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Splitting the spectral flow and the Alexander matrix

PAuL KIRK', ERIC KLASSEN? AND DANIEL RUBERMAN?

1. Introduction

This paper is concerned with a procedure for computing the spectral flow of a
path of self-adjoint operators of the form D, = xd,, — d *, where the 4, are SU(2)
connections on a 3-manifold Z which is split along a torus, and 4, and A, are flat.
Recent theorems of Yoshida [Y1, Y2] show how to carry this out when Z is
obtained by surgery on a knot, under certain nondegeneracy conditions. Under the
assumption that there is a path A, of flat connections on the knot complement and
that the space of flat connections modulo gauge transformation is a smooth
1-dimensional variety near this path, Yoshida shows with an explicit formula that
the spectral flow is determined by the restriction of the path to the boundary torus.

As a consequence of our main result we show that when the path A4, has
singularities, the spectral flow is not determined by its restriction to the boundary
torus. We give explicit computations in §6 comparing the spectral flow on a surgery
of a Whitehead double of a knot to the spectral flow on the corresponding surgery
of the Whitehead double of the unknot. These examples have paths of flat
connections on the knot complements whose restrictions to the boundary are the
same, while their spectral flows differ.

Suppose Z = X U Y, where X is the complement of a knot in S>. Let 4, and 4,
be flat connections on Z whose restrictions to X are reducible. Then there are
corresponding flat connections Ay and 47 on Z' = X'U Y, where X" is the unknot
complement (i.e., a solid torus). In §4 we show that the difference between the
spectral flow from Aj to A7 on Z’ and the spectral flow from 4, to 4, on Z is a
classical knot signature, and in fact is equal to the spectral flow of the Alexander
matrix of the knot. Applying this theorem to satellite knots yields examples in
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which Yoshida’s pillowcase result fails for paths of representations having singular-
ities. For this special case, Theorem 4.4 gives the precise correction term needed to
make Yoshida’s theorem apply. In §6, we demonstrate how to calculate this
correction in a number of examples.

By combining this splitting device with the technique of [FS2], we can compute
the spectral flows between arbitrary flat connections on a large class of 3-manifolds
split along tori, including graph manifolds. In §5 we describe the moduli space of
flat irreducible connections on a manifold obtained by gluing together two Seifert-
fibered homology knot complements X and Y along their boundaries, and show
how to compute the spectral flow between any two such connections using the
techniques of Fintushel and Stern. In this case we obtain an explicit formula which
shows the spectral flow is a sum of 3 terms. The first term involves only X and is
an analogue for Seifert-fibered manifolds with boundary of the R(e) invariant of
Fintushel and Stern. The second term is analogous and involves only Y. The third
term is an “interaction” term arising from the restrictions to the boundary.

These results are applied in §6 to compute the Floer chain complexes of certain
surgeries on twisted Whitehead doubles of torus knots.

To put our results in proper perspective we will explain briefly the algorithm of
Yoshida, in the cases where his work applies. Here and for the rest of the paper, we
write R(w) for the space of representations of a group = in SU(2), modulo
conjugation. An elementary but vital fact is that R(Z?) is a 2-sphere with 4 singular
points, called the pillowcase. Suppose that Z is a 3-manifold and that X = Z is the
exterior of a knot in Z. Suppose further that p, and p, € R(%n,(Z)) are representa-
tions which happen to lie on a smooth 1-dimensional component of irreducible
representations of =,(X) which we parameterize as p,. Restricting p, to the
boundary torus gives a smooth path in the pillowcase R(Z?). There is a tangent line
field on the complement of the singular points in the pillowcase and Yoshida shows
that the spectral flow is just the degree of the tangent vector field to the restriction
of p, in this line field.

The intuitive reason for this is that each operator in the path whose spectral
flow we are interested in has 1-dimensional kernel when restricted to X, and when
restricted to the neighborhood, S, of the knot. These kernels are identified with the
aforementioned tangent fields, and an eigenvalue (for the operator on Z) passes
through 0 whenever these tangent fields coincide.

Yoshida assumes that the two representations lie on a smooth, 1-dimensional
component of the representation space of the knot complement and proceeds by
drilling out holes, thus splitting along a higher genus surface where non-degen-
eracy is easier to verify. T. Mrowka [M] has a more general approach — he shows
that in any case there is an infinite dimensional Maslov index which equals the
spectral flow. Under the nondegeneracy conditions, Mrowka identifies this Maslov
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index (via “symplectic reduction”) with the degree of the vector fields in the
pillowcase. However, the reduction process breaks down when the path p, passes
through a singular point of the representation variety R(m,(X)). More recently
Cappell, Lee, and Miller [CLM] have announced a formula which expresses the
spectral flow as a sum of 3 terms given a splitting of a 3-manifold along any surface.
Our results can be viewed as explicitly identifying the terms in their formula in the
special cases outlined above.

Our methods do not involve the delicate analysis of [Y1] but instead use the
machinery of the Atiyah—Patodi—Singer index theorem for manifolds with
boundary, together with Wall nonadditivity. Along the way, we clear up some
delicate points about orientations, and about Chern—Simons invariants for SO(3)
bundles which seem confused in the literature.

A few general remarks can be made here. The results in this paper are of a
computational nature, and as such they provide explicit computations of spectral
flow which can then be combined with the abstract splitting results of [Y1], [M],
and [CLM]. For example, Yoshida shows how to compute the Floer homology of
any surgery on the figure 8 knot starting with only two pieces of data: the image of
the space of SU(2) representations of the figure 8 knot in the pillowcase, and
Fintushel and Stern’s computation of the Floer homology of (2, 3, 7). The
computation then follows from an algorithm, as explained in [Y2]. Similarly, the
results of this paper show how to relate the spectral flow for representations of
3-manifolds to the spectral flows for simpler 3-manifolds. These computations
depend on understanding the representation varieties of 3-manifold groups, and
although this is a hard problem in general there are many partial results. Of course,
computing the Floer homology will require understanding the boundary operators
in the Floer chain complex, a difficult problem. Although this paper does not
address this question in general we point out that the correction term in Theorem
4.4 is usually even. (This fact is used to compute the Floer homology of certain
graph manifolds.)

2. The p, invariants and spectral flow

We will explain some of the terms which appear in our formula for spectral
flow. See also [T], [F], [FS3]. Our first remark is about orientations. There are two
conventions for orienting the boundary for a 4-manifold N. We will use the
convention “outward normal first”. This is convenient when dealing with differen-
tial-geometric objects, for example, with this convention Stokes’ theorem says
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Let P - Z be a principal SU(n) bundle over a compact, closed, and oriented
Q-homology 3-sphere Z. The bundle P is trivial and a fixed trivialization enables us
to identify the space o/ of connections on P with the lie algebra valued 1-forms
Q' ® su(n).

Given a connection a € &/ we form its covariant derivative

d, : QF ® su(n) - QP+ ® su(n).

So d,b = db + [a, b] in the trivialization. Let d* denote the adjoint. We then define:
D, : 2°® su(n) ® Q' ® su(n) - 2° su(n) ® Q' ® su(n)

by the formula:
D, (¢, 1) =(d¥1, »d,t + d ).

The operator D, is self-adjoint and elliptic, and has a discrete real spectrum.

In general, if D, is a one-parameter family of self-adjoint operators with discrete
spectrum on a Hilbert space, the spectral flow of the family from D, and D, is the
intersection number of the graph of the eigenvalues of D, with a line segment from
(0, —&) to (1,) in [0, 1] x R where & is a number such that 0 < é <inf ||, the
infimum taken over the set of non-zero eigenvalues of D, and D,. (Note that all
eigenvalues are real since the operators are self-adjoint.) See Figure 1.

N A

Figure 1
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This is just the difference between the number of eigenvalues which change from
negative to positive and the number of eigenvalues which change from non-negative
to non-positive. (The ¢ is introduced in case D, or D, have kernel.)

Now if a,, t € [0, 1] is a smooth 1-parameter family of connections we define the
Spectral flow from a, to a, to be the spectral flow of the family of self-adjoint
operators D, . We denote this by SF(ay, a,).

To resolve the dependency of SF(a,, ®,) on the choices made such as the choice
of trivialization, the path a,, and the basepoint of Z, we pass to the quotient ./ /¥4
of the space of connections modulo gauge transformations. Then the spectral flow
becomes well defined in Z/2k,Z, where k, is an integer defined as follows. Let
ad : SU(n) - SU(n* — 1) be the (complexified) adjoint representation. Then:

ad*: HY(BSU((n?> — 1)) » H4BSU(n))

takes c, to k,c,. For example k, — 4 so the spectral flow between two connections
on an SU(2) bundle is well defined mod 8. (See §7 for more details.)

The spectral flow has the following easily verified properties:

1. SF(a, ¢) = SF(a, b) + SF(b, ¢) + dim Ker D,. In particular SF(a, a) = —dim
Ker D,.

2. If —Z denotes Z with the opposite orientation, then

SF(a, b)(—Z) = — SF(a, b)(Z) — (dim Ker D, + dim Ker D).

A more sophisticated invariant derived from the spectrum of D, is its eta-invari-
ant, #p (s), defined for Re(s) > 0 by:

np, ()= Y sign(D[A|"

A€ SpecD,—0

In [APSI] it is shown that 5, _(s) meromorphically continues to a function with
a finite value at s = 0. Heuristically, 7, (0) measures whether D, has more positive
or negative eigenvalues.

As a special case, suppose that a:n,Z — SU(n) is a representation and let
ad ,: m,Z - SU(n? — 1) denote the adjoint representation. Let a be a flat connection
on P with holonomy a and let 0 denote the trivial SU(n) connection. Then the
quantity np_(0) —#,,(0) is independent of the Riemannian metric and in fact
equals the Atiyah—Patodi—Singer invariant p,q,(Z) introduced in [APS2]. In
particular, if N is an oriented 4-manifold with oriented boundary Z and
B :myN - SU(n?— 1) extends ad o then

Paa «(Z) = (n*—1) Sign N — Sign, N.
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In this formula Signg N denotes the signature of N with local coefficients in the
flat bundle defined by f induced by the cup product and the invariant inner product
on su(n) ®C~C*”~ 1.

The spectral flow may be expressed in terms of x-invariants using the main
theorems of [APS1, 2]. One more quantity is needed, the Chern—Simons invariant
of a connection. It is defined for a connection a € & by

1 2
cs(a)=§—7}—5j Tr(da /\a+§a Aa /\a)
z

where we think of a € Q' ® su(n). In this formula wedging of su(n) valued forms
means to wedge the form parts and matrix-multiply the coefficients. Taken in R/Z,
the Chern—Simons invariants are independent of the choice of trivialization or
gauge transformation. Moreover, the Chern—Simons invariant of a flat connection
is a flat cobordism invariant.

With these definitions in place, we can now write the formula for spectral flow.
Although this formula is well-known we could not find it explicitly derived in the
literature and so we give an argument in the last section of this paper. We also show
how to relate the spectral flow to the index of the self-duality operator on Z x I,
suitably oriented. In this formula we assume the group of the bundle is SU(2).

1
SF(a, b) = 8(cs(b) — es(@) + 5 (15,(0) — 1,(0))
- % (dim Ker D, + dim Ker D,).

In the special case where a and b are flat connections with holonomy represen-
tations « and B respectively then the kernel of D, is just H*(Z;ad a) ® H'(Z; ad a)
by the Hodge theorem. We then denote the dimension of the kernel by 4,. In this
case the formula becomes:

1
SF(@, ) = 8(es(B) ~ e5@) +5 (0aa p(Z) ~ puan(@) — 5t hp) (2D

In [T] it is proven that if Z is a homology sphere such that H'(Z; ad,) vanishes
for all irreducible SU(2) representations a, then Casson’s homology sphere invari-
ant is equal to

I T (—1)SFela
21
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where the sum is taken over the finite set of conjugacy classes of irreducible SU(2)
representations. More generally one must perturb the flatness equations to obtain a
finite sum.

REMARK. Taubes shows his invariant is equal to Casson’s invariant, not its
negative. However, we are using the sign convention of [AM] for Casson’s invariant.
Akbulut and McCarthy first define Casson’s invariant up to an overall sign which
they later nail down by requiring the surgery formula to hold with respect to a
specific normalization of the Alexander polynomial. It turns out that the sign (S on
pages 65 and 125 of [AM]) equals —1. We will see this later in our computations.

In [F], Floer makes use of the fact that spectral flow is well-defined mod 8 to
construct a Z/8-graded chain complex whose generators in dimension k are those
SU(2) representations a such that SF([6], [x]) =k Mod 8. The homology of this
complex is called the Floer homology or Instanton homology of Z.

3. The basic geometric construction

We introduce the geometric construction which will be our main tool. The idea
is simple: if we can decompose the 3-manifold Z into simpler pieces, say X and Y
and find 4-manifolds with boundary containing X and Y over which the representa-
tions extend, then we can glue the 4-manifolds together to get a flat cobordism from
Z to a less complicated space for which we can compute the terms appearing in the
formula for spectral flow directly.

So, let Z, be an oriented rational homology sphere and let T < Z, be a torus
separating Z, into two pieces X, and Y,. Let f : n, Z, — SU(n) be a representation.
(In our applications = ad « for some SU(2) representation «.) Denote by B, and
By the restrictions of § to X, and Y.

Suppose there exist 4-manifolds M, and M, such that:

1. XocoM,.

2. By extends over m, M.

3. OM, = Xou(T? x I UX, LI L, where L, is some closed manifold, and X is
a rational homology knot complement. See Figure 2.

We view M, as a rel boundary cobordism of X; to X; + Ly, and view M,
similarly.

Then we can glue M, to M, along T x I to get a flat cobordism N with
boundary Z,uZ, ULy uULy. Here Z,=X,uUY,. We orient N so that:

5N= —Zo+Zl+Lx+Ly.
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Xo

Txl

X,

Figure 2

The main examples to keep in mind are the following:

1. X, is the complement of a knot in S3, X, is the complement of the unknot,
M, is a flat cobordism from X, to X,, and M, =Y xI. Thus L, and L, are
empty.

2. X, is Seifert fibered, M, is obtained from the mapping cylinder of the Seifert
fibration by deleting neighborhoods of the singularities, and so L, is a union of lens
spaces and X, = S! x D2 We will take M, to be Y, x I or, if Y, is also Seifert
fibered, we will construct M, from its mapping cylinder.

Consider now the terms appearing in the formula for the spectral flow between
two flat SU(2) connections. The Chern—Simons invariant can be computed for
splittings along tori in various ways, for example using the results of [KK?2]. The A,
terms are dimensions of cohomology groups which can usually be computed
explicitly. This leaves the p, invariants. These are not flat cobordism invariants but
from the Atiyah—Patodi—Singer signature theorem we know:

Ps(Zo) = pp(Z)) + py(Lyx) + py(Ly) — n Sign N + Sign, N.

In our situation Ly and L, will either be empty or lens spaces, whose pg invariants
can be computed directly since they have finite fundamental groups. It remains then
to compute the signature terms.

These are computed using Wall’s non-additivity formula [Wa]. We are gluing
M, to My along T x I, so the signature of N differs from the sum of the signatures
of My and M, by a correction term which we explain. Fix either trivial R or
non-trivial flat coefficients. We have:

Sign N = Sign M + Sign M, — Sign ¥

where ¥ is a non-degenerate bilinear form on the vector space defined as follows.
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Consider:

A = Image (H'(X,u X;) — H(T x {0, 1})),
B =Image (H\(T x I) — H(T x {0, 1})),

and
C =1Image (H'(Y,u Y,) — HY(T x {0, 1})).
Then ¥ is defined on:

BA(4+0)
(BnA) +(BNC)

Write H'(T x {0, 1}) = H @ H, so that B is just the diagonal subspace. We can
write A = A,@ A4, and C = C,® C,. There is an isomorphism:

BA(A+C) _(Ao+ C) (A, + C,)
(BNA)+(BNC) ™ (4onAy) +(ConCy)’

For the definition of the form ¥ we refer to Wall’s paper. In the cases we consider
we will use this isomorphism to show that ¥ is the zero form.
We end this section with a well-known lemma (see, for example, [H]).

LEMMA 3.1. Let X be a 3-manifold with torus boundary, and let B : =,(X) - G
be a representation into some semi-simple Lie group G. Let E be a representation of
G which has a'non-degenerate, positive-definite, G-invariant inner product. Then the
image of H'(X; Eg) in H'(0X; E;) is half-dimensional.

Proof. By Poincaré duality the composition of the cup product and the inner
product £ x E—>R

H'(X; Eg) x H¥(X, 0X; Eg) — H*(X, 0X; R)

is non-degenerate. The orientation of X defines an isomorphism H3(X, 6X; R) =R
and one obtains an isomorphism:

H'(X; E;) — Hom (H*(X, 0X; Ej), R).

Similarly we get H'(0X; Eg) -» Hom (H'(0X; Ep), R).
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Consider now the part of the long exact sequence:
f g
H'(X; Eg) — H'(0X; Eg) — H*(X, 0X; Ep).

The maps f and g are dual maps with respect to Poincaré duality and so
dim im (f) =dim Ker (g) =dim H'(0X; E;z) —dim im (g) =dim H'(0X; E) —
dimim (g*) =dim H'(0X; E;) —dim im(f) so that the image of f is half
dimensional. O

4. Representations which are abelian on a knot complement

In this section we consider the set-up of the previous section where X, is the
exterior of a knot in S* and « : n, Z,— SU(2) restricts to an abelian representation
on X,. For example, suppose Z, is a homology sphere obtained from surgery on a
satellite of a knot K. Then the companion torus splits Z, into the exterior of K and
surgery on a knot in a solid torus. The representation space of n,Z, divides into
two pieces, R, and Ry depending on whether the restriction of a representation to
the exterior of K is irreducible or reducible. The piece Ry is naturally homeomor-
phic to the space of representations of the corresponding satellite of the unknot. So
if we write Z, = X,u Wu(S! x D?) where W is the exterior of a knot in a solid
torus and we are given a path a, of representations of m,(X,u W) which restrict to
reducible representations on X, such that a, and «, extend over Z,, there is a
corresponding path of representations of =,(X,u W) where X, is the unknot
complement. Restricting these two paths to the boundary d(X;u W) gives the
identical path in the pillowcase, and so one might expect the spectral flow from o,
to a, on Z, to agree with the spectral flow on Z, = X; U Wu S! x D?if the theorem
of Yoshida continued to hold in this setting. We will show that this is not the case
and that the difference is measured by equivariant signatures of K. In terms of
splitting the spectral flow this should correspond to the spectral flow of the path a,
on X, being non-zero, since as we shall see the dimension of the cohomology of X,
with coefficients in a, jumps precisely when the Alexander matrix of the knot has
kernel, i.e. when a(u)? is a root of the Alexander polynomial of K, where u is the
meridian of K.

So let X, be the exterior of a knot K in S and let Y, be a homology knot
complement. Let Z, = X,u Y,, glued in such a way that H,(Z,;; Z) =0. (A good
example to keep'in mind is to let Z, be 1/n surgery on a satellite of K and we split
Z, along the incompressible companion torus.) We suppose that a : 7, Z, - SU(2)
is a representation whose restriction to X, is abelian.
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Our first task is to find manifolds M,, M, as in the previous section and
compute their signatures. We thank Steve Boyer for suggesting the statements and
proofs of the following lemma and theorem.

Consider the following 4-manifold. Let U = D*U H, where H is a 2-handle
attached to D* along K with the zero framing. Choose a Seifert surface F for K and
let F be the union of F pushed slightly into D* and the core of the 2-handle. Let
W = U — nbd(F). So 0W = (0-surgery on K) U(F x S'). Let B be a handlebody of
genus equal to the genus of F. Then let

M, =Wu(BxSh).
The proof of the following lemma is then an application of Van Kampen’s theorem.

LEMMA 4.1.

l. ny, M, =Z.

2. The map n,(S°* — K) - n, M, induced by inclusion is y > [y], where [y] denotes
the image of y under the abelianization n,(S* — K) - H,(S® - K) = Z.

Notice that M, can be viewed as a rel boundary cobordism of X, to
X, = S' x D2 Furthermore, from the previous lemma any abelian representation of
n, X, extends over n,M,. Extend o« over M,. We next wish to compute the
signature and ad a-signature of M,. Since B x S' has a deformation retract
(v;8" x S'in its boundary, Sign (B x S') =0 and Sign,,, (B x S') = 0. Hence by
Novikov additivity Sign M, = Sign W and Sign,y, My = Sign,, W.

To compute these signatures, let W be the universal cover of W. Notice that
mW=x=Z. Let

B:H,W x H,W > Z[t,t~"]
denote the equivariant intersection form of W.

THEOREM 4.2. H,(W; Z) ~(Z[t, t ~'))*2 ® Z where Z[t, t '] acts trivially on
the Z. summand. The matrix for the equivariant intersection form, B, on the free
summand is given by

(1=0V+ =t YT

where V is the Seifert matrix for K, so V;; = lk(x;, x;" ). Furthermore the Z summand
is in Ker B.
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The proof of this theorem follows standard arguments and we only indicate the
idea. Let C be obtained by cutting D* along F x I where F x 0cdD*and F x 1 is
the pushed in Seifert surface. Then the universal cover of D* — F x 1 is obtained by
gluing a Z’s worth of copies of C in the usual way. This gives a manifold with
second homology the free Z[Z] module on the 2-cycles constructed from discs in C
whose boundary in F are the generators of H, F. Thus the Seifert matrix determines
the intersection form on this part of W in the manner indicated.

To get W one adds the universal cover of the 2-handle minus its core, which is
homeomorphic to D2 x I x R. This last piece contributes the trivial Z in H, W, and
its intersection with the other part of the homology is trivial since it is carried by
a cycle which lives in the boundary oW.

For more details of this construction see [CG], or [Ka]. O

Let B (f) denote the matrix (1 — )V + (1 — ¢t~ YV, (Of course By (f) depends
on the choice of Seifert surface F.) Recall that the symmetrized Alexander matrix
for K is

Ag(t) = tV2V — ¢t~ 12pT,
These are related by:
(712 =14 (1) = Bx(2).

Let B :m X,— U(1) be a representation which sends the meridian u, to e®.
Extend B over M. Notice that By(e®) is hermitian, and A (e®) is skew-hermitian.

It follows from the previous theorem that the signature of M, with coefficients
in the flat bundle determined by B is equal to the signature of By (e’®). Furthermore,
if  is not a multiple of 2x, then By(e®) is singular if and only if the Alexander
polynomial of K vanishes at e®.

Let us now return to the situation of the preceding section. Let a : n;, Z, - SU(2)
be a representation whose restriction to X, is abelian. Think of M, as a flat rel
boundary cobordism of X, to X, =S' x D2 By gluing M, to M, =Y, x I along
T x I, we obtain a cobordism N from Z, = X,u Y, t0o Z, = S' x D2Uu(Y, x 1) over
which o extends. Notice that Z, is in general a simpler manifold than Z, since it is
just a Dehn filling of Y. (For example, if Z, is a surgery of a satellite of X, then Z,
is a surgery on the corresponding satellite of the unknot.) By conjugating « we may
assume a(x, (7)) lies in the circle of diagonal matrices. Thus if u,, 1y denote the
natural meridian and longitude of K, then a(4,) =1 and
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i
a(”X) = (e e_,'g)'

The corresponding adjoint representation ad o takes A, to 1 and takes the
meridian to the 3 x 3 matrix:

e 2i6

ad a(py) = e

THEOREM 4.3. Orient N so that ON = —Zy+ Z,. Then:
1. Sign N =0.
2. Sign,q, N = —2 Sign By (e**).

REMARK. The idea of the proof is to use Wall’s non-additivity theorem [W]
to show that Sign,,, N = Sign, 4, M.

Proof.

1. From the remarks immediately preceding Lemma 3.1 we know that
Sign N = Sign M, — Sign (¥), where ¥ is a form on (4,+ Cy)n(4,+ C,)/
(A4gn A}) + (ConC,) (see §3 for the definitions). We claim that A4,= A4, and
Co = C,. This obviously implies that ¥ is the zero form.

Recall that 4y=Im [H'X,—» H'T] and 4, = Im [H'(S' x D?) — H'T] (say with
real, untwisted coefficients). But since oM, is just O-surgery on K, the pair
(X, (S! x D?), T) is homologically the same as (S' x S, S! x §'). Clearly then
Ay=A,.Since M, =Y, x I, Co=C,.

Therefore Sign (¥) =0 and, since Sign (Y x I) =0, Wall’s formula gives Sign
N =Sign M,. One can see directly from the construction that Sign M, = Sign
W = 0; equivalently Sign M, = —Sign Bg(1) =0.

2. We will again show that 4,= 4, and C, = C,. This time we must use local
coefficients in ad a.

We can identify H'(4; ad a) with the group cohomology H'(n,4; ad «) for any
path-connected space 4 and homomorphism =, 4 - SU(2). By taking the first
cohomology with ad a coefficients in the diagram of groups:

anO
/ N .
T n, W— SU(2)
N /=
7,(S' x D?)



388 PAUL KIRK, ERIC KLASSEN AND DANIEL RUBERMAN

one sees that the map H'(S'x D?*ada)—-H'(T;ada) factors through
H'(X,; ad «) and so 4, = 4,. But now Lemma 4.1 implies that 4, = A4,, since they
are both middle dimensional subspaces. Again C, = C, because M, =Y, x I. So ¥
vanishes in this case also. Now Sign,,,(Y x I) vanishes since Y x I deforms to its
boundary and so Wall’s theorem implies that Sign,,, N = Sign,, , M.

The adjoint representation ad a: n, M, — U(3) splits into three U(1) representa-
tions sending the generator to e%?, ¢ =% and 1. Thus the signature Sign,,, M, is
the sum

Sign,, , My = —Sign By (e*®) — Sign By (e ~ %) — Sign B(1).

(the minus signs arise because of our choice of orientations. The orientation which
N inherits from D* has Z, in its boundary. Since we want 0N = — Z, + Z,, we must
give it the opposite orientation.) Now Sign B, (1) =0, and since Bi(t~') = Bx(9)7,
the signatures Sign B (e?®) and Sign By (e ~%®) are equal. Therefore

Signad a MX = —2 Sign BK(eWie)

as claimed. O

As a consequence of this theorem we can compare the p,,, invariants of Z, and
Z,. In fact,

Pad a(Zl) = Pad a(ZO) =3 Slgn N — Signada N
= 2 Sign By (e?®).

THEOREM 4.4. Let oy, and a, be SU(2) representations of mn,Z, which are
abelian on the knot complement X,. By conjugating we may assume that

e .
o; (1) =( e““’f) for j=0,1,

with the 6,€[0,7n]. If a; is non-central let a;=Dim Ker Bx(e*?), so that
H'(Xy; ad a;) @ R'* 2%, If a; is central, let a; =0.

Then the difference of spectral flows

SF(xy, a,)(Z,) — SF(%, 0, (Z;)

is equal to:

Sign By (e*%) — Sign By (e?®) — (a, + ;).
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If e*® is not a root of the Alexander polynomial of K for j =0 and 1 then this
difference is even.

Proof. We use the formula of §2 which relates the spectral flow to the Chern—
Simons invariants, the p,,, invariants, and the haj. We first dispose of the h,j.

By computing with the Mayer—Vietoris sequences of (Z,, X,, Y) and
(Z,,X,,Y)=(Z,,S' xD? Y) with ad a; coefficients one can easily show that
H%Z,,ad o;) = HZ,; ad a;). If the restriction of a; to X is trivial or if 2% is not
a root of the Alexander polynomial of K, then H'(X,;ad o) @ H'(X,;ad ;). It
follows that H'(Z,y; ad «;) = H'(Z,; ad a;). The only case in which the first coho-
mology groups do not agree is when ¢%% is a root of the Alexander polynomial of
K, in which case H'(X,;ada;) *R'*?% and H'(X;;ad o) @R. In this case
ho(Zo) — h,(Z,) = 2a;. So

1
=5 (1ao(Zo) + b [(Z0)) + -;' (heo(Z1) + b, (Z2))) = — (a0 + @y).

Next, we must compare the Chern—Simons invariants. Since the Chern—Simons
invariants are flat cobordism invariants, cs(xy)(Z,) = cs(o)(Z,). Similarly for o .
Putting these facts together with the formula for spectral flow we obtain:

SF (0, )(Zs) ~ SF(@0, 4)XZ1) = 5 (raa,(Z0) ~ aasy(Z2) — (Pusay(Zo)
— Pad ay(Z1)) — (@ + ay)

1 . )
=3 (—2 Sign Bg(e?®1) + 2 Sign By (e*%))

—(a+a;)
= Sign B (e*%) — Sign Bg(e*®') — (a, + ay).

If 2% is not a root of the Alexander polynomial of K and is not equal to 1, then

By (e*?) is a non-singular 2g-dimensional matrix and hence has even signature;
moreover a; = 0. If 6, =0 then Bk (1) is the zero matrix so its signature is even.

O

In the special case of a surgery on a satellite of a knot in S°, there are two ways
to interpret this formula as a splitting result depending on whether we think of the
separating torus as the boundary of the satellite or the boundary of the companion.
In this setting let W be the complement of the knot in the solid torus, so that Y,
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is a Dehn filling of one of the two boundary components of W. Then if we are given
a path of representations of 7, (X, U W) whose restrictions to X, are abelian, we can
find a path of connections on Z, which are flat on X,u W. As above this gives rise
to a path of connections on X, U Y, which is flat on X; U W, where X is the unknot
complement. If we restrict the paths to one of the tori in dW, the image
R(X,w W) — R(T) coincides with the image R(X, v W) — R(T) for either torus T in
OW. In particular, restricting to d(X,w W) and d(X, u W) gives examples of paths
of representations of two knots in S* whose image in the pillowcase coincide, which
are non-abelian in general (see the examples in §6), but for which the spectral flows
(and Floer homology) are different. In particular, Yoshida’s theorem fails to extend
to this case.

The results of this section can be generalized to include surgeries of satellites of
knots in arbitrary homology spheres X by replacing the pair (D% S*) by (M, X)
where M is a 4-manifold bounded by X. The correction term will then involve the
signature of M as well as the Alexander matrix.

5. Splitting the spectral flow for graph manifolds

In this section we consider homology spheres Z = XU Y where X and Y are
Seifert fibered homology knot complements. For simplicity we will assume that X
and Y are the complements of a tubular neighborhood of a regular fiber in a
Seifert-fibered homology sphere. This restriction is not essential but makes some of
the formulas less messy. Nor is it essential to take Z to be a homology sphere.
Finally, one can do the computation for any graph manifold, that is, any 3
manifold obtained by gluing together Seifert-fibered spaces along tori in their
boundary.

We will give a “splitting theorem™ for the spectral flow between two connections
whose restrictions to X and Y are irreducible. This theorem expresses the spectral
flow as the sum of 3 terms Fy, Fy, and F, where Fy (resp. Fy) depends only on the
restriction of « to X (resp. Y) and F, is an interaction term involving the gluing
map ¢ : X =Y.

This section closely parallels the computations of [FS2] for Seifert fibered
homology spheres, in particular the starting point is the observation of Fintushel
and Stern that Seifert fibered manifolds bound canonical 4-manifolds over which
SO(3) representations extend. Although our emphasis is different, the methods are
similar. We refer the reader to their beautiful papers [FS2] and [FS1] for details.

Seifert fibered manifolds are characterized by the property that their fundamen-
tal groups have a cyclic center. Since the centralizer of any non-abelian subgroup of
SU(2) is just +1, it follows that any irreducible representation of the fundamental
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group of a Seifert fibered 3 manifold must send the generator of the center to +1,
and hence the adjoint representation sends this element to 1.

Given a Seifert fibered manifold X = S(F; (a,, b,), ..., (a,, b,,)), the mapping
cylinder of the Seifert fibration X — F is a singular 4-manifold whose singularities
are cones on L(a;, b;). Removing neighborhoods of the singularities leaves a 4
manifold M, whose boundary is the union L, = |J; L(a;, b;) together with the Dehn
filling of X which caps off the generic fibers in 0X.

The fundamental group of M is the quotient of 7, X by its center. In particular,
if o : 1, X - SU(2) is an irreducible representation then ad o extends over M. This
gives a canonical flat 4-manifold with X in its boundary.

Now let X be the complement of a regular fiber in a Seifert fibered homology
sphere. So X = S(D?(a;, b,), ..., (a,,b,)) and

T X =Xy, ..., Xy, h|h central, x#h% = 1),

The center of 7, X is the cyclic subgroup generated by the generic fiber A.

We assume X has been given some fixed orientation.

Let a : m; X - SU(2) be an irreducible representation and let 6 denote the trivial
SU(2) representation. Both of these send the homotopy class of the regular fiber of
X to 1€ SU(2).

From the presentation of n,(X) we see that o must take each x; to a 2a root
of 1. Following [FS1], we can unambiguously define the rotation numbers of o to be
the collection of integers p;,, i =1, ..., m so that 0 < p; < q; and a(x;) is congugate
to exp (2mip;/2a;) in SU(2). To a we associate the integer m,(X) which is the
number of x; which are not sent to +1 by «; equivalently the number of p; strictly
between 0 and a;.

The manifold M, has boundary X u(T? x I) U(S' x D?) 11 L,. We orient M,
so that —X < M. Thus we view M, as a rel boundary cobordism from X to
S!' x D? + L. The representation ad a extends over n; M.

LEMMA 5.1.
(1) H'(Mx;R) =0= H*(My; R).
(2) H\(X;ad a) @ H'(M; ad o) > R =3 gnd H*(M,; ad a) =0.

Proof.

(1) Let W denote the mapping cylinder of the Seifert fibration. Since X fibers
over D?, W is contractible. By excision, H(W, My; R) = H"(cLy, Ly; R), which is
zero for n=2 or 3. The exact sequence for the pair (W, M) shows that
H'(My;R) =0= H*M,; R) since W is contractible.
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(2) Let P be the complement of m small open discs in D? centered at the images
(under the Seifert fibration) of the singular fibers in X. We decompose M, as:

MX=(PxD2)uﬁ(D2xS‘xI:O,%]). (%)

In this decomposition, each D? x S' x {0} corresponds to a neighborhood of a
singular fiber in X. For each point p € D? x S', the arc p x [0, 3] corresponds to
half of the mapping cylinder arc emanating from p. Define

(T2 X [0, -;—:Dl = (P x D? n(Dz x ST x [0, —;—:Dl

In what follows, we will repeatedly use that fact that if Q is a CW-complex and
p:m,Q — Aut (V) is a homomorphism, then for i =0, 1,

H'(Q; Vp) = Hi(le; Vp)

where the latter denotes group cohomology.
We have the presentation

MMy =(x,..., % |xf=1fori=1,...,m).

We compute H'(n, M, ; ad a) using the usual bar resolution as follows. A 1-cocycle
o : My —su(2) is determined by its values on the generators {x,, ..., x,, }. Using
the cocycle condition on the relations implies that these values must satisfy the
equations

0=0(x%) =(14+ada(x;) + - -+ad a(x? ")) - a(x;)

If a(x;) = +1, this implies o(x;) = 0. If a(x;) # +1, this implies o(x;) € R* =the
orthogonal complement in su(2) of the one-dimensional subspace fixed pointwise by
ad a(x;).

It follows that Z'(n, My ; ad a) = R?"=X)_Since « and hence ad « are irreducible,
BY(m,M,;ad a) =R> so H'(M,; ad a) = R -3,

Similar (but easier) computations give:

‘ 1 R} ifa(x;)=+1
1 1 2 — . ~ : -
H((S xé X[O’Z:D,-’ada)—{R if a(x,) # +1

RS if a(x;,) = +1

1 2. ~
H (T"ad“)={kz if a(x,) # +1
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Also, H((S' x D?),;;ad ) -» H(T?; ad ) is surjective since im (« | n,(S! x D?),)
=im (« | n; T?). Clearly,

H*(P?x D% ada) = H*((S' x D?);;ada) =0

since these spaces are homotopy equivalent to 1-complexes. Plugging this data into
the Mayer—Vietoris sequence for the decomposition (%) above implies that
H*(My;ad a) =0.

Finally, to see that H'(n,X; ad «) = H'(n, M; ad «), it suffices to check that if
o is a 1-cocycle on m, X, then the relations imply that a(h) = 0. O

Now let Y = S(D%(¢y, d,), ..., (c,, d,)) be the complement of the regular fiber
in the Seifert fibered homology sphere. Assume Y has been given a fixed orientation
and let M,, L, be defined as for X. As before,

us Y= <yl’ <. ,y,,,k | k Central, yf"kd" = 1>.

We glue X to Y using an orientation reversing map ¢ : X —»0Y to form the
oriented homology sphere Z,. We can then glue My to My along T x I using ¢ x [
to obtain the 4-manifold N, = My (J; My. The oriented boundary of N, is
—Z4y+ Ly + Ly + Ly, where L is the lens space obtained by gluing two solid tori
together along T so that A bounds in one and k£ bounds in the other. (So for
example, if Z, is itself Seifert fibered, then ¢(h) =k*' so that L, = S' x S2
Another easy case is when ¢(h) and k intersect in one point in which case L, = S°.)

Let o : m; Z, —» SU(2) be a representation whose restrictions ay and ay to X and
Y are irreducible. So ad « extends to m, Ny. We denote by p; the rotation numbers
of a, and by g; the rotation numbers of a,. We also define m, (X), m,(Y) as before.

LEMMA 5.2.

(1) H¥(N4; R) @R

(2) If Z, is not Seifert-fibered, then H*(N,; ad a) = 0.

(3) If Z, is Seifert fibered, then the 4-manifold obtained by gluing S' x D* to N
along L, = S' x S? is just M (i.e. the mapping cyclinder with the cone points
removed).

Proof.

1. Using the Mayer—Vietoris sequence for N, = M, UM, and the previous
lemma we see that H'(T; R) - H*(N,; R) is an isomorphism.

2. With ad « coefficients, the Mayer—Vietoris sequence is:

— H'(My;ad o) ®H'(My;ad o) — H'(T;ad «) —> H*(N,;ad ) — 0.
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Suppose first that the restriction of a to =7 is not central. Then
H'(T; ad «) =~ R2. By conjugating o we may assume that a(n, T') lies in the circle
subgroup of diagonal matrices. The image H'(M,; ad o) » H'(T; ad a) is the same
as H'(X;ad a) - H'(T; ad ), which is half-dimensional. Thus it suffices to show
that the images H'(X;ad a) » H'(T;ada) and H'(Y;ad a) » H'(T;ad «) are
transverse.

Let z € Z'(n, T; ad «) be a cocycle which extends to z, and z, on n; X and =, Y.
By subtracting a coboundary we may assume z(x) € iR for x € n; T, where we
identify su(2) with the pure quaternions. Since a is diagonal on the fundamental
group of T, the adjoint action on z is trivial and so z is just an ordinary
homomorphism from Z?— iR. We have z(h) = z,(h) = 0 and z(k) = z, (k) = 0 since
z extends over X and Y. But since Z, is not Seifert fibered h #k*' and so z
vanishes on a (rational) basis which implies z = 0.

This argument modifies to handle the case when o restricts to a central
representation of n, T since in that case the adjoint action is trivial. Thus a cocycle
z€ Z'(n,(T); ad «) is just a homomorphism =,(T) — R3. Again this is trivial if it
vanishes on 4 and k.

3. We leave this to the reader. Notice that if Z, is Seifert fibered, then
H*(N,; ad ) is 1-dimensional. However, by gluing S' x D? to the boundary we
obtain M, with H3(M,; ad «) = 0. O

We will temporarily assume that Z, is not Seifert fibered. Since
H*(N,;ad a) =0, Sign,y, N, =0. Computing the ordinary signature of N, is a bit
trickier, and depends on the choice of orientations. We digress momentarily to
discuss the orientation point.

First note that a Seifert fibered homology sphere X(a,, . .., a,,) has a canonical
orientation as the link of a complex singularity [JN]. If My denotes the deleted
mapping cyclinder of £ — S? then H*(My; R) = R and the orientation which makes
M negative definite gives X the correct boundary orientation. We are assuming
X =2X(a,...,a,)regular fiber, and Y =3%(c,..., c,)-regular fiber, but we are
not assuming the orientations are compatible. So define ¢, to be +1 according to
whether or not the fixed orientation of X agrees with the induced orientation as a
subspace of Z(a,,...,a,) and similarly define ¢,. We have oriented M, so that
OM, = — X + Ly (rel boundary) where L, is the union of L(a;, b;). These lens
spaces have a canonical orientation, namely the one induced by the covering
S3— L(a, b) where S? is oriented as the boundary of the unit ball in C2. With this
orientation, Ly = ex(11, L(a;, b,)).

At this point we can express the gluing map ¢ in coordinates as follows. The
pair of curves my =x,,..., X, Iy =h®* form an oriented symplectic basis for
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n,(0X). Similarly m, =y,,...,y, and /, =k®r. (The I, are not longitudes in the
usual sense; they are not nullhomologous in X and Y.) Then ¢ can be written as a
2 x 2 integer matrix with determinant —1 using these bases. Write:

¢ = (; Z)

then L, = L(v, z), and Z, is a homology sphere if and only if
au +¢exv —cey(aw + e4z) = +1

where a =11, q; and ¢ =11, ¢,.
LEMMA 5.3. The signature of N, is equal to ey + €.

Proof. Recall that we have oriented N, so that —Z, < ON,. We have seen that
H*(N4,;R)=R? It is convenient to split N, into N,=M,u(Y xI) and
N,=(S'x D?* UM, as in Figure 3.

Then H?*(N,; R) = R = H*(N,; R) and since N, is the union of N, and N, along
a closed submanifold of their boundary, Sign N, = Sign N, + Sign N,. That
Sign N, = ¢, is a consequence of the fact proven in [FS1] that the mapping cylinder
M; for X(a,,...,a,) oriented with oMy = —X(a,, .. ., a,,) is positive definite. [J

The following lemma is easily proven using the Atiyah-Singer G-signature
theorem and the formula from [APS2] which expresses the p; invariants as the
“Fourier transforms” of the G-signature defects.

X Y
) My Yl N,
Lx
| 2
SXDX' MY \ N2
Ly

Figure 3
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LEMMA 54. Let L(a,b) be a lens space, oriented as the quotient of
S*=0B*< B*< C% Let B:m L(a,b) » U(1) be a representation which takes the
generator g to @™/, Then:

ps(L(a, b)) = ——% ail cot (1—{—%) cos <£’E) sin? (%)

a a a

Let B : m, L(a, b) - SO(3) be a representation. Orient L(a, b) as the quotient of
S? = dB* c B* = C? where the action is &, - (z, w) = (£8z, £,w). Suppose B(,) is a
rotation of angle 2pn/a #0. Then the complexification splits into three U(1)
representations with rotation numbers 2p, —2p and 0. Thus

4a—l
pg=—— 3, cot (@> cot (F—]E) sin? <EP-I£>
a =, a a a

LEMMA 5.5. Let B : nyL(a, b) - SO(3) be a representation with rotation number
p as above. Let r be an inverse for b Mod a. Then

2rp? 1
-—— 3 ps(L(a, b))

is an integer.

Proof. Let E —L(a,b) denote the flat bundle defined by p. Since
H,(BSO(3); Z) =0, this bundle extends over some 4-manifold W. The Pontriagin
form of a connection on this bundle extending f then defines the SO(3) Chern—Si-
mons invariant much as in the SU(2) case. Using the Atiyah—Patodi—Singer
theorem (as in the final section) we see that the index of the self-duality operator
on W is congruent mod Z to —2 times this SO(3) Chern—Simons invariant plus
1/2B5(L(a, b)). The computation of the Chern—Simons invariant may be done in
several ways: by directly writing down the integral as in §13 in [MMR], or via the
method of [KK3]. For the reader’s convenience we sketch the latter. Notice that the
bundle over either of the two solid tori S,, S, which make up L(a, b) is trivial. So
given a flat connection on L(a, b), there are paths of flat connections on the S, to
the trivial SO(3) connections. Use these paths to construct a connection on

L(a,b) x I =(L(a, b) x I) U L(ap) x 0 (81 X I) Urap x0 (82 X I)

extending the given flat connection. As in [KK3], Chern—Simons invariant may be
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computed as a sum of two integrals which reduce via Stokes’ theorem to integrals
on T? x I. The result of the calculation is rp?/a, yielding the formula in the lemma.
d

REMARK. In the case when the representation f lifts to an SU(2) representa-
tion, then we can take p even and —2rp?/a is just 8 times the Chern—Simons
invariant of the SU(2) connection. The only subtlety occurs when the bundle over
L(a, b) 1s non-trivial. This can happen only when «a is even.

Let X, Y, a, ¢ be as above. Define

R
¥ =
1 al
and
cq;
ey — -
; C;

where a =11, g, and ¢ =11, ¢;.
The next lemma appears as Theorem 4.5 of [KK3].

LEMMA 5.6. The Chern—Simons invariant of (Z,, ®) is equal to

2 2 2 2
Lok ey peu_wk’
8X4a 8Y4c 4o 4 2y +2)
where K is defined by a(k) = (—1)*. O

The basic idea is to compute the Chern—Simons integral separately on X and Y
by using an explicit path of flat connections from the given connection to the trivial
connection for each piece. One then applies Stokes theorem and the definition of
Chern—Simons invariants as the integral of a 4-form over X x I. See [KK3] for the
detailed proof.

A few brief remarks are in order. The first two terms in this formula are the
analogues of the Chern—Simons invariants of Seifert-fibered homology spheres. In
particular, a representation of the homology sphere Z(a,, ..., a,), with rotation
numbers p; has Chern—Simons invariant e% /4a. The third term is a Chern—Simons
invariant of the extra lens space Ly, at least when the SO(3) representation lifts to
an SU(2) representation.

The last term can be considered a correction term in the following way. The flat
SO(3) cobordism N, shows that the SO(3) Chern—Simons invariants of Z, equal
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those of the union of lens spaces Ly |JLy|JL,. However, one cannot conclude that
the SU(2) Chern-Simons invariants coincide, firstly because some of the lens
spaces may have even order and so the SO(3) representations do not lift to SU(2),
but also because even if they do, the flat cobordism need not lift to an SU(2) flat
cobordism. The best one can say at this point is that these Chern—Simons
invariants are equal mod ;Z. However, we need the result mod Z. Notice that this
last term has denominator equal to 4. This brings to light the technical point that
one loses too much information using the SO(3) cobordism to reach conclusions
about the mod 8 SU(2) spectral flow. This SO(3) cobordism could at best give the
spectral flow mod 2.
We can now prove the main result of this section.

THEOREM 5.7. Let a: m(Z,) — SU(2) be a representation of the graph mani-
fold Z, = X ), Y whose restriction to each piece is irreducible. Assume Z, is not
Seifert fibered. Choose py€{0,...,v} so that a(y,---y,) is conjugate to
exp (2ni(py /2v)). Choose x so that a(k) = (—1)*. Finally let C =2 if the restriction
of a to m; T is non-central and 3 if it is central. Then:

SF®, % Z,) = —sx(-zﬁ‘+ $ 275" ot (”b"k ) cot ("k )s ("’;'k»—m,,(a)

i=18i k=1 a; a; i

22 & 292! nd;k nk\ . ,[nqk
) e
2p¢u nzk cot nk sin? mpsk

vk-—l v B

3
—5(8X+8y) + C (mod 8).

Proof. Suppose first that « is non-central. Then HYT;ada) =R and
HY(T;ad @) =R% Since Z, is not Seifert fibered, it follows that
HY(X;ada) ®H'(Y;ad a) - H(T; ad ) is onto. From the Mayer—Vietoris se-
quence one then has

1
5 (h(Zy) + he(Zy)) = my(a) + my () —
If o restricts to a central representation of =, (7T’), then similarly:

3 (1(Z4) + h(Z,) = (@) +my (@) =3
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The p.4, invariants are computed using the fact that

Pad a(Z¢) = Pad az(LX) + Pad az(LY) + Pad a(L¢) -3 Slgn(th) g Signad a(N¢)'

The terms are computed in Lemmas 5.2 and 5.4.
The Chern—Simons invariant is given by Lemma 5.6. The result follows using
equation 2.1. O

REMARKS.

1. This theorem expresses the spectral flow as a sum of three parts. The first
part involves only X, the second only Y and the third depends only on the
map ¢, the restriction of « to n; T, and the orientations.

2. This formula generalizes the result of [FS2] for Seifert fibered homology
spheres. Their result is:

SF(6, a; Z(a;,...,a,) = —3 — R(x)

where

2 m a;—1 .
R(a) =-2—§——3+m + 3 2 Y. cot (El:—k) cot (z[—k) sin? (n—p-i—-k—)

i=18 k=1 i a; q,

3. We point out the following discrepancy in the literature. From a Kirby
calculus argument it is easy to see that X(2, 3,5) = —(+1 surgery on the
right handed trefoil). Thus Casson’s invariant, as defined in [AM], of
Z(2, 3, 5) must equal —1. On the other hand, Taubes in [T] defines the
spectral flow SF(6, «) with the same convention that we do here and takes his
invariant to be the sum over the irreducible representations of the spectral
flow mod 2. Since R(x) is always odd by [FS2], it follows that Taubes’
invariant is actually equal to —2 times Casson’s invariant. This arises
because in order to make the surgery formula for Casson’s invariant work
out with respect to the correct normalization of the Alexander polynomial,
there is an extra factor of —1 introduced in the definition of Casson’s
invariant (the S on pp. 125 of [AM] is equal to —1).

6. Examples
The results of the previous two sections can be used to compute the spectral

flows of representations of certain homology spheres by reducing the computation
to previously known cases. This enables us to compute the Floer chain complexes
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and in certain cases the Floer homology of these spaces. We will consider —1
surgeries on k-twisted Whitehead doubles of torus knots. This class of examples
lends itself well to the methods developed above because they are graph manifolds,
namely the exterior of the p, g torus knot union the exterior of the left-handed
trefoil. We remark that one can also consider +1 surgery on the positive or
negative clasp Whitehead doubles of torus knots. In this case one also needs the
computations of spectral flow carried out in [Y2] for the surgeries on the Figure 8.
For background on representation spaces of knot groups see [K1] and [K2].

We will carry out three computations explicitly. The first is —1 surgery on the
10-twisted Whitehead double of the 5, 2 torus knot. This homology sphere has the
property that every non-trivial representation restricts to an abelian representation
of the companion knot. Thus all spectral flows can be computed using Theorem 4.4.
By comparison with the representations of the 10-twisted Whitehead double of the
unknot, this example shows that the spectral flow is not determined by the image
in the pillowcase. For this homology sphere we can compute the Floer homology
since all boundary operators turn out to be trivial.

We will also compute the spectral flows and Floer chain groups for —1 surgery
on the untwisted and 5-twisted Whitehead doubles of the trefoil. For the untwisted
example, every non-trivial representation restricts to an irreducible representation
of the companion, so that the spectral flows are all computed using Theorem 5.7.
The example involving the S-twisted double has non-trivial representations of both
types, so the full computation uses both Theorems 4.4 and 5.7.

One technical point will arise when trying to compute the Floer chain complex,
namely one must perturb the Chern—Simons function if it is not a Morse function.
In general, the representation space R(m,Z) forms the critical points of the
Chern-Simons function. If R(Z) is a smooth submanifold of /4 with nondegen-
erate normal bundle then the Floer chain complex can be constructed by taking as
a basis the critical points of a Morse function fon R(Z) and assigning to a critical
point p the index SF(0, a(p)) + u,(f) where a(p) € R(Z) lies in the component
containing p and u,( f) is the index of f at p. See [FS2] for the proof that this gives
a complex whose homology is Floer homology.

We begin with some general observations. Let p, ¢ > 0 and choose k € Z. The
three sphere S* can be Seifert fibered so that the (p, g) torus knot is a regular fiber.
Let X, (k) denote the homology 3-sphere obtained by performing —1 surgery on
the k-twisted positive clasp Whitehead double of the (p, q) torus knot. See Figure
4 for (p,q) =(2,3),k =3.

So Z,,(k) is the union of the exterior X, of the (p, g) torus knot and a Dehn
filling Y, of the Whitehead link complement.
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.
ey

Figure 4

PROPOSITION 6.1. The homology sphere X, (k) is a graph manifold. In fact X,
in the exterior of the p, q torus knot and Y, is the exterior of the left-handed trefoil
knot. Furthermore, the gluing map ¢ is given in the natural meridian-longitude
coordinates by the matrix:

0 1
o=(1 %)
(This means that ¢(uy) = Ay and ¢(Ay) = uy — kiy.)

Proof. Figure 5 shows a Kirby calculus computation which shows that Y, is the
exterior of the left-handed trefoil.

Taking a k-twisted double means that if u, and A, are a meridian and
longitude pair for the Whitehead link exterior which is being glued to X, along 7,
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then u, is identified with A, and A, is glued to u, — kA, But if we do — 1 surgery
on the other component of the Whitehead link, then u, and 4, become a
meridian-longitude pair for the left-handed trefoil. O

Now the regular fiber for the Seifert fibration of X, (restricted to T') is
kx =pqux + Ax + Ax = py + (pg — k)dy.
The regular fiber for the Seifert fibration of Y, (restricted to T) is
hy=—6uy + 4y,.
Thus if L, denotes the lens space obtained by capping off the regular fibers in T,

Ly = —L(—6(pg —k) — 1, pg — k).

Write Z, =X, (k) = X, U, Y,. Notice that if the Seifert fibrations were compat-
ible then @(hy) = h$'. But this obviously cannot happen. One might wonder if Z,
is Seifert-fibered in some other way, but this is not possible since if it was the
incompressible torus 7 separating X, from Y, would be horizontal. But then
Z, — T is a union of I-bundles. However, we know that Y, is not an /-bundle. (For
most Z, we could instead use Lemma 6.3 below which shows that the SU(2)
representation space of mn, Z, contains circles, and thus Z, cannot be Seifert fibered
by the main theorem of [KK1].)

We first give a convenient set of coordinates for the pillowcase. If y,,y, e t, T is
a pair of curves which generate #, T, then the map

R2—- R(T)

which takes the pair (x, y) to the conjugacy class of the representation

em‘x em‘y
N e~ mx ) b Lo e

is a branched cover. A fundamental domain for the action is the strip [0, 2] x [0, 1].
The pillowcase is then seen as the identification space of this strip by folding it in
two along the segment 1 x [0, 1] and identifying the edges.

LEMMA 6.2. If a:mZ,— SU(2) is a non-trivial representation, then the re-
striction of o to m, Y is always irreducible.
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Proof. Suppose the restriction of a to Y, is abelian. Then in particular the
restriction of a to the Whitehead link complement is abelian. But then o must take
the longitude A, =4, to 1 since i, lies in the commutator subgroup. Since
d(uy) = Aw, a sends the meridian of X to 1. But the meridian normally generates
7, X, and so a restricts to the trivial representation of n, X,,. Thus « is in fact abelian
and since Z, is a homology sphere a must be the trivial representation. O

For a space A4, let R*(4) denote the space of conjugacy classes of non-trivial
representations of m; 4 into SU(2). Write:

R*(Z¢) = RR UR]

according to whether a € R*(Z,) restricts to a reducible or irreducible representa-
tion of n,(X,).

If o € Ry then the construction of §4 provides us with a flat cobordism N from
Z,to Z,, where Z, is obtained by replacing the exterior of K by the exterior of the
unknot. In fact, Z, is just the manifold obtained from —1/k surgery on the
left-handed trefoil knot. Thus

—%(2,3,6k —1) ifk>0:
Z,={%(2,3,1-6k) ifk<O;
s3 if k=0

The representation spaces and spectral flows were computed for these manifolds by
[FS2]. (It is also easy to compute the spectral flow between two connections using
Yoshida’s theorem [Y2] since the representation space of the trefoil is connected.)
Using Theorem 4.4 we can compute the spectral flow for any a € Rg.

On the other hand, if « € R, then by the previous lemma the restriction of « to
both X, and Y, is irreducible. Thus the construction of §5 applies and we obtain a
flat cobordism N from Z, to Ly + Ly + L,. Theorem 5.7 then gives the spectral
flow in this case.

LEMMA 6.3. The space Ry is discrete. If a{uy ) = e" and e*® is not a root of the
Alexander polynomial of the p, q torus knot then o is a non-degenerate representation,
ie. H(Z4;ad a) =0.

The space R, is a union of smooth, non-degenerate circles; in particular if « € R,
then H'(Z,; ad a) = R.

Proof. Suppose « € R. Such representations are in 1-1 correspondence with
representations of n,Z,. Since Z, is a Seifert-fibered homology sphere with 3
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exceptional fibers, its representation space is discrete. It follows from the previous
lemma that the restriction of a to =, T is non-central. Thus H°(T; ad «) R and
H'(T; ad «) @ R?. The images of H'(X,;ad a) » H'(T;ad o) and H'(Y,;ad ) —
H\(T; ad a) are lines, which must be transverse: If they were tangent, then there
would be an arc of representations in Ry passing through «. (This is not true for
general knots; it holds for torus knots because (cf. [KK3]) the image of their
representation spaces in the pillowcase are straight lines.)

Now H%X,; ad o) - HYT; ad o) = R is an isomorphism, H!(X,; ad a) 2 R (this
is where we use the hypothesis on the Alexander polynomial), and H'(Y,; ad o) =R
(This can be computed directly using group cohomology. Alternatively the space of
conjugacy classes of irreducible representations of a torus knot is a smooth
1-manifold, see [K1].) The result now follows from the Mayer— Vietoris sequence.

Now suppose a € R;. Again the restriction of a to =, T is non-central. So
H°(T;ad ) R and H'(T; ad o) = R2. As shown in the proof of Lemma 5.2 the
images of H'(X,; ad ) > H'(T; ad «) and H'(T; ad «) > H'(T; ad «) are transverse
lines. As above H'(X,;ad a) @ R= H'(Y,;ad o). The Mayer—Vietoris sequence
now implies that the boundary map H%(T; ad «) - H'(Z,; ad a) is an isomorphism.
Thus the Zariski tangent space to R, at o is 1 dimensional. By “bending” the
representation along T we see that a can be deformed into a 1-parameter family.
Thus R, is smooth and since it is compact it must consist entirely of circles. [

REMARK. One interesting (and well-known) consequence of this fact and the
results of the previous sections, together with the perturbation argument is that
Casson’s invariant of X, (k) is the same as Casson’s invariant of Z,. This can of
course be checked directly using Casson’s surgery formula. Alternatively, the circles
in the previous theorem give rise to pairs of generators of the Floer chain complex
which lie in adjacent dimensions using the perturbation of [FS2]. Therefore, only
the points of R contribute to the euler characteristic of the Floer chain complex,
which equals —2 times Casson’s invariant. Each point contributes with the same
sign as the corresponding point in R(Z,) using Theorem 4.4. However, we will see
in our examples that although the parity of the spectral flow of these points does
not change, its mod 8 refinement does.

In the following example we use Theorem 4.4 to compute the Floer homology
of Z5,(10), the homology sphere obtained by performing —1 surgery on the
10—tw1sted double of the (5, 2) torus knot.

THEOREM 6.4. The Floer homology of Zs,(10) is Z° in each even dimension, 0
in each odd dimension.

We begin by proving the following lemma.
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LEMMA 6.5. Each representation o : n(Zs,(10)) - SU(2) is abelian when re-
stricted to m,(X,).

Proof. Suppose that a is non-abelian on =, (X,). Recall that X, is Seifert fibered
with regular fiber A =A,u'’. It follows that a(uy) = a(Ayul) = +1 in SU(2);
hence a is abelian on =n,(Y,). Then a(uy) =a(ly) =1, which contradicts the
hypothesis since u, normally generates n,(Xj). O

To be consistent with the notation of the previous sections, we write
25,(10) = Z,. Lemma 6.5 implies that there is a natural one-to-one correspondence
between R(Z,) and R(Z,), where we define Z, = (S' x D?) (J, Y,, with a meridian
of §' x D? being glued to uy,A;'%; in other words Z, is the result of (—1/10)-
surgery on the left-handed trefoil. We will now calculate the elements of R(Z,) and
their spectral flow invariants, and then use Theorem 4.4 to calculate the spectral
flow invariants of the corresponding elements of R(Z,).

Recall (see, for example, [K1]) that the set of irreducible representations of
n,(Y,) mod conjugacy (which we will denote by R;(Y,)) is a single arc of the form

{aﬂ }1/6 < B <5/65 where

einﬁ
aﬂ(u)’) =( e..,',:ﬁ)'

Since Y, is Seifert fibered with regular fiber A,uy® it follows that
ay(dy) = —ag(uy )®. (Here we are using the fact that these representations take the
regular fiber to — 1.) Hence the image of R;(Y;) in the pillowcase is the arc of slope
6 shown in Figure 6.

Clearly « : 7,(Y,) = SU(2) factors through to give a representation of Z, if and
only if a(u¥A;'%) =1. This condition may be visualized in the pillowcase by
intersecting the image of R,(Y,) with the line .# of slope 1/10, also shown in Figure
6. It follows that R(Z,) = {a,} for f = 2j/59 where 5 <j <24. From now on we
write a; to denote a,;,so. Using the formula of [FS2] or the technique of Yoshida,
we compute the spectral flow SF(0, «;)(Z,) for each of these representations of
Z,=2%(2,3,59), and assemble the following table:

generators of FH, (Z,)

Os, Oy, Ky, Xygs Kyg
Oyg, Oyay Kyg, Koy, X3
Olgs Olgy Xysy, Xy7y Ay

N BN O

Olyps Olyzy Xopy Oog
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T

Py

Figure 6

Next, we compute the adjustments to these spectral flows required to compute
FH ,(Z5,(10)) using Theorem 4.4. The Seifert matrix of the (5, 2)-torus knot with
respect to an obvious genus two Seifert surface is easily computed to be

-1 0 0 0
1 -1 0 0
0 1 -1 0
0 0 1 -1

The four eigenvalues of the matrix By(f) =(1 — )V + (1 —t~")VT are given by

J2(1—c0s 8) {—/2(1 —cos 6) + /(3 £ ./3)/2}:

where ¢ = e® and the two + signs are taken in all four possible combinations. In
Figure 7 we graph these eigenvalues as functions of 6.
For any value of 6, we can read off Sign Bx(e?) directly from this graph. Note

that the values of @ at which this signature changes are n/5 and 37n/5. Recalling that
“p(ﬂx) = “p(/ly) = —“ﬂ(ﬂy)6

e,(6[?—— D=zi
= e — (68— i

we find (by Theorem 4.4) that SF(0,a;)(Z,) — SF(0,2;)(Z,)= —Sign
BK (e 2(6 - (2§/59) — l)m)

V =

0 forj=35,10,15,20
=<2 forj=6,9,11, 14,16, 19, 21, 24
4 forj=17,8,12,13,17,18, 22,23
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eigenvalues

: ~—

=0 n/5 3n/5 0=n

Figure 7

In summary, for each n, of the five generators of FH,(Z,) one remains a generator
of FH,(Z;,(10)), two become generators of FH,  ,(Zs,(10)), and two become
generators of FH, , 4,(X5,(10)). The theorem follows. O

We now compute the spectral flow for —1 surgery on the untwisted double of
the right handed trefoil. The representation space has 8 components; each is a
smooth circle. This manifold is a graph manifold obtained by gluing a right handed
trefoil complement to a left handed trefoil complement, identifying meridians with
longitudes and vice versa. In Figure 8 we have drawn the image in the pillowcase
of the representation spaces of X and Y. The coordinates used are u, and A,, the

Figure 8
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meridian and longitude of Y. The representation space of a trefoil complement
consists of an arc of abelian representations (sending the longitude to 1) and an arc
of non-abelian representations limiting at the endpoints on an abelian representa-
tion; see [K1]. From Figure 8 we see that there are exactly 8 components of the
representation space of X,,(0), and each representation restricts to a non-abelian
representation of both X and Y. By Lemma 6.3, each component is a circle. We
label the components «;, i=1,...,8.

We will apply Theorem 5.7 and so we need the various quantities appearing in
the formula. First we need the gluing map ¢ in terms of the curves m, = uy, Iy = h,
my = Uy, and I, = k. Using the relationship between the meridians, longitudes, and
the regular fibers we obtain:

b= (u v) =(6 37).
w z 1 6

Since X = — Y we have ¢x =1, ¢, =1, ¢, = — 1. The rotation numbers for the
restrictions of each representation to X or Y are (1,1). (These numbers are
independent of the representation since the space of irreducible representations of
the trefoil is connected. They are easy to compute for any particular representation.
See for example [KK1].) For each representation the regular fiber is sent to — 1, so
that x = 1. Each representation is non-central when restricted to the torus since
none of the eight points lie on a corner of the pillowcase, so that the terms C are
equal to 2 for each representation. The terms m,(a) and m,(a) are equal to 2. It

remains to compute the rotation numbers for each of the eight representations and
then apply the formula of Theorem 5.7. These are easily computed from Figure 8.

Notice that most of the terms in the formula of Theorem 5.7 cancel since X = —Y.
n py(e,) SF(,a,)
1 9 1
2 11 5
3 15 7
4 17 3
5 21 5
6 23 1
7 27 3
8 29 7

The Floer chain complex can be obtained from this by perturbing the circles.
We obtain:

FC,=(2?,72,7°,7*,7*,7*, 12, 7%).
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Computing the Floer homology is of course harder, since one must compute the
boundary operators.

We next show how to compute the spectral flows and the Floer chain complex
of —1 surgery on the 5-twisted positive clasped Whitehead double of the right-
handed trefoil.

In Figure 9 we have drawn the image of the representaiton spaces of n, X, and
m, Y, in the pillowcase R(T') using the coordinates uy, Ay.

The lines drawn on R(X) are the images of the restriction maps R(X) — R(T)
and R(Y) — R(T). As in the previous example R(X) and R(Y) are constructed from
two intervals: one interval consists entirely of abelian representations and the other
interval consists of irreducible representations except for its endpoints which are
abelian.

We can glue together representations of X to Y provided they agree on T. From
the figure we see that there are 10 isolated, nondegenerate representations whose
restriction to X are abelian; these are labeled 1-10. So R, consists of 10 points. To
compute their spectral low we may use the method of §4.

There are two circles in R, corresponding to where the image of the arc of
irreducible representation of X intersects the arc of irreducible representations of Y.
Their image in R(T') are the two points labeled 4 and B. The two horizontal lines
delineate where the matrix B (e*?) has kernel; they correspond to the roots of the
Alexander polynomial of the trefoil e™* and e ~™/3.

We first deal with the representations 1-10. We see that the representations
labeled 2, 4, 5, 7, 9, and 10 lie in the region where the signature of By(e*?) is —2.
The others lie in the region where this signature is 0.

Let S; be the spectral flow from the trivial representation to the ith representa-
tion on Z, =2(2,3,29). Then §,=4,5,=0,5,=4,5,=2,5;=6,5,=0, 5, =4,

(a) (b)
Figure 9
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Sg =0, Sy =6, S0 =2. One way to see this is to compute using the formula of
Fintushel and Stern (see the second remark following Theorem 5.7). However, there
is a much easier way to compute this using the main result of Yoshida’s paper [Y2].
The following algorithm enables us to compute the spectral flow between any two
representations of any homology sphere surgery of the trefoil. Let @ and b be
representations and let y be the loop in the pillowcase made up of the path from a
to b in the space of irreducible representations of the trefoil followed by the path
from b to a of (abelian) representations of the surgery solid torus. Then the spectral
flow from a to b is equal (Mod 8) to 2 times the number of corners contained in the
region in R(T) = S? to the right of the curve. In Figure 10 we show SF(1,2) =4,
SF(3,4) =6, SF(5, 6) =2 for the manifold obtained by — 1/5 surgery on the left
handed trefoil.

We now use Theorem 4.4 to relate the spectral flow SF(0, i)(Z(2, 3, 29)) to
SF(0, iXZ,). If T, denotes the spectral flow from 8 to the ith representation on
Z, =X,3(10), then by Theorem 44 T, =8, —2ifi=2,3,5,7, 9, or 10, otherwise
T; = S;. So we get the table:

SF(0, a,)

S OO I AWV A WN =
CHELONOAEANMNNMNAL

e

Thus the part of the Floer complex corresponding to the representations in Ry
is

(Z*0,2%0,2%0, 722 0).

=y
= e

Figure 10




Splitting the spectral flow and the Alexander matrix 411

We next consider the two circles 4 and B. Since X, = —Y,, it follows that
ey = —&y. Moreover, the rotation numbers for X, equal those for Y,, since the
space of irreducible representations of a trefoil (right or left handed) is connected.
(In fact the rotation numbers are (1,1).)

The numbers my(«) and m,(x) are equal to 2, for « = A4 or B. Applying
Theorem 5.7 we see that most of the terms cancel since rotation numbers for each
side coincide by &, = —¢,. The gluing matrix is given as

u v 6 7
¢= (w z) B (1 1)
in the coordinates x,x,, & and y,y,, k.
Thus L, = —L(7,1). An examination of Figure 10 above shows that the

rotation number for 4 is 2 and the rotation number for B is 4. Using Proposition
5.5 one computes:

4. 6 2
SF((},(;:,,):—2—2—2(2-2+1)—2 46 zz k sin? —-7—[15 +2
7 7k_ 7
= —15=1 (mod 8).
Similarly
SF(0, ag) =5 (mod 8).

Thus we can perturb this non-degenerate critical level to conclude that the Floer
chain complex of —1 surgery on the 5 twisted positive clasp Whitehead double of
the right handed trefoil is:

(2°,Z2,2°,0,72°,Z,2°)0).

Again, the boundary operators must be understood in order to compute the Floer
homology.

7. The spectral flow formula

In this section we derive formula 2.1 for spectral flow in terms of the p, and
Chern—Simons invariants.

Let X be an oriented 4-manifold and let Y = 0X oriented using the convention
“outward normal first”. Give X the product metric near Y and let u be the inward
coordinate, normalized so that ||du| = 1. So near its boundary, d voly = d voly A du.
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Write d for the exterior derivative on X and use 6 on Y to distinguish it from
d. We will suppress the notation indicating a connection in an auxiliary bundle but
you should think of d and & as covariant derivatives with respect to a connection.
For any connection on a bundle E, we have the self-adjoint operator

D: Q%@L -0%a0.

defined by (a, b) — (6*b, *6b + da), acting on ad (E)-valued forms. We take 7,(s)
to be the n-invariant of D.

Consider first the signature operator d +d*: QF - Q5. In [APS2] it is shown
that (with respect to a U(n) representation o)

Sign, X =n f L — 155(0)

X
where
B : Q%0023 -0 Q3%
is the twisted signature operator defined on bundle-valued forms by
Be(a, b) = (— *6b, 6 * b + »da).

(This operator is sometimes written (—1)??(x6 — d%).)

Notice that the spectrum of D associated to a representation f is equal to the
spectrum of the operator B¢ associated to ad (), and so in the signature formula we
can replace the n invariant of B¢ by the n invariant of D. In particular, for a flat
SU(2) connection b with holonomy B we see that

Np,(0) —np,(0) =3 Sign X — Signg X = p,q (Y).

We next want to relate n,(0) to the self-duality operator. So let

S: Q' -0 Q%
be the self-duality operator on X defined by w — (d*w, P_ (dw)) where P_ denotes
projection onto the anti-self-dual 2-forms.

Consider the bundle isomorphisms:

4 3/1?/@/11)""/1,1“ Y
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given by &(a, b) =adu + b and
VA DAY > A% y @AYy

defined by ¥(a, b) = (—a, P_ (b du)).
Then a careful computation reveals that near the boundary

so¢=w(c+i)
ou

where C : Q% ® Q! - Q% @ Q! is defined by C(a, b) = (—56*b, x0b — da). The spec-
trum of C equals that of D and so the Atiyah—Patodi—Singer theorem says that

Index S = J

X

A(X)ch(V_)ch(ad E) — % (1p(0) + dim Ker D)

where S is given the global boundary conditions

¢y €Span {¢; | Cp, = Ap;, A <0}

We now apply this formula to X =2Z x I where Z is an oriented rational
homology sphere and Z x I is oriented as (0, dt). (Notice that with respect to this
orientation d(Z x I) =Z x0—-Z x 1.)

THEOREM 7.1. Let a and b be connections on Z. Choose a path a,, t € I joining
a to b and let A be the corresponding connection on Z x 1. Let SF(a, b) denote the
spectral flow of the family of operators D, . Then:

SF(a, b) = Index S,
where the index is taken with respect to the global boundary conditions of [ APS1].

We sketch the proof:

Divide the spectrum of D, into a finite part F, and its complement G, continu-
ously with respect to ¢ so that all eigenvalues which pass through 0 lie in F,. Let
f:(s) and g,(s) be the corresponding eta-invariants so that #, (s) = f,(s) + g.(s).

Let h, =dim ker D,;, i =0, 1. Then it is easy to see that

1
SF(a, b) = 3 (1(0) = fo(0) — hy — ho)
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with respect to the convention described in section 2. Therefore, the spectral flow
equals

1
015, (0) = 15, (O) — 3 (1 + o) — 5 (&1(0) — £0(0)).

Our orientation convention implies that d(Z x I) = Z x 0 — Z x 1. Therefore,

1
Index S, = J ao(x) — 5 (1p,(0) —np,(0) + Ay + hy).

Z x 1

where ay(x) = A(Z x I)ch(V_)ch(ad A). We can then write:

Index S, — SF(a, b) = j %(x) + -;- (£1(0) — £0(0)).
Zx1

The left side is an integér and the right side is a real number which varies
continuously along the path a,. Since g,(0) = g,(0) for ¢ small it follows that the
right side is zero and so the spectral flow equals the index. O

Restrict now to an SU(2) connection. The integrand appearing in the index
formula can be split up:

A(Z x Dch(V_)ch(ad A) - 3A(Z x I)ch(V_) — 2c,(ad A).

in this formula c¢,(ad 4) means

1
?8__7;_5 Tr(Fad N Fad a).

where F?¢¢ means the curvature of the corresponding connection in the adjoint
bundle. In particular, if a and b are SU(2) connections,

J c,(ad A) = 4(cs(a) — cs(b))
Z x I

by Stokes’ theorem.

The other term appearing in the inetgrand, 34(Z x I)ch(V_) has zero integral.
This is most easily seen by considering the spectral flow SF(0, §) of the trivial
connection to itself. By our conventions this is equal to —3, by the previous
theorem it equal 3 [ A(Z x I)ch(V_) — hy. But hy =3 by the Hodge theorem.
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Therefore we obtain the forfnula:

1 1
SF(a, b) = —8(cs(a) — cs(b)) — 3 (mp, — Np,) — 7 (dim Ker D, + dim Ker D,).

Finally, if a and b are flat connections with holonomy a, 8, let h, =dim
(HXZ; ad a) + H'(Z; ad a)) and similarly 4,. We then get:

SF(@, ) = 8(es(8) ~ 52 + 3 (Pusp — Paa) — 3 (ha + ).

This is the desired formula.
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