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Lie algebras and coverings

CHRISTINE RIEDTMANN

Meinem Lehrer Peter Gabriel gewidmet

1. Introduction

1.1. Let A be an associative unitary finite dimensional C-algebra which is
representation finite. This means that the number of isomorphism classes of
indecomposable finite dimensional A-left modules is finite. Let us fix a set # of
representatives for these isomorphism classes.

We showed in [Rie] that the free Z-module

L) = @D zv,

Ae S
generated by the symbols

{vy:4es}

can be made into a Z-Lie algebra in the following way: set

[vg,v5] = Z ()’A{B _VAB,,A)UX,
XeJs

where
va.s = X(Va(4, B; X))
is the Euler-Poincaré characteristic of the algebraic variety

Vi4,B; X)={0cY< X:Yis a A-submodule of X isomorphic to 4 with
quotient module X/Y isomorphic to B}.

This is the complex version of Ringel’s construction of Lie algebras via Hall
algebras over finite fields [Rin].

The construction of L(A) carries over easily to the case where A is a locally
representation finite C-category. We will list the most important definitions and
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facts about locally representation finite categories and their coverings in chapter 3;
the references for these results are [BG] and [Ga].

1.2. If the representation finite algebra — or more generally the locally represen-
tation finite C-category — is simply connected [BG], the Lie algebra L(A) has a
particularly simple structure. Indeed, we proved in [Rie] that in this case one of the
numbers

X X
Ya.B and YB.4

is zero for any choice of 4, B, X in £ and that for fixed 4 and B there is at most
one X for which

Yﬁ,s #0.

To any locally representation finite C-category A one can associate a locally
representation finite one which is simply connected: its universal cover A ([BG],
[Ga]). The reason why we consider C-categories instead of C-algebras in this paper
is that A is rarely a C-algebra.

It is tempting to try and use the simple structure of L(A) in order to compute
L(A). The aim of this paper is to show that this is actually possible: if we choose
a set £ of representatives for the indecomposable A-modules which is stable under
the fundamental group G (see chapter 3), the set of G-orbits {4 =GA : 4 € £} is
a set # of representatives for the indecomposable A-modules. Our goal is to prove:

Va4, B; X)) = Y x(Va(4, g(B); h(X)))

gheG

for any A4, B, X € #. Thus the structure constants for L(A) are sums of — more
easily accessible — structure constants of L(A).

In fact, we will define an “orbit” Lie algebra L/G in chapter 2 for an
appropriate action of a group G on a Lie algebra L and show in chapter 4 that the
action of the fundamental group G of A on L(A) is appropriate. Our aim is then:

THEOREM. Let A be a locally representation finite C-category with universal
cover A and fundamental group G. Then L(A) is isomorphic to L(A)/G.

1.3. As a first application, let us prove again that for A = C[T']/(T™) the bracket
on L(A) is trivial [Rie]. The universal cover 4 of A is given by the quiver
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having Z as its vertex set and containing an arrow o;:i—i+1 for ieZ,
and the ideal of relations generated by all paths of length n. The funda-
mental group G =Z is generated by the shift i — i+ 1. For .# we choose the
set

{G,r):ieZ 1<r<n},
where (i, r) is “the indecomposable with top i of length r” defined by

C fori<j<i+r,
0 otherwise,

@ n(J) = {

and

ide fori<j<i+r-—1,
0 otherwise.

(6, () = {

It is easy to see that

1 point fori=j+s k=j,t=r+s,
(%) otherwise,

Va((i,n), (J, 5); (k, 1) = {

for any triple of indecomposables. Therefore

WVal(j+50,049;(hr+9))=1=x(Vi((i +r,9),GEr);(r+5)

give the only non-trivial contributions to the bracket [vz,vg] with 4 =(G, r),

B=(j,s).
As a second example, consider the quotient A of the algebra of the quiver
.5 *)B by the ideal generated by f°. In this case the quiver of A is:

B_, Bo B

—1 — 0 — 1 — 2
RIS PR M
-V 0’ I 2

and the ideal of relations is generated by {B;, ;. .8;:i € Z}. The fundamental
group is generated by the shift again. Let us consider the indecomposables 4, B, X
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given by
1 forx=1,2,3
d' A - b 9 b
m A(x) {0 otherwise,
1 forx=0,1,2,1,2
. B = b bl b4 b b
dim B(x) {O otherwise,
2 forx=1,2,
dim X(x) =<1 forx=0,3,1,2,
0 otherwise,
and

X6 =(y). x60=(y 1), x@=0D,

1
X() = ((1’) L X(@) = (1) .

The variety of embeddings of 4 into X is 6-dimensional, and possible quotients
are quite hard to determine. Over A, however, it is easy to see that the only way to
embed A4 into a translate of X with quotient a translate of B is to choose a map
f: A - X of the form

A A
f(l)—(u)’ f(2)—<”), S =u

with u # 0. The quotient is isomorphic to B if and only if 4 #0, u. Hence

Va4, B; X)) = —1.

2. The “‘orbit” Lie algebra

2.1. Let L be a Z-Lie algebra which is generated (as a Z-module) by some basis
2.

L=@® z».

be®
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Suppose the group G acts on L by Lie algebra automorphisms in such a way that
it permutes the elements of # and that the following condition is satisfied:

Vb,ce B : #{geG:[b,g(c)] #0} < 0. (*)

This condition is obviously empty in case G is finite. The main example to have in
mind here, however, is the fundamental group G of a locally representation finite
C-category A acting on ind A for a G-stable set of representatives, and this is a free
group [BG].

Set

Z=b=G -b:beRB}

and
L/G= @ Zb.
be R
Let
7:L-L/G

be the Z-linear map which takes b to b for b € &.
The following result is easy to prove:

PROPOSITION. The bracket

[b,c1= ) [b,g(0), b,ce,

geCG

defines a Lie algebra structure on L/G.
Note that the map ? is not a Lie algebra homomorphism in general.

2.2. Comparing the structure constants of L/G with those of L, we find: if

b= Y vi.d

de R

and

b,a= Y 7.4,

de d
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In case the action of G on 4% is free as it is in the case we are interested in this
formula becomes

d - h(d
VE:= ), i,
gheG

2.3. Let G be a group acting on the Lie algebra

L=@® zb

beR

in such a way that the hypotheses of 2.1 are satisfied. If H <| G is a normal
subgroup, they are satisfied for the action of H on L as well, so that we can
consider the Lie algebra

LIH= @ zb
beR
with
#={b=Hb:beA}.
Extending the action given by
2(6) =g(b)

of G = G/H on £ by Z-linearity, we obtain an action of G on L/H. It is easy to see
that it satisfies again the hypotheses of 2.1 and that the following proposition holds:

PROPOSITIOI\E. The Z-linear map L|/G —(L/H)/(G/H) sending the basis ele-
ment Gb to (G/H)b is an isomorphism of Lie algebras.
3. Locally representation finite categories and coverings

The references for this chapter are [BG], [Ga].

3.1. We begin by recalling some definitions:
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A C-category A is locally bounded if the following conditions are satisfied:
(1) A(x, x) is a local C-algebra for all objects x of A.

(i1) Distinct objects of A are not isomorphic.

(iit) For all objects x we have

Y dimg A(x, y) < o,
y

Y. dim¢ A(y, x) < o,
y

where y ranges over the objects of A.
A finite dimensional A-left module is a covariant functor B : A —-mod C
with

Y dim¢ B(x) < oo,

where x ranges over the objects of A.

We denote by mod A the category of finite dimensional A-modules and by ind A
the full subcategory whose objects are a fixed set # of representatives for the
1somorphism classes of indecomposables in mod A.

A locally bounded C-category A is locally representation finite if, for every
object x of A, the number of indecomposables B in ¥ with B(x) #0 is
finite.

C-algebras A which are sober, i.e. with A/rad 4 SCx- e x C, correspond
to locally bounded C-categories with finitely many objects and representation
finite C-algebras to locally representation finite C-categories with finitely many
objects.

3.2. Let A be the universal cover of A, and choose a set £ of representatives
for the indecomposable A-modules which is stable under the action of the funda-
mental group G of A on mod A. Then G acts on the full subcategory ind A of
mod A whose objects are the elements of .# by C-linear automorphisms. Moreover,
we have

g(B)#B  forevery Bin £ and every g #1in G
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and
#{g € G : Homyj (4, g(B)) # 0} < for every pair 4, B in £,

Under these circumstances ind A has a quotient modulo G: its objects are the
G-orbits of objects in £, and the morphisms from the orbit of 4 to the orbit of B
are families ( f, ). nc0>

Jen : 8(A4) = h(B)
with
I( fg,h) =f1g.1h

for all g, A,/ in G.

Similarly, there exists a quotient A/G, which is locally representation finite. The
category (ind A)/G is isomorphic to ind (A/G), which is in turn isomorphic to the
so called mesh category C(I",) associated with the Auslander-Reiten quiver of A. So
A/G is the “standard form” of A. But by [BGRS] non-standard algebras can exist
only over ground fields of characteristic 2. Thus A/G is isomorphic to A and
(ind A)/G to ind A. We fix the set .# of G-orbits in £ as a set of representatives of
the isomorphism classes of indecomposable A-modules and identify ind A with

(ind A)/G.
3.3. The C-linear functor
F:ind A - (ind A)/G =ind A
defined by
F(B)=G-B
for B in £ and by associating to f: 4 - B, A, B € #, the family
Ff=(fgn)y 8&heG
with

, _J&(f) g=nh
f&"‘{o g#h
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is a covering functor. This means that, for all 4, B in £, F induces C-linear
isomorphisms

@ Hom; (4, g(B)) » Hom,, (FA, FB),

geCG

@ Homj (g(A4), B) » Hom, (FA, FB).

geG
We will need also that F induces C-linear isomorphisms:

@ Ext} (4, g(B)) > Ext!, (FA, FB),

geqCG

@ Exty(g(4), B) > Ext), (FA, FB),

geqCG

for all 4, B in £. This is an easy consequence of the isomorphisms for Hom-sets
and the fact that F is an exact functor preserving projectivity.

3.4. If H < G is a normal subgroup, it is the fundamental group of A/H, and

again we identify (ind A)/H with ind (A/H) and note this quotient simply ind A/H.
There is a commutative triangle of covering functors:

ind A

ﬁ
v

indA/G = ind A ,
where F sends HB to GB for B in .# and a morphism

(Sriny s 1 (A) > B (B iy 1
to

(fg18,:81(A) 2 8:(B))g 55¢6
with

poo = {Eferenn) if g'g € H,
16270 if not.
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As F is a covering functor, F induces C-linear isomorphisms:

@ Exty, (F'A,Z(F'B)) > Extl, (FA, FB),

g€ G/H

@ Extly, (§(F A), F'B) > Ext), (FA, FB),

g€ G/H

for any two elements 4, B in .%.

4. The theorem — and its proof in some cases

4.1. Let A be a locally representation finite C-category with universal cover A
and fundamental group G. Fix a G-stable set £ of representatives for the isomor-
phism classes of indecomposable A-modules and identify ind A with ind 4/G.

Extend the action of G on £ to a Z-linear action of G on L(A). Note that, for
A,B,X € # and g e G, the varieties V3(4, B; X) and Vz(g(A), g(B); g(X)) are
isomorphic and hence homeomorphic. Therefore G acts by Lie algebra automor-
phisms.

Moreover, the sets

{h € G : Homy (4, h(X)) # 0}
and, for any he G
{g € G : Hom; (h(X), g(B)) # 0}

are finite for any A4, B, X by 3.2. This implies that the action of G on L(A) satisfies
the condition (%) of 2.1 as well.

Now the statement of our theorem makes sense at least. In fact, both Lie
algebras L(A) and L(A)/G have as a basis the set of G-orbits in .£. The isomor-
phism is the identity on this basis.

4.2. We recall from [Rie] that there is another way to compute the structure

constants of L(A), which is more adapted to coverings: let 4, B and X be inde-
composable A-modules. Then the following Euler-Poincaré characteristics coincide:

AV (B, 4; X)) = y(Ext}; (4, B)x [C*).

The variety on the left hand side has been introduced in 1.1. As to the right hand
side, Extl (4, B), is the algebraic subset of equivalence classes of short exact
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sequences in the C-vector space Ext), (4, B) whose middle term is isomorphic to X.
It is stable under the action of C* by homotheties on Ext!, (4, B).

4.3. PROPOSITION. Let A be a locally representation finite C-category with
universal cover A and fundamental group G, and suppose that the set

{g € G : Ext) (4, g(B)) #0}

has at most one element for any pair A, B in F. Then L(A) is isomorphic to
L(A)/G.

Proof. Let
F:ind A »ind A/G =ind 4

be the orbit covering functor. Choose 4 and B in £ in such a way that
Ext) (FA, FB) #0.

According to our hypothesis and 3.3 there is a unique element g € G such that
Ext}; (4, g(B)) #0, and F induces a C-linear isomorphism

Ext% (4, g(B)) — Extl, (FA, FB).

Clearly the inverse image of Ext!, (FA, FB), under this isomorphism is the disjoint
union

O Extj (4, 2(B))x)

heG

for any X in £.
As the characteristic (%) of a finite disjoint union % = () €, of constructible
subsets of a variery € is the sum X x(%;), we conclude that

x(Exty (FA, FB)ry /C*) = ¥ x(Extj (4, g(B))acx)/C*)

heG

= Y x(Ext;(4, g(B))x)/C*).

gheG
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Remarks.

(i) As A is simply connected, there is in fact at most one heG with
Extj (4, g(B))nx) #0, as indecomposables are determined by their composition
factors [Ha].

(i1) Note also that in case

{g € G : Ext}, (4, g(B)) #0}

contains at most one element for just a pair 4, B in %, it is still true that

X(Extl(FA, FB)x /C*) = Y. x(Extj (4, g(B)x)/C¥).

gheG

5. C*-actions

We fix a locally representation finite C-category A with universal cover A and
fundamental group G as well as a G-stable set .# of representatives for the
isomorphism classes of indecomposable A-modules. We denote by F the orbit
covering functor

F:ind A -»ind /G =ind 4.
5.1. Any map 4 : G — Z gives rise to a C-linear C*-action on the C-vector space

@ Ext; (4, g(B))

geCG

by

t- (ag)ge G = (tl(g)gg)ge G

for teC* ¢, € Ext}; (4, g(B)) and for any A4, B € £. A line through the origin in
this vector space is stable under C* if and only if there exists an integer n such that
the line lies in

@ Ext; (4, g(B)).

geG
Ag)=n

Using the C-isomorphism

@ Ext; (4, g(B)) - Extl, (FA, FB),

g€eqCG
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induced by F (see 3.3) we obtain a C*-action on
Ext! (FA, FB)/C*,

whose fixed points are the disjoint union

0 [F[ @ Ext (A,g(B))/C*N

neZ geG
Ag)=n

Recall that the Euler-Poincaré characteristic of a variety Z admitting an algebraic
action of C* equals the characteristic of the fixed point set Z¢".

Therefore our theorem would be proved if we could exhibit a map 4:G—>Z
satisfying:

(i) the middle term of a short exact sequence in Ext! (¥4, FB) changes only up
to isomorphism under the C*-action defined by A.
(ii) for each integer n there is at most one g € G with A(g) =n.

Indeed, such a A would give rise to a C*-action stabilizing Extl, (FA, FB)p, for
any X € £ by (i), and we could write

A(Ext) (FA, FB)rx /C*) = y((Ext} (FA, FB)rx /C*)®")

=X Uz hUG Eth; (4, gn(B))h(X) /C*
g, : A(gn) =n

= Y x(Ext; (4, g(B)x)/C*).

g.heG

Here we used again that the inverse image of Ext) (FA, FB)gy in Ext} (4, g,(B)) is
the disjoint union

* 1
hQG Ext; (4, gn(B))h(X)'

Unfortunately, such A’s need not exist. We will concentrate first on the
condition (i), which is indispensable.

5.2. For A, B, U €  we consider the pull-back map

n : ExtY, (FA, FB) x Hom , (FU, FA) — Ext!, (FU, FB)
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which associates to an exact sequence
E:0FB>Z—->FA-0

with Z in mod A and a homomorphism f: FB — FU the pull-back sequence (e, f )
in Ext} (FU, FB):

I3 : 0 - FB - Z -5 FA4 - 0

| 1 1r
ne,f) : 0 - FB —» Z' - FU - O

By Auslander’s criterion [AR] two A-modules Z, and Z, are isomorphic if and only
if

dimes Hom, (FU, Z,) = dim¢c Hom, (FU, Z,)
for all indecomposables FU over A. Thus two exact sequences

&g : 0 - FB » Z, -» FA - 0
& 0 - FB - Z, - FA - 0

have isomorphic middle terms if and only if
dim¢ ker 7n(g,, 7) = dim¢ ker n(e,, ?)

for the two maps =n(g;, ?) and =n(e,, ?) from Hom , (FU, FA) to Ext), (FU, FB) and all
indecomposables FU.
Let 4 :G —Z be a map and consider the C*-action on

@ Hom; (/(U), 4)

le G

given by
t (fhee =0 fcos
for B, U in #. The C-isomorphism
@ Homj; (I(U), 4) » Hom,, (FU, FA)

le G

allows us to transfer this action of C* to Hom, (FU, FA).
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LEMMA. Let A : G — Z be a group homomorphism. Then the map
n : Ext) (FA, FB) x Hom, (FU, FA) - Ext! (FU, FB)

is C*-equivariant, where on the left C* acts diagonally.

Proof. 1t suffices to check that, for g,/ in G, the pull-back map

n : Extj (4, g(B)) x Homy (((U), A) - Ext;; (I(U), g(B))
has the property

(14, t ~HOf)) = 177 (e, f)),
for t e C*. This is clear, as A(/ ~'g) = A(g) — A(]).

COROLLARY. If A:G—-Z is a group homomorphism, the C*-action
on JEXt}1 (FA, FB) associated with A stabilizes Ext! (FA, FB)y, for all A, B, X

in #.

Thus our first condition is satisfied. But it is clear that a group homomorphism
will rarely satisfy the second one.

5.3. PROPOSITION. Let 1 :G —>Z be a group homomorphism. Then L(A) is
isomorphic to L(A /ker 1) /(G /ker A).

COROLLARY. If the fundamental group G is Z, L(A) is isomorphic to L(A)/G.

Proof of the proposition. We have to show that, for any 4, B, X in £,

X(Extl (FA, FB)ey /C¥) = Y x(Extiger s (F'A, (F'B))zsx, /C*)

g.he G/ker 4

where F’:ind A —»ind A/ker A is the orbit functor. This follows easily from the
formula for fixed points in 5.1, as the inverse image of Ext) (FA, FB)y in
EXter 1 (F'A, §(F'B)) is the disjoint union

U Extige: (F'4, 3(F B))is s

h e G/ker A
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6. The proof
6.1. The last ingredient for our proof is the following:

PROPOSITION. L(A) is isomorphic to L(A/G’)/(G|G"), where G’ is the commu-
tator subgroup of G.

Proof. As G is free [BG], the quotient G/G’ is free abelian. Let p : G - G/G’ be
the projection.
Fix 4 and B in £, and let S be the finite subset

S ={g € G : Ext}; (4, g(B)) # 0}

of G. As G/G’ is free abelian, there exists a group homomorphism 1:G/G'»Z
whose restriction to p(S) is injective. Choose for A :G —Z the composition
Aop.

The following picture explains the notations we choose for orbit functors related
to the groups G’ < ker 4 < G:

ind A
Y
ind /G’
F FII
|7
ind A/ ker A
\ 4 o
/
ind A

We denote the residue class of an element g in G modulo G’ by g and modulo
ker A by g.
We know from 5.3 that, for any X in %,

X(EXty (FA, FB)x [C*) = Y x(EXtjper s (F"A, §(F"B))ieox, /C*).

&.he Glker i
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___Applying 3.4 to A/ker A, G’ = ker 1 and the elements A, g(B) e £, we find that
F" induces an isomorphism

D Extio (FA,TF (gB)) > Extiper, (F'4, F'(B))
We claim that, by our choice of A, there is a unique / € ker /G’ for which

Extye (F'A, [F'(gB))) #0
provided that

Extiyer s (F'A4, F"(gB)) #0.
Indeed, for / € ker A, the space

Extyc (F'A, F'(IgB))
is isomorphic to

@ Extj(4, g'lgB).
gl

If now for /,, [, € ker A there exists g7, g5 € G’ such that

Ext;(4,g;lgB) #0, i=1,2,

the elements g;/,g both belong to S, and their residue class modulo ker 4 is g. Thus
their classes modulo G’ coincide, and therefore [, = L.
Suppose now that

EXtijxer : (F"A, F'(gB)) #0,
and fix / in ker A with

Extye (F'A, F'(IgB)) # 0.
Then F” induces an isomorphism

Extjy (F'A, F'(IgB)) —» Exte. ; (F"A, F"(gB)).
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The inverse image of
1 " "
EXt}f/kerz (F'A, F (gB))F”(hX)

under this isomorphism is the disjoint union

U Ext}/G, (F'A, F'(IgB))irnxy-

k e ker A/G”

Summing up we find

X(Exty (FA, FB)py /C¥) = ¥ x(Extyg (F'A4, &F B))irx,/C*).

gheGIG
6.2. The higher commutator subgroups G® of G, i € N, are defined inductively by
G+ =[GV, GY.

They are normal subgroups of G. As a consequence of Magnus’ theorem on the lower
central series, they intersect in the neutral element of G, since G is free.

COROLLARY. For any i € N, L(A) is isomorphic to L(A]G®)/(G|G®).
Proof. Indeed, proposition 6.1 applied to A/G® tells us that

L(A/GY) ;L(/‘T/G(H D) (GD)GE+ V)
for all i. We conclude by induction applying 2.3.

6.3. PROPOSITION. If A has finitely many objects there exists a natural number
such that L(A/G®) is isomorphic to L(A)|G®.

Proof. In view of proposition 4.3 (applied to A/G?) we only need to find € N
such that

{g € G : Ext} (4, g(B)) # 0}

has at most one element for all 4, B e #. For A4, B € £ we set
S(4, B) = {g € G : Ext; (4, g(B)) # 0}

and

T(4,B) ={g.85"': 81,8, € S(4, B)}.
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Clearly we have

S(h(A), I(B)) = hS(4, B)I !
and

T(h(A), I(B)) = hT(A, B)h .

Since A has finitely many objects, .# contains only finitely many G-orbits, and
therefore the set

T= ) TW,B)

ABe £

is a finite union of conjugacy classes in G.
Use now that the intersection (), G is reduced to {1}. Fix an integer ¢ with

TnG®={1}.
Then the set
S(4, B) "G = {g € G : Ext; (4, g(B)) # 0}
contains at most one element for all 4, B € #, and our proof is complete.

6.4. In case A is finite the preceding proposition proves our theorem. Indeed, we
have a chain of isomorphisms

L(4) > LA |G (G/G®) > (LA GD) (GG®) » LA [G.

In general, there is no reason why proposition 6.3 should hold. But “¢ exists
locally”, and this suffices to prove our theorem: for 4, B € .# there exists ¢t = t(4, B)
such that

T(4, B)nG® = {1},

as T(A, B) is finite.
Again this implies that

{g € G : Extj (4, g(B)) # 0}
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contains at most one element. By the second remark in 4.2 the Lie bracket of v5) . 4
with vg . 5 is “the same” in L(A/G®) as in L(A)/G®. We finish the proof as in case
A is finite, comparing the brackets of v;. , and vs. z in L(A), L(A/G®)/(G/G®),
(L(D) /G (G/G®) and L(A)/G.
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