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Liouville integrability of geometric variational problems

J. LANGER AND D. SINGER

§0. Introduction

The Betchov—Da Rios equation, otherwise known as the “localized induction
equation” (LIE), dy/dt = 0y/ds x 0%y/0s?, is a soliton equation for space curves
y(s, ), best known as a model for the behavior of thin vortex tubes in an
incompressible, inviscid, three-dimensional fluid ([2], [3], [6], [17], [27]). As a
completely integrable Hamiltonian system, LIE possesses infinitely many conserved
quantities, all of them integrals involving the curvature k£ and torsion 7 of y. The
first five integrals in the LIE hierarchy are: 4, = [ds, S =1ds, S =[3k?ds,
Sy =[k?tds, and S = [3(k")>+3k®t®— 3k* ds. These integrals may be used to
define variational problems for curves y(s), and the resulting equilibria provide
initial conditions y(s, 0) = y(s) for soliton solutions to LIE.

Of course, equilibria for 4 are just geodesics; it turns out that equilibria for
linear combinations of #, and %, are helices, and equilibria for combinations of .#,
%, and 4 are “Kirchhoff elastic rods” (as shown in [21]). The connection between
elastic curves and solitons for LIE was the original discovery of Hasimoto [9, 10],
which sparked a whole series of papers on LIE, including [5], [8], [12], [15], [16],
[18], [25], and [28].

Here we derive classical Hamiltonian systems with n =6, 7, or 8 degrees of
freedom from variational problems for %, .4, and %, and show that these
Hamiltonian systems are Liouville integrable in the sense that there exist »
constants of motion in involution. Our results are for curves y in M, any of the
three-dimensional space forms, R3, S3, or H?. In each case, five constants exist
“automatically” due to the nature of the underlying spaces and the fact that each
S is a “geometric” functional; the proof then comes down to exhibiting one, two,
or three additional constants arising from the special nature of the integrals .#.
(The full result for the elastic rod was first proved in [21].)

We conclude the introduction with a few comments:

(i) In the general theory of Hamiltonian systems, Liouville integrability tends to
be regarded as the most satisfactory possible situation, since it implies the dynamics
can be described simply as “linear flow on a torus” and — at least in principle — the
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trajectories can be represented explicitly in terms of quadratures and algebraic
operations (see [1]).

However, the integrability results presented here are hardly the end of the story;
in fact, we regard them more as “existence results” — invitations to actually
integrate the equations for these problems using their special structure, not attempt-
ing to use the general theory. We believe this view is amply justified by numerous
papers on elastic curves and rods, e.g., [4], [11], [13], [19], [20], [21], [23], [24].

(ii) Our results are related to some general phenomena in soliton theory. For
example, it is shown in [26] that complete integrability of the KdV equation implies
Liouville integrability of the associated ‘stationary problems for higher order KdV’
regarded as finite-dimensional Hamiltonian systems. A more abstract approach to
this result is given in [29, 30], where the key ingredient is the existence of a
one-parameter family of Backlund transformations. Our own approach is “from the
bottom up’’, emphasizing the geometry of curves in space forms, rather than the
general machinery of soliton theory, and it is not obvious how our concrete
computations are related to the above-mentioned arguments. It should be noted
that the geometric setting of LIE leads to some interesting special features not
shared by KdV, including the fact that singular problems abound in the LIE
hierarchy, and the fact that a fundamental role is played by non-canonical
coordinates on the symplectic manifold T*F.

(iii) We have tried to keep the “set-up” as brief as possible; more background
is given in [22]. Following Jurdjevic [11], we have obtained our Hamiltonian
systems with the aid of the Pontrjagin Maximum Principle. Another approach to
such variational problems with non-holonomic constraints is the theory of exterior
differential systems, as explained in [4].

§1. Geometric Hamiltonian systems

Though the constructions of this section are naturally formulated in the general
Riemannian setting ([ 14], [31]), it will be convenient to specialize at once to the case
of a three dimensional Riemannian manifold M. Since the orthonormal frame
bundle F of M is six-dimensional, our ‘core’ symplectic manifold T*F, the cotan-
gent bundle of F, is twelve-dimensional. We will construct Hamiltonians on T*F
(or T*(F x R¥)) from geometric variational problems for curves y(¢) in M.

Since SO(3) acts on F by rotation of frames, the standard basis for so(3)
determines three ‘fundamental vectorfields’ 4; on F, the corresponding infinitesimal
generators. Complementary to these are three ‘basic vectorfields’ B; defined, at each
point (frame) f = (f,, />, /3) € F, using the Riemannian connection on M: B, is the
unique horizontal vector projecting to f;. The vertical vectorfields 4, and horizontal
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vectorfields B; display TF as a trivial bundle, and the corresponding ‘linear
Hamiltonians’ provide half of a (non-canonical) coordinate system on T*F:
;(p) = p(4;), #;(p) =p(B;), p any covector on F

The (generalized) Frenet System for lifts of curves in M to curves f(¢) in F may
now be written:

Y B + kA — ks + ks, (FS)

A solution f(7) to (FS) represents an ‘adapted frame’ along y in the sense that
y” =T =f,. To mention two useful special cases, f(¢) corresponds to the ‘standard’
(Frenet) frame f = (T, N, B) in case k; =0 (and consequently k, =1 and k, =k),
while f = (T, f,, f3) is a ‘natural frame’ if k, = 0. The relationship between standard
and natural frames and invariants can be written: k,+ik;=ke®, f,+if;=
(N +iB) e®®, where 9’ = t. While the standard frame and invariants are uniquely
determined along a given curve y (with non-vanishing curvature), any y has a
circle’s worth of natural frames and invariants associated to it.

In most of our applications of the Pontrjagin Maximum Principle, the invariants
k = (k,, k,, k;) will play the roles of the controls — so (FS) will be regarded as a
control system — and the cost function will be a geometric Lagrangian of the form
ZL(x). It is then an optimal control problem is to minimize the cost, j&f(rc) ds,
among solutions to (FS) satisfying given endpoint conditions f(0) = f,, f(£) =/,.

In this context, the recipe of the maximum principle (for finding smooth,
regular, optimal trajectories, in the non-singular case) can now be summarized
roughly as follows:

(1) Define a time-dependent Hamiltonian on T*F, depending on controls x(s),
by subtracting the cost function #(x(s)) from the linear (time-dependent) Hamilto-
nian associated with the right hand side of (FS) (i.e., just replace 4, B by &/, %):

H(p, k) =%.(f) + ki (f) — ks 2(f) + kot 3s(f) — £ (),

(ii) Obtain a time-independent Hamiltonian 3#(p) = #(p, k(p)) on T*F by
maximizing ) ( p, k) with respect to the controls; for our purposes, this will amount
to solving the equations 0 /0k; = 0 for uniquely determined x = x(p).

(iii) Solve the Hamiltonian system on T*F determined by 5#(p); the trajecto-
ries p(?) of this system project to the solutions f(#) to the optimal control problem
(for various boundary conditions).

We illustrate the procedure using the Lagrangian for the Kirchhoff elastic rod:
L(k) = a/2((k;)?* + (k3)?) + B/2(k,)?, where a and B are positive constants. The first
term here corresponds to the “bending energy” of the rod, while the second term
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gives the “twisting energy”. (There is no “‘stretching energy” term, since the rod is
assumed to be inextensible.) According to the Kirchhoff model, the rod in equi-
librium solves the variational problem: minimize | #(k) ds among rods of length ¢
with clamped ends, f(0) =f,, f(£) =f, (note that f(s) includes the position y(s)).
Thus, we take as our time-dependent Hamiltonian

H(p,K) =B, +k o, "kaﬂz'l'kz&{z»_(% ((k2)* + (k3)?) +g(kl)2)'

Setting 0 = 5”/5](,, = 1, 2, 3, weE read Oﬁ kl = dl/ﬂ, k2 = Jﬂ3/0t, and k3 =
— &/, /a. Substitution gives the time independent Hamiltonian

(5)> + (53)? n (o,)? .

H(p) =&, + 2a 28

The integrability of this Hamiltonian system is discussed in the next section.

§2. Integrable Hamiltonian systems

To discuss integrability, we now specialize to three-dimensional space forms,
M=R3} M =S3 or M =H?3, and let ¢ be the curvature of M:6 =0,1, 0or —1. In
this case, the orthonormal frame bundle F may be identified with the isometry
group G of M: G = E(3), G =S0(4), or G = SO(3, 1).

Further, the 4; and B, make up a basis of left invariant vectorfields on G
satisfying the standard Lie bracket relations for the Lie algebra g of
G:[A;, A;] = €3 Ay, [4;; B;] = €4 By, and [B,, B;] = o¢; ;. A;, where €,5; =1, and ¢,
is antisymmetric in i, j, k. The corresponding Poisson brackets of left-invariant
linear Hamiltonians, &/;, #,, can now be read off, using the following general fact:
if ¥ and W are two vectorfields on a Riemannian manifold G, and if { , } denotes
the canonical Poisson bracket on T*G, then the bracket of the corresponding linear
Hamiltonians 5, and ), is given by {5, #y} — #| ). Thus, part of the
Poisson structure of T*G — the only part we will ever need in our computations — is
given by:

{dis -9’1'} = —eijk"dk, {dn 'gj} = —eijkgka and {gb gj} = —aeijkdk'

Using these bracket formulas, it is an easy computation to verify the following
key
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LEMMA. The quadratic Hamiltonians P =4 B, + A, B>+ A%, and
2 =R+ B2+ B2+ o(A?+ A2+ A?2) lie in the center of the Poisson—Lie algebra
LG of left-invariant functions on T*G.

Recall that if 2 defines a Hamiltonian system, and if X is any other
Hamiltonian, then the time evolution of )" is given by dX /dt = {', # }. Using
this, the above lemma will provide two “free” constants of motion, 2, 2, for all of
our Hamiltonian systems. Two more constants will come from the symmetry of M,
a la Noether’s Theorem. Specifically, if X is a right-invariant vectorfield on G (such
a vectorfield projects to a Killing field on M), and if # = 5, is the corresponding
right-invariant linear Hamiltonian, then {#, &} = — A= 0 and {#, %,} =0,
j=1,2,3. Therefore # Poisson-commutes with any element of #G. Note that we
can always choose two such right-invariant linear Hamiltonians #,, &,, satisfying
{R,, R,} =0. Thus, any # € LG which is independent of # and 2 determines a
Hamiltonian system on T*G with five constants of motion in involution. This is
precisely the situation in the first three of the following examples; for Liouville
integrability, it will therefore suffice, in each case, to discover one additional
constant of motion ¥ € Z£G.

EXAMPLE 1. Elastic rods and curves
For rods, we have already obtained the Hamiltonian

) () ()

#(p) =4, . 3

One readily checks that {&/,, #} =0, so € = ., is a constant of motion (which
reflects the symmetry of 5#(p) relative to the coordinates </, and /). Therefore
the Kirchhoff system is Liouville integrable (for more details see [21], [22]).

The Lagrangian for elastic curves is defined by the “bending energy” % = k?/2;
in other words, it is the special case f =0 (and a« = 1) of the rod Lagrangian.
However, the above optimal control problem for the rod is singular in the case
B =0 - one cannot solve for k, in the equations 03¢ /0k; =0. This technical
difficulty can be finessed by working with natural frames, thus reducing the number
of controls to two. Setting k, =0 in (FS) leads to the time-dependent Hamiltonian

)

(k2)? + (k3)? '

H(p, k) =B 1+ ko3 —k; o, — 2
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The usual procedure now gives

(43)* + (5)?

k, =5, ky= —sf,, H(p) =R, + 5 ,

and again ¥ = &/, is constant of motion. (Actually, it turns out that only the
solutions with € = 0 give elastic curves; solutions with € # 0 are byproducts of the
fact that f(0) =f,, f(¢) =f, “overdetermines” a natural framing.)

EXAMPLE 2. #,={k*t ds.

For this problem we work with standard frames, since general frames and
natural frames both lead to singular problems (on a higher dimensional space).
Thus, #(p, k) = #, + kot 3 + 19, — k*1. This time, maximizing »# with respect to
the controls, k and 7, gives o/, = k> 1t = o/,/2k. Eliminating k and 7 results in a
rather surprising Hamiltonian: 3#(p) = %, + M3\/Z . Using the Poisson bracket
formulas, it can be checked that 4 = #}+ o} + A3 —4/od \ B, — 4o, is a
constant of motion.

EXAMPLE 3. t-elastic curves

Here we consider the Lagrangian % = k?/2 and the control system of example
2, except that we constrain the torsion to equal a fixed constant T = ¢ (so there is
only one control k). This leads to the Hamiltonian s#(p) = &, + c, + (5)?/2,
and it can be checked that € = #, — c«/; is a constant of motion, in the special case
c=1,¢c=+1.

EXAMPLE 4. 4 = (3(k")> + 3k*t> — gk* ds with natural frames.

In terms of the natural frame, this functional can be rewritten as
so= |22+t Loty a

In order to define a control problem, we enlarge our space to T*(E x R?). The
curvatures k, and k; are now space variables, with corresponding momenta 5, and
X;5. The controls, u, and u;, correspond to the derivatives of the curvatures. The
Poisson brackets in the new space are simple to compute; the old functions lift to
functions on the product, which Poisson commute with the functions k; and ¢;. We
also need the brackets {k;, X} =9,;.
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Following the usual procedure, we write the Hamiltonian

H(p,u)=B,+k, oy — ki, +u2.1f2+u3f3—%(u§+u§) +-;—(k§+k§§)2
Set 0¢ [0uy =0= K", — u,, 0 [0u; =0 = A3 —u;, and get

H(p) =B+ ko5 — k3dz+%(3f§+ X'3) +él-(k§+k§)2.

Note that »# is no longer a left-invariant Hamiltonian; however, it still
commutes with 2, 2, #,, and #,. Note also, # defines a system with eight degrees
of freedom, so we must find three more first integrals, and they all must Poisson-
commute with each other (and with the other functions).

One can check that the following functions satisfy these conditions:

%1=d|+k3;{2_k2f3.

1
(52=k3.@2—k2.@3+d2f2+ﬂ3f3+§(k%+k§)dl—O'.ﬂl
1
(€3=sz2+Q3Jf3+‘2'(k%+k§—20')g,—a’(kzﬂ3—k3d2)

The required computations can be organized using the notation, %, = oo/,
@* = o, which allows us to regard the equations for the Poisson brackets {&;, %,}
and {#,, #,} as formal consequences of the equations for {/;, &, }. In fact, we can
write everything in terms of the &/;’s (no %,’s), and then €, and €, can be written
more compactly as €,=9,4;, €,= @%,, where we have introduced ‘“‘complex
coefficients”: 4, =k?/2 —a, 9,= A, + @k,, and ¥, = X’ — pk,. With this nota-
tion, e.g., one can make the trivial computation {€,,%,}={¥,, ¢%,}=
©{¥,, ¢} = 0; further, once one has checked that €, is a constant of motion, it
follows at once that €, is also constant. We caution the reader that although ¢ may
be treated as a scalar in the Lie algebra of linear Hamiltonians with ‘“complex
coefficients” (to which ¢, and %, belong), it may not be treated as such in the
Poisson—Lie algebra #G of functions.

Finally, we note the relationship between the %, and the vectorfields in the LIE
hierarchy (see [18]). In terms of natural frames, the first and second vectorfields in
LIE may be written:

X]=—k3‘f2+k2j;, and X2=(k2/2‘0)T+-f2ﬁ+f3_/;.
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Then
X, - oX, = %,f,.
EXAMPLE 5. 4 = [ 5(k")? + 1k?t> — §k* ds with standard frames.

The same variational problem may be set up as a nonsingular control problem
using the standard frame. In this case we must introduce one new space variable k
and the corresponding momentum X', with {k, #"} =1. This gives rise to a
Hamiltonian system with seven degrees of freedom on the space T*(E x R). The
Hamiltonian is:

H(p) =B, + ko +—°°ﬁ+1x2+-1~.9r4
O R TE R M

In this set-up we require two constants of motion in involution for integrability.
One can check that the desired functions are:

k? 1
%=7dl+%d1‘d3—k£3+"d2f_aﬂl
k? 1
9=?g|+ﬁdlg3*akd3+$2%*0gl
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