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L?-pinching and the geometry of compact Riemannian manifolds

MicHEL LE COUTURIER AND GILLES F. ROBERT

Abstract. We prove a Harnack-type inequality inf|S|/sup|S|>1—&(W, M, V) satisfied by the sec-
tions of a Riemannian vector bundle W lying in the kernel of a Schriodinger operator V*V + V
under LP-pinching assumptions on the potential ¥ and derive various topological and geometric
consequences.

For instance, we prove a fibration theorem which gives a classification of almost non-negatively
curved compact manifolds by the first Betti number. In the case of almost non-positively curved
compact manifolds, we prove that the minimal volume must vanish whenever the isometry group is not
finite and give conditions implying that it is abelian.

1. Introduction

The GauB3-Bonnet formula 2ny = j' K dv which expresses the Euler characteristic
of a closed surface as the integral of the curvature has been the starting point of an
intense field of investigations of the interactions between the local properties of the
metric of a Riemannian manifold (such as curvature bounds) and its global
topology and/or geometry (e.g. Betti numbers, fundamental group, isometry group
etc...).

One way to do this is embodied in the celebrated Bochner method. Initiated by
S. Bochner in 1946 ([B1], [B2] and [B-Y]), this method is by now classical in
differential geometry.

In its essence, it can be summarized as follows: we express a topological or
geometric invariant through the kernel & of a Schrodinger operator.

& ={S el (W)|V*VS + VS =0}

where S is a section of a Riemannian connected vector bundle W — M over a
compact manifold and the potential V is a field of symmetric endomorphisms of the
fibre given by the geometry of the situation and in most cases computable in terms
of the curvature.
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Bochner’s method then reads:

(1) ¥V 20 implies that dim % < rk W and that any section S € & is parallel so
that in particular it never vanishes.
(2) If ¥V 20 and if there exists x € M such that ¥V, >0, then & = {0}.

1.1. Examples

The Hodge Laplacian (d + d*)?, acting on p-forms, i.e. sections of the bundle
/\F T*M — M, is a Schrodinger operator, since the Bochner-Weitzenbdck formulas
give an expression of the previous type for this operator. The field V' of endomor-
phisms is given by the curvature tensor of M. For p = 1, for instance, V is the Ricci
tensor of M. The Hodge-De Rham decomposition theorem states that the kernel of
this operator (the space of harmonic p-forms) is isomorphic to the p-th De Rham
cohomology group 4% x(M).

Through the Eells-Sampson formula, the differential of a harmonic map can be
viewed as a solution of a Schrodinger equation, thus giving the non-existence of
non trivial harmonic maps when the source has non negative Ricci curvature and
the target has negative sectional curvature.

A last example is given by Lie groups of transformations preserving some
structure. For instance, the Killing vector fields of a Riemannian manifold and the
holomorphic vector fields of a Kéhlerian manifold both lie in the kernel of
V*V — ric, where ric denotes the ricci curvature, acting on sections of the tangent
bundle.

1.2. Statement of results

One of the limitations of Bochner’s method lies in the fact that the positivity
assumption on the potential is strong, so that it would be desirable to weaken it.
Indeed it seems likely that some topological properties holding for the class of
manifolds for which the potential is nonnegative will persist if it is allowed to take
small negative values.

The best one can hope for, considering the counterexamples given in the
appendix of [Ga2], is to prove pinching and vanishing theorems while keeping
control only on an L?-norm of the potential. We show that this is indeed possible
under mild extra hypotheses which allow for an infinite number of topologies.

More precisely, we prove a Harnack-type inequality which shows that a section
lying in the kernel of V*V + ¥V, while it cannot be expected to be parallel, retains
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the property to be nowhere vanishing. We thus obtain a topological classification
similar to the geometric one given above by describing the behaviour of the
elements of Ker(V*V + V') while earlier results of P. Li [Li], S. Gallot [Gal] [GaZ2],
P. Berard and G. Besson [B—B] gave a-priori estimates of its dimension.

Notice that our assumptions allow Ker(V*V + V) to be non trivial, while results
of K. D. Elworthy and S. Rosenberg [E—R] rely on assumptions implying that this
kernel vanishes.

Before we state the main result of this paper, let us fix the notations.

1.3. Notations

Throughout this paper, W — M will denote a Riemannian connected vector
bundle, endowed with a metric <. |.)>, and a compatible Riemannian connexion V.
The basis (M, g) is a compact n-dimensional Riemannian manifold. We denote by
RM and RY the curvature tensors of M and W respectively and ric the ricci
curvature tensor of M.

The rough Laplacian acting on sections of W will be denoted indifferently by
V*V and 4.

Given a field V of symmetric endomorphisms of the fiber, we denote by ¥(m)
(resp. V(m)) the lowest (resp. highest) eigenvalue of V at the point m € M.

We also define for any function f: M — R its positive part f*(m) = sup(0, f(m))
and its negative part f~(m) = sup(0, —f(m)).

The L*-norms are taken with respect to the probability measure dv, /Vol(M,g):

di %
.= ([, 1 oz

1.4. Main theorem

1.4.1. THEOREM. Let (M", g) be a compact Riemannian manifold and W - M
a vector bundle endowed with a metric {.|.)y and a compatible connection V. For any
field V of symmetric endomorphisms of the fiber, the Harnack-type inequality:

infmeMlS(m)I _ 2B(*42)./RD ”-Z_Hl :
Do u [SGm)] - | ACEPIE R

o (1 1 ) (14
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holds for all sections S solution of the Schrodinger equation V*VS + VS =0, where
p is any number strictly greater than n, « = 2(p —n)/(p*+np —4n) <1, D is any
upper bound of the diameter of (M, g), and — R <0 is any “almost lower bound” of
the ricci curvature of M(*).

A(n, p) is a universal constant explicitly computed in the proof and

2q — 1D\ —2\5-%
B(q)=( ("q ))(n—l)*—#(g—_—;l-)

1.5. Remarks

It should be noted that the strength of the result lies in the universality of the
constant in the theorem.

Observe that the class of manifolds satisfying the bounds of theorem 1.4.1
contains an infinite number of topologies and geometries (as well as singular spaces,
although we do not concentrate on this aspect).

Also, no assumption being made on the injectivity radius, “collapsing” a la
Cheeger-Gromov-Fukaya is allowed.

In case the bundle W — M is the trivial one-dimensional bundle M x R, the
main theorem amounts roughly to the computation of an explicit upper bound of
the L7=7 norm of the ad hoc Green kernel G of M solution of 4G(x,, *) =5, —
1/Vol(M) satisfying inf, . ,, G(x,, X) = 0: indeed, this follows from the fact that

dvg(y)
Vol(M)

<2 sup, 6659 IVl 1.

supf—-inffszllf—f|]co=2xsg%

JM Gx, NV NS()

where

_ dvg(x)
7= [ ek

is the mean value of f.

(*) This means that there exists a non-negative function 6: M — R such that ric,, 2 —(R + d(m))g,,,
and that |8, < R/(2¥9(eB@VRP — 1)2/4), g = (n + p)/2.
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Even in this simple case, it is not obvious how to compute an upper bound of
1G(x,*) 2 depending only on the geometric bounds involved in the inequality of
the main theorem.

In the case of a general bundle, Kato’s inequality provides the estimate:

~Isiivi-1s] ()

at any point where |S|#0. In (1.5.1), the assumption that the right-hand side is
small is not sufficient to prove that .S never vanishes: a counterexample to this is the
function f, defined by

< A(sp < vls| (1.5.1)

Jo(x) = sup(0, 1 — eG(xo, X))

which can be smoothed while keeping the two properties Af, < ¢/Vol(M) and *f,
vanishes somewhere”.

Consequently, a control of the left-hand side of (1.5.1) is necessary. This means
a control of V(S/|S|), i.e. of the rotation of S with respect to a parallel frame. This
accounts for the curvature terms in (1.4.2).

1.6. An important corollary
The main theorem will mostly be used through the following corollary:

1.6.1. THEOREM. Under the hypotheses of theorem 1.4.1, if

) W . _1
||KR I+ < A(n, p) 2 6_43(%2)ﬁp,a<1 " I V||§+ IR R“g’"- |ric “5)2(1 ? (1.6.2)

then every non trivial solution of the Schrédinger equation V*VS + VS =0 never
vanishes. In particular, this implies that all Stieffel-Whitney classes of W vanish from
order k(W) — dim Ker(F*V + V) + 1 to order tk(W).

Proof. The hypotheses of theorem 1.6.1 imply that

e 1LY I Il )

and the conclusion of the main theorem implies that every non trivial solution of
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the Schrédinger equation V*VS + VS = 0 satisfies inf(|S|)/sup(|S) >1—1=0, i.e.
that it never vanishes. O

1.7. Acknowledgments

The authors are very grateful to Prof. S. Gallot for his constant encouragement
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2. Applications

Before the proof, we give some applications:

2.1. Harmonic 1-forms

As we mentioned in the introduction, the Hodge Laplacian is an example of
Schrodinger operator acting on p-forms. This was one of the first fields of
application of the Bochner technique, particularly in the case of harmonic 1-forms,
for which case the first result is due to Bochner himself in [B-Y]:

2.1.1. THEOREM. If (M, g) is a Riemannian manifold with non-negative Ricci
curvature, then its Albanese map is a totally geodesic submersion.

Recall that the Albanese torus of M is defined as the quotient of the dual of the
first De Rham cohomology group # ,z(M)* by the lattice I' obtained as the image
of the torsion free part of 5,(M, Z) under the De Rham isomorphism between
H, (M, R) and o [r(M)*.

Let n:M — M be the universal cover of M and fix %,€ M. We define
I Mo HL(M)* by Z(F).a = _ﬁo n*a. Since the Hurewicz homorphism sends
I1,(M) to #,(M, Z), o projects to a harmonic map o : M — # L.(M)*/T", called
the Albanese map of M. It satisfies the

2.1.2. PROPOSITION. For each harmonic map f from M to a flat torus T,
there exists a linear mapping @ from T 1o Tk satisfying f= D o oA .

Sketch of Proof. This follows from the fact that the coordinates of f: M — R
are harmonic functions on M, thus giving an homomorphism ‘@ from R*" to
H Lp(M) = ROOD* & projects to a linear mapping @ : T&®) - T* and it is easy to
check that f=@ o . O
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Theorem 2.1.1 given above follows then from the fact that harmonic 1-forms are
parallel whenever the ricci curvature is non-negative. O

One may expect that part of this result still holds when the negative part of the
ricci curvature is supposed to be small. Indeed, M. Gromov in [Grl] using
geometric arguments and S. Gallot in [Gal] by an analytical method proved the
following results:

2.1.3. THEOREM. There exists e&(n) > 0 such that if (M, g) is an n-dimensional
Riemannian manifold with diam(M)?||ric™ ||, less than &(n), then the first Betti
number of M is not greater than n.

The conclusion of theorem 2.1.3 is very much weaker than that of theorem
2.1.1, so that one may wonder whether it would not be possible to retain part of the
conclusion of theorem 2.1.1 under the hypotheses of theorem 2.1.3. Indeed, M.
Gromov in [Grl] made the following conjecture:

2.1.4. CONJECTURE. There exists &(n) > 0 such that if (M, g) is an n-dimen-
sional Riemannian manifold with diam(M)?||ric™ ||, less than &(n) and such that
b, (M) = n, then M is homeomorphic to a torus.

A partial answer to this conjecture has been given by T. Yamaguchi in [Y1]
where he proves the following:

2.1.5. THEOREM. There exists a theoretical function &(*, *) > 0 such that, if a
compact Riemannian manifold M" satisfies the inequality

diam(M)?|ric™ || < &(n, diam(M)?|RM|,) (2.1.6)
then its Albanese map is a harmonic fibration.

He further obtains in [Y2] the following

2.1.7. PINCHING THEOREM. There exists a positive number e(n) depending
only on n such that, if the (sectional) curvature o and the diameter of a compact

Riemannian n-manifold M satisfy:

diam(M)?|o ~ || < &(n)
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then the following hold:
(a) A finite covering of M fibers over a b,(M)-torus.
(b) If by(M) = n, then M is diffeomorphic to a torus.

Observe that this result involves no assumption on the positive part of o, but the
assumption on the negative part is more stringent, since it is not only supposed to
be bounded, but also needs to be small.

Unfortunately, since the proofs use convergence methods, it is impossible to
have an explicit value for these ¢. In particular, for a given manifold (M, g), it is
impossible to tell if it satisfies the hypotheses of the theorems. One has to compare
it with all the other potential candidates.

The value of ¢ in (2.1.6) depends on a bound on the absolute value of the
sectional curvature ¢. In view of the conjecture, this assumption may look two
drastic. However, it is impossible to do without any assumption on o, as shown by
M. Anderson in [An], where he gives explicit counterexamples:

2.1.8. THEOREM. Given any n 24, k <n—1 and ¢ >0, there are compact
n-manifolds M" satisfying diam(M)?||ric|,, < ¢, and b,(M) = k such that no cover of
M™ fibers over S'. In particular, any harmonic 1-form on M" must vanish somewhere.

We prove that it is possible to weaken the L* bound of theorem 2.1.5 on the
sectional curvature to an L? bound and to give an explicit value for &:

2.1.9. THEOREM. There exists a function {(n,p) such that, if a compact
Riemannian manifold M of dimension n satisfies the inequality

diam(M)?|tic~ [lg < {(n, P 1 + diam(M)2| RM|jg] ~* (2.1.10)

for at least one p >n and B =(p +n)(p —2)/(p —n), then its Albanese map is a
harmonic fibration.

The value of {(n, p) is

Un, p) = inf[(2(eP*T*) — 1)) =4 +7), A(n, p)~F+2 =20 +2ETE) (2 — 1) 7]

Proof. 1t is enough to show that (2.1.10) implies that a non-trivial harmonic
1-form never vanishes, sinice then the Albanese map will be a submersion. For this,

we need only check that (2.1.10) ensures that the hypotheses of theorem 1.6.1 are
satisfied for W = T*M and V =ric.
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Set D = diam(M), ¢ = (n + p)/2 and R = 1/D?. Since

& p) _ R
D*  22q(eB@JRD _ ()2’

the choice 6 = ric™ ensures that — R is an almost lower bound for ric.
Since —f =2(1 — 1/a), we can rewrite (2.1.10):

"I—l—;;; ”1 < ”D—-(];; ”5 < A(n, p)—Z/a e——4B(ﬂ’§'E)/a(2n —_ 1)—5[] + ”R:” :I“”ﬁ

Therefore, (1.6.2) follows from the fact that |ricz < (n — 1)| R™|s. O

2.2. Harmonic maps into flat tori

As we have seen in proposition 2.1.2, harmonic maps into flat tori are classified
by the Albanese map. Consequently theorem 2.1.9 admits the following corollary:

2.2.1. THEOREM. Under the hypothesis of theorem 2.1.9, every harmonic map
ffrom M into a flat torus T* is a submersion onto a totally goedesic sub-torus of T*
of dimension less than or equal to b,(M).

Proof. As & is a submersion, the lift  of f is a submersion onto the image of
the linear mapping defined in proposition 2.1.2 which is a vector subspace A4 of
dimension less than or equal to b,(M), hence f{M) is an open subset of A.

f(M) is then an open subset of 4/(I' n A), which is connected.

f(M) being compact in TX, f(M) = A/(I' n A) is a totally geodesic torus in T*.

O

2.3. Killing vector fields

In [B1], S. Bochner proves the following theorem:

2.3.1. THEOREM. If (M, g) is a Riemannian manifold with non-positive Ricci
curvature, then every Killing vector field is parallel.

We obtain an extension of this result in the following theorem:
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2.3.2. THEOREM. There exists an explicit function n(n,p,A) such that if a
compact Riemannian manifold (M, g) of dimension n satisfies the inequality

- 1 RM 2 |- 8
”n; I < n(n, p, \/ﬁD)I:l +I_|_R_"2:| (2.3.3)

for at least one p >n and B = (p + n)(p — 2)/(p — n), where D is an upper bound of
diam(M) and — R an almost lower bound of ric (cf. theorem 1.4.1), then its isometry
group G acts locally freely, furthermore the mapping g+ g(x) is a finite covering of
each orbit by G.

In case dim(G) = n, this implies that G acts transitively on M and induces a finite
cover of M.

The value of n(n, p, A) is
n(n, p, 2) = A(n, p)~#+2 ¢ =28+ BT (2p — 1)~ F

Proof. Recall that a Killing vector field X satisfies the equation V*VX —
ric X =0 (cf. for instance [Be], p. 41), so that under the hypotheses of theorem
2.3.2, a simple application of theorem 1.6.1 shows that a non-trivial Killing vector
field never vanishes. It is then easy to see that this implies that the action of the
isometry group on M is locally free. O

In case the isometry group is not finite, theorem 2.3.2 gives topological
information on the manifold. Indeed, R. Bott proved in [Bo] that the existence of
a non vanishing Killing vector field implies that all Pontryagin numbers of M
vanish. Moreover, since G contains a subgroup isomorphic to S', M admits a
locally free action of S'. This implies that Gromov’s minimal volume of the
manifold is zero [Gr2].

2.3.4. COROLLARY. If M has non-zero minimal volume, and if g is a Rieman-
nian metric on M satisfying the hypotheses of theorem 2.3.2, then its isometry group
is finite.

Remarks. Sufficient topological conditions for M to have non-zero minimal
volume are given in [Gr2], for instance if M has one non-zero characteristic class or
if its simplicial volume is non-zero.

Let G, be the connected component of the identity in G. The L? scalar product
acting on Killing vector fields defines a bi-invariant Riemannian metric on G,. We
have the following:
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2.3.5. THEOREM. If a compact Riemannian manifold (M, g) of dimension n
satisfies the inequality

+np+n—4)

4 4Ap —n)
diam(G,)?|ric* 1—
1 ( 0) ” ¢ “1<( p-}-n)

ric 2p(p+n)
X |:1 + Cy(n, p) eB(%‘e)ﬁD(Hrlc*’ || )%:I_—%E:"_

R

for at least one p > n, where D is an upper bound of diam(M) and — R an almost
lower bound of ric (cf. theorem 1.4.1), then G, is abelian.

Proof. Since the L? scalar product on Killing vector fields induces a biinvariant
metric on the Lie algebra ¢ of G,, the adjoint action is a morphism from G, to
0(%). Since every non trivial one parameter subgroup of (%) contains an element
with eigenvalue — 1, we will be finished if we prove |Ad,(X) — X |, < 2||X|, for all
g € G, and X € ¢, which prohibits the eigenvalue —1.

Since the Lie bracket is the differential of the adjoint action, a simple integration
proves that this follows from:

[X, Y]l < |11 71 (2.3.6)

_ 2z
diam(G,)

In order to establish (2.3.6), we recall that [X, Y] =V,Y — V, X and that (since
X and Y are Killing vector fields on M)

7Y 12 = X 7Y [ < [ 11X Y]

Therefore we will be done if we can control ||X ||oo with || X|,. Since every
Killing vector field X satisfies 4|X]|< rlcﬂX |, and since the Sobolev constant
K,(M,g) for the inclusion of H'*(M) in Li23(M) satisfies the inequality

eB"3E)V/RD

JR
derived from theorem 6 of [Ga2], the result is a consequence of the following
lemma, where we set ¢ = (n + p)/2.

K2(M9 g) = CZ(n’ p)

2.3.7. LEMMA. If a positive function f on a compact Riemannian manifold
(M, g) satisfies Af < Af, where A is any positive function, then we have

1f e < 01+ KoM, 8) uzu,',ﬁzlrﬁ—qs[q 171, (238)
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for all p and q such that n_zqf q <p, where K,(M, g) is the Sobolev constant for the
inclusion of H'*(M) in L7-%(M).

Proof. As Af < Jf, the Sobolev inequality

102 < 15l + K (M, ) |d(f9)

together with the fact that

larolz=k | 7=t g =2 [ e ar e
M Vol(M) 2k—1 ], Vol(M)
gives the inequality
k
1/ Vi, < 17 18+~ Kl LA 31 (239

The Holder inequality || f |55 =3 < | £ 2% =3 I1f 157~ 9?2 thus gives

KM, 2)| 4|23

k K-
Il s | 14— "1

<[1+ K (M, &) | 4| L3157 =9 k= =5 || f ||

Setting ¢ = q/(q —2) and k = ¢, this yields

el TR0 L 4 < iloga
o 01+ 0 AT T o) 525 § T8 i)

, ~2
<[+ K I fexgl 5P KD o) ),
U

2.4. Kdhler manifolds

In kidhlerian geometry, the situation is rather rigid: indeed if the ricci curvature
of a Kihler manifold is definite, then M can be holomorphically embedded in a
complex projective space (cf. [K]). In this context, S. Bochner proved the

2.4.1. THEOREM. Let (M, w) be a Kdihler manifold.
(1) If the ricci curvature of w is non positive, then every holomorphic vector field
is parallel.
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(2) If the ricci curvature of w is non negative, then the Albanese map is a totally
geodesic holomorphic fibration.

Now in the same fashion as we did for harmonic forms and Killing vector fields,
we can retain part of these properties while relaxing the assumptions on the
curvature:

2.4.2. THEOREM. Let n(n, p, ) be the function defined in theorem 2.3.2; if a
compact complex manifold (M, J) of complex dimension n admits a kdhlerian metric
w satisfying the inequality

M

for at least one p >2n and B = (p + 2n)(p — 2)/(p — 2n), where D is an upper bound
of diam(M) and — R an almost lower bound of ric (cf. theorem 1.4.1), then the group
G of bi-holomorphic transformations of M acts locally freely, in particular its (real)
dimension is not greater than 2n.

Remark. In case the group is not discrete, theorem 2.4.2 implies that all the
Chern numbers of M vanish (cf. [Bo]).

2.4.4. THEOREM. Let {(n, p) be the function defined in theorem 2.1.9; if a
compact complex manifold (M, J) of complex dimension n admits a kdhlerian metric
w satisfying the inequality

diam(M)?|ric ™ |lg < {(2n, p)[1 + diam(M)?| RM|g] ~# (2.4.5)

for at least one p >2n and B = (p + 2n)(p — 2)/(p — 2n), then the Albanese map of
M is a holomorphic fibration.

These two theorems are proved in exactly the same way as theorem 2.3.2 and
theorem 2.1.9. O

3. Proofs

3.1. Proof of the main theorem

Let S be a non-trivial section of W satisfying V*VS + VS =0. We have:

Iosti= [ vs|Sowgais == |, S 19wgtes < 1 LISE

Vo l(M) Vo l(M )
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In order to obtain a control of sup|S| — inf|S|, we use the Sobolev inequality for
the inclusion of H'?(M) into L*(M) and Kato’s inequality thus getting:

sup|S| — inf|S| < K, (M, g) |d(|S) |, < K, (M, g)|| VS|, (3.1.1)

These two inequalities will yield the result, provided we can control
K, (M, g)||VS|, with |VS|,.

To this end, we use a bootstrapping argument analogous to the De Giorgi-
Moser iteration scheme described in [M] involving the Sobolev imbedding of
H“(M) in Li=3(M),

22, < |Jul + Ko (M, g) |du] (3.1.2)
In order to obtain meaningful topological and/or geometric results, we need a

uniform control of the Sobolev constants K,(M, g) and K,(M, g). Such a control
has been achieved by S. Gallot in theorems 5 and 6 of [Ga2], giving the inequalities

K, (M, g) < 22 so/Ro

VR (3.1.3)

KoM, ) < 20D oo oo
R

where D is any upper bound of the diameter of (M, g), —R <0 is any “almost
lower bound” of the ricci curvature of M, and n < g < p. This explains the choice

g=(n+p)2.
Now, setting u = |F'S|* in (3.1.2), we obtain

|7S | s, < 7S | + Ko (M, £) (|7 5[] (3.1.4)

Therefore, we need an estimate of ||d(|V'S|*)|,. This is the purpose of the
following lemma which is the key to the proof of the theorem:

3.1.5. LEMMA. For all k 21 and s > 1, any section S of any vector bundle W
over any compact Riemannian manifold (M, g) satisfies
|27 S |7 < k(|lic™ |« + | R¥] £ [7S |3

+k(2k — D([R™ |t [S1% + |7 7S gy |7 S35
(3.1.6)
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Note that in this result, no assumption is made on the vector bundle or on the
basis.

The proof is postponed to a later section.

For the sake of simplicity, we fix | S|, = 1. If we observe that ||[V*FS| -
< V“Hk(s 2|8 ;5 injecting mequahty (3.1.6) in (3.1.4) we obtain:

|78 |2, < |7 S |5 + Ko (M, 8)| 7S 136 fies(17S [l 245) (3.1.7)

where

fk,s(" VS "2ks) =
+k(2k — 1)( IlR”’IL ) II V) 12
is a function depending on the ricci curvature of M, the curvature of the bundle and
the potential V.

We then use a Holder inequality relating the L7=5, L and L? norms of VS|,
namely:

[Pl < PS5 7S]

where 1(s) = 5—[%;(—1’1——)%1 Now setting s =% and k= 2-2 so that 2ks=p,
A= =% and t = 22=2, we obtain
Vsl +e < [wSlsI7s]s s, + K4, 9f(7s],) (3.18)
where
p—=2 . _ (p—2)(p—-3) 2
sty = 252 e g ni&* 1wl + 2L =D o+

This can be reformulated as

LA
IvS|, + K.(M, 9/ (|VS],)

Ivs]s = (3.1.9)

As the right-hand side is a non-decreasing function of ||V'S|,, (3.1.1) gives

KM, )|V~ [ 2 K, (M, g)"[| VS5
(sup|S| —inf|S|)* *~

(suplS|  inf|S]) + Ko(M, K, (M, g)f(

2

sup|S| — inf]S])
K,(M, g)
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Since sup|S| — inf|S| is at most 1, and the denominator of the right-hand side of
(3.1.9) is also a non-decreasing function of ||V'S|,, we obtain:

(sup|S| — inf|S|)' *+*

K M T V ‘L'/2
(M, )|V 2 1 K,(M, 9)K,(M, 9)f i)

(3.1.10)
Now, setting & =1/(z + 1) and | f .4, = e2BUFEN/RD( I£1ls/R), (3.1.3) gives

' . 1 l—a
sup|S| —inf[ S| < C,(n, p)*|V |7}, [1 + KM, K, (M, 8)f (‘—‘—“K M g>)]

(3.1.11)

and

1
K>(M, g)K,(M, g)f| (m)

<[ 257 Catn (e g, + R )

—2)(p—3)
2

1
+Cotn, ?C,(n, py? P (IR" g5 + nVnm)]

Therefore, we get:

1
1+ K,(M, g)K,(M, g)f(m)
p b

<F(n,p)(1 + ||V |23 + | R¥| 2 + ||ric™ | 23)

where

2 —_
Fonp) = sup| Gt PGy n ) [L=2E=D 222 0 |

This gives the result if we set A(n, p) = C,(n, p)*F(n, p)' ~*. O
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3.2. Proof of lemma 3.1.5

From now on, the rough Laplacian F*F will be denoted by 4.
We know

[4(vS) [z = k7St ="d(vs) |3

—2 [ wsp-taqrspp
M
Using Kato’s inequality |V S|A(|V'S]) < (V'S | AVS) we obtain
2k —1) j PSP 2ld(|P S = J (PSP 1) | (7S] >
M M
=J PSP~ =14(7S]) (3.2.1)
M

< J PSP | AVS)
M

3.3. Commutation formula
In order to use the information we have on A4S, we establish the

3.3.1. LEMMA. Denoting by A the rough Laplacz”an V*V acting on sections of
W, we have the equality:

4avs — VZS)(X) = "'TrY[VY(R(n),',X)S) + R(u),',X)VYS] —VrienyS

where Tr,[A(Y, Y, . ..)] denotes the tensor obtained by tracing at the place indicated
by Y with respect to the Riemannian metric g.

Proof. This follows from

(AVS — VASYX) = —Try(VyVyVyS — V¥, 7, S)
= —Try[Vy(VyVx — VxVy)S + (VyVy — VxVy)VyS]
= —Try[VyR(u}i,X)S + R(u;f,x) VyS - VR(A;‘X)YS]

and ric(X) = —Tr, R¥ »,Y. Ll
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Using this formula we get

f|VS|”‘2(VS|ZVS>=j PSP =2 Try (P AS | VxS
M M

—| PSP 2TryyVyR% xS | VxS
M

o

(3.3.2)

»
- |VS‘2k_2 Trx’y<R(u;',X)VyS ’ VXS>
M

o

- IVSPk‘Z Try ViiexyS | VxS
M

o

We estimate the four terms (A4), (B), (C) and (D) of the right-hand side of (3.3.2)
in reverse order:

3.4. Control of (D)
"‘[ |VS|2k—2Trx<Vric(X)S I VXS>
M

Using an orthonormal basis (e, ..., e,) in which ric is diagonal, we have
~PriceS | V.S>= —ric(e, e)|V.S|? < —ric|v, S|

and then

—J |VS|2"*2TrX(Vﬁc(X)S|VXS>S—f _r_ig|VS|2"sI ric|[VSPx (3.4.1)
M M M

3.5. Control of (C)

—j IPS|* =2 Try v (R .x,V¥S | VSO
M
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It is straightforward that

U PSP =2 Try y (R, VyS | Vi SD
M

<n J R¥] [P S+ (35.1)

as soon as we see
Tty (R 3, VyS | Vi SH| = [KRE . VyS | PSY| < [R¥| PSP

The estimation of the two other terms, though not much more difficult, is
slightly longer.

3.6. Control of (B)
M

We have to get rid of VyR( xS, for this we use the compatibility of ¥ with
{.].> to obtain

—(VyRY 3,8 | [PS[ 27y S = — YARY 1,S | VS|~ 27, S)
(3.61)
+(R% 4,8 | Vy([PSP*~27,S))

As the integral of a divergence vanishes, only the second term remains:
—j Try y <VyRE x,S | [VS|* ~ 2Py S)
M
_ I Tryy (R% 1S | [PS[* 27,7, S
M
+<{R& S | (2k —2)|PS|* ~3dy (|VS|)VxSD

As R x)S is skew-symmetric, we obtain:

2TrX,y<R(,§/r’X)S I VyVXS> =Trx'y<R(u;r,x)S | VyVXS - VXVYS>
=|R"S[* < |R"P|S|*
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which gives the estimate:

—J‘ Tl’X’Y(Vngz’X)S ‘ IVS‘zk—2VXS>
M

" J PSPE=2(R*PIS] + (2 — 2)|R|S| (7 SD])
M (3.6.3)
<(2k - 1) j PSP 2R PSP

L j PSP 2la(P PP

3.7. Control of (A)

J PSP =2 Try Py AS | 7, S)
M

As in (3.6.1), in order to get rid of ¥V, A4S, we use the compatibility of V with
{.|.> to obtain

(VxS | [PS[* =2y S > = X(AS | [PSP*—27, 8D

—(AS | Py ([P SP* 27, S)> (3.7.1)

Using again the fact that the integral of a divergence vanishes, we have:
f Try <V, AS | [PSP*-27, S
M

=— j Try (AS | VS|~ 27,V S)
+(AS | 2k —2)|PSP*2dy (|7 S|Py S)

=J PSP =4S — (2k — 2)|VS|* ~*CAS | Vyqosy S
M
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We thus obtain the estimate:
J‘ Try {Vx4S | |VS|2"*2VXS>
M
< J ISP 2(|ASP + (2K — 2))S| [d(7SD))
u (3.7.2)

< 2k~ 1) f PSPE-2|asp?
M

-1
Lkt J PSP~ 2la(7 s
>

3.8. End of the proof of lemma 3.15

We sum up the four estimates of (A4), (B), (C) and (D) respectively given in
(3.7.2), (3.6.2), (3.5.1) and (3.4.1). Replacing them in (3.3.2) we obtain:

J PSP -2 AVS | 7S < J (tie~ + n|R¥D|P SP*
M M
FQk—1) f PSP (RYPISE+ASP) (38.1)
M
+(k—l)f |VSl2k'2|d(|VS|)|2
M
The inequality (3.2.1)
2k —1) f PSP 2{d(P S < f PSP -2 (Ps | AVS)
gives
k f PSP 2d(PSPP < J (tie~ +n|R™)|FSP*
M M

+(2k — 1) f |V S|~ 2(|R™)|S|? + |4S])
M
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Now, if we use the two Holder inequalities

fIPsPs I

7S5

/e

gISPIVSP* =2 < g e IS I 1V S 120
M

s —1

where we set s” such that (2k — 2)s’ = 2ks, (hence ;25 = ;#2—;), we obtain:

1
FlersiB=k [ psp-aps|y
M

< (||ric™

_;_+n||RW

s —1

=D VS|2%s

s —1

2

+(2k = D(|R* | e IS + 138 | ) IVSI3472 O
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