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p-Nilpotence, classifying space indecomposability, and other properties
of almost all finite groups

HANS-WERNER HENN AND STEWART PRIDDY

0. Introduction

In this paper we establish several properties holding for almost all finite groups.
For example we show that a random group is p-nilpotent and that the completed
reduced double Burnside ring of a random p-group is local or, what is the same
thing, that its classifying space is stably indecomposable. It follows that a random
group has the same mod-p cohomology ring as its Sylow p-subgroups. Here the
notions of almost all and random are those of U. Martin [Mn] who showed that
almost all p-groups have automorphism group a p-group. Our results were partly
inspired by her work and partly by indecomposability questions of classifying
spaces. However, in order to make this paper more accessible to algebraists, we
derive our topological results as corollaries of their algebraic counterparts.

Use of the double Burnside ring also leads to a generalization of Swan’s
Theorem which computes the mod-p cohomology of a finite group G with abelian
Sylow p-subgroup P as

H*(G;F,) = H¥(P; F,) ",

the invariants under W;(P) = N;(P)/P - C;(P), where Ng;(P), resp. Ci;(P), is the
normalizer, resp. centralizer, of P in G. Our version shows the result continues to
hold for non-abelian P provided ‘“‘taking commutators reduces orders” in P (see
Definition 1.6 and Theorem 1.9).

The paper is organized as follows: In §1, after the requisite definitions we state
the main result Theorem 1.3 (the completed reduced double Burnside ring 4(P, P)*
is local for almost all p-groups) and its corollaries. We observe this follows from
Theorems 1.7 and 1.8. In Theorem 1.7 we describe three group theoretic conditions
on P, which imply A(P, P)* is local. Theorem 1.8 states that almost all p-groups
satisfy these conditions. Related results are described for general finite groups.
Section 2 is devoted to the proof of Theorem 1.7. In §3 we recall Martin’s theory
concerning almost all p-groups. Section 4 contains the proof of Theorem 1.8. In §5
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we derive group cohomological results, in particular Theorem 1.9, related to certain
of our conditions. Explicit examples are given in §6 of p-groups with A(P, P)" local
and BP stably indecomposable.

Finally we remark that our results are somewhat surprising in that previously,
the only known p-groups with A(P, P)* local were the cyclic groups Z/2" and they
were thought to be exceptional rather than typical as we show.

1. Statement of results

All groups in this paper are assumed to be finite unless otherwise stated.
We begin by recalling

DEFINITION 1.1. The Frattini series of a group G
G>G>--->G6, >G>

is given by G, =G, G, , = G%[G, G,], n = 1. A group is said to have Frattini length
nif G,,,=1#G,.

Then &G =G, is the Frattini subgroup of G and G/G,=H,(G;F,) is an
elementary abelian p-group. If G is a p-group then d, the minimum number of
generators of G, is the rank of G/G,.

Following Martin [Mn] we defined “almost all”.

DEFINITION 1.2. Let A4,, be the (finite) set of isomorphism classes of
p-groups of Frattini length n generated by a minimum of d elements. Given a
property S of groups (invariant under isomorphisms) let D,, < 4,, be the subset of
elements having property S. Then we say almost all p-groups of Frattini length n
have property S if

lim ——ISd’” |

d— oo |Ad,nl =1

It is known [Mn] that |4,,|— co as soon as n > 2.

To state our first result we recall the definition of the Burnside category .«
(IAGM, p. 454-5]). The objects are the finite groups and mor, (G,, G,) is the
Grothendieck - group (under disjoint union) of isomorphism classes of finite
G, x G,-sets where we assume that G, acts from the left and G, acts freely from the
right. Then mor,, (G,, G,) is easily seen to be the free abelian group on isomor-
phism classes of transitive such G, x G,-sets, representatives of which are given by
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the orbit sets G, x G,/H, where H is a subgroup of G,, p is a homomorphism from
H to G, and H, = {(h, p(h)): h € H}. Composition mor,, (G,, G,) x mor, (G,, G)
— mor, (G,, G;) is bilinear and induced by taking Cartesian products over G,.

Equivalently mor,, (G,, G,) could be defined as the free abelian group on
equivalence classes of pairs (H, p) with (H, p) ~ (K, 7) if H, and K, are conjugate in
G, x G,. If one thinks of the pair (H, p) as a formal composition of an abstract
transfer from G, to H followed by the homomorphism p then the composition law
as defined above is equivalent to the double coset formula (cf. [N, §3]). Therefore
mod p cohomology (with trivial coefficients) can be thought of as a contravariant
functor from &/ to abelian groups. Such functors are also called global Mackey
functors. Now the double Burnside ring A(G, G) is defined to be the endomorphism
ring mor,, (G, G).

A reduced global Mackey functor is one which vanishes on the trivial group,
e.g. reduced cohomology with trivial coefficients. Accordingly we define the reduced
double Burnside ring 4(G, G) as the quotient of A(G, G) by the two-sided ideal of
morphisms which factor through the trivial group. Finally we define the reduced
completed double Burnside ring A(P, P)* of a finite p-group P as A(P,P)®Z,
where Z, denotes the p-adic integers.

THEOREM 1.3. A(P, P)" is a local ring for almost all p-groups P of Frattini
length n = 2.

Using G. Carlsson’s solution of the Segal Conjecture [C], Lewis, May, and
McClure [LMM] have established a ring isomorphism

A(P, P)* ~ {BP, BP} (1.4)
for p-groups. Here BP is the classifying space of P and {BP, BP} denotes the ring

of stable self maps under composition. The topological translation of Theorem 1.3
is

COROLLARY 1.5. BP is stably indecomposable for almost all p-groups P of
Frattini length n = 2.

Theorem 1.3 follows directly from Theorems 1.7, 1.8 below.

DEFINITION 1.6. We say P satisfies
Condition (a) if [P, Q,, , P] < Q. P for all k 20, where £, P is the subgoup of P
generated by elements of order p* or less.
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Condition (b) if P,=Q,,,_;P for all j 21, where P; is the j-th term in the
Fl;attini series and »n is the Frattini length of P.

Obviously (a) holds if P is abelian. Also (b) = (a) since [P, Q. ,P] =
[P, P,_ ] <P, _i =8P Informally (a) means taking commutators reduces the
orders of elements in P. More precisely it means that conjugation by elements of P
is trivial on the quotients Q, ., ,P/Q, P,k = 0. This implies in particular that the
p-th power map takes Q, . P to Q. P for all k and by induction we see that
x?**'=1 for each x € Q,, , P.

Examples illustrating these conditions are discussed in Remarks 2, 3 below; see
also Example 6.2. For odd primes, condition (a) is implied by the assumption for
k = 0. We heartily thank the referee for this important observation.

PROPOSITION 1.6.1. Let P be a p-group, p > 2, all of whose elements of order
p lie in the center. Then P satisfies condition (a).

Proof. The proof proceeds by induction on the order of P and follows Black-
burn’s proof of a theorem of Thompson [Hu; II1.12.2].

Consider G = P/Q, P. We will show that Q,G is central in G, hence G satisfies
condition (a) by inductive hypothesis. In order to deduce (a) for P it then suffices
to show that the preimage of Q,_,(P/Q,P) = Q, _,G under the projection map
from P to G is Q, P. Now each element y € ©, _,G has order at most p* ~! because
G satisfies (a). So if x is a preimage of y then x”~'e Q, P which is elementary
abelian by assumption and we are done.

So we have to show that Q, G is central in G. Let 4/Q, P be maximal among the
normal abelian subgroups of G of exponent p. Then [4, 4] < Q, P < Z(p) by the
inductive assumption. Hence [A4, 4] has exponent p and A has class 2. If a € A4,
g € P then a8 =ab, b € A and a” € 2, P. Hence

p

a’? = (a?)& = (a®)? = (ab)? = a’b’[b, a](z) = a’b”

and b”=1. Thus b€ Q,P and A/Q,P < Z(G). It follows from Alperin’s theorem
[Hu; III.12.1] that every element of order p of G is in A/Q,P and hence cen-
tral. 0

THEOREM 1.7. Suppose P satisfies condition (a). If Out (P) is a p-group and P
has no non-trivial retracts then A(P, P)" is a local ring.
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We recall that Q < P is a retract if there is a homomorphism r : P — Q such that
rlo=idg
Let K,,, = A,, consist of p-groups P satisfying
(i) Out (P) is a p-group,
(ii) P has no non-trivial retracts, and
(iii) condition (b).

THEOREM 1.8. Almost all p-groups of Frattini length n > 2 satisfy (i), (ii), and
(iii), i.e.

. K
lim K| =1

d— © |Ad,n I

Next we examine some group cohomological consequences of these ideas. If H
is a subgroup of G, then we denote the restriction homomorphism from H*(G; F,)
to H*(H; F,) by i} -

THEOREM 1.9. If P satisfies condition (a) then
i%e:H%G;F,) > H*(NgP; F,) = H¥P; F,)"s®
for any finite group G with P as Sylow p-subgroup. (WgzP = NgP/P - C;P).

REMARKS.

1. This result generalizes Swan’s Theorem [S] which is the assertion for P
abelian. Swan’s proof relies essentially on the method of stable elements
([CE]) and does not carry over directly. Recently, J. Thévenaz has given a
completely group theoretic proof of 1.9 using Alperin’s fusion theory. Also,
there are “classical proofs” of the H'-version of 1.9, e.g. by using Griin’s
Second Theorem [Hu], [S] and an easy induction on the length of the
Q-filtration of P. A result of this type was first shown to us by A. Brandis
and it is a pleasure to acknowledge helpful discussions with him on this
point. We wish to emphasise, however, that knowledge of the structure of the
double Burnside ring was crucial in our discovery of the result.

2. If P =Q,n, the generalized quaternion group of order 2™, then P satisfies
condition (a) iff m =3. If m >3 then Out(P) is a 2-group and hence
W (P) =1 acts trivially on H*(P; [F,). For a suitable odd prime power g, P
is a Sylow 2-subgroup of G = SL,(F,) and i} is not an isomorphism. Thus
one sees that the conclusion of Theorem 1.9 holds iff m = 3.
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3. An example satisfying condition (a) but not (b) is given by the semidirect
product

P={x,y|x¥=1y*=1pyxy ' =x°).
The next result is folklore; we include it for completeness.
PROPOSITION 1.10. If Out (P) is a p-group then
i%y: H¥(NgP; F,) > H*(P; F,).
for any group G with P as Sylow p-subgroup.

Finally we consider a random finite group. To make this precise, we say two
groups G, G’ are Sylow p-equivalent if they have isomorphic Sylow p-subgroups
P~ P’. We may then consider the equivalence classes of Sylow p-equivalent
groups, one for each p-group P.

We recall that a group G is called p-nilpotent if a Sylow p-subgroup possesses
a normal p-complement, i.e., a normal p’-subgroup K such that G = K - P. Tate [T]
has shown that G is p-nilpotent iff i}, : H*(G; F,) - H*(P; [F,) is an isomorphism
in dimension 1 (and hence in all dimensions). Then we have

COROLLARY 1.11. For almost all p-groups of Frattini length n = 2 each group
in the associated Sylow p-equivalence class satisfies the following equivalent condi-
tions:

(1) G is p-nilpotent
(i) i%g: H*G; F,) > H*P; F,)
(iii) BP ~ BG stably, localized at p.

This follows from 1.8, 1.9 and 1.10.

2. Proof of Theorem 1.7

We recall from [P; Th. 1.5] that if A(P, P)" fails to be a local ring then one of
the following must hold

() Out (P) is not a p-group
(B) there are subgroups, Q < P'< P, 1#Q # P, a retraction g: P’—>Q and a
primitive idempotent e € F, Out Q which contains the following element W,
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as a factor: if N(Q, P’) denotes the set of elements x € P such that
xQx~'< P’ then P’ acts on N(Q,P’) from the left and we let
W,=ZX,g °c, where c,(-) = x(-)x " and the sum runs over all those cosets
in P’\N(Q, P’) for which g o ¢, is an automorphism of Q.

In [P] these criteria are given in topological terms but the translation is direct

from (1.4). We also note that in case P’ = P then W, =1 and so () simply asserts
the existence of a retraction g : P - Q.

LEMMA 2.1. Suppose (f) holds for P. Then condition (a) implies P = P’ in (B).
Proof. Because Q2,P = P for n large, it suffices to show by induction that
QP<P for k=0,1,2,...,n This is trivial for k=0 since Q,P =1. Now
suppose 2, P < P’ for some k, 0 <k <n. By (a) we have [Q,Q,, P] S QP <P’
which implies ., ,P < N(Q, P). Moreover, Q,.,P acts on the right of

P’\N(Q, P’) by right multiplication. To see this let a € , , , P, x € N(Q, P’), q € Q
then

(xa)g(xa) ~" = (x[a, g]x ~")(xgx ") (D
where x[a, g]x "' € Q. P < P’ since Q, P is normal in P.

SUBLEMMA 2.2. The action of Q.. P on P\N(Q, P") has a fixed point.

If follows that Q,, ; P < P’ which completes the induction. O

Proof of sublemma 2.2. Suppose q € Q;,,0, j 20. Then

[a,q] € [Q, P, 2, Q] < Qointi,y P < P’

by induction and so [a, q] € Qa3 P’ < Q;P’ since ,P < P’ implies ,P < Q,P’.
By (1)

¢xa(q) = cx([a, g]) - cx(q) = c.(g) mod ;P

Hence

8 ° Cx,(q) = g ° c,(q) mod Q;Q (2)
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since g : P’ — Q restricts to g : Q,P'— Q,0. Thus g - ¢,, and g o c, induce the same
endomorphisms of Q;, ,0/Q,;0. It follows that g - c,, is an automorphism iff g - c,
is one.

Now to prove the Sublemma we consider the natural homomorphism

o: Out (Q) »[] Out (2,..,0/0,0).

An automorphism of a p-group which stabilizes a normal series must have order a
power of p [G; Cor 5.3.3]. Hence ker a is a p-group and a induces an algebra
homomorphism

F,@:F, 0w (@) ~F, ([ 0w @,..012,0))

with nilpotent kernel [HK]. However, if ©, , , P acts on P'\N(Q, P’) without fixed
points then (2) shows that each orbit contributes 0 to F,(x) (W,). Hence W, is in
the kernel of F,(a) contradicting W, being a factor in a nonzero idempotent. O

Proof of Theorem 1.7. By Lemma 2.1, either («) holds or (f) holds with P’ = P
contradicting our assumption that Out (P) is a p-group and P has no non-trivial
retracts. =

3. Martin’s theory

In this section we recall some methods and results of U. Martin [Mn], which we
use in the proof of Theorem 1.8.

If P is a p-group generated by d elements then an automorphism of P induces
an automorphism of P/P,, i.e. an element of GL,(F,). The group of automor-
phisms arising in this way we denote by A(P). Thus there is a short exact sequence

1 — K(P) — Aut (P) — A(P) — 1

where K(P) is the subgroup of automorphisms inducing the identity on P/P,. By a
result of P. Hall [Hu; II1.3.17], K(P) is a p-group.

Now let F = F(d) denote the free group in d generators and let H = F/F,  , for
n 2 1. Then H satisfies the following universal property: For a group G of Frattini
length n, homomorphisms H — G are specified by a choice of d elements of G. From
this it follows that a p-group P € A,, (see Def. 1.2) corresponds to an orbit
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or normal subgroups K <I H under the action of Aut (H), i.e. P~ H/K and K’s in
the same orbit give rise to isomorphic P’s. In fact such subgroups K are easily seen
to lie in H,.

Upon passing to the limit d — oo, more can be said. Let B,, = 4,, be the subset
corresponding to subgroups of H which lie in H,, C,, < B,, be the subset
consisting of isomorphism classes of groups with A(P) = 1. By definition GL,(F,)
acts on the vector space H,/H,. This extends to an action on H,/H, ., by use of the
standard commutator formulas.

THEOREM 3.1. ([Mn], Th. 2.2). C,, bijects with the set of regular orbits of
GL,(F,) on subspaces of H,.

THEOREM 3.2. ((Mn], Th. 3.4).

. |Ban] :
lim = =] 1
d— o |Ad,n‘ ( )

. |Cdn| .
lim ——=1 (i1
d— oo Idenl )

4. Proof of Theorem 1.8

We will show that for most subspaces K < H, the group P = H/K satisfies
conditions (ii) and (iii) in Theorem 1.8. Of course, these conditions are independent
of the member K of a GL,(F,) orbit of subspaces of H, and, as most orbits are
regular by Theorems 3.1 and 3.2(ii), we will then see that for most orbits we have
that P satisfies (ii), (iii) as well as (i) by Theorem 3.1. Then Theorem 3.2(i) will
complete the proof.

We start our proof by recalling the following facts

(1) The dimension w(n, d) of H, (H with d-generators) is a polynomial in d of
degree n with leading coefficient 1/n. [HB, Chap. VIII, Thms. 1.9, 11.5].

(2) The number v(k,/) of all /-dimensional subspaces of a k-dimensional
[, -vector space is given by

_= - =p"Th
(=1 (p'=p'""

vk, )
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As a lower bound for the cardinality of the set R(n, d) of all subspaces of H, we
use
(3) |R(n, d)| 2 W(w(n, d), [w(n, d)/2]) where [m/2] denotes the greatest integer
<m/2.

Now we deal with conditions (ii) and (iii) separately.

Condition (ii). We consider the set N(n, d) of all subspaces K < H, such that
P = H/K has non-trivial retracts, or equivalently, such that there is a non-trivial
idempotent endomorphism p of P with p #id.

Given such a p we perform the following construction. Choose a lift of p to an
endomorphism p of H which leaves K invariant.

K— H—P
I 1p lp
K— H—P

Then p is also a lift of the retraction r on V' = P/P,~ H/H, induced by p.
Furthermore p lH,. depends only on r and is also a retraction.

To say that K is invariant under p is equivalent to K = K, ® K, with K, < p(H,)
and K, < (id — p)(H,). Hence we get

N(n,d)={K <H, | there is a retraction r of V, r#0, r #id, such that
K =K, ® K, with K, < p(H,), K, < (id — p)(H,) where p is the unique
endomorphism of H, obtained as restriction of some lift of r}

To estimate |N(n, d)| we use the following notation.

Denote dim r(V) by d’, dim p(H,) = w(n,d”) by o’ and w —w” by w”. The
number of retractions of V with dim r(V) = d’ will be denoted by p(d, d').

Then we have

d—1 ’ ”
|N(n, d)| < ‘2 l.Ao(a’, d’) . Zo kZ . v(@’, ki )v(w”, k) (4)

Next we use

p(d, d) = |{Retractions to a fixed subspace of dimension d'}| - v(d, d)
=p?“=v(d, d’) (5

vk, 1) < v(k, [—;EZD forall 0</<k (6)
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to get

d—

N d)| < 'S ot d')w'w"v(w” [?—])V(w [wD
d =1 2 3
d—

< @? Zl prd—Dy, d’)v(a)’, [g])v(a)", l:gz])
&=1 2 2
Swi(d—-1) max p9@-Dyd, d’)v(w’, [—a—)—:])v(w”, l:w—”]) @)
lsd<d—1 2

To proceed we need the following

LEMMA. For each primp p and each ¢ > 0 there is a constant C = C(p, €) such
that for all positive integers | < k we have

pl(k—l) < V(k, l) < Cpl(k—l)+ek

Proof. Write

1 __p—k+r—1

Wk, 1) =p"«= ]

1<r</ 1—P_'

spl(k—l) l"[ 1 . 1

I1 —.

—r r
lSrSrol—p r0<r511"’P

Now choose r, large enough such that 1/(1 —p~") <p® for all r 2r, and put
C=II,.,<,,1/(1 —p~"). This gives the upper estimate for v(k,/), the lower
estimate is immediate. O

From (7) and the Lemma we get with a suitable new constant C' = C’(p, ¢)
log, |N(n,d)| < C’'+2log,w +1log, d
1 1
+ max J2dd—-d)+-0?*+-0"?+ed+ o + ")
Isd<d—1 4 4
<C'+2log,w +log,d + &(d + w)

1sd<d-1 |4

+ max {lwz-k-;-w'(w'—w)+2d'(d—d')}
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while (3) and the Lemma yield
1 2
log, |R(n, d) 2 29
Hence it suffices to show that

lim {C’ +2log, w +log, d + &(d + w)

d— ©

+ max {2: (w —w’)(w - 1)}} = —00. (8)

1sd<d—1 |2 (D’(CO-—O)/)

Now we use that @ resp. @’ are polynomials in d resp. d’ of degree n = 2 with
positive leading coefficients. Therefore we find

lim max 1 {Eo—, (w — w’)(———————————4dl(d —4) ])} = 1

doowlsdsd—1@ | 2 a)’(a)——w')— 2
and (8) holds if we choose 0 <& < 1/2. O

Condition (iii). We consider only 2, , , _;P < P;; the opposite inequality always
holds since (P;)”"”* '/< P, ., =1. Thus we are reduced to showing that for almost
all subspaces K < H,, if x e H and x*""' €K, then x e H, (1 <j <n).

Now if n > 2 there is an isomorphism of vector spaces

P Pn (H ) = Hn _

OO @ ti@ Hppr

where HP” is the subgroup generated by p-th powers and y,(H) is the i-th term of

the lower central series of H (this follows from [HB; Chap VIII, Th. 1.9, Lemma

1.1]; see also [BK; proof of Th. 3]). It also follows from these references that

Q,.,_,;H = H,. Thus it suffices to show that almost all X < H, satisfy Kn H? = 0.
Now we estimate the number u(b, a) of subspaces of a b-dimensional F,-vector

space B which intersect a given a-dimensional subspace 4 nontrivially by

b—1

ub,a) <v@, 1) - Y vb—-1,b)

b=0
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and hence by (6)

ub,a) <b-va,l)- v(b -1, [—1?—:2-——1])

In our case we have b = w and a = dim (H? n H,)) is polynomial in d of degree n — 1
(see [HB, Chap VIII, Thms. 1.9, 11.15).
By using the Lemma we find (again with a suitable constant C’ = C’(p, ¢))

lim log, wb, a)

1 1
ST <1 —(b=1)2 — 1 —=-p2 ’
) | . )l$11m{logpb+a+ b-—1)"+eb-1) 4b +C}

) b 1 ,
=dlingo {logpb+a——5+z+s(b—l)+C}

Choosing 0 <& < 1/2 we see that this limit is —oo and we are done in case

n>2.
In case n =2 any P which satisfies (ii) also satisfies (iii). That is, if £, P is not
contained in P, then P has a nontrivial retract and we are done in this case, too.
O

S. Proofs of Theorem 1.9 and Proposition 1.10
Throughout this section we abbreviate N;(P) by N and H*( ; F,) by H*().
Proof of Theorem 1.9. The composition of i%, with the transfer
trg y: H*G - H*N is multiplication by [G : N] and hence is mono because [G : N]
is prime to p.

To show surjectivity it suffices to show that the compositions

rn.p ip N
et H*P 5 H*N 2% H*p

% * 1":;,}! L i;’G *
et: H*P — H*G — H*P

have the same image (note that both transfers are onto and both restrictions are
mono). Clearly

Ime¥ < Ime;. (1
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Now we consider in 4 = A(P, P) ® F, the elements

ey=1Irypoipy

and

e =1Ilgp°lipg
By the double coset formula we have

ey = Z Cy, (W=N/P)9

xe W

and
eG=eN+l

where / is a linear combination of terms of the form ¢ o trp , where P % P’ and ¢
is a suitable homomorphism P — P’. We will see below that / is in the nilpotent
radical Rad 4.

Now let e; =eg/|W], ey =en/|W|, and I’ =1/|W|. Then because e} is clearly
idempotent

(envecen)™ =en

if k is large. Using the idempotency of e} again and (1) we conclude Ime ¥ = Ime .

It remains to show that / is in Rad 4. If not, then decomposing 4 as a direct
sum of indecomposable 4-modules and passing to the semisimple quotient A/
Rad 4 shows that / gives rise to a map M, —» M, of suitable indecomposable
summands which is nontrivial on the corresponding simple modules and hence is an
isomorphism. Moreover / involves only transfers to proper subgroups of P and
hence by the proof of [P; Thm. 1.5] condition (B) of §2 must hold for subgroups
Q < P'< P, P'# P (using the language of [P], M corresponds to a dominant
summand of BQ for some Q % P). However, by Lemma 2.1, (a) implies P’ = P in
(B). This contradiction completes the proof.

Proof of Proposition 1.10. Since W = N/P is a p’-group we have, by Zassen-
haus’ Theorem, a split short exact sequence

1 > P > N > W > 1
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Since Out (P) is a p-group, W acts trivially on P. Thus N=P x W and so
i} y: H*N — H*P is an isomorphism by the Kiinneth Theorem.

6. Examples

In this section we give two examples to illustrate the phenomena discussed in
this paper.

EXAMPLE 6.1. Let p be an odd prime. Let P be the group of Frattini length
2 generated by x,, x,, x5 subject to the relations

x5 =[xy, x,], x5 =[x, x;3][x2, x3], x5 = [x;, x5]

Then |P|=pS. Heineken and Liebeck [HL, §6] showed that Aut P is a p-group
(condition i)). Their argument also shows that P has no non-trivial retracts
(condition ii)). By inspection Q5 _,P = P;, j = 1, 2 (condition iii)). Thus by Theorem
1.7, A(P, P)* is a local ring and BP is stably indecomposable.

The next example shows (a) and (b) are not necessary conditions for indecom-
posability.

EXAMPLE 6.2. J. Dietz [D] has shown that BP is stably indecomposable for
P a non-split metacyclic p-group (i.e. P is an extension of a cyclic p-group by a
cyclic p-group, but no such extension for P splits) unless P is a generalized
quaternion group. The smallest such group is

P=<Cx,y|x”=1,y" =x", yxy~ ' =xP*")
of order p® if p is odd and
1

P={xy|xt=1,p*=x% yxy ' =x3)

of order 32. These groups do not satisfy condition (a).
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