced in the définition of Casson&apos;s

invariant (the 5 on pp. 125 of [AM] is equal to — 1).

6. Examples

The results of the previous two sections can be used to compute the spectral
flows of représentations of certain homology sphères by reducing the computation
to previously known cases. This enables us to compute the Floer chain complexes
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and in certain cases the Floer homology of thèse spaces. We will consider — 1

surgeries on fc-twisted Whitehead doubles of torus knots. This class of examples
lends itself well to the methods developed above because they are graph manifolds,
namely the exterior of the p, q torus knot union the exterior of the left-handed
trefoil. We remark that one can also consider ±1 surgery on the positive or
négative clasp Whitehead doubles of torus knots. In this case one also needs the

computations of spectral flow carried out in [Y2] for the surgeries on the Figure 8.

For background on représentation spaces of knot groups see [Kl] and [K2].
We will carry out three computations explicitly. The first is — 1 surgery on the

10-twisted Whitehead double of the 5, 2 torus knot. This homology sphère has the

property that every non-trivial représentation restricts to an abelian représentation
of the companion knot. Thus ail spectral flows can be computed using Theorem 4.4.

By comparison with the représentations of the 10-twisted Whitehead double of the

unknot, this example shows that the spectral flow is not determined by the image
in the pillowcase. For this homology sphère we can compute the Floer homology
since ail boundary operators turn out to be trivial.

We will also compute the spectral flows and Floer chain groups for — 1 surgery
on the untwisted and 5-twisted Whitehead doubles of the trefoil. For the untwisted

example, every non-trivial représentation restricts to an irreducible représentation
of the companion, so that the spectral flows are ail computed using Theorem 5.7.

The example involving the 5-twisted double has non-trivial représentations of both

types, so the full computation uses both Theorems 4.4 and 5.7.

One technical point will anse when trying to compute the Floer chain complex,

namely one must perturb the Chern-Simons function if it is not a Morse function.
In gênerai, the représentation space R(nxZ) forms the critical points of the

Chern-Simons function. If R(Z) is a smooth submanifold of sf/9 with nondegen-
erate normal bundle then the Floer chain complex can be constructed by taking as

a basis the critical points of a Morse function/on R(Z) and assigning to a critical
point p the index SF(9, a(/&gt;)) 4- np(f) where a(p) e R{Z) lies in the component
containing p and pp(f) is the index of/at p. See [FS2] for the proof that this gives

a complex whose homology is Floer homology.
We begin with some gênerai observations. Let p, q &gt; 0 and choose k eZ. The

three sphère S3 can be Seifert fibered so that the (p, q) torus knot is a regular fiber.
Let I&gt;p^(k) dénote the homology 3-sphere obtained by performing -1 surgery on
the &amp;-twisted positive clasp Whitehead double of the (p, q) torus knot. See Figure
4 for (/&gt;,?)- (2, 3),* 3.

So ^p,q(k) is the union of the exterior Xo of the (/?, q) torus knot and a Dehn

filling YQ of the Whitehead link complément.
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Figure 4

PROPOSITION 6.1. The homology sphère I&lt;p,q(k) is a graph manifold. Infact Xo

in the exterior of the p, q torus knot and Yo is the exterior of the left-handed trefoil
knot. Furthermore, the gluing map &lt;p is given in the natural meridian -longitude
coordinates by the matrix:

0 1

HY — kkY.)(This means that &lt;t&gt;(iix) ^y and

Proof. Figure 5 shows a Kirby calculus computation which shows that Yo is the

exterior of the left-handed trefoil.
Taking a A&gt;twisted double means that if \iw and Xw are a meridian and

longitude pair for the Whitehead link exterior which is being glued to XQ along T,

Figure 5
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then \xx is identifiée with kw and kx is glued to \xw — kkw. But if we do — 1 surgery
on the other component of the Whitehead link, then nw and kw become a

meridian-longitude pair for the left-handed trefoil. D

Now the regular fiber for the Seifert fibration of Xo (restricted to T) is

kx PWx + *x + Ax=Vy + (P&lt;1- k)ky.

The regular fiber for the Seifert fibration of Yo (restricted to T) is

H y =: — O/i y H~ k y •

Thus if L^ dénotes the lens space obtained by capping off the regular fibers in T,

L&lt;l&gt; -L(-6(pq-k)-hpq-k).

Write Z^ I*p,q(k) Xo {]# Yo. Notice that if the Seifert fibrations were compatible

then &lt;f&gt;(hx) =hpl. But this obviously cannot happen. One might wonder if Zo
is Seifert-fibered in some other way, but this is not possible since if it was the

incompressible torus T separating Xo from Yo would be horizontal. But then

Z^ — T is a union of J-bundles. However, we know that Yo is not an /-bundle. (For
most Z^ we could instead use Lemma 6.3 below which shows that the SU(2)
représentation space of nx Z^ contains circles, and thus Z^ caftnot be Seifert fibered

by the main theorem of [KK1].)
We first give a convenient set of coordinates for the pillowcase. If yx, y2 e tt, T is

a pair of curves which generate nx 7&quot;, then the map

which takes the pair (x9 y) to the conjugacy class of the représentation

is a branched cover. A fundamental domain for the action is the strip [0, 2] x [0,1].
The pillowcase is then seen as the identification space of this strip by folding it in
two along the segment 1 x [0,1] and identifying the edges.

LEMMA 6.2. If a : 7tiZ^ -&gt;SU(2) is a non-trivial représentation, then the

restriction ofol to %XY is always irreducible.
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Proof. Suppose the restriction of a to Yo is abelian. Then in particular the
restriction of a to the Whitehead link complément is abelian. But then a must take
the longitude A^ AK to 1 since kY lies in the commutator subgroup. Since

&lt;l&gt;(fix) ^^, a sends the meridian of X to 1. But the meridian normally générâtes
nxX0 and so a restricts to the trivial représentation of nxX0. Thus a is in fact abelian
and since Zo is a homology sphère a must be the trivial représentation.

For a space A, let R*(A) dénote the space of conjugacy classes of non-trivial
représentations of nxA into SU(2). Write:

according to whether a g R*{Z(t)) restricts to a reducible or irreducible représentation

of nx(XQ).

If a g RR then the construction of §4 provides us with a fiât cobordism N from

Z^ to Z,, where Z, is obtained by replacing the exterior of K by the exterior of the

unknot. In fact, Zx is just the manifold obtained from — l/k surgery on the

left-handed trefoil knot. Thus

f-E(2,3,6fc-l) if fc &gt; 0:

Z,=J 1(2,3,1-6*:) if*&lt;0;.
[S3 if A: =0

The représentation spaces and spectral flows were computed for thèse manifolds by
[FS2]. (It is also easy to compute the spectral flow between two connections using
Yoshida&apos;s theorem [Y2] since the représentation space of the trefoil is connected.)

Using Theorem 4.4 we can compute the spectral flow for any a g Rr.
On the other hand, if a g Rj then by the previous lemma the restriction of a to

both Xo and YQ is irreducible. Thus the construction of §5 applies and we obtain a

flat cobordism N from Z^ to Lx + LY + L^,. Theorem 5.7 then gives the spectral
flow in this case.

LEMMA 6.3. The space RR is discrète. If(x(jix) eld ande2t$ is not a root ofthe
Alexander polynomial ofthe p, q torus knot then a is a non-degenerate représentation,
Le. //1(^;ada)=0.

The space Rf is a union ofsmooth, non-degenerate circles; in particular if &lt;xe Rj
then /fl(Z^;ada)sR.

Proof Suppose (xeRR. Such représentations are in 1-1 correspondence with
représentations of nxZx. Since Z, is a Seifert-fibered homology sphère with 3
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exceptional fibers, its représentation space is discrète. It follows from the previous
lemma that the restriction of a to nx T is non-central. Thus H°(T; ad a) s R and

Hl(T; ad a) s R2. The images of Hl(X0; ad a) -» H\T; ad a) and i/1^; ad a) -&gt;

//!(r; ad a) are Unes, which must be transverse: If they were tangent, then there
would be an arc of représentations in RR passing through a. (This is not true for
gênerai knots; it holds for torus knots because (cf. [KK3]) the image of their
représentation spaces in the pillowcase are straight Unes.)

Now H°(X0; ad a) -*H°(T; ad a) s R is an isomorphism, H\X0\ ad a) s R (this
is where we use the hypothesis on the Alexander polynomial), and H\Y0; ad a) s R

(This can be computed directly using group cohomology. Alternatively the space of
conjugacy classes of irreducible représentations of a torus knot is a smooth
1-manifold, see [Kl].) The resuit now follows from the Mayer-Vietoris séquence.

Now suppose a e /?/. Again the restriction of a to nl T is non-central. So

H°(T; ad a) s R and Hl(T; ad a) s R2. As shown in the proof of Lemma 5.2 the
images of Hl(X0; ad a) -&gt; Hl(T; ad a) and H\T; ad a) -* H\T\ ad a) are transverse
Unes. As above Hl(X0; ad a) ^R^Hl(Y0;ad(x). The Mayer-Vietoris séquence
now implies that the boundary map H°(T; ad a) -&gt; Hl(Z&lt;f) ; ad a) is an isomorphism.
Thus the Zariski tangent space to Rf at a is 1 dimensional. By &quot;bending&quot; the

représentation along T we see that a can be deformed into a 1-parameter family.
Thus R, is smooth and since it is compact it must consist entirely of circles.

REMARK. One interesting (and well-known) conséquence of this fact and the
results of the previous sections, together with the perturbation argument is that
Casson&apos;s invariant of 2&gt;p,q(k) is the same as Casson&apos;s invariant of Zx. This can of
course be checked directly using Casson&apos;s surgery formula. Alternatively, the circles
in the previous theorem give rise to pairs of generators of the Floer chain complex
which lie in adjacent dimensions using the perturbation of [FS2]. Therefore, only
the points of RR contribute to the euler characteristic of the Floer chain complex,
which equals —2 times Casson&apos;s invariant. Each point contributes with the same

sign as the corresponding point in R{ZX) using Theorem 4.4. However, we will see

in our examples that although the parity of the spectral flow of thèse points does

not change, its mod 8 refinement does.

In the following example we use Theorem 4.4 to compute the Floer homology
of £5&gt;2(10), the homology sphère obtained by performing -1 surgery on the

10-twisted double of the (5, 2) torus knot.

THEOREM 6.4. The Floer homology o/E5,2(10) is Z5 in each even dimension, 0
in each odd dimension.

We begin by proving the following lemma.
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LEMMA 6.5. Each représentation a : 7i(Z52( 10))-» 5(7(2) is abelian when re-
stricted to nx(X0).

Proof. Suppose that a is non-abelian on nx (Xo). Recall that Xo is Seifert fibered
with regular fiber h=Âxfix3. It follows that a(/iy) vl(Xx\ix$) ±1 in SU(2);
hence a is abelian on nx(Y0). Then &lt;x(nx) =a(ÀY) 1, which contradicts the

hypothesis since \ix normally générâtes nx(X0). D

To be consistent with the notation of the previous sections, we write
£5,2(10) Zo. Lemma 6.5 implies that there is a natural one-to-one correspondence
between R(Z0) and R(ZX), where we define Zx (S1 x D2) (Jt Yo, with a meridian
of S1 x D2 being glued to ^yAy10; in other words Zx is the resuit of —1/10)-

surgery on the left-handed trefoil. We will now calculate the éléments of R(ZX) and

their spectral flow invariants, and then use Theorem 4.4 to calculate the spectral
flow invariants of the corresponding éléments of R(Z0).

Recall (see, for example, [Kl]) that the set of irreducible représentations of
7i, (YQ) mod conjugacy (which we will dénote by Rt(Y0)) is a single arc of the form
{&lt;*/?} 1/6 &lt;/?&lt; 5/6, where

Since Yo is Seifert fibered with regular fiber àyHy6&gt; it follows that

M^-y) ~0Cp(fiy)6&apos; (Hère we are using the fact that thèse représentations take the

regular fiber to -1.) Hence the image of /^(Fq) in the pillowcase is the arc of slope
6 shown in Figure 6.

Clearly a :nx(Y0) -+SU(2) factors through to give a représentation of Z, if and

only if oc(nYÀyW) \. This condition may be visualized in the pillowcase by

intersecting the image of Rt(Y0) with the line 5£ of slope 1/10, also shown in Figure
6. It follows that R(ZX) {0^} for p 2j/59 where 5£j&amp; 24. From now on we

write a, to dénote cc2//59- Using the formula of [FS2] or the technique of Yoshida,

we compute the spectral flow SF(0, oij )(Zx for each of thèse représentations of
Z, S(2, 3, 59), and assemble the following table:

n generators of FHn Z,

0 a5, a7, a9, a,6, &lt;xI8

2 ocxo, a,2, a14, a2i,a23
4 a6, a8, al5, a|7,a19
6 a,,, a,3, a22, a24
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5n/6

Figure 6

Next, we compute the adjustments to thèse spectral flows required to compute
E5t2(10)) using Theorem 4.4. The Seifert matrix of the (5, 2)-torus knot with

respect to an obvious genus two Seifert surface is easily computed to be

-1 0
1 -1
0 1

0 0

0 0&quot;

0 0

-1 0

1 -1
The four eigenvalues of the matrix BK(t) (1 - i)V + (1 - t~l)VT are given by

-cos0) {-
where t elB and the two ± signs are taken in ail four possible combinations. In
Figure 7 we graph thèse eigenvalues as functions of 0.

For any value of 9, we can read off Sign BK(el9) directly from this graph. Note
that the values of 9 at which this signature changes are n/5 and 3n/5. Recalling that

e-(6fi-l)mJ&gt;

y

we find (by Theorem 4.4) that SF(9, a,)(Z0) - SF(9, OLj){Zx) -Sign

fO forj 5,10,15,20
^ fory 6,9,11, 14,16, 19,21,24
[4 fory 7,8,12,13,17,18,22,23
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eigenvalues

407

Figure 7

In summary, for each n, of the five generators of FHn(Zx) one remains a gênerator
of FHn(L5a(\0))9 two become generators of FHn + 2(Lsa(l0))&gt; and two become

generators of FHn +4(I,52(IO)). The theorem follows.

We now compute the spectral flow for — 1 surgery on the untwisted double of
the right handed trefoil. The représentation space has 8 components; each is a
smooth circle. This manifold is a graph manifold obtained by gluing a right handed
trefoil complément to a left handed trefoil complément, identifying meridians with
longitudes and vice versa. In Figure 8 we hâve drawn the image in the pillowcase
of the représentation spaces of X and Y. The coordinates used are \xY and ÀY, the
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meridian and longitude of Y. The représentation space of a trefoil complément
consists of an arc of abelian représentations (sending the longitude to 1) and an arc
of non-abelian représentations limiting at the endpoints on an abelian représentation;

see [Kl]. From Figure 8 we see that there are exactly 8 components of the

représentation space of £2,3(0), and each représentation restricts to a non-abelian
représentation of both X and Y. By Lemma 6.3, each component is a circle. We
label the components an i 1,..., 8.

We will apply Theorem 5.7 and so we need the various quantities appearing in
the formula. First we need the gluing map &lt;t&gt; in terms of the curves mx \ix^ lx A,

mY /*r&gt; anc* ly k- Using the relationship between the meridians, longitudes, and
the regular fibers we obtain:

¦C K6 37&apos;

6

Since X — Y we hâve ex l9 er l, sY= —l. The rotation numbers for the
restrictions of each représentation to I or Y are (1, 1). (Thèse numbers are
independent of the représentation since the space of irreducible représentations of
the trefoil is connected. They are easy to compute for any particular représentation.
See for example [KK1].) For each représentation the regular fiber is sent to — 1, so

that k 1. Each représentation is non-central when restricted to the torus since

none of the eight points lie on a corner of the pillowcase, so that the terms C are
equal to 2 for each représentation. The terms mx(&lt;x) and mY((x) are equal to 2. It
remains to compute the rotation numbers for each of the eight représentations and
then apply the formula of Theorem 5.7. Thèse are easily computed from Figure 8.

Notice that most of the terms in the formula of Theorem 5.7 cancel since X - Y.

n

1

2

3

4
5

6

7

8

P*(««)

9

11

15

17

21

23

27

29

SF(O, a.)
1

5

7

3

5

1

3

7

The Floer chain complex can be obtained from this by perturbing the circles.

We obtain:

FC+ (Z2, Z2, Z2, Z2, Z2, Z2, Z2, Z2).
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Computing the Floer homology is of course harder, since one must compute the

boundary operators.
We next show how to compute the spectral flows and the Floer chain complex

of -1 surgery on the 5-twisted positive clasped Whitehead double of the right-
handed trefoil.

In Figure 9 we hâve drawn the image of the representaiton spaces of 7t,X0 and

nx Yo in the pillowcase R(T) using the coordinates \iY, Ar.
The Unes drawn on R(X) are the images of the restriction maps R(X) -+R(T)

and R(Y) -+R(T). As in the previous example R(X) and R(Y) are constructed from
two intervais: one interval consists entirely of abelian représentations and the other
interval consists of irreducible représentations except for its endpoints which are
abelian.

We can glue together représentations of A&quot; to Y provided they agrée on T. From
the figure we see that there are 10 isolated, nondegenerate représentations whose

restriction to A&quot; are abelian; thèse are labeled 1-10. So RR consists of 10 points. To
compute their spectral flow we may use the method of §4.

There are two circles in Rf corresponding to where the image of the arc of
irreducible représentation of X intersects the arc of irreducible représentations of Y.

Their image in R(T) are the two points labeled A and B. The two horizontal Unes

delineate where the matrix BK(e210) has kernel; they correspond to the roots of the

Alexander polynomial of the trefoil em/3 and e~m/3.

We first deal with the représentations 1-10. We see that the représentations
labeled 2, 4, 5, 7, 9, and 10 lie in the région where the signature of BK{e2ie) is —2.

The others lie in the région where this signature is 0.

Let St be the spectral flow from the trivial représentation to the /th représentation

on Zx 1(2, 3, 29). Then Sx 4, S2 0, 53 4, S4 2, S5 6, S6 0, 57 4,

Figure 9
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58 0, S9 6, Sl0 2. One way to see this is to compute using the formula of
Fintushel and Stern (see the second remark following Theorem 5.7). However, there
is a much easier way to compute this using the main resuit of Yoshida&apos;s paper [Y2].
The following algorithm enables us to compute the spectral flow between any two
représentations of any homology sphère surgery of the trefoil. Let a and b be

représentations and let y be the loop in the pillowcase made up of the path from a
to b in the space of irreducible représentations of the trefoil followed by the path
from b to a of (abelian) représentations of the surgery solid torus. Then the spectral
flow from a to b is equal (Mod 8) to 2 times the number of corners contained in the

région in R(T) S2 to the right of the curve. In Figure 10 we show SF(\9 2) 4,

5F(3,4) 6, 5^(5, 6) 2 for the manifold obtained by - 1/5 surgery on the left
handed trefoil.

We now use Theorem 4.4 to relate the spectral flow SF(0, 0(2(2,3, 29)) to
SF(0, i)(Z^). If Tt dénotes the spectral flow from 0 to the ith représentation on
Z+ £23( 10), then by Theorem 4.4 Tt S, - 2 if i 2, 3, 5, 7, 9, or 10, otherwise
T, Sl. So we get the table:

is

1

2

3

4
5

6

7

8

9

10

4
6

2

2

4

0
2

0
4

0

Thus the part of the Floer complex corresponding to the représentations in RR

(Z3,0,Z2,0,Z\0,Z2,0).

Figure 10
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We next consider the two circles A and B. Since Xo — Yo, it follows that

sx= -gy. Moreover, the rotation numbers for Xo equal those for Fo, since the

space of irreducible représentations of a trefoil (right or left handed) is connected.

(In fact the rotation numbers are (1,1).)
The numbers mx(a) and mY(&lt;x) are equal to 2, for a A or B. Applying

Theorem 5.7 we see that most of the terms cancel since rotation numbers for each
side coincide by ex —£Y- The gluing matrix is given as

u v\_f6 7

w z)~\l 1

in the coordinates xxx2, h and yxy2, k.
Thus L^ — L(7, 1). An examination of Figure 10 above shows that the

rotation number for A is 2 and the rotation number for B is 4. Using Proposition
5.5 one computes:

-15=l(mod8).

Similarly

SF(09 &lt;xB) 5 (mod 8).

Thus we can perturb this non-degenerate critical level to conclude that the Floer
chain complex of — 1 surgery on the 5 twisted positive clasp Whitehead double of
the right handed trefoil is:

(Z3,Z,Z3,0,Z3,Z,Z3,0).

Again, the boundary operators must be understood in order to compute the Floer
homology.

7. The spectral flow formula

In this section we dérive formula 2.1 for spectral flow in terms of the pa aftd
Chern-Simons invariants.

Let A&quot; be an oriented 4-manifold and let Y ôX oriented using the convention
&quot;outward normal first&quot;. Give X the product metric near Y and let u be the inward
coordinate, normalized so that || du || 1. So near its boundary, d vol^ d volr a du.
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Write d for the exterior derivative on X and use à on Y to distinguish it from
d. We will suppress the notation indicating a connection in an auxiliary bundle but

you should think of d and ô as covariant derivatives with respect to a connection.
For any connection on a bundle E, we hâve the self-adjoint operator

D :Q

defined by (a, b) h-&gt; (ô*b, *ôb + ôa), acting on ad (ZT)-valued forms. We take rjD(s)

to be the rj -invariant of D.
Consider first the signature operator d+ d* :Q£ -+Q* In [APS2] it is shown

that (with respect to a U(n) représentation a)

&apos;

» f L-^(O)

where

is the twisted signature operator defined on bundle-valued forms by

Be(a,b)=(- *ôb,ô*b

(This operator is sometimes written —1)/&gt;/2(*&lt;5 —ô*).)
Notice that the spectrum of D associated to a représentation j8 is equal to the

spectrum of the operator Be associated to ad (/F), and so in the signature formula we
can replace the rj invariant of Be by the r\ invariant of D. In particular, for a flat
SU(2) connection b with holonomy p we see that

*M°) &quot; W°) 3 Siên X &quot; Siê% X

We next want to relate ^(O) to the self-duality operator. So let

bc the self-duality operator on X defined by co h-&gt; (d*co, P_ (dco)) where P_ dénotes

projection onto the anti-self-dual 2-forms.
Consider the bundle isomorphisms:
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given by &lt;P(a, b) — a du + b and

V : A°y® Aly -+ A°X] y® A2xly

defined by ¥(a, b)=(-a,P_ (b du)).
Then a careful computation reveals that near the boundary

du

where C : Q°Y©QY-*Q°Y©Q\is defined by C(a, b) (-ô*b9 *ôb - ôa). The spec-
trum of C equals that of D and so the Atiyah-Patodi-Singer theorem says that

-lIndex S I Â(X)ch(V_ )ch(ad E) - \ (r\D($) + dim Ker D)

where S is given the global boundary conditions

{,y e Span {fa | C0; A^, X &lt; 0}.

We now apply this formula to X Z x / where Z is an oriented rational
homology sphère and Z x / is oriented as (Oz, di). (Notice that with respect to this
orientation d(Z x/)=ZxO-Zxl.)

THEOREM 7.1. Let a and b be connections on Z. Choose a path an t 6 I joining
a to b and let A be the corresponding connection on Z x I. Let SF(a, b) dénote the

spectral flow of the family of opérâtors Dar Then:

SF(a, b) Index SA

where the index is taken with respect to the global boundary conditions o/[APSl].

We sketch the proof:
Divide the spectrum of Dt into a finite part Ft and its complément Gt continu-

ously with respect to t so that ail eigenvalues which pass through 0 lie in Ft. Let

f,(s) and gt(s) be the corresponding eta-invariants so that nDi{s) =ft(s) +g,(s).
Let h, dim ker Dn i 0,1. Then it is easy to see that

SF(a, b)
l- (/, (0) -/0(0) - hx - ho)
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with respect to the convention described in section 2. Therefore, the spectral flow
equals

Our orientation convention implies that d(Z x/)=ZxO-Zx 1. Therefore,

Index SA &lt;xo(x) - - (^(0) - rjD l (0) + h0 + hx

where ao(x) Â(Z x /)c/i(F_)c/i(ad ^). We can then write:

Index SA - SF(a, b) f a0(x) +1 (gl (0) - go(0)).
JZx / ^

The left side is an integer and the right side is a real number which varies
continuously along the path at. Since gt(0) =go(0) for t small it foliows that the

right side is zéro and so the spectral flow equals the index. D

Restrict now to an SU(2) connection. The integrand appearing in the index
formula can be split up:

Â(Z x I)ch(V.)ch(ad A) 3Â(Z x I)ch(V_) - 2c2(ad A).

in this formula c2(ad&gt;4) means

1

in2

where F*àa means the curvature of the corresponding connection in the adjoint
bundle. In particular, if a and b are SU(2) connections,

l
by Stokes&apos; theorem.

The other term appearing in the inetgrand, 3Â(Z x I)ch(V_) has zéro intégral.
This is most easily seen by considering the spectral flow SF(69 0) of the trivial
connection to itself. By our conventions this is equal to —3, by the previous
theorem it equal 3 J Â(Z x I)ch(V_)-h0. But h0 3 by the Hodge theorem.
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Therefore we obtain the formula

SF(a, b)=- S(cs(a) - cs(b)) - l-
(rjDa - rjDb) - i (dim Ker Da + dim Ker Db)

Fmally, if a and b are flat connections with holonomy a, j8, let Aa dim
(#°(Z, ad a) + H\Z, ad a)) and similarly hfi We then get

SF(a9 P) 8(cj(/0 - cs(a)) + ^ (pad - pad „) - X-
(ha

This îs the desired formula
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