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Isometric immersions of Riemannian products revisited

J. L. BARBOSA, M. DAJCZER AND R. TOJEIRO

Let M"= M%7 x M5 be a Riemannian product of two connected complete
Riemannian manifolds. Assume dim M7 =n; 22, 1 <i <2, and that no M, either
is flat everywhere or contains an “Euclidean strip”, that is, an open submanifold
which is isometric to the Riemannian product 7 x R"% !, where from now on / c R
denotes an open interval. Under these assumptions and based on earlier work due
to Moore ([Mo]), it was proved in a beautiful paper by Alexander and Maltz
([A-M]) that any isometric immersion f: M”"—R"*? is a Riemannian product of
hypersurface immersions. This means that there exist an orthogonal factorization
R**?2=R"+! x R2*! and isometric immersions f;: M7 -R"%*+! 1 <i <2, such
that f(x,, x,) = (fi(x,), f2(x,)). This outstanding global theorem proved for any
number of factors whenever the codimension equals that number, has been for a
long time (cf. [D-G,]) the only known global rigidity result for codimension higher
than one (cf. [Sa,], [D-G,;]).

The main goal of this paper is to provide an understanding of the possible cases
for which f: M"= M7 x M2 —R"*2 may fail to be a Riemannian product of
hypersurface immersions. An explicit example of this situation was given in
([A-M])). In fact, with no further assumptions on the M,’s than completeness, we are
able to prove the following result:

THEOREM 1. Let f: M"=M" x M%32— R"*2 n; 2 2, be an isometric immer-
sion of a complete connected Riemannian manifold where no factor is everywhere flat.
Then there is a dense open subset each of whose points lies in a product neighborhood
U=U, x U, with U c M} open, such that f,:U, x Uy>R"*? is one of the
Jfollowing types:

(i) fy is a Riemannian product of immersions.
(i) Each U, is isometric to I, x R" =, 1 <i <2, and f,, = g x Id, where g: I, x
I, —»R* is an isometric immersion and Id: R"~2—R"~2 is the identity map.
(iii) Only one U, is isometric to I, xR%~' and f, =f x Id:(U; xI) x
R% ' R"*2 i #j, where Id:R"~'->RY ™! s the identity map and
f U x L, ->R"*3 s a composition f=hog of isometric immersions
g:UxIL->V,VcR"*2gpen, and h: V >R *3,
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For types (i) we either have a product of hypersurfaces or one of the factors is
totally geodesic. Types (ii) and (iii) are not disjoint since the immersions g in (ii)
may in fact be a composition. A complete local classification of flat surfaces in R*
which are nowhere compositions has been recently provided in [C-D]. The example
in [A—M] attaches immersions of types (i) and (iii).

We.also study the case where one of the factors of M” is everywhere flat. In this
situation we have the result below for whose statement we first have to establish
some definitions.

Given an isometric immersion f: M" —» R", we denote by N/(x) the first normal
space of f at xe M" given by

N{(x) =span{a,(X, Y):VX, Y e T, M},

where o,: T,M x T,M — T ,M* stands for the vector valued second fundamental
form. We say that f is 1-regular if the subspaces N/ (x) form a subbundle of the
normal bundle.

An isometric immersion f: N**™ > R" is called an m-cylinder whenever there
exists a Riemannian manifold M" such that N*+™ R" and f have orthogonal
factorizations N**™m=M"x R", R¥=R"~" x R™ and f=f x Id, where f: M" >
RY~™ is an isometric immersion and Id: R™ —R™ is the identity map.

THEOREM 2. Let M" be a complete connected Riemannian manifold of nonneg-
ative Ricci curvature without flat points and let f : M" x R™ ->R"*™+2 be a 1-regular
isometric immersion. Then f is either an m-cylinder or it is an (im — 1)-cylinder,

f""'fx Id:(M*"xR) x R~ 1, Rr+m+2

and there exist a flat Riemannian manifold N3*? and isometric g : M" x R— N} *?
and h : N3*2 > R"*3 such that f=h o g is a composition.

Furthermore, when M" is simply connected we can take N3 ? in the latter case to
be an open subset of R**? and, then g = g x Id, where Id: R — R is the identity map
and § : M">R"*! is an embedding whose image is a convex hypersurface.

The above result is false without the assumption of 1-regularity. Counterexam-
ples can easily be constructed following the procedure given by Henke ([He]). For
m = 1, a weaker result but without our 1-regularity assumption has been given by
Noronha ([No]).

The paper is organized as follows. In §1 we review from [Mo] and [A-M] basic
facts on isometric immersions of Riemannian products. In §2 we prove a local result
on isometric immersions f: M"~! x I - R"*2 which is a crucial step in the proof of
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Theorem 1 and also of independent interest. Finally, in §3 we present the proofs of
our main results where we make strong use of the fine arguments in [A-M].

§1. Preliminaries

Let f: M">R"** be an isometric immersion. Recall that the relative nullity
space of f at x e M" is defined by

4, ={XeT M:0,(X,Y)=0,VY e T M}.

Then, by the Gauss equation, 4, is contained in the nullity space of f at xe M given
by

N.={XeT.M:RX,Y)=0,YY e T.M},

where R denotes the curvature tensor of M".
A classical inequality due to Chern and Kuiper says that the index of nullity
u(x) =dim N, and the index of relative nullity v(x) = dim 4, verify

0=<u(x) —v(x) <k.

Let M"= M7 x M52, n; 22, be a Riemannian product. The following sharp-
ened version of Chern-Kuiper’s inequality derived in [A-M] holds.

LEMMA 3. Let f: M"= M" x M3 —R"*2 be an isometric immersion. At any
point x =(x,, x,) € M", we have

0 < u(x) —v(x) <k’'(x)
where k’(x) is the number of factors M?i flat at x,.

Denote by n; the orthogonal projection of T. M onto T, M, and by M7(x) the
copy of M7 through x = (x,, x,) € M”". The relative nullity and the nullity spaces of

fl Mpi At X will be denoted by 4, and N,, respectively. Then, it is not difficult to
show that N, =N, nn (T M), A,, =4, nn,(T,M) and

4,, D4, c A, =m(4,) ®ny(4,) =N, =n,;(N,) Dn,(N,) =N, ®N,,

with equality holding at the first inclusion if and only if it holds at the second. A
simple example is provided in [A-M] where equality does not hold. If it does we say
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as in [A-M] that 4, conforms to the product structure of M". A first and fundamen-
tal step in the proof of the main theorem in [A-M] was to show that this is always
the case if the M7’s are complete, unless one of them is everywhere flat.

LEMMA 4. Let f: M"=M?" x M2 -R"*? be an isometric immersion of a
complete connected Riemannian manifold. Then the relative nullity spaces of f
conform to the product structure of M" unless one of the factors is everywhere flat.

Next, we state a more basic lemma due to Moore ([Mo]). Following [A-M] we
will say that condition a,(X,, X,) = 0 holds at x € M™" if this equation holds for any
X, eT, M, X,eT,,M,. Also, given an open subset S of M;(x), a point y is said
to be visible along S from x if there is a geodesic y satisfying y(0) = x,
P(b) =y, y(s) € S and y'(s) € 4, for 0 <5 <b.

LEMMA 5. For an isometric immersion f: M" = M7 x M3 —R"* 2 the follow-
ing assertions are true:
(1) If ar(X,, X;) =0 holds everywhere on M", then f is a product of immersions.
(ii) If M} is not flat at x;, 1 <i <2, then a,(X,, X,;) =0 holds at x = (x;, x,).
(iii) Let S be an open subset of M7'(x) on which the spaces A,, have constant
dimension. If a point where o,(X,, X;) =0 holds is visible along S from x,
then a,(X,, X,) =0 holds at x also.

We conclude this section with a well known characterization of complete
Euclidean cylinders due to Hartman ([Ha]). Recall that in a Riemannian manifold
a line is a complete goedesic such that every subarc is minimizing.

LEMMA 6. Let f: M"— R" be an isometric immersion of a connected complete
Riemannian manifold with nonnegative Ricci curvature such that f(M") contains m
linearly independent lines through one point. Then [ is an m-cylinder.

§2. The local result

THEOREM 7. Let M"~! be a connected Riemannian manifold without flat
points and let f: N"=M""'xI—-R"*2 be an isometric immersion such that
ar(X;, X;) =0 fails everywhere. Then there exist a flat Riemannian manifold Nj+'
and isometric immersions g : N*—> N3+ and h : N3*'>R"*2 such that f=h o g is
a composition. Furthermore, N3 ' may be taken to be an open subset of R**' when
[ is an embedding.
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In what follows Z will always denote a unit vector field tangent to 1.

LEMMA 8. Assume that M"~' is nowhere flat and that f: N"= M"""' x
I > R"* 2 verifies a,(Z, Z) # 0 everywhere. Then there exists a smooth unitary normal
vector field & such that everywhere rank A, =1, Im A ¢ TM and A,Z =0 for any
section n € L of the smooth normal line bundle with fibers orthogonal to ¢.

Proof. Define £ e TN* by o,(Z,Z) =ué and let n € L be a smooth unitary
local section. Since {A4,Z,Z) =0, there exist X,,...,X,_,€TM such that
X, ,,...,X,,Z is an orthonormal frame of TN with respect to which
A, Z =vX,,A;Z = pZ + 1, X, + A, X,, where u # 0 by assumption. We have:

_ 0_ . 0_
0 .

—_ cl] — a,’j 0
4r = ol A
Y A
(0 0 - 0 y 0 0 - 0 A A o

From {R(X;, Z)Z, X;» = 0 and the Gauss equations, we get

pa; =<A,Z, X;{A,Z, X; > +A:Z, X; >A: Z, X; ).
Thus

a;=0 fori=3, pa,=y*+4}, panp=MAi, panp=»235. (N
The Gauss equations and {R(X;, Z)X,, X, > =0 yield

Yeu = C1i<{A,2Z, Xy ) + May —a,;{A4:Z, X, ) =0.
Hence,

Ve + Aap — Ayay;, =0, yeu + Aaz =0 for k =2 3.
Using (1), we get

Ye12 = Aoty — Ay = Ayy?/p

VCa = Ayl — A1y =0
yeu =0 for k = 3.
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We claim that y = 0. Otherwise, we conclude from (2) that ¢, = 4,y/u, ¢, =0
and ¢, =0 for k = 3. Therefore,

0 e 0 O PR 0
A,= 0 hylp 0], 4;= A3l M p Ay
hylw ey Mhiafp 2+ /w4
I o --- 0 v 0_ i 0o --- Ay A o
3)

Thus we have for the sectional curvatures

A_2 2 12 2 12 ,1222
KX, X,) = — ;’2’ +—”—2(V : ‘)— 27=0, KX, X)=0, 25ijsn,

which contradicts our assumption that M”~! is nowhere flat and proves our claim.
Notice that A, is given by (3) regardless of y being zero or not. Hence rank 4, =1
and this concludes the proof. O

Proof of Theorem 7. In what follows we represent by ¥ the Riemannian
connection in N” and by F+ the induced connection in the normal bundle. By
assumption, at any (x, f) € N” there exists X € T, M for which a,(X, Z) # 0. On the
other hand, the sectional curvature K(X, Z) vanishes. We conclude from the Gauss
equation that a,(Z, Z) # 0 everywhere. In particular, Lemma 8 applies.

Define yy : TN ->R by y(W) = (Vyn, &) where n € L is taken unitary. We
claim that

ker A, cker y. (4

Let X be any vector field tangent to M”~!. Since 4,Z=V,Z =V,X =0, the
Codazzi equation for 4,, X and Z reduces to

VoA, X = Apy, X — ApynZ = W(Z)A: X —Y(X)A, Z. (5)

Denote by Y a unit vector field spanning the eigenbundle of A4, corresponding to
the nonzero principal curvature A. Notice that the right hand side of the above
equation is a multiple of Y. On the other hand, «,(Z, Z) #0 implies that
{(Z,Y)+#0. From this and

VzA,X,Z>=Z{A,X,Z)—-A,X,V,Z) =0,
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we conclude that

V,A4,X =0. (6)
Hence, taking the inner product of (5) with Y, we get

WX, YYZ —(Z,Y)>X)=0. @)

Since <(Z, Y) #0, the linear map S:{Z}+ —>{Y}* given by S(X) =<{X, Y>Z —
{(Z,Y)X has trivial kernel. Therefore it maps {Z}* onto {Y}* and the claim
follows from (7).

To conclude the proof we make use of arguments from [D-T]. Let n: T —» N"
denote the line bundle whose fibers are contained in the plane bundle span{Y}® L
and are everywhere orthogonal to V,¢& = —AY + y(Y)n. Here V stands for the
connection in the ambient space. Hence, the fibers of T given by span
{Y(Y)Y + An} are nowhere tangent to N". Now define a hypersurface F: T - R"*?2
by

F@) =f(x) +9, x = n(d).

Then F is an immersion when restricted to a tubular neighborhood N3*! of the
zero section N” of T. Moreover, if f is an embedding, then N;*! can be taken to
be an open subset of R**! embedded in R”*2. For local sections X € TN and
u € T, we have by condition (4)

(Vxs &> = =, Vx> =ty A X — (X)) = <X, Y, AY —y(Y)n» = 0.
Therefore, the Gauss map of F|y, is &. Since £ only depends on one parameter, the

metric induced by F on Nj*! is flat. O

§3. The proofs of the main results
Proof of Theorem 1: Let X denote the open subset of M" on which condition

ar(X,, X,) =0 fails. Then fis a product of immersions by (i) of Lemma 5 on any
connected open subset U = U; x Uyc M"— X, U; < M. Now set

Vo={x € X: M} is flat at x; for i =1, 2}
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and, for i =1, 2,
V:={x e X: M} is not flat at x; and M} is flat at x; for j # 1}.

Then X = V,u V, UV, by part (ii) of Lemma 5.

We claim that v,=n,— 1 on PouV,,i+#j.

By Lemmas 3 and 4, the sum of the codimensions of the 4,’sin the N;’sat x € X
is k’(x) =1, 2. Since v,(x) =n, — 1, 1 < h <2, because a,(X;, X,) =0 fails at x, our
claim follows.

We show that the V;’s are open subsets of M”. Given xe V;, let W be a
neighborhood of x in X where v;(y) <v;(x) for all y =(y,, y,) € W. Hence W c V;
since M7 is not flat at y,.

Now let xo € V; and set S = M}i(x,) N V,;,j #1i. Given x € S consider a geodesic
y tangent to 4; with y(0) = x. Assume that ([0, b)) = V; for some b € R. By part
(iii) of Lemma 5, we have y(b) € X. On the other hand, since the M;-component of
7 is constant, we conclude that y remains in V;. Therefore, the leaves of 4; in V; are
complete. A similar argument shows that the leaves of 4, and 4, in V,=int ¥,
must also be complete. From the argument in ([A-M], p. 53) it follows that S is
isometric to I(x,) x R™% ~!. The same conclusion can easily be reached from Lemma
1.1 in [Ha] whose proof only uses completeness of the leaves of the relative nullity
foliation.

We claim that the spaces R% ~! are parallel along any component of V; with
i =1, 2. As in the proof of Lemma 8, let Z denote a unit vector field tangent to the
intervals and ¢ a unit normal vector field parallel to a,(Z, Z). All we have to show
is that V,Z =0 for all X € TM,. From the Codazzi equation for 4., X and Z, we
have for any W € 4; that

<VxA§Z - VZA¢X, W> =O,

Set A;Z = A, X, + uZ, where X, is unitary and orthogonal to Z. Since V ,Z =0, we
get

(VA X, Wy = —(AX, Vo Wy = (A X, ZXZ, VW) =0.
Hence,
<VfoZ, W) = —<A¢Z, wa> = }.1 <X], wa> + ;l(Z, wa> = O.

Because (X,,V, W)= —(VyX,,W)=0 and u+#0, we conclude that
{W,VyZ)» =0 which proves our claim.
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From the claim and the above, every point of V; has a neighborhood of type
U x I xR%~', where U is an open subset of M7, and f splits as a product f x Id
with f: U x I - R" *3 an isometric embedding. We conclude from Theorem 7 that
fis as in (iii) of the statement and the remainder of the proof is straightfor-
ward. O

Proof of Theorem 2: The hypothesis of f being 1-regular implies that rank N/ is
constant and equal to either 1 or 2. Assume first that rank N} = 1. By assumption
rank A; > 2 for any nonzero é € N4. It is now a standard result (see [Sp], Lemma
28 of chapter 12) that the immersion reduces codimension to one. It follows easily
from Lemma 3 and 6 (cf. [Ma]) that f is m-cylindrical.

Now assume that rank N = 2. We have to consider two cases:

Case 1: There exists x € M" such that a,(Z, Z)=0 for all Z,Z tangent to
{x} x R™ and all y e R”. Then, the image of {x} x R™ is totally geodesic in the
Euclidean space and we conclude from Lemma 6 that f is m-cylindrical.

Case 2.: 1t follows from Lemmas 3 and 6 that f is cylindrical with respect to a
hyperplane in R™. Therefore, it suffices to argue for m = 1. In this case we are
assuming that for all x € M" there exists z € R such that at (x,7) we have
as(Z,Z) #0 for Z tangent to R. Fix x and consider the open subset of the line
{x} x R where a,(Z, Z) #0. By Lemma 8 there exist orthonormal vector fields &
and n along the subset such that 4,Z =0 and rank 4, = 1. We show that the subset
is the entire line. If not, let 7 represent a boundary point. We have easily from (6)
that A, is parallel along the open subset. Thus 4, extends to the point (x, 7). We
easily conclude that at this point dim N = 1, which is a contradiction and proves
our claim.

We want to obtain here the same conclusion of Theorem 7 although we do not
have the same hypothesis. Nevertheless, we argue that the above condition implies
condition (4) and then the remainder of the proof there applies to our case. In fact,
where a-(X, Z) = 0 fails the proof of (4) is exactly the one of Theorem 7. At the
other points, the conclusion is trivial using (i) of Lemma 5. Therefore, there exist
a flat Riemannian manifold N2+*2? and isometric immersions g : M” x R— N3 +2
and h: N2*2>R"*3 such that f=hog.

Assume now that M" is simply connected. Then also N3 *2 is simply connected.
Because it is flat it can be isometrically immersed in Euclidean space R"*2. The
second fundamental form of g, considered into R"*2 is A,. Since 4,Z =0, it
follows from Lemma 6 that g =g x Id, where Id: R — R is the identity map and
g : M"->R"*!is an isometric immersion whose image is a convex hypersurface by
a well-known theorem of Sacksteder ([Sa,]). Since N4*? is just a tubular neighbor-
hood of g(M") then it can be chosen to be embedded. This completes our
proof. O
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