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Liouville integrability of géométrie variational problems

J Langer and D Singer

§0. Introduction

The Betchov-Da Rios équation, otherwise known as the &quot;locahzed induction
équation&quot; (LIE), dy/dt dy/ds x d2y/ds2, îs a sohton équation for space curves
y(s91), best known as a model for the behavior of thin vortex tubes in an
incompressible, mviscid, three-dimensional fluid ([2], [3], [6], [17], [27]) As a

completely integrable Hamiltoman System, LIE possesses infinitely many conserved

quantities, ail of them intégrais involving the curvature k and torsion t of y The
first five intégrais in the LIE hierarchy are Jx=\ds, «^ Jt*, J3 ^k2ds9
JA \k2x ds, and J5 \\(k&apos;)2 + \k2x2 — \kA ds Thèse intégrais may be used to
define variational problems for curves y(s), and the resulting equihbna provide
initial conditions y(s, 0) y(s) for sohton solutions to LIE

Of course, equihbna for Jx are just geodesics, ît turns out that equihbna for
hnear combinations of Jx and J2 are hélices, and equihbna for combmations of Jx,
J2, and J3 are &quot;Kirchhoff elastic rods&quot; (as shown in [21]) The connection between
elastic curves and sohtons for LIE was the original discovery of Hasimoto [9, 10],

which sparked a whole séries of papers on LIE, including [5], [8], [12], [15], [16],
[18], [25], and [28]

Hère we dérive classical Hamiltoman Systems with n 6, 7, or 8 degrees of
freedom from vanational problems for J3, J4, and «/5, and show that thèse

Hamiltoman Systems are Liouville integrable in the sensé that there exist n

constants of motion in involution Our results are for curves y in M, any of the
three-dimensional space forms, IR3, S3, or H3 In each case, five constants exist
&quot;automatically&quot; due to the nature of the underlying spaces and the fact that each

Jj îs a &quot;géométrie&quot; functional, the proof then cornes down to exhibiting one, two,
or three additional constants ansing from the spécial nature of the intégrais J3

(The full resuit for the elastic rod was first proved in [21]
We conclude the introduction with a few comments

(î) In the gênerai theory of Hamiltoman Systems, Liouville integrability tends to
be regarded as the most satisfactory possible situation, since ît implies the dynamics
can be desenbed simply as &quot;hnear flow on a torus&quot; and - at least in pnnciple - the
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trajectories can be représentée explicitly in terms of quadratures and algebraic
opérations (see [1]).

However, the integrability results presented hère are hardly the end of the story;
in fact, we regard them more as &quot;existence results&quot; - invitations to actually
integrate the équations for thèse problems using their spécial structure, not attempt-
ing to use the gênerai theory. We believe this view is amply justified by numerous

papers on elastic curves and rods, e.g., [4], [11], [13], [19], [20], [21], [23], [24].

(ii) Our results are related to some gênerai phenomena in soliton theory. For
example, it is shown in [26] that complète integrability of the KdV équation implies
Liouville integrability of the associated &apos;stationary problems for higher order KdV
regarded as finite-dimensional Hamiltonian Systems. A more abstract approach to
this resuit is given in [29, 30], where the key ingrédient is the existence of a

one-parameter family of Bàcklund transformations. Our own approach is &quot;from the

bottom up&quot;, emphasizing the geometry of curves in space forms, rather than the

gênerai machinery of soliton theory, and it is not obvious how our concrète

computations are related to the above-mentioned arguments. It should be noted
that the géométrie setting of LIE leads to some interesting spécial features not
shared by KdV, including the fact that singular problems abound in the LIE
hierarchy, and the fact that a fundamental rôle is played by non-canonical
coordinates on the symplectic manifold T*F.

(iii) We hâve tried to keep the &quot;set-up&quot; as brief as possible; more background
is given in [22]. Following Jurdjevic [11], we hâve obtained our Hamiltonian
Systems with the aid of the Pontrjagin Maximum Principle. Another approach to
such variational problems with non-holonomic constraints is the theory of exterior
differential Systems, as explained in [4].

§1. Géométrie Hamiltonian Systems

Though the constructions of this section are naturally formulated in the gênerai
Riemannian setting ([14], [31]), it will be convenient to specialize at once to the case

of a three dimensional Riemannian manifold M. Since the orthonormal frame
bundle F of M is six-dimensional, our &apos;core&apos; symplectic manifold jT*F, the cotan-

gent bundle of F, is twelve-dimensional. We will construct Hamiltonians on T*F
(or r*(F x Rk)) from géométrie variational problems for curves y(t) in M.

Since 50(3) acts on F by rotation of frames, the standard basis for so(3)
détermines three &apos;fundamental vectorfields&apos; A} on F, the corresponding infinitésimal

generators. Complementary to thèse are three &apos;basic vectorfields&apos; Bt defined, at each

point (frame)/= (/i,/2,/3) e F, using the Riemannian connection on M: Bt is the

unique horizontal vector projecting to/. The vertical vectorfields Aj and horizontal
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vectorfields Bt display TF as a trivial bundle, and the corresponding &apos;linear

Hamiltonians&apos; provide half of a (non-canonical) eoordinate System on T*F:
^j(p) =P(Aj), &amp;t(p) =P(Bt\ P any covector on F

The (generalized) Frenet System for lifts of curves in M to curves/(0 in Fmay
now be written:

(FS)

A solution/(0 to (FS) represents an &apos;adapted frame&apos; along y in the sensé that
y&apos; r =/,. To mention two useful spécial cases,/(/) corresponds to the &apos;standard&apos;

(Frenet) frame /= (T9 N9 B) in case k3 0 (and consequently kx t and k2 k)9

while/= (T9f29f3) is a &apos;natural frame&apos; if kx 0. The relationship between standard
and natural frames and invariants can be written: k2 + ik3 kel99 f2 + if3

(N + iB) el99 where 3&apos; t. While the standard frame and invariants are uniquely
determined along a given curve y (with non-vanishing curvature), any y has a
circle&apos;s worth of natural frames and invariants associated to it.

In most of our applications of the Pontrjagin Maximum Principle, the invariants

k (kuk29k3) will play the rôles of the controls - so (FS) will be regarded as a

control System - and the cost function will be a géométrie Lagrangian of the form
S£(k). It is then an optimal control problem is to minimize the cost, j 5£(k) ds,

among solutions to (FS) satisfying given endpoint conditions /(0) =f09f(O =fs&gt;

In this context, the recipe of the maximum principle (for finding smooth,
regular, optimal trajectories, in the non-singular case) can now be summarized

roughly as follows:

(i) Define a time-dependent Hamiltonian on T*F, depending on controls k(s),
by subtracting the cost function J?(k(s)) from the linear (time-dependent) Hamiltonian

associated with the right hand side of (FS) (i.e., just replace A9 B by sé9 0S)\

œ(p9 K) «,(/) +*, j/,(/) -M*2(/) +*2^3(/) - &amp;(*),

(ii) Obtain a time-independent Hamiltonian Jf(p) Jf(p, k(p)) on T*F by
maximizing Jf(p9 k) with respect to the controls; for our purposes, this will amount
to solving the équations djf/dkj 0 for uniquely determined k k(p).

(iii) Solve the Hamiltonian System on T*F determined by Jf(p); the trajectories

p(t) of this System project to the solutions f(t) to the optimal control problem
(for various boundary conditions).

We iliustrate the procédure using the Lagrangian for the Kirehhoff elastic rod:
&amp;(k) a/2((k2)2 + (k3)2) + p/2(ki)29 where a and P are positive constants. The first
term hère corresponds to the &quot;bending energy&quot; of the rod, while the second term
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gives the &quot;twistmg energy&quot;. (There is no &quot;stretching energy&quot; term, since the rod is

assumed to be inextensible.) According to the Kirchhoff model, the rod in equi-
librium solves the vanational problem: minimize J S£(k) ds among rods of length £

with clamped ends, /(0) =/0,/(*0 =ft (note that f(s) includes the position y(s)).
Thus, we take as our time-dependent Hamiltonian

Jf(p, k) &lt;%{ + kx séx - k^2 + k2sé3 - fë ((k2)2 + (Â:3)2) + ^

Setting 0 ôJf/dkn i l,2, 3, we read off k{=s/Jp, fc2 es/3/a, and k3

— sé2\&lt;x. Substitution gives the time independent Hamiltonian

2a 2P

The integrability of this Hamiltonian System is discussed in the next section.

§2. Integrable Hamiltonian Systems

To discuss integrability, we now specialize to three-dimensional space forms,
M R3, M 53, or M H3, and let &lt;r be the curvature of M : a 0, 1, or -1. In
this case, the orthonormal frame bundle F may be identified with the isometry

group G of M: G £(3), G 50(4), or G 50(3, 1).

Further, the A3 and Bt make up a basis of left invariant vectorfields on G

satisfying the standard Lie bracket relations for the Lie algebra g of
G: [At9 Aj] eljkAk9 [At9 Bj] etJkBk9 and [Bt9 Bj] acljkAk9 where cl23 1, and eljk
is antisymmetric in i,y, k. The corresponding Poisson brackets of left-invariant
linear Hamiltonians, sfJ9âll9 can now be read off, using the following gênerai fact:

if V and W are two vectorfields on a Riemannian manifold G, and if { } dénotes
the canonical Poisson bracket on T*G, then the bracket of the corresponding linear
Hamiltonians #fv and 3tfw is given by {«#V, J^iv} — &amp;\v%w\- Thus, part of the
Poisson structure of T*G - the only part we will ever need in our computations - is

given by:

{sfl9 s/j} —tljksék9 {.b/,, &amp;j] —eljk@k, and {#„ ^} —(rcljks/k.

Using thèse bracket formulas, it is an easy computation to verify the following
key
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LEMMA. The quadratic Hamiltonians 0&gt; stfx@lx+stf20$2 +&lt;stf3@3 and

l=@2l + @l + @l + &lt;y(sé\ + s/2 + s*l) te in the center ofthe Poisson-Lie algebra
5£G of left-invariant fonctions on T*G.

Recall that if Jf defînes a Hamiltonian System, and if Jf is any other
Hamiltonian, then the time évolution of Jf is given by dJf/dt {Jf, Jf}. Using
this, the above lemma will provide two &quot;free&quot; constants of motion, ^, J, for ail of
our Hamiltonian Systems. Two more constants will corne from the symmetry of Af,
a la Noether&apos;s Theorem. Specifically, if Xis a right-invariant vectorfield on G (such
a vectorfield projects to a Killing field on M), and if M #ex is the corresponding
right-invariant linear Hamiltonian, then {M, sé3} — 3^{x,a \ — 0 an(l {^&gt; ^7} 0,

j 1, 2, 3. Therefore M Poisson-commutes with any élément of S£G. Note that we

can always choose two such right-invariant linear Hamiltonians StuSt2^ satisfying
{Mu $2} ==: 0. Thus, any 3tf e ifG which is independent of 9 and Ê détermines a

Hamiltonian System on T*G with five constants of motion in involution. This is

precisely the situation in the first three of the following examples; for Liouville
integrability, it will therefore suffice, in each case, to discover one additional
constant of motion # g

EXAMPLE 1. Elastic rods and curves

For rods, we hâve already obtained the Hamiltonian

One readily checks that {s/ï9 Jf} 09so(^ s/l is a constant of motion (which
reflects the symmetry of JF(p) relative to the coordinates st2 and se?). Therefore
the Kirchhoff System is Liouville integrable (for more détails see [21], [22]}.

The Lagrangian for elastic curves is defined by the &quot;bending energy&quot; S£ k2/2;
in other words, it is the spécial case /? 0 (and a 1) of the rod Lagrangian.
However, the above optimal control problem for the rod is singular in the case

j3=0-one cannot solve for kx in the équations dJf/dkt=Q. This technical

diffieulty can be finessed by working with natural frames, thus reducing the number
of controls to two. Setting kx =0 in (FS) leads to the time-dependent Hamiltonian
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The usual procédure now gives

and again # séx is constant of motion. (Actually, it turns out that only the
solutions with &lt;£ =0 give elastic curves; solutions with # # 0 are byproducts of the
fact that/(O) =/o,/0O =f, &quot;overdetermines&quot; a natural framing.)

EXAMPLE 2. JA J k2r ds.

For this problem we work with standard frames, since général frames and
natural frames both lead to singular problems (on a higher dimensional space).

Thus, 3^{p, k) $x+ ksé3 + xs4x — k2x. This time, maximizing Jf with respect to
the controls, k and t, gives s/x — k2, x sé3\2k. Eliminating k and x results in a

rather surprising Hamiltonian: Jf(p) $x + sé3yflrf~x. Using the Poisson bracket
formulas, it can be checked that # sé\ + sé\ +sé\ — 4x/^^3 — Aaséx is a

constant of motion.

EXAMPLE 3. t-elastic curves

Hère we consider the Lagrangian &lt;£ k2/2 and the control System of example
2, except that we constrain the torsion to equal a fixed constant t c (so there is

only one control k). This leads to the Hamiltonian Jf(p) =$x Jrcséx + (s/3)2/2,
and it can be checked that # ^3 — cj/3 is a constant of motion, in the spécial case

a 1, c ±1.

EXAMPLE 4. Js J £(fcO2 + ifcV - \k* ds with natural frames.

In terms of the natural frame, this functional can be rewritten as

In order to define a control problem, we enlarge our space to T*(E x 1R2). The

curvatures k2 and k3 are now space variables, with corresponding momenta Jf2 and

Jf3. The controls, u2 and w3, correspond to the derivatives of the curvatures. The
Poisson brackets in the new space are simple to compute; the old functions lift to
functions on the product, which Poisson commute with the functions kt and Jft. We
also need the brackets {ki9 Jfj} Sy.
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Following the usual procédure, we write the Hamiltonian

Jf(p9 «)=#,+ k2sé3 - k3sé2 + u2jf2 + u3jf3 - \ (u\ + «D + g (*i + A:?)2

Set dJt/du2 0 Jf2 - w2, a#7dtt3 0 Jf3 - w3, and get

jf(p) ^ + £2^3 - £3^2 + i (JT l + Jf2) + i (£2 + A:2)2.

Note that Jf is no longer a left-invariant Hamiltonian; however, it still
commutes with ^, Ê9 &amp;x, and ^2- Note also, Jf defines a System with eight degrees

of freedom, so we must find three more first intégrais, and they ail must Poisson-

commute with each other (and with the other functions).
One can check that the following functions satisfy thèse conditions:

i (k

The required computations can be organized using the notation, âlj &lt;psép

q&gt;2 &lt;r, which allows us to regard the équations for the Poisson brackets {s/J9 $t}
and {âtJ9 âkt} as formai conséquences of the équations for {sft9 sé}}. In fact, we can
write everything in ternis of the s//s (no &amp;/s)9 and then &lt;é&gt;2 and ^3 can be written
more compactly as cê2^^Js^J^ &lt;&amp;3 (p&lt;#29 where we hâve introduced &quot;complex

coefficients&quot;: ^=A:2/2-(x, ^2 jr2 + &lt;pJt3, and &amp;3 Jf3-&lt;pk2. With this notation,

e.g., one can make the trivial computation {^,^3} {^2, ç&gt;^2}

(p{^29 #2} 0; further, once one has checked that &lt;#2 is a constant of motion, it
follows at once that (€3 is also constant. We caution the reader that although q&gt; may
be treated as a scalar in the Lie algebra of linear Hamiltonians with &quot;complex

coefficients&quot; (to which #2 and #3 belong), it may not be treated as such in the

Poisson-Lie algebra S£G of functions.

Finally, we note the relationship between the ^ and the vectorfields in the LIE
hierarchy (see [18]). In terms of natural frames, the first and second vectorfields in
LIE may be written:

and JT2 (*:2/2-
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Then

X2-q&gt;Xt=9Jt

EXAMPLE 5 J5 \ \(k&apos;)2 + \k2x2 - \kA ds with standard frames

The same vanational problem may be set up as a nonsmgular control problem
using the standard frame In this case we must introduce one new space variable k
and the corresponding momentum Jf, with {&amp;, Jf} l This gives nse to a

Hamiltonian System with seven degrees of freedom on the space T*(E x R) The
Hamiltoman îs

In this set-up we require two constants of motion in involution for mtegrability
One can check that the desired functions are

k
— stx
k2 1

t -
K

1
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