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Lie algebras and coverings

Christine Riedtmann

Meinem Lehrer Peter Gabriel gewidmet

1. Introduction

1.1. Let A be an associative unitary finite dimensional C-algebra which is

représentation finite. This means that the number of isomorphism classes of
indécomposable finite dimensional yl-left modules is finite. Let us fix a set J of
représentatives for thèse isomorphism classes.

We showed in [Rie] that the free Z-module

generated by the symbols

can be made into a Z-Lie algebra in the following way: set

XeJ

where

is the Euler-Poincaré characteristic of the algebraic variety

VA(A,B;X) {0^Y^X:Yis a A -submodule of X isomorphic to A with
quotient module Xj Y isomorphic to B}.

This is the complex version of Ringel&apos;s construction of Lie algebras via Hall
algebras over finite fields [Rin].

The construction of L(A) carries over easily to the case where A is a locally
représentation finite C-category. We will list the most important définitions and
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facts about locally représentation finite catégories and their coverings in chapter 3;

the références for thèse results are [BG] and [Ga].

1.2. If the représentation finite algebra - or more generally the locally représentation

finite C-category - is simply connected [BG], the Lie algebra L(A) has a

particularly simple structure. Indeed, we proved in [Rie] that in this case one of the
numbers

7a,b and yxBfA

is zéro for any choice of A, B, X in J and that for fixed A and B there is at most
one X for which

To any locally représentation finite C-category A one can associate a locally
représentation finite one which is simply connected: its universal cover A ([BG],
[Ga]). The reason why we consider C-categories instead of C-algebras in this paper
is that Â is rarely a C-algebra.

It is tempting to try and use the simple structure of L(Â) in order to compute
L(A). The aim of this paper is to show that this is actually possible: if we choose

a set 3 of représentatives for the indécomposable A -modules which is stable under
the fundamental group G (see chapter 3), the set of G-orbits {Â GA : A e J) is

a set J of représentatives for the indécomposable A -modules. Our goal is to prove:

X(VA(Â,B;X))= £ x(VA(A,g(B);h(X)))
g,heG

for any A, B, X g/ Thus the structure constants for L(A) are sums of - more
easily accessible - structure constants of L(Â).

In fact, we will define an &quot;orbit&quot; Lie algebra L/G in chapter 2 for an

appropriate action of a group G on a Lie algebra L and show in chapter 4 that the

action of the fundamental group G of A on L(Â) is appropriate. Our aim is then:

THEOREM. Let A be a locally représentation finite C-category with universal

cover A and fundamental group G. Then L(A) is isomorphic to L(Â)/G.

1.3. As a first application, let us prove again that for A C[T]/(Tn) the bracket

on L(A) is trivial [Rie]. The universal cover Â of A is given by the quiver

a_i an ai
- - l —U o —^ l —U 2- - -,
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having Z as its vertex set and containing an arrow a, : i -» i + 1 for i e Z,
and the idéal of relations generated by ail paths of length n. The funda-
mental group G Z is generated by the shift i h-m + 1. For J we choose the
set

where (i, r) is &quot;the indécomposable with top / of length r&quot; defined by

0 otherwise,

and

idc for / &lt;j&lt;i + r — 1,

otherwise.

It is easy to see that

[1 point for / =j + s, k =y, t r -h s,

for any triple of indécomposables. Therefore

X(Va(( j + s, r), j, s); j, r + s))) 1 x{VÂ((i + r, s), (i, r); (i, r

give the only non-trivial contributions to the bracket [vÀ, vB] with A (i, r),

As a second example, consider the quotient A of the algebra of the quiver
• A «Qjg by the idéal generated by /?3. In this case the quiver of A is:

Ta_j T a0 T aj T a2

-r 0&apos; v r •••

and the idéal of relations is generated by {ftl + 2Pi+\Pi &apos;- i G Z}. The fundamental

group is generated by the shift again. Let us consider the indécomposables A, B, X
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given by

il for* 1,2, 3,
dim A(x) -.

lu otherwise,

dim **)«{&apos;
for&apos;-0.1.2,1&apos;, 2&apos;,

[0 otherwise,

dimAr(jc)=|l forx=0, 3, l&apos;,2&apos;,

[0 otherwise,

and

/1\ /i n\
(0 1),

The variety of embeddings of ^4 into X is 6-dimensional, and possible quotients
are quite hard to détermine. Over Â, however, it is easy to see that the only way to
embed A into a translate of X with quotient a translate of B is to choose a map
f\A-+Xoï the form

with fi # 0. The quotient is isomorphic to B if and only if À # 0, /1. Hence

2. The uorbif Lie algebra

2.1. Let L be a Z-Lie algebra which is generated (as a Z-module) by some basis

a:

L ® Zè.
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Suppose the group G acts on L by Lie algebra automorphisms in such a way that
it permutes the éléments of M and that the following condition is satisfied:

Vft, c € m : #{g e G : [b,g(c)] ^0} &lt; oo. (*)

This condition is obviously empty in case G is finite. The main exampie to hâve in
mind hère, however, is the fundamental group G of a locally représentation finite
C-category A acting on ind A for a G-stable set of représentatives, and this is a free

group [BG].
Set

and

L/G ©

Let

be the Z-linear map which takes b to E for h e $.
The following resuit is easy to prove:

PROPOSITION. The bracket

[£c|= Z [*•*(*)]. 6,cet»,
ge G

defines a Lie algebra structure on L/G.

Note that the map 7 is not a Lie algebra homomorphism in gênerai.

2.2. Comparing the structure constants of L/G with those of L, we find: if

[b9c)=^yicd

and

de 31
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then

d&apos;edgeG

In case the action of G on J is free as it is in the case we are interested in this
formula becomes

2.3. Let Gbea group acting on the Lie algebra

L= © 2b
beat

in such a way that the hypothèses of 2.1 are satisfied. If H &lt;\ G is a normal
subgroup, they are satisfied for the action of H on L as well, so that we can
consider the Lie algebra

L/H 0 JE

with

Extending the action given by

of G G/H on M by Z-linearity, we obtain an action of G on L/H. It is easy to see

that it satisfies again the hypothèses of 2.1 and that the following proposition holds:

PROPOSITION. The Z-linear map L/G -+(L/H)/(G/H) sending the basis

élément Gb to (G/H)b is an isomorphism of Lie algebras.

3. Locally représentation finite catégories and coverings

The références for this chapter are [BG], [Ga].

3.1. We begin by recalling some définitions:
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A C-category A is locally bounded if the following conditions are satisfied
(1) A(x, x) is a local C-algebra for ail objects x of A

(n) Distinct objects of A are not isomorphe
(m) For ail objects x we hâve

£ dimc A(x, y) &lt; oo,
y

where y ranges over the objects of A
A finite dimenswnal A-left module is a covanant functor B /1-nnodC

with

£ dimcB(x) &lt; oo,
X

where x ranges over the objects of A

We dénote by mod A the category of finite dimensional A -modules and by ind A
the full subcategory whose objects are a fixed set J of représentatives for the

îsomorphism classes of indécomposables in mod A

A locally bounded C-category A is locally représentation finite if for every
object x of A, the number of indécomposables B in J with B(x) ^ 0 is

finite

C-algebras A which are sober, îe with A/md A-+C x x C, correspond
to locally bounded C-categones with finitely many objects and représentation
finite C-algebras to locally représentation finite C-categones with finitely many
objects

3 2 Let A be the universai cover of A, and choose a set 3 of représentatives
for the indécomposable ^î-modules which is stable under the action of the funda-
mental group G of A on mod A Then G acts on the full subcategory ind A of
mod A whose objects are the éléments of 3 by C-lmear automorphisms Moreover,
we hâve

g(B) ^ B for every B m 3 and every g # 1 in G
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and

# {g e G : Hom^ (A, g(B)) ^ 0} &lt; oo for every pair A, B in 3.

Under thèse circumstances ind^î has a quotient modulo G: its objects are the

G-orbits of objects in 3\ and the morphisms from the orbit of A to the orbit of B

are families (fg,h)g,heG,

fg,h:g(A)-+h(B)

with

for ail g, h, l in G.

Similarly, there exists a quotient A/G, which is locally représentation finite. The

category (ind A)/G is isomorphic to ind (A/G), which is in turn isomorphic to the

so called mesh category C^^) associated with the Auslander-Reiten quiver of A. So

A/G is the &quot;standard form&quot; of A. But by [BGRS] non-standard algebras can exist

only over ground fields of characteristic 2. Thus A/G is isomorphic to A and

(ind A)/G to ind A. We fix the set «/ of G-orbits in J as a set of représentatives of
the isomorphism classes of indécomposable A -modules and identify inàA with
(ind A) /G.

3.3. The C-linear functor

F : ind A -? (ind A)/G ind A

defined by

F(B) =GB

for B in $ and by associating to /: A -* B, A, B e &lt;/, the family

with

(0
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is a covering functor. This means that, for ail A, B in 3, F induces C-linear
isomorphisms

0
geG

geG

g(B)) ^ Hom^ (FA, FB\

(g(A)9 B) -&gt; Horn^ (FA, FB).

We will need also that F induces C-linear isomorphisms:

© Ext^- (A, g(B)) ^ Ext^ (FA, FB),
geG

© Ext^ (g(A), B) ^ Extj, (FA, FB),
geG

for ail A, B in 3. This is an easy conséquence of the isomorphisms for Hom-sets
and the fact that F is an exact functor preserving projectivity.

3.4. If H &lt;3 G is a normal subgroup, it is the fundamental group of À/H, and

again we identify (ind Â)/H with ind (AIH) and note this quotient simply ind A/H.
There is a commutative triangle of covering functors:

indÂ
F1

ind A/H

where F sends HB to GB for B in 3 and a morphism

to

with

gl*2 [0 ifnot.
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As F is a covering functor, F induces C-linear isomorphisms:

© ExtA/H (FA,g(FB)) ^ExtlA (FA, FB),
geG/H

© ExtA/H (g(FA), FB)^Ext\ (FA, FB),
geG/H

for any two éléments A, B in 3.

4. The theorem - and its proof in some cases

4.1. Let A be a locally représentation finite C-category with universal cover A
and fundamental group G. Fix a G-stable set 3 of représentatives for the isomor-
phism classes of indécomposable /T-modules and identify ind A with ind A/G.

Extend the action of G on 3 to a Z-linear action of G on L(Â). Note that, for
A,B,Xe3 and g e G, the varieties VA(A,B;X) and VA(g(A),g(B),g(X)) are

isomorphic and hence homeomorphic. Therefore G acts by Lie algebra automor-
phisms.

Moreover, the sets

{heG: HomA (A, h(X)) # 0}

and, for any heG

{geG:HomA(h(X),g(B))*0}

are finite for any A, B, X by 3.2. This implies that the action of G on L(Â) satisfies

the condition (*) of 2.1 as well.

Now the statement of our theorem makes sensé at least. In fact, both Lie
algebras L(A) and L(Â)/G hâve as a basis the set of G-orbits in 3. The isomor-

phism is the identity on this basis.

4.2. We recall from [Rie] that there is another way to compute the structure
constants of L(A), which is more adapted to coverings: let A, B and X be

indécomposable A -modules. Then the following Euler-Poincaré characteristics coincide:

X(VA(B, A;X)) xCExti (A, B)x/C*).

The variety on the left hand side has been introduced in 1.1. As to the right hand

side, Ext^ (A9 E)x is the algebraic subset of équivalence classes of short exact
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séquences in the C-vector space Ext^ (A, B) whose middle term is isomorphic to X.
It is stable under the action of C* by homotheties on Ext^ (A, B).

4.3. PROPOSITION. Let A be a locally représentation finite C-category with
universal cover Â and fundamental group G, and suppose that the set

{geG:Ext\(A,g(B))*0}

has at most one élément for any pair A, B in 3. Then L(A) is isomorphic to
L(Â)/G.

Proof. Let

F : ind Â -? ind Â/G ind A

be the orbit covering functor. Choose A and B in 3 in such a way that

ExtlA(FA,FB)*0.

According to our hypothesis and 3.3 there is a unique élément g eG such that
Ext^ (A, g(B)) #0, and F induces a C-linear isomorphism

Ext\ (A, g(B)) ^ Ext^ (FA, FB).

Clearly the inverse image of Ext^ (FA, FB)FX under this isomorphism is the disjoint
union

for any X in 3.
As the characteristic #(&lt;#) of a finite disjoint union ^ Q c€l of constructible

subsets of a variery ^ is the sum Z x(cé&gt;l we conclude that

\ (FA, FB)FX/C*)= X
heG
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Remarks.

(i) As À is simply connectée, there is in fact at most one h e G with
Ext^ (A, g(B))h(X) ^ 0, as indécomposables are déterminée by their composition
factors [Ha].

(ii) Note also that in case

{geG:ExtA(A,g(B))*0}

contains at most one élément for just a pair A, B in J, it is still true that

X(ExtA(FA,FB)FX/C*) X X(ExtlA(A,g(B))hm/C*).
g,heG

5. C*-actions

We fix a locally représentation finite C-category A with universal cover A and
fundamental group G as well as a G-stable set J of représentatives for the

isomorphism classes of indécomposable yî-modules. We dénote by F the orbit
covering functor

F : ind À -&gt; ind A/G ind A.

5.1. Any map X : G -&gt;Z gives rise to a C-linear C*-action on the C-vector space

© ExtlÂ (A, g(B))
geG

by

for t e C*, eg 6 Ext^ (A9 g(B)) and for any A, B eJ. A line through the origin in
this vector space is stable under C* if and only if there exists an integer n such that
the line lies in

© ExtlÂ (A, g(B)).
geG

Kg) - n

Using the C-isomorphism

© ExtlÂ(A, g(B))^ExtlA (FA, FB\
geG
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induced by F (see 3.3) we obtain a C*-action on

ExtJ, (FA, FB)/C*9

whose fixed points are the disjoint union

u
neZ geG

Hg) n

ExtlÂ(A,g(B))/C*

Recall that the Euler-Poincaré characteristic of a variety Z admitting an algebraic
action of C* equals the characteristic of the fixed point set Zc*.

Therefore our theorem would be proved if we could exhibit a map X : G -? Z
satisfying:

(i) the middle term of a short exact séquence in Ext^ (FA, FE) changes only up
to isomorphism under the C*-action defined by X.

(ii) for each integer n there is at most one g e G with X(g) n.

Indeed, such a X would give rise to a C*-action stabilizing Ext^ (FA, FB)FX for
any X eJ by (i), and we could write

^ (FA, FB)FX/C*) x((ExtlA (FA, FB)FX/C*)C*)

g,heG

Hère we used again that the inverse image of BxtlA (FA, FB)FX in Ext^ (A, gn(B)) is

the disjoint union

M\ Ext\(A,gn(B))HX).
h eG

Unfortunately, such X &apos;s need not exist. We will concentrate first on the

condition (i), which is indispensable.

5.2. For A, B, U e J we consider the pull-back map

n : Ext^ (FA, FB) x Hom^ (FU, FA) - Ext^ (FU, FB)
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which associâtes to an exact séquence

e .0-+FB-+Z-+FA-+0

with Z in mod A and a homomorphism/: FB -? FU the pull-back séquence n(e9f
in Ext^(F£/,F£):

e :0-&gt;F5-&gt;Z-»/vl-&gt;0
II î î/

n(e,f) : 0 -* Fi? -&gt; Z&apos; -* Ft/ -? 0.

By Auslander&apos;s criterion [AR] two ,4 -modules Z! and Z2 are isomorphic if and only
if

dimc Hom^ (FU, Zx) dimc Hom^ (FU, Z2)

for ail indécomposables FU over A. Thus two exact séquences

ex : 0 -+ FB -&gt; Zx ^ FA -+ 0

e2 : 0 -&gt; FB ^&gt; Z2 -+ FA -» 0

hâve isomorphic middle terms if and only if

dimc ker n{ex, dimc ker

for the two maps n(e,, and n(s2, from Hom^ (FU, FA) to Ext^ (FU, FB) and ail
indécomposables FU.

Let À : G -» Z be a map and consider the C*-action on

© HomA(l(U),A)
leG

given by

for B, U in J*. The C-isomorphism

© Hom.r (l(U\ A) ^ Hom^ (FU9 FA)
leG

allows us to transfer this action of C* to Hom^ (FU, FA).
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LEMMA Let X G -» Z be a group homomorphism Then the map

n Exti (FA, FB) x Hom^ (FU, FA) -* Ext^ (FU, FB)

is C*-equwanant, where on the left C* acts diagonally

Proof It suffices to check that, for g, / in G, the pull-back map

n Ext\ (A, g(B)) x Honu (/(£/), A) -&gt; Ext\ (l(U), g(B))

has the property

for / e C* This is clear, as À(l~lg)

COROLLARY If X G -+Z is a group homomorphism, the C*-actwn
on Ext^ (FA, FB) associated with X stabilizes Ext^ (FA, FB)FX, for ail A, B, X
in 3

Thus our first condition is satisfied But it is clear that a group homomorphism
will rarely satisfy the second one

5 3 PROPOSITION Let À G -&gt; Z be a group homomorphism Then L(A) is

isomorphe to L(Â/kçr X)/(G/kçr X)

COROLLARY If the fundamental group G is Z, L(A) is isomorphe to L(Â)/G

Proof of the proposition We hâve to show that, for any A, B, X in 3\

i (FA, FB)FX/C*) X z(Ex4ker x (FA, g(F&apos;B))h{FX)/C*)
ghe G/ker A

where F&apos; ind Â -&gt; md &gt;ï/ker X is the orbit functor This follows easily from the
formula for fixed points m 5 1, as the inverse image of ExtlA (FA, FB)FX in
Ext^/ker À(FrA, g(F&apos;B)) is the disjoint union

h e G/ker X
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6. The proof

6.1. The last ingrédient for our proof is the following:

PROPOSITION. L(A) is isomorphic to L(À/G&apos;)/(G/G&apos;), where G&apos; is the commutât

or subgroup of G.

Proof. As G is free [BG], the quotient G/G&apos; is free abelian. Let p : G^G/G&apos; be

the projection.
Fix A and B in J, and let S be the finite subset

of G. As G/G&apos; is free abelian, there exists a group homomorphism X: G/G&apos;-&gt;Z

whose restriction to p(S) is injective. Choose for À : G -» / the composition

The following picture explains the notations we choose for orbit functors related
to the groups G&apos; £ ker k £ G:

indA

indA

We dénote the residue class of an élément g in G modulo G&apos; by g and modulo
ker A by g.

We know from 5.3 that, for any X in J,

|,Ae G/kcr x
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Applying 3.4 to vï/ker X, G&apos; ç ker X and the éléments A, g(B) e J, we find that
F&quot; induces an isomorphism

© Ex4c. (F&apos;A, KF&apos;(gB))) -&gt; Ex4ker, (F&quot;A, F&quot;(gB)).

l e ker A/G&apos;

We claim that, by our choice of k, there is a unique Te ker k/G&apos; for which

ExtlA/G,(F&apos;Aj(F(gB)))*0

provided that

Indeed, for / e ker À, the space

ExtlA/G. (F&apos;A, F&apos;(lgB))

is isomorphic to

© Ext\ (A, g&apos;igB).

g&apos;eG&apos;

If now for lx, l2 g ker A there exists g\,gf2^Gf such that

Ext&apos;r 04, #;/,££)#(), i l,2,

the éléments g\ltg both belong to S, and their residue class modulo ker X is g. Thus
their classes modulo Gf coincide, and therefore TX T2.

Suppose now that

and fix / in ker X with

ExtlÂ/G,(F&apos;A,FVgB))ï0.

Then F&quot; induces an isomorphism

^ {FA, F&apos;(lgB))^ExtlÂ/kerÀ (F&quot;A, F\gB)).
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The inverse image of

under this isomorphism is the disjoint union

Ù Ext^ (FA, F\lgB)\rihxy
k e ker À/G&apos;

Summing up we find

X(Ext^ (FA, FB)FX/C*) £ tfExtV (F&apos;A, g(F&apos;B))Rrx)l&lt;C*).
g,h e G/G&apos;

6.2. The higher commutator subgroups G{l) of G, i e N, are defined inductively by

They are normal subgroups of G. As a conséquence of Magnus&apos; theorem on the lower
central séries, they intersect in the neutral élément of G, since G is free.

COROLLARY. For any i e N, L(A) is isomorphic to

Proof. Indeed, proposition 6.1 applied to Â/Gil) tells us that

for ail u We conclude by induction applying 2.3.

6.3. PROPOSITION. IfA hasfinitely many objects there exists a natural number
such that L(Â/G(t)) is isomorphic to L(Â)IG{t\

Proof. In view of proposition 4.3 (applied to Â/Gi0) we only need to find t e N

such that

has at most one élément for ail A.BeJ. For A, B e 3 we set

S(A9 B) {geG: ExtJr (A, g(B)) * 0}

and



Lie algebras and coverings 309

Clearly we hâve

S(h(A),l(B))=hS(A,B)l-1

and

T(h(A)J(B))=hT(A9B)h&apos;K

Since A has finitely many objects, 3 contains only finitely many G-orbits, and
therefore the set

T= U T(A,B)
A,BgJ

is a finite union of conjugacy classes in G.

Use now that the intersection Ç)ieN G(0 is reduced to {1}. Fix an integer t with

Then the set

S(A, B) n G«&gt; {g e G« : Exti (A, g(B)) * 0}

contains at most one élément for ail A.BeJ, and our proof is complète.

6.4. In case A is finite the preceding proposition proves our theorem. Indeed, we
hâve a chain of isomorphisms

L(A) ^L(Â/G^)/(G/G^) ^(L(^)/G(r))/(G/G(r)) ^L(Â)/G.

In gênerai, there is no reason why proposition 6.3 should hold. But &quot;f exists

locally&quot;, and this suffices to prove our theorem: for A,BeJ there exists t t(A, B)
such that

as T(A, B) is finite.

Again this implies that

{geG«&gt;:ExtlÂ(A9g(B))*0}
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contains at most one élément. By the second remark m 4.2 the Lie bracket of vGit) A

with vGu) B is &quot;the same&quot; in L(Â/G(t)) as in L(Â)/Gi0. We finish the proof as in case

A is finite, comparing the brackets of vG A and vG B in L(A), L(Â/Gu))/(G/Gi0),
(L(Â)/G^)/(G/G(t)) and L(Â)/G.
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