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Stabilitât konformer Verheftung*

Alfred Huber und Reiner Kûhnau

Joseph Hersch zum 70. Geburtstag gewidmet

1. Einleitung

Sei &lt;P : el&amp; \-&gt; et&lt;p(9) ein orientierungstreuer Homôomorphismus des Einheitskrei-
ses C — {z | \z\ 1} auf sich. Ist $ genûgend regulâr, gibt es eine Jordankurve F
und konforme Abbildungen F : int C -&gt; int F, G : ext C -* ext F mit G( oo) oo der-

art, daB

F(el°) G(el(f&gt;(0)) V0 e U. (1)

Eine zugleich notwendige und hinreichende Bedingung fur 0, welche die Exi-
stenz eines F impliziert, ist bis heute nicht bekannt. Eine hinreichende Bedingung -
die Quasisymmetrie von # nach konformer Verpflanzung vom Einheitskreis auf die
réelle Achse - wurde von O. Lehto und K. I. Virtanen [9] sowie auch A. Pfluger
[11] gefunden. Dièse Bedingung ist jedenfalls dann erfûllt, wenn q&gt;(0) stetig diffe-
renzierbar ist. In den ersten vier Abschnitten sei letzteres - soweit wir nichts anders
bemerken - dauernd vorausgesetzt.

Wir gehen aus von einem Homôomorphismus &lt;P0 (mit zugehôriger Verheftungs-
kurve Fo) und fragen, wie Fo variiert, wenn &lt;P0 abgeàndert wird. Dabei interessiert
insbesondere, ob eine kleine Abânderung von &lt;P0 stets nur eine &quot;kleine&quot; Abânde-

rung von Fo zur Folge hat (Stabilitât der Lôsung, beziehungsweise Korrektheit
der gestellten Aufgabe). Ein wichtiger Spezialfall ist der &quot;triviale Fall&quot;

u0 0(o Fo C\
Zunâchst wird bei (gleichmâBig) kleinem Unterschied zwischen q&gt;&apos; und 1

bewiesen, daB F &quot;kreisnahe&quot; ist. Allgemeiner wird gezeigt, daB eine kleine Abânderung

von q&gt;fQ eine kleine Abânderung der Kurve Fo zur Folge hat. Dièse Abschât-

zungen sind - wie Beispiele belegen - in einem gewissen Sinne bestmôglich. Als
Hilfsmittel treten Verzerrungssâtze bei quasikonformen Abbildungen auf.

* Entstanden aus einem Aufenthalt des zweiten Autors am Forschungsinstitut fur Mathematik an
der ETH Zurich.
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Im weiteren wird - unter betrâchtlich stârkeren Regularitâtsvoraussetzungen -
fur den Spezialfall Fo C gezeigt, da6 log &lt;/&gt;&apos; -? O (im Sinne gleichmâBiger Konver-
genz) zusammen mit ||log cp&apos;\ -&gt; O impliziert, daB ||log |F&apos;||| -» O. Die Doppelstriche
bezeichnen hier die Dirichletnorm einer in D {z \ \z\ &lt; 1} harmonischen Funktion
(vgl. Abschnitt 5). Hilfsmittel ist diesmal eine Minimaleigenschaft der Lôsung des

Verheftungsproblems.

2. Kreisnahe Verheftungskurven

Sei zunàchst ç(0) differenzierbar mit q&gt;&apos;(8) &gt;0. Und (p(6) sei im Sinne von

1+8
(2)

mit kleinem s &gt; 0 nahe der Identitât. Die Kreisnâhe von F messen wir durch den

zugehôrigen Spiegelungskoeffizienten Qr &gt; 1 (vgl. [6]), die Maximaldilatation einer

môglichst konformen Spiegelung an F. Wenn wir noch

setzen, dann wird der Spiegelungskoeffizient von F so mit einer unmittelbaren
geometrischen Eigenschaft von F in Beziehung gesetzt. Wir sagen nach [7], F habe

die &quot;a-Ringeigenschaft&quot;, wenn zu jedem wo$ F nach linearer Transformation mit
w0 \-+ oo das Bild von F in einem konzentrischen Kreisring des Radienverhâltnisses

a ^ 1 liegt, wobei dièses Bild die beiden Randkreise trennt. Nach [7] hat F fur

qr ^ 0,001 die a-Ringeigenschaft mit

a l+2,55-^r. (3)

Obrigens folgt umgekehrt nach [3], daB qr klein ist, falls F die a-Ringeigen-
schaft mit a nahe 1 besitzt.

SATZ 1. Wenn die Verheftungsfunktion q&gt;{0) nahe der Identitât ist im Sinne von

(2) mît kleinem e, dann ist

(a) F kreisnah im Sinne von

(4)
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(b) fur s ^ 0,002 kreisnah in dem Sinne, dafi F die a-Ringeigenschaft mit

0 1 +1,275 e (5)

haï. Insbesondere liegt dann F in einem konzentrischen Kreisring mit Radienverhàltnis

(5).

Beweis. Durch

C |z|-el**)mit0=argz (6)

definieren wir eine Abbildung von |z| &lt; 1 auf |(| &lt; 1 mit 01—? 0, die die Dilatation

(7)

besitzt. Nimmt man noch fur |z*| &gt; 1 die Identitât Ç(z*) z* hinzu, erhâlt man eine

&quot;quasikonforme Verheftung&quot; von |z| ^ 1 und |z*| &gt; 1. Die Zusammenfassung der

Abbildung Ç «—? F{z{Q), f-&gt;(/(z*(()) stellt dann eine stetige schlichte Abbildung
der (-Ebene dar, die fur |(| &gt; 1 konform ist und fur |Ç| &lt; 1 quasikonform. Nach [6]

gilt dann mit (2), (7) Qr &lt; sup p(z) &lt; 1 + s.

Das liefert schon Satz la. Daraus ergibt sich weiter Satz lb nach (3).

BEMERKUNGEN. (a) Das in §4 folgende Beispiel der Cassinischen Kurve F
zeigt, daB (5) zumindest in der GrôBenordnung bezûglich e scharf ist, das heiBt, e1

kann nicht durch eine hôhere Potenz von s ersetzt werden.

(b) In Satz 1 ist die Behauptung sicher nicht schon aus der Kleinheit von
\&lt;p(6) — 6\ anstelle von (2) zu erhalten. Das zu sehen nehme man als F eine

zahnradartige Kurve, die zum Beispiel aus Cassinischen Kurven von §4 durch «-te

Wurzeloperation hervorgeht, wobei der zu 0 konzentrische, F enthaltende Kreisring
kleinsten Radienverhâltnisses ein konstantes Radienverhàltnis fur n »—? oo behâlt.

Wegen der «-fachen Symmetrie kann man aber die Kleinheit von \q&gt;(9) —0\ fur
n »-&gt; oo erzielen.

(c) In der umgekehrten Richtung zu Satz 1 kann man sagen: Wenn qr klein ist
und eine 0 und oo vertauschende Qr -quasikonforme Spiegelung an F existiert, dann
ist bei der zugehôrigen Verheftungsfunktion, falls /r(0)=0, F(1) G(1) neben

(?(oo) oo gefordert ist, auch \ç(9) - 9\ klein.
Denn eine Qr -quasikonforme Spiegelung an F induziert eine Qr -quasikonforme

Abbildung z*(z) von |z| &lt; 1 auf \z*\ &gt; 1 mit 0i-&gt; oo, 1h&gt;1. Auf die Abbildung
l/z*(z) kann man einen Verzerrungssatz fur quasikonforme Abbildungen anwenden
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(vgl. [12], [2], Satz 3), der fur hinreichend kleine qr abschâtzt

(d) Entsprechend zu Satz 1 lâBt sich der allgemeinere Fall behandeln, bei dem
die Verheftungsfunktion (nach linearer Transformation des Einheitskreises auf die
obère Halbebene) als quasisymmetrisch vorausgesetzt wird. Aus der Bedingung fur
Quasisymmetrie lâBt sich nâmlich wieder explizit (vergleiche zum Beispiel [8]) eine

Dilatationsschranke angeben.

3. Die Aufgabe der konformen Verheftung ist &quot;korrekt gestellt&quot;

Nimmt man nun bei der AuBenabbildung G(z*) von |z*| &gt; 1 stets noch hydro-
dynamische Normierung

G(z*)=z* + 0(l/z*)

hinzu, so ergibt sich fur die Verheftungsaufgabe neben der Existenz der Lôsung,
daB dièse (also F und das Paar F(z), G(z*)) eindeutig bestimmt ist. Man sagt
bekanntlich, die Aufgabe ist korrekt gestellt, wenn dièse Lôsung in einem gewissen
Sinne stetig von den Vorgaben abhângt. Wir zeigen dies zunâchst fur
differenzierbare Verheftungsfunktionen.

Es werde also auf dem Einheitskreis neben &lt;P noch entsprechend ein zweiter

Homôomorphismus &amp;0 : e10 h* et&lt;Po(0} betrachtet, q&gt;0(9) ebenfalls differenzierbar mit
q&gt;o(6) &gt;0. Dazu seien wieder F0(z) beziehungsweise G0(z*) die sinngemâB entspre-
chenden zugehôrigen konformen Abbildungen von \z\ &lt; 1 beziehungsweise \z*\ &gt; 1,

G0(z*) wieder hydrodynamisch normiert.

SATZ 2. Ist der Unterschied zwischen (po(0) und q&gt;(0) im Sinne von

- ,nv - 1 + 6 (8)
1+6 (p&apos;(0)

V &apos;

klein (fur kleine e &gt; 0), dann ist der Unterschied der entstehenden Kurven Fo und F
klein in dem Sinne, dafi Fo in einem y/ljn • e-Schlauch um F liegt und umgekehrt F
in einem solchen um Fo. Hier bezeichnet I den von F eingeschlossenen Flâcheninhalt.

Zujedem Punkt von Fo existiert also ein Punkt auf F, dessen Abstand &lt;^JT\n • e

ist, und umgekehrt existiert zu jedem Punkt von F ein Punkt von Fo mit Abstand
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Beweis. Entsprechend zu Satz 1 studieren wir in dem Schéma von Fig. 1 die

folgende Abbildung der z- beziehungsweise z*-Ebene einerseits und andererseits der

zo-beziehungsweise zJ-Ebene in Ebenen w und w0. Wir setzen fur |z*| &gt; 1 die

Identitât z* z* an, und fur \z\ &lt; 1 konstruieren wir analog zu (6) eine quasikon-
forme Abbildung, deren Dilatation

fd(p0 dcp \
/?(z)=max —-,-f1-) (9)

ist, so daB sich die Verheftungsfunktionen entsprechen, und jedenfalls durch

Zusammensetzung insgesamt eine stetige schlichte Abbildung wo(w) der w-Ebene

auf die wo-Ebene entsteht, die aufierhalb F konform und hydrodynamisch normiert
ist, innerhalb F quasikonform, wobei die Dilatation erfullt sup p(z) ^ 1 + e. Fur
dièse Abbildung gilt nach [5], Ungleichung (32&apos;),

(10)

Das liefert die Behauptung, sogar gleich noch die Kleinheit des Unterschiedes

Identitât

wo-Ebene
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zwischen F(z) und F0(z) (beziehungsweise auch zwischen G(z*) und G0(z*), falls
noch q&gt;(0) 0 und (po(0) 0 gefordert wird).

BEMERKUNG. Eine analoge Ûberlegung lâBt sich allgemeiner bei quasisym-
metrischen Verheftungsfunktionen anwenden, gleichwohl auch bei allgemeineren

Verheftungsaufgaben, zum Beispiel wenn bei einem n-fach zusammenhângenden

Vollkreisgebiet in die Lôcher n Kreisscheiben konform eingeheftet werden sollen.

4. Beispiele von Verheftungsfunktionen, fur die F explizit angebbar

Solche Beispiele erhâlt man, indem man umgekehrt ein F vorgibt und die beiden

konformen Abbildungen fur Innen- beziehungsweise AuBengebiet auf das Innere

beziehungsweise ÂuBere des Einheitskreises konstruiert. Die Frage ist nur, ob dièse

beiden Abbildungen hinreichend einfach sind. Das ist bekanntlich schon beim

Beispiel einer Ellipse F nicht der Fall. Aber fur eine Cassinische Kurve F erhâlt

man verhâltnismâBig einfache analytische Ausdrûcke. Dièse gehen wohl auf O.

Zariski [13] zurûck.

(a) Sei also F die aus einem Zuge bestehende Cassinische Kurve F

|w2-l| C mit C&gt;1. (11)

Hier ist

w G(z*)=y/l + Cz*2 (12)

die Abbildung von |z*| &gt; 1 auf&apos;s ÂuBere von F mit G(oo) oo, G&apos;(oo) &gt; 0. Das

Innere von F entsteht aus \z\ &lt; 1 durch

(13)

mit F(0) 0, F&apos;(0) &gt; 0.

Zum Beweise bilde man durch die Abbildungskette

zunâchst die redite Hâlfte von Izl &lt; 1 ab.
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z-Ebene

Figur 2

Durch Gleichsetzen von (12) und (13) entsteht fur die Zuordnung zwischen

z eie und z* el&lt;p

\Cz2-\ ^ /m n sin20
-j bzw. q&gt;(&amp;) 0 + arctg -

&apos;C-COS20&apos;
(14)

Fur groBe C ist F bekanntlich konvex, und der konzentrische Kreisring mit
kleinstem Radienverhâltnis, der F enthâlt, muB zu 0 konzentrisch sein. Dièses

Radienverhâltnis ist also

Also hat F nicht die a-Ringeigenschaft mit einem a &lt; 1 -h 1/C H wohl aber

nach (3) mit a 1 + 1,275/C + • • -, weil nach [6] ist

lim Cqr=-.
C-+OD 1
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Fur groBe C wird noch

&lt;p&apos;(0) 1 + ^ cos 20 + • • -, 1 -1 + • • • &lt;: &lt;p&apos;(0) ^ 1 +1 -h • • •.

(b) Ist F die rechte Hâlfte der zweiteiligen Cassinischen Kurve

|w2-l| C mit O&lt;C&lt;1, (15)

wird sofort die Abbildung F(z) von |z|&lt;l auf&apos;s Innere von F mit F(0)=0,
F(0)&gt;0

w F(z) y/l + Cz. (16)

Ferner ist fur die Abbildung G(z*) von |z*| &gt; 1 auf&apos;s ÀuBere von F mit G(oo) oo,

G/(oo)&gt;0

G(z*) /l + Cz*2j C-, (17)
I ~~~ CZ

wenn c &lt; -1 denjenigen Punkt z* bezeichnet, der in w -1 ùbergeht. Das sieht

man so. Die Funktion

ist fur |z*| ^ 1 incl. z* oo regulâr und nullstellenfrei und auf |z*|=l von
konstantem Betrag, also schlechthin eine Konstante. Letztere ergibt sich wegen

In w2 wird der Zâhler

Cz*3-cCz*2-cz* + l.

Dièses Polynom muB im Urbild z* von w 0 eine Doppelnullstelle haben. Also
verschtwindet die Diskriminante, was zu

Ce4 + 4(1 + C2)c* + 18Cc2 - 27C 0

fûhrt. Statt zu gegebenem C, das heiBt zu gegebener Cassinischer Kurve, das
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zugehôrige c ùber dièse Gleichung 4. Grades zu bestimmen, ist es bequemer,
umgekehrt zu gegebenem c das zugehôrige C zu bestimmen.

Durch Gleichsetzen der beiden Funktionen (16) und (17) entsteht die Zuord-
nung zwischen z eld und z* el&lt;p:

^^ bzw. fl (?-2arctg
Sm Ç

(18)
c cos cpzz^ bzw. fl (?2arctg

1 — cz* c — cos cp

(c) VerhâltnismâBig einfach wird die Verheftungsfunktion auch im Falle, wo F
das Bild einer Parabel bei linearer Transformation ist, nâmlich eine Kardioide.

5. Konvergenz in der Dirichletnorm

Es bezeichne R den normierten linearen Raum der auf D {z \ \z\ ^ 1}
definierten und harmonischen Funktionen, versehen mit der ûblichen linearen
Struktur und der Dirichletnorm,

1/2

(heR).

Im folgenden gelte die starke Voraussetzung, daB in &lt;P : elB h» el&lt;p{6) die Funktion
u log q&gt;\0) die Einschrânkung auf C einer Funktion aus R - die wir ebenfalls mit
u bezeichnen - sei.

SATZ 3. Fur jede im eben erwàhnten Sinne regulâre Funktion u ist mit
\u(z)\

2\\u\\ + vVl + 4tt2) • (em- 1). (19)

Beweis. Sei H der normierte lineare Raum aller geordneten Paare [w, v] von
Elementen aus R, versehen mit der naheliegenden linearen Struktur und der Norm

2 + H2}1/2- (20)

Dièse erzeugt in H in bekannter Weise eine Metrik. AuBerdem fûhren wir in H die
in [4] defînierte Hyperebene Z ein. In [4] wurde folgender Satz bewiesen: Unter allen
Punkten von Z ist [log\F&apos;(z)\9 -log\G&apos;(l/z)\] derjenige mit dem kùrzesten Abstandvon
[m, 0]. {Hier bezeichnet 0 die Konstante 0.)
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Als Folge der Normdefinitionen, der Dreiecksungleichung in H und des Satzes

in [4] gilt

^ |[«, Q] \\H + \\[log\F(z)\ - u(z), -log\G&apos;(l/z)| - 0] |U

^lu\\ + \\[h-u,h*-0]\\H (21)

fur aile Punkte [h, h*] in E. Wàhlen wir insbesondere h 0, so folgt damit aus (21)

||log|F&apos;|||^2||W|| + ||0*||, (22)

da nâmlich \\[h-u9h*-Q\\\H £ \\h -u\\ + \\h*\\.

Aus der in [4] gegebenen Définition schlieBen wir, da8 ||0*||2 gleich dem

Dirichletintegral der (beschrânkten) harmonischen Funktion mit den Randwerten
(p(6) — 9 ist. Eine Abschàtzung dièses Dirichletintegrals nach oben liefert das

Dirichletintegral irgendeiner Funktion mit denselben Randwerten. Wâhlen wir

so erhalten wir nach leichter Rechnung

fr +r-2f$)r drdd&lt;&gt;n(\ + 4n2)(em - l)2,

D

und damit (19) wegen

BEMERKUNG. Kleinheit der rechten Seite von (19) vorauszusetzen ist natùr-
lich schârfer, als entsprechend Satz 1 Kleinheit von qr anzunehmen. Dafûr aber ist
auch die Behauptung von Satz 3 stârker als in Satz 1. Das ergibt sich aus

(1 - |z|2)|F&apos;(z)/F(z)| * -U T f f |F&apos;/F|2 dx dyT -L ||log|F|||

D

(vgl. zum Beispiel [10], S. 261, Exercise 3, angewandt auf F&quot;/F&apos;), denn nach [1] gilt
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