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Stabilitit konformer Verheftung*
ALFRED HUBER UND REINER KUHNAU

Joseph Hersch zum 70. Geburtstag gewidmet

1. Einleitung

Sei @ : e > e"® ein orientierungstreuer Homdomorphismus des Einheitskrei-
ses C ={z ||z| =1} auf sich. Ist & geniigend reguldr, gibt es eine Jordankurve I
und konforme Abbildungen F :int C —»int I', G : ext C - ext I’ mit G(o0) = oo der-
art, daB3

F(e®) = G(e’*?®) Vo € R. (D

Eine zugleich notwendige und hinreichende Bedingung fiir @, welche die Exi-
stenz eines I" impliziert, ist bis heute nicht bekannt. Eine hinreichende Bedingung —
die Quasisymmetrie von @ nach konformer Verpflanzung vom Einheitskreis auf die
reclle Achse — wurde von O. Lehto und K. I. Virtanen [9] sowie auch A. Pfluger
[11] gefunden. Diese Bedingung ist jedenfalls dann erfiillt, wenn ¢(60) stetig diffe-
renzierbar ist. In den ersten vier Abschnitten sei letzteres — soweit wir nichts anders
bemerken — dauernd vorausgesetzt.

Wir gehen aus von einem Homdéomorphismus &, (mit zugehoriger Verheftungs-
kurve I'y) und fragen, wie I', variiert, wenn @, abgedndert wird. Dabei interessiert
insbesondere, ob eine kleine Abidnderung von @, stets nur eine “kleine” Abinde-
rung von I, zur Folge hat (Stabilitit der Losung, beziehungsweise Korrektheit
der gestellten Aufgabe). Ein wichtiger Spezialfall ist der ‘““triviale Fall”
ug=0(=>T'y=0C)\.

Zunichst wird bei (gleichmiBig) kleinem Unterschied zwischen ¢’ und 1
bewiesen, daB I' “kreisnahe” ist. Allgemeiner wird gezeigt, daB eine kleine Abinde-
rung von @, eine kleine Abidnderung der Kurve I'y zur Folge hat. Diese Abschit-
zungen sind — wie Beispiele belegen — in einem gewissen Sinne bestmoglich. Als
Hilfsmittel treten Verzerrungssitze bei quasikonformen Abbildungen auf.

* Entstanden aus einem Aufenthalt des zweiten Autors am Forschungsinstitut fiir Mathematik an
der ETH Ziirich.
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Im weiteren wird — unter betrdchtlich stirkeren Regularitdtsvoraussetzungen —
fiir den Spezialfall I'y = C gezeigt, daB log ¢’ — O (im Sinne gleichméiBiger Konver-
genz) zusammen mit |log ¢’|| - O impliziert, daB |log |F’|| — O. Die Doppelstriche
bezeichnen hier die Dirichletnorm einer in D = {z | |z| < 1} harmonischen Funktion
(vgl. Abschnitt 5). Hilfsmittel ist diesmal eine Minimaleigenschaft der Losung des
Verheftungsproblems.

2. Kreisnahe Verheftungskurven

Sei zunédchst ¢(f) differenzierbar mit ¢’(6) > 0. Und ¢(0) sei im Sinne von

1
— =<’ <
1+e o' 0 <1+¢ (2)

mit kleinem & > 0 nahe der Identitdt. Die Kreisndhe von I' messen wir durch den
zugehorigen Spiegelungskoeffizienten O, > 1 (vgl. [6]), die Maximaldilatation einer
moglichst konformen Spiegelung an I'. Wenn wir noch

42!
T or+1

<1

setzen, dann wird der Spiegelungskoeffizient von I' so mit einer unmittelbaren
geometrischen Eigenschaft von I' in Beziehung gesetzt. Wir sagen nach [7], I" habe
die “a-Ringeigenschaft”, wenn zu jedem w, ¢ I' nach linearer Transformation mit
wo — oo das Bild von I' in einem konzentrischen Kreisring des Radienverhiltnisses
a 21 liegt, wobei dieses Bild die beiden Randkreise trennt. Nach [7] hat I' fiir
qr < 0,001 die a-Ringeigenschaft mit

a=1+2,55qp. 3)

Ubrigens folgt umgekehrt nach [3], daB g, klein ist, falls I' die a-Ringeigen-
schaft mit @ nahe 1 besitzt.

SATZ 1. Wenn die Verheftungsfunktion ¢(0) nahe der Identitdt ist im Sinne von
(2) mit kleinem &, dann ist
(a) I’ kreisnah im Sinne von

&
<= 4
qF 2’ ()
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(b) fiir ¢ 0,002 kreisnah in dem Sinne, daf I' die a-Ringeigenschaft mit
a=1+1275-¢ (5)

hat. Insbesondere liegt dann I in einem konzentrischen Kreisring mit Radienverhdltnis

(5).

Beweis. Durch

{=|z| - eP mitd =argz (6)
definieren wir eine Abbildu.ng von |z| < 1 auf || <1 mit 0+ 0, die die Dilatation

p(z) = max (¢’(0), 1/¢°(6)) (7

besitzt. Nimmt man noch fiir |z*| > 1 die Identitit {(z*) = z* hinzu, erhélt man eine
“quasikonforme Verheftung” von |z| <1 und |z*| > 1. Die Zusammenfassung der
Abbildung { — F(z(0)), { — G(z*(0)) stellt dann eine stetige schlichte Abbildung
der {-Ebene dar, die fiir |{| > 1 konform ist und fiir |{| < 1 quasikonform. Nach [6]
gilt dann mit (2), (7) Qr <supp(z) <1+e.

Das liefert schon Satz 1a. Daraus ergibt sich weiter Satz 1b nach (3).

BEMERKUNGEN. (a) Das in §4 folgende Beispiel der Cassinischen Kurve I'
zeigt, daB (5) zumindest in der GréBenordnung beziiglich ¢ scharf ist, das heiBt, &'
kann nicht durch eine hohere Potenz von ¢ ersetzt werden.

(b) In Satz 1 ist die Behauptung sicher nicht schon aus der Kleinheit von
lp(0) — 6| anstelle von (2) zu erhalten. Das zu sehen nehme man als I' eine
zahnradartige Kurve, die zum Beispiel aus Cassinischen Kurven von §4 durch n-te
Wurzeloperation hervorgeht, wobei der zu 0 konzentrische, I" enthaltende Kreisring
kleinsten Radienverhiltnisses ein konstantes Radienverhiltnis fiir n — oo behilt.
Wegen der n-fachen Symmetrie kann man aber die Kleinheit von |p(f) — 6| fiir
n > oo erzielen.

(¢) In der umgekehrten Richtung zu Satz 1 kann man sagen: Wenn g, klein ist
und eine 0 und oo vertauschende Q,-quasikonforme Spiegelung an I existiert, dann
ist bei der zugehorigen Verheftungsfunktion, falls F(0) =0, F(1) = G(1) neben
G(0) = oo gefordert ist, auch () — 6] klein.

Denn eine Q- -quasikonforme Spiegelung an I" induziert eine Q- -quasikonforme
Abbildung z*(z) von |z| <1 auf |z*>1 mit 0+ o, 1+ 1. Auf die Abbildung
1/z*(z) kann man einen Verzerrungssatz fiir quasikonforme Abbildungen anwenden
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(vgl. [12], [2], Satz 3), der fiir hinreichend kleine g, abschitzt

lo(6) — 6| <10 - g

(d) Entsprechend zu Satz 1 14Bt sich der allgemeinere Fall behandeln, bei dem
die Verheftungsfunktion (nach linearer Transformation des Einheitskreises auf die
obere Halbebene) als quasisymmetrisch vorausgesetzt wird. Aus der Bedingung fiir
Quasisymmetrie 148t sich ndmlich wieder explizit (vergleiche zum Beispiel [8]) eine
Dilatationsschranke angeben.

3. Die Aufgabe der konformen Verheftung ist “korrekt gestellt”

Nimmt man nun bei der AuBenabbildung G(z*) von |z*| > 1 stets noch hydro-
dynamische Normierung

G(z*) = z* + O(1/z%)

hinzu, so ergibt sich fiir die Verheftungsaufgabe neben der Existenz der Losung,
daB diese (also I' und das Paar F(z), G(z*)) eindeutig bestimmt ist. Man sagt
bekanntlich, die Aufgabe ist korrekt gestellt, wenn diese Losung in einem gewissen
Sinne stetig von den Vorgaben abhidngt. Wir zeigen dies zunichst fir
differenzierbare Verheftungsfunktionen.

Es werde also auf dem Einheitskreis neben @ noch entsprechend ein zweiter
Homoomorphismus @, : e i e#0® betrachtet, ¢,(0) ebenfalls differenzierbar mit
@o(0) > 0. Dazu seien wieder F,(z) beziechungsweise G,(z*) die sinngemaB entspre-
chenden zugehdrigen konformen Abbildungen von |z| < 1 bezichungsweise |z*| > 1,
G,o(z*) wieder hydrodynamisch normiert.

SATZ 2. Ist der Unterschied zwischen @y(0) und @(6) im Sinne von

1 _ 900
i LR (8)
klein ( fiir kleine ¢ > 0), dann ist der Unterschied der entstehenden Kurven I'y und I
klein in dem Sinne, daf Iy in einem ./I|n - e-Schlauch um I' liegt und umgekehrt I'
in einem solchen um I'y. Hier bezeichnet I den von I’ eingeschlossenen Flicheninhalt.

Zu jedem Punkt von I, existiert also ein Punkt auf I', dessen Abstand <./I|n - ¢
ist, und umgekehrt existiert zu jedem Punkt von I' ein Punkt von I'y mit Abstand
<JIn - e.
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Beweis. Entsprechend zu Satz 1 studieren wir in dem Schema von Fig. 1 die
folgende Abbildung der z- beziehungsweise z*-Ebene einerseits und andererseits der
zo-beziehungsweise z¥-Ebene in Ebenen w und w,. Wir setzen fir |z*/>1 die
Identitdt z§ = z* an, und fiir |z| < 1 konstruieren wir analog zu (6) eine quasikon-
forme Abbildung, deren Dilatation

d d
p(z) = max (dl(;)o’ %@0) 9

ist, so daB sich die Verheftungsfunktionen entsprechen, und jedenfalls durch
Zusammensetzung insgesamt eine stetige schlichte Abbildung wy(w) der w-Ebene
auf die w,-Ebene entsteht, die auerhalb I' konform und hydrodynamisch normiert
ist, innerhalb I' quasikonform, wobei die Dilatation erfiillt sup p(z) <1 +¢. Fir
diese Abbildung gilt nach [5], Ungleichung (32’),

[wo(w) —w]| < \/I/_n ‘g, (10)

Das liefert die Behauptung, sogar gleich noch die Kleinheit des Unterschiedes

Identitat

wy-Ebene
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zwischen F(z) und F,(z) (beziechungsweise auch zwischen G(z*) und G,(z*), falls
noch ¢(0) =0 und ¢,(0) =0 gefordert wird).

BEMERKUNG. Eine analoge Uberlegung 148t sich allgemeiner bei quasisym-
metrischen Verheftungsfunktionen anwenden, gleichwohl auch bei allgemeineren
Verheftungsaufgaben, zum Beispiel wenn bei einem n-fach zusammenhédngenden
Vollkreisgebiet in die Locher n» Kreisscheiben konform eingeheftet werden sollen.

4. Beispiele von Verheftungsfunktionen, fiir die I" explizit angebbar

Solche Beispiele erhidlt man, indem man umgekehrt ein I' vorgibt und die beiden
konformen Abbildungen fiir Innen- beziehungsweise AuBengebiet auf das Innere
beziechungsweise AuBere des Einheitskreises konstruiert. Die Frage ist nur, ob diese
beiden Abbildungen hinreichend einfach sind. Das ist bekanntlich schon beim
Beispiel einer Ellipse I' nicht der Fall. Aber fiir eine Cassinische Kurve I' erhilt
man verhdltnismiBig einfache analytische Ausdriicke. Diese gehen wohl auf O.
Zariski [13] zuriick.

(a) Sei also I" die aus einem Zuge bestehende Cassinische Kurve I’

{w2—1|=C mit C > 1. (11)
Hier ist

w=G(z* =./1+Cz*? (12)

die Abbildung von |z*| > 1 auf’s AuBere von I' mit G(00) = 00, G'(®) > 0. Das
Innere von I entsteht aus |z| <1 durch

Cc*—1

w=F(Zz)=z C_22 (13)

mit F(0) =0, F'(0) > 0.
Zum Beweise bilde man durch die Abbildungskette

CcZ -1

. W=ltc, w=W

Z=22, { =

zunichst die rechte Hilfte von |z| < 1 ab.
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z-Ebene

Figur 2

Durch Gleichsetzen von (12) und (13) entsteht fiir die Zuordnung zwischen
z=e" und z* =¢*

|Cz2—1 sin 20
* — = e
z C_ 2 bzw. @(0) =0 + arctg C—cos 28 (14)

Fiir groBe C ist I bekanntlich konvex, und der konzentrische Kreisring mit
kleinstem Radienverhdltnis, der I' enthdlt, muB zu 0 konzentrisch sein. Dieses
Radienverhdltnis ist also

C+1 1

— e | e

c-1_'t¢

Also hat I' nicht die a-Ringeigenschaft mit einem a <1+ 1/C + - -, wohl aber
nach (3) mit a =1+ 1,275/C + - - -, weil nach [6] ist
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Fiir groBe C wird noch

QO =1+zcos20+  1—c+ <O <T+z+ "

(b) Ist I' die rechte Hilfte der zweiteiligen Cassinischen Kurve
w?2—1=C mit 0<C<l, (15)

wird sofort die Abbildung F(z) von |z| <1 auf’s Innere von I' mit F(0) =0,
F'(0)>0

w=F(Zz)=./1+4+C:z. (16)

Ferner ist fiir die Abbildung G(z*) von |z*| > 1 auf’s AuBere von I mit G(00) = o0,
G'(0) >0

w=Gzh = [1+co ¢ (17)
= Z =

ST
wenn ¢ < — 1 denjenigen Punkt z* bezeichnet, der in w = —1 iibergeht. Das sieht

man so. Die Funktion

(wz—l)/[z”‘2 Z*_c]
1 —cz*

ist fiir [z*| 21 incl. z* =00 regulir und nullstellenfrei und auf |z*|=1 von
konstantem Betrag, also schlechthin eine Konstante. Letztere ergibt sich wegen
G(1)=./C+1.

In w? wird der Zihler

Cz*3 —cCz*?* —cz* + 1.

Dieses Polynom muB im Urbild z* von w =0 eine Doppelnulistelle haben. Also
verschwindet die Diskriminante, was zu

Cc*+4(1 + CHc>*+ 18Cc?2-27C =0

fihrt. Statt zu gegebenem C, das heiBt zu gegebener Cassinischer Kurve, das
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zugehorige ¢ iber diese Gleichung 4. Grades zu bestimmen, ist es bequemer,
umgekehrt zu gegebenem ¢ das zugehorige C zu bestimmen.

Durch Glelchsetzen der beiden Funktionen (16) und (17) entsteht die Zuord-
nung zwischen z = e® und z* = e%:

z*¥—¢ sin @
bzw. 0 =¢ —2 —————
—cz* OV ¢ arctg c —COos @

r=z%-

(18)

(¢) VerhiltnismaBig einfach wird die Verheftungsfunktion auch im Falle, wo I
das Bild einer Parabel bei linearer Transformation ist, ndmlich eine Kardioide.

5. Konvergenz in der Dirichletnorm

Es bezeichne R den normierten linearen Raum der auf D ={z|[|z| <1}
definierten und harmonischen Funktionen, versehen mit der iiblichen linearen
Struktur und der Dirichletnorm,

1/2
|7 = {fj grad? h dx dy} (h € R).
D

Im folgenden gelte die starke Voraussetzung, daB in @ : e® 1+ ¢“® die Funktion
u =log ¢’(0) die Einschrankung auf C einer Funktion aus R — die wir ebenfalls mit
u bezeichnen — sei.

SATZ 3. Fiir jede im eben erwdhnten Sinne regulire Funktion u ist mit
m:=max, . ¢ [u(2)|

| <2f|ul +/n(1 +4n2) - (e —1). (19)

Beweis. Sei H der normierte lineare Raum aller geordneten Paare [u, v] von
Elementen aus R, versehen mit der naheliegenden linearen Struktur und der Norm

F/

|log

G, 01 1= { e[ + [l 23 (20)

Diese erzeugt in H in bekannter Weise eine Metrik. AuBerdem fiihren wir in H die
in [4] definierte Hyperebene X ein. In [4] wurde folgender Satz bewiesen: Unter allen
Punkten von I ist [log|F'(z)|, —log|G’(1/2)|] derjenige mit dem kiirzesten Abstand von
[u, Q). (Hier bezeichnet O die Konstante 0.)
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Als Folge der Normdefinitionen, der Dreiecksungleichung in H und des Satzes
in [4] gilt
[log|F’||| < ||(log|F'(z)|, —log|G'(1/2)|1|H
< ||, 0] || + ||[10g|F'(2)| — u(z), —log|G"(1/2)| — 0] |
< fuf +(h —u, h*— 01| (21)

fiir alle Punkte [, 2*] in £. Wahlen wir insbesondere 4 = 0, so folgt damit aus (21)
[loglF"||| < 2]}« + |lo*], (22)
da ndmlich |[A —u, h* —0]|| 4 < ||h —u| + |2*|.
Aus der in [4] gegebenen Definition schlieBen wir, daB [0*|* gleich dem
Dirichletintegral der (beschrinkten) harmonischen Funktion mit den Randwerten

¢@(0) — 0 ist. Eine Abschitzung dieses Dirichletintegrals nach oben liefert das
Dirichletintegral irgendeiner Funktion mit denselben Randwerten. Wahlen wir

fre®) =r f 0 (exp [u(e™)] — 1) dt,

so erhalten wir nach leichter Rechnung
J (f?2+r=Prdrdd < n(l+4n?)(e™—1)2,

und damit (19) wegen

[0*]| < /=(1 + 4n?) - (e™ — 1).

BEMERKUNG. Kleinheit der rechten Seite von (19) vorauszusetzen ist natiir-
lich scharfer, als entsprechend Satz 1 Kleinheit von g, anzunehmen. Dafiir aber ist
auch die Behauptung von Satz 3 stirker als in Satz 1. Das ergibt sich aus

1
(1-— lz]z) |F”(z)/F’(z)| < — [Jj |F"/F’|2 dx dy] "log]F’Iu
A= 7L, "7

(vgl. zum Beispiel [10], S. 261, Exercise 3, angewandt auf F”“/F’), denn nach [1] gilt
dann g, < ||log |F"||/</=.
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