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ZApinching and the geometry of compact Riemannian manifolds

Michel Le Couturier and Gilles F. Robert

Abstract We prove a Harnack-type înequahty inf|Sr|/sup|S&apos;| &gt; 1 — e(W, A/, V) satisfied by the
sections of a Riemannian vector bundle W lymg in the kernel of a Schrodinger operator V*V + V
under ZApmching assumptions on the potential V and dérive vanous topological and geometnc

conséquences
For instance, we prove a fibration theorem which gives a classification of almost non-negatively

curved compact manifolds by the first Betti number In the case of almost non-positively curved

compact manifolds, we prove that the minimal volume must vamsh whenever the isometry group îs not
finite and give conditions implying that ît îs abelian

1. Introduction

The GauB-Bonnet formula 2n% J Kdv which expresses the Euler characteristic

of a closed surface as the intégral of the curvature has been the starting point of an
intense field of investigations of the interactions between the local properties of the

metric of a Riemannian manifold (such as curvature bounds) and its global
topology and/or geometry (e.g. Betti numbers, fundamental group, isometry group
etc.).

One way to do this is embodied in the celebrated Bochner method. Initiated by
S. Bochner in 1946 ([Bl], [B2] and [B-Y]), this method is by now classical in
differential geometry.

In its essence, it can be summarized as follows: we express a topological or
géométrie invariant through the kernel 9* of a Schrodinger operator.

y {s g r{W) | v*vs + vs o}

where 5 is a section of a Riemannian connected vector bundle W -*M over a

compact manifold and the potential F is a field of symmetric endomorphisms of the

fibre given by the geometry of the situation and in most cases computable in terms

of the curvature.
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Bochner&apos;s method then reads:

(1) V ^ 0 implies that dim $f &lt;. rk W and that any section S e 9&gt; is parallel so
that in particular it never vanishes.

(2) If V £ 0 and if there exists xeM such that Vx &gt;0, then Sf {0}.

1.1. Examples

The Hodge Laplacian (rf-frf*)2, acting on p-forms, i.e. sections of the bundle

f\p T*M -? M, is a Schrôdinger operator, since the Bochner-Weitzenbôck formulas
give an expression of the previous type for this operator. The field V of endomor-
phisms is given by the curvature tensor of M. For p 1, for instance, V is the Ricci
tensor of M. The Hodge-De Rham décomposition theorem states that the kernel of
this operator (the space of harmonie p-forms) is isomorphic to the /?-th De Rham
cohomology group JfpDR(M).

Through the Eells-Sampson formula, the differential of a harmonie map can be

viewed as a solution of a Schrôdinger équation, thus giving the non-existence of
non trivial harmonie maps when the source has non négative Ricci curvature and
the target has négative sectional curvature.

A last example is given by Lie groups of transformations preserving some

structure. For instance, the Killing vector fields of a Riemannian manifold and the

holomorphic vector fields of a Kâhlerian manifold both lie in the kernel of
V*V — rie, where rie dénotes the ricci curvature, acting on sections of the tangent
bundle.

1.2. Statement of results

One of the limitations of Bochner&apos;s method lies in the fact that the positivity
assumption on the potential is strong, so that it would be désirable to weaken it.
Indeed it seems likely that some topological properties holding for the class of
manifolds for which the potential is nonnegative will persist if it is allowed to take
small négative values.

The best one can hope for, considering the counterexamples given in the

appendix of [Ga2], is to prove pinching and vanishing theorems while keeping
control only on an Z/-norm of the potential. We show that this is indeed possible
under mild extra hypothèses which allow for an infinité number of topologies.

More precisely, we prove a Haraack-type inequality which shows that a section

lying in the kernel of V*V + V, while it cannot be expected to be parallel, retains
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the property to be nowhere vanishing. We thus obtain a topological classification
similar to the géométrie one given above by describing the behaviour of the

éléments of Ker(P*P + V) while earlier results of P. Li [Li], S. Gallot [Gai] [Ga2],
P. Berard and G. Besson [B-B] gave a-priori estimâtes of its dimension.

Notice that our assumptions allow Ker(P*F + V) to be non trivial, while results

of K. D. Elworthy and S. Rosenberg [E-R] rely on assumptions implying that this
kernel vanishes.

Before we state the main resuit of this paper, let us fix the notations.

1.3. Notations

Throughout this paper, W^M will dénote a Riemannian connected vector
bundle, endowed with a metric &lt;. | .}„, and a compatible Riemannian connexion V.

The basis {M, g) is a compact «-dimensional Riemannian manifold. We dénote by
RM and Rw the curvature tensors of M and W respectively and rie the ricci

curvature tensor of M.
The rough Laplacian acting on sections of W will be denoted indifferently by

V*V and Â.

Given a field V of symmetric endomorphisms of the fiber, we dénote by V(m)

(resp. V(m)) the lowest (resp. highest) eigenvalue of V at the point m e M.
We also define for any function/ : M -* U its positive part/+(m) sup(0,/(m))

and its négative part/&quot;(m) sup(0, —f(m)).
The L5-norms are taken with respect to the probability measure dvg/Wo\(M,g):

¦-(J&gt; dvg

Vol(M, g)

1.4. Main theorem

1.4.1. THEOREM. Let (Mn,g) be a compact Riemannian manifold and W-+M
a vector bundle endowed with a metric &lt;. | .)wand a compatible connection F. For any
field V of symmetric endomorphisms of the fiber, the Harnack-type inequality:

(1.4.2)
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holds for ail sections S solution of the Schrôdinger équation V*VS + VS 0, where

p is any number strictly greater than n, oc 2(p — n)/(p2 + np — An) &lt; 1, D is any
upper bound of the diameter of(M9 g), and — jR &lt; 0 is any &quot;almost lower bound&quot; of
the ricci curvature of M(*).

A(n9 p) is a universal constant explicitly computed in the proof and

1.5. Remarks

It should be noted that the strength of the resuit lies in the universality of the

constant in the theorem.
Observe that the class of manifolds satisfying the bounds of theorem 1.4.1

contains an infinité number of topologies and geometries (as well as singular spaces,

although we do not concentrate on this aspect).

Also, no assumption being made on the injectivity radius, &quot;collapsing&quot; à la

Cheeger-Gromov-Fukaya is allowed.

In case the bundle W -» M is the trivial one-dimensional bundle M x R, the

main theorem amounts roughly to the computation of an explicit upper bound of
the LT2^ norm of the ad hoc Green kernel G of M solution of AG(x0, •) ôXQ -
l/Vol(M) satisfying in(xeMG(x0, x) =0: indeed, this follows from the fact that

sup/- inf/s 2||/-/|U 2 sup |£ Gix, y)V(y)f(y)

*2sup H*,-) 1

where

is the mean value of/.

(*) This means that there exists a non-négative function ô: M-*R such that ricw ^ — (R 4- à(m))gm

and that ||&lt;5 \\ql2 ^
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Even in this simple case, it is not obvious how to compute an upper bound of
\\G(x, •) II-jl- depending only on the géométrie bounds involved in the inequality of
the main theorem.

In the case of a gênerai bundle, Kato&apos;s inequality provides the estimate:

s A(\S\) £ Y~\S\ (1.5.1)

at any point where \S\ #0. In (1.5.1), the assumption that the right-hand side is

small is not sufficient to prove that S never vanishes: a counterexample to this is the

fonction/^ defined by

fE(x) sup(0, 1 - eG(xo, x))

which can be smoothed while keeping the two properties Afe &lt;, e/Vol(M) and &quot;fe

vanishes somewhere&quot;.

Consequently, a control of the left-hand side of (1.5.1) is necessary. This means

a control of V(S/\S\), i.e. of the rotation of S with respect to a parallel frame. This
accounts for the curvature terms in (1.4.2).

1.6. An important corollary

The main theorem will mostly be used through the following corollary:

1.6.1. THEOREM. Under the hypothèses of theorem 1.4.1, if

R

then every non trivial solution of the Schrôdinger équation V*VS + VS 0 never
vanishes. In particular, this implies that ail StieffeUWhitney classes of W vanish from
order rk(^) - dim Ker(P*P + V) -h 1 to order rk(W).

Proof The hypothèses of theorem 1.6.1 imply that

and the conclusion of the main theorem implies that every non trivial solution of
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the Schrôdinger équation V*VS + VS 0 satisfies inf(|S&apos;|)/sup(|Sr|) &gt; 1 - 1 0, i.e.

that it never vanishes.

1.7. Acknowledgments

The authors are very grateful to Prof. S. Gallot for his constant encouragement
and valuable advice.

2. Applications

Before the proof, we give some applications:

2.1. Harmonie l-forms

As we mentioned in the introduction, the Hodge Laplacian is an example of
Schrôdinger operator acting on /?-forms. This was one of the first fields of
application of the Bochner technique, particularly in the case of harmonie l-forms,
for which case the first resuit is due to Bochner himself in [B-Y]:

2.1.1. THEOREM. If(M&gt;g) is a Riemannian manifold with non-negative Ricci
curvature, then its Albanese map is a totally géodésie submersion.

Recall that the Albanese torus of M is defined as the quotient of the dual of the
first De Rham cohomology group JtlDR(M)* by the lattice F obtained as the image
of the torsion free part of 3ffx(M, Z) under the De Rham isomorphism between

jex(M9 R) and JflDR(M)*.
Let n:M-+M be the universal cover of M and fix xoeM. We define

J&amp; :jfit-+JflDR(M)* by sxt(x).a J*orc*a. Since the Hurewicz homorphism sends

nx(M) to ^(M, Z), se projects to a harmonie map se \M-+JflDR(M)*/r, called
the Albanese map of M. It satisfies the

2.1.2. PROPOSITION. For each harmonie map ffrom M to a flat torus T*,
there exists a linear mapping $ from T*l(M) to T* satisfying /= # ° se.

Sketch of Proof. This follows from the fact that the coordinates of/:i#-&gt;IR*
are harmonie functions on M9 thus giving an homomorphism *$ from Mk* to
jflDR(M) R*l(M)*. ë projects to a linear mapping # : T6l(Af} -? T* and it is easy to
check that/=#° se.
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Theorem 2.1.1 given above follows then from the fact that harmonie 1-forms are

parallel whenever the ricci curvature is non-negative. D

One may expect that part of this resuit still holds when the négative part of the

ricci curvature is supposée to be small. Indeed, M. Gromov in [Grl] using
géométrie arguments and S. Gallot in [Gai] by an analytical method proved the

following results:

2.1.3. THEOREM. There exists e(ri) &gt; 0 such that if {M, g) is an n-dimensional
Riemannian manifold with diam(M)2||riç~||oo less than e(n), then the first Betti
number of M is not greater than n.

The conclusion of theorem 2.1.3 is very much weaker than that of theorem

2.1.1, so that one may wonder whether it would not be possible to retain part of the

conclusion of theorem 2.1.1 under the hypothèses of theorem 2.1.3. Indeed, M.
Gromov in [Grl] made the following conjecture:

2.1.4. CONJECTURE. There exists s(n) &gt;0 such that if (M, g) is an n-dimensional

Riemannian manifold with diam(M)2||nç~||00 less than s(n) and such that
bx (M) «, then M is homeomorphic to a torus.

A partial answer to this conjecture has been given by T. Yamaguchi in [Yl]
where he proves the following:

2.1.5. THEOREM. There exists a theoretical function e(% •) &gt; 0 such that, if a

compact Riemannian manifold Mn satisfies the inequality

diam(M)2||riç- IU £ e(n, diam(M)2|| *&quot;!«&gt;) (2.1.6)

then its Albanese map is a harmonie fibration.

He further obtains in [Y2] the following

2.1.7. PINCHING THEOREM. There exists a positive number s(n) depending

only on n such that, if the (sectional) curvature a and the diameter of a compact
Riemannian n-manifold M satisfy:
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then the following hold:

(a) A finite covering of Mfibers over a bl(M)-torus.
(b) If bi(M) n, then M is diffeomorphic to a torus.

Observe that this resuit involves no assumption on the positive part of a, but the

assumption on the négative part is more stringent, since it is not only supposée to
be bounded, but also needs to be small.

Unfortunately, since the proofs use convergence methods, it is impossible to
hâve an explicit value for thèse e. In particular, for a given manifold (M, g), it is

impossible to tell if it satisfies the hypothèses of the theorems. One has to compare
it with ail the other potential candidates.

The value of e in (2.1.6) dépends on a bound on the absolute value of the
sectional curvature &lt;x. In view of the conjecture, this assumption may look two
drastic. However, it is impossible to do without any assumption on o, as shown by
M. Anderson in [An], where he gives explicit counterexamples:

2.1.8. THEOREM. Given any n ^ 4, k &lt; n — 1 and s &gt;0, there are compact
n-manifolds Mn satisfying diam(M)2||ric|oo ^ e, and bx(M) k such that no cover of
Mn fibers over S1. In particular, any harmonie \-form on Mn must vanish somewhere.

We prove that it is possible to weaken the L°° bound of theorem 2.1.5 on the

sectional curvature to an Ù bound and to give an explicit value for e:

2.1.9. THEOREM. There exists a function Ç(n,p) such that, if a compact
Riemannian manifold M of dimension n satisfies the inequality

diam(M)2||ric-1|; £ C(n9p)[l + diam(M)2||i^||?]-&apos; (2.1.10)

for at least one p &gt;n and p (p -hn)(p — 2)/(p — ri), then its Albanese map is a
harmonie fibration.

The value of Ç(«, p) is

Proof It is enough to show that (2.1.10) implies that a non-trivial harmonie
1-form never vanishes, since then the Albanese map will be a submersion. For this,
we need only check that (2.1.10) ensures that the hypothèses of theorem 1.6.1 are
satisfied for W T*M and V rie.
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Set D diam(Af), q (n +p)/2 and R \/D2. Since

C(n9p) R
¦ s ¦

D 2
22/9(e B^^D —

the choice ô =riç~ ensures that — R is an almost lower bound for rie.

Since -p 2(1 - 1/a), we can rewrite (2.1.10):

* J

Therefore, (1.6.2) follows from the fact that ||ric|||^ (n — l)|jRM||£.

2.2. Harmonie maps into flat tori

As we hâve seen in proposition 2.1.2, harmonie maps into flat tori are classified

by the Albanese map. Consequently theorem 2.1.9 admits the following corollary:

2.2,1. THEOREM. Under the hypothesis of theorem 2.1.9, every harmonie map

ffrom M into a flat torus Tk is a submersion onto a totally goedesic sub-torus oflk
of dimension less thon or equal to bx(M).

Proof As a? is a submersion, the lift/of/is a submersion onto the image of
the linear mapping defined in proposition 2.1.2 which is a vector subspace A of
dimension less than or equal to bx{M), hence/(M) is an open subset of A.

f(M) is then an open subset of A/(F nA), which is connected.

/(M) being compact in T*,/(Af) =A/(FnA) is a totally géodésie torus in T*.

n

2.3. Killing vector fields

In [Bl], S. Bochner proves the following theorem:

2.3.1. THEOREM. If {M, g) is a Riemannian manifold with non-positive Ricci

curvature, then every Killing vector field is parallel.

We obtain an extension of this resuit in the following theorem:
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2.3.2. THEOREM. There exists an explicit function rj(n,p,À) such that if a

compact Riemannian manifold (M, g) of dimension n satisfies the inequality

for at least one p &gt; n and fi (p + ri)(p —2)/(p — n), where D is an upper bound of
diam(M) and —R an almost lower bound of rie (cf. theorem 1.4.1), then its isometry

group G acts locally freely, furthermore the mapping g*-*g(x) is a finite covering of
each orbit by G.

In case dim(Cr) n, this implies that G acts transitively on M and induces a finite
cover of M.

The value of rf(n, p, À) is

rj(n, p, X) A(n, p)

Proof Recall that a Killing vector field X satisfies the équation V*VX -
rie X 0 (cf. for instance [Be], p. 41), so that under the hypothèses of theorem

2.3.2, a simple application of theorem 1.6.1 shows that a non-trivial Killing vector
field never vanishes. It is then easy to see that this implies that the action of the

isometry group on M is locally free.

In case the isometry group is not finite, theorem 2.3.2 gives topological
information on the manifold. Indeed, R. Bott proved in [Bo] that the existence of
a non vanishing Killing vector field implies that ail Pontryagin numbers of M
vanish. Moreover, since G contains a subgroup isomorphic to S1, M admits a

locally free action of S1. This implies that Gromov&apos;s minimal volume of the

manifold is zéro [Gr2].

2.3.4. COROLLARY. IfM has non-zero minimal volume, and ifg is a Riemannian

metric on M satisfying the hypothèses of theorem 2.3.2, then its isometry group
is finite.

Remarks. Sufficient topological conditions for M to hâve non-zero minimal
volume are given in [Gr2], for instance if M has one non-zero characteristic class or
if its simplicial volume is non-zero.

Let Go be the connected component of the identity in G. The L2 scalar product
acting on Killing vector fields defines a bi-invariant Riemannian metric on Go. We
hâve the following:
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2.3.5. THEOREM. If a compact Riemannian manifold (M, g) of dimension n

satisfies the inequality

diam((?o

for ai least one p &gt; n, where D is an upper bound of diam(M) and — R an almost
lower bound of ne {cf. theorem 1.4.1), then Go is abelian.

Proof Since the L2 scalar product on Killing vector fields induces a biinvariant
metric on the Lie algebra ^ of Go, the adjoint action is a morphism from Go to
(9(y). Since every non trivial one parameter subgroup of 0{^) contains an élément

with eigenvalue -1, we will be finished if we prove ||Adg(A&quot;) — X\\2 &lt; 2\X\2 for ail

g e Go and Ie^, which prohibits the eigenvalue — 1.

Since the Lie bracket is the differential of the adjoint action, a simple intégration
proves that this follows from:

(2-3-6)

In order to establish (2.3.6), we recall that [X, Y] VXY- VYXand that (since
X and Y are Killing vector fields on M)

Therefore we will be done if we can control \X\X with ||Jf||2. Since every
Killing vector field X satisfies A \X\ &lt;. nc+ \x\, and since the Sobolev constant

K2(M,g) for the inclusion of HU2(M) in LF^(M) satisfies the inequality

K2{M,g)±C2(n,p)

derived from theorem 6 of [Ga2], the resuit is a conséquence of the foliowing
lemma, where we set q (n +p)/2.

23.7. LEMMA. If a positive function f on a compact Riemannian manifold
(M, g) satisfies Af ^ Àf where k is any positive function, then we hâve

(2-3-8)
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for ail p and q such that n &lt;. q &lt;p, where K2(M, g) is the Sobolev constant for the

inclusion of Hl2(M) in L&amp;(M).

Proof As Af ^ Àf the Sobolev inequality

together with the fact that

gives the inequality

(2.3.9)

~2) thus gives

K2(M, g) IA |

Setting a ^/(ç — 2) and k =a\ this yields

2.4. Kâhler manifolds

In kâhlerian geometry, the situation is rather rigid: indeed if the ricci curvature
of a Kâhler manifold is definite, then M can be holomorphically embedded in a

complex projective space (cf. [K]). In this context, S. Bochner proved the

2.4.1. THEOREM. Let (M, œ) be a Kâhler manifold.
(1) If the ricci curvature ofœ is non positive, then every holomorphic vector field

is parailel.
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(2) If the ricci curvature of co is non négative, then the Albanese map is a totally
géodésie holomorphic fibration.

Now in the same fashion as we did for harmonie forms and Killing vector fields,

we can retain part of thèse properties while relaxing the assumptions on the

curvature:

2.4.2. THEOREM. Let rj(n,p,X) be the function defined in theorem 2.3.2; if a

compact complex manifoid (M, /) of complex dimension n admits a kâhlerian metric
co satisfying the inequality

\\Rm\\p~\L_iJJ^Jii ^ n(2n,p, JRD)\1 + ^2J (2.4.3)

for at least one p &gt;2n and P (p + 2n)(p — 2)/(p — 2n), where D is an upper bound

o/diam(M) and —R an almost lower bound of rie (cf. theorem 1.4.1), then the group
G of bi-holomorphic transformations of M acts locally freely, in particular its (reaï)
dimension is not greater thon 2n.

Remark. In case the group is not discrète, theorem 2.4.2 implies that ail the

Chern numbers of M vanish (cf. [Bo]).

2.4.4. THEOREM. Let Ç(n,p) be the function defined in theorem 2.1.9; if a

compact complex manifoid (M, /) of complex dimension n admits a kâhlerian metric
co satisfying the inequality

diam(M)2||riç-||£&lt;: C(2/i,/&gt;)[1 +diam(M)2||Z*A%]-/* (2.4.5)

for at least one p &gt;2n and P (p H- 2n)(p - 2)/(p - 2n), then the Albanese map of
M is a holomorphic fibration.

Thèse two theorems are proved in exactly the same way as theorem 2.3.2 and

theorem 2.1.9.

3. Proofs

3.1. Proof of the main theorem

Let S be a non-trivial section of W satisfying V*VS -h VS 0. We hâve:
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In order to obtain a control of sup|S| — inf|S|, we use the Sobolev inequality for
the inclusion of HUp(M) into L°°(M) and Kato&apos;s inequality thus getting:

sup|S| -inf|S| £ Kp(M9g)\\d(\S\)\\p * Kp{M,g)\\VS\\p (3.1.1)

Thèse two inequalities will yield the resuit, provided we can control
Kp(M9g)\\VS\\p mth \\VS\\2.

To this end, we use a bootstrapping argument analogous to the De Giorgi-
Moser itération scheme described in [M] involving the Sobolev imbedding of
HÏ2(M) in L&amp;(M)9

(3.1.2)

In order to obtain meaningful topological and/or géométrie results, we need a

uniform control of the Sobolev constants K2(M,g) and Kp(M9g). Such a control
has been achieved by S. Gallot in theorems 5 and 6 of [Ga2], giving the inequalities

R
(3.1.3)

R

where D is any upper bound of the diameter of (M,g), —R&lt;0 is any &quot;almost

lower bound&quot; of the ricci curvature of M, and n &lt;q &lt;p. This explains the choice

Now, setting u \FS\k in (3.1.2), we obtain

+ K2(M,g)\\d(\VS\*)\\2 (3.1.4)

Therefore, we need an estimate of ||rf(|FS|*)||2. This is the purpose of the

following lemma which is the key to the proof of the theorem:

3.1.5. LEMMA. For ail k ^ 1 and s&gt; \, any section S of any vector bundle W
over any compact Riemannian manifold {M, g) satisfies

H-&amp;(2&amp;- .__, __„ „

(3.1.6)
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Note that in this resuit, no assumption is made on the vector bundle or on the
basis.

The proof is postponed to a later section.

For the sake of simplicity, we fix \\S\\a 1. If we observe that ||P*
^k__||5&apos;||oo; injecting inequality (3.1.6) in (3.1.4) we obtain:^) (3.1.7)

where

is a function depending on the ricci curvature of M, the curvature of the bundle and
the potential V.

We then use a Hôlder inequality relating the U~^-, L2ks and L2 norms of |FS|,
namely:

where t(s) k[q{ks{l {)q)s]. Now setting s -—^ and k E-j^ so that

r~r i+mÏ-h 2
anc^ T a(p-2)&gt; we obtain

||||, t] (3.1.8)

where

This can be reformulated as

As the right-hand side is a non-decreasing function of l^^l^, (3.1.1) gives

Kp(M,gy\\V-\\f ï&gt; Kp(M,gy\\VS\\l

^
(sup|S| - inf|S|) + K2(M, g)Kp(M, j
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Since sup|S| — inf^l is at most 1, and the denominator of the right-hand side of
(3.1.9) is also a non-decreasing function of ||^S&apos;||/,, we obtain:

K (M gY\\ V-1* £

Now, setting a t/(t + 1) and \\f\\LkD e2^^)^D{\\f\\sIR), (3.1.3) gives

sup||S| -inf||5| £ Cp(n,Py\\V-\\?lD

Kp{M,g)j

ne&quot; II ,£/?.+ni

Therefore, we get:

where

(3.1.11)

and

K2(M,g)Kp(M,g)fC l

C2(«,

This gives the resuit if we set A(n,p) Cp(n,p)&quot;F(n,p)1 ~&quot;. D
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3.2. Proof of lemma 3.1.5

From now on, the rough Laplacian V*V will be denoted by Â.

We know

2 f
Ja/

Using Kato&apos;s inequality |FS|d(|FS|) &lt;: (VS | ÂVS} we obtain

r r- 1) |FS|2*-2|rf(|FS&apos;|)|2 (d(\VS\2k~ l) | d(\VS\))
JM Ja/

iFSp^-^dFSl) (3.2.1)

: \VS\2k&apos;

Ja/

f
Ja/

3.3. Commu tation formula

In order to use the information we hâve on AS, we establish the

3.3.1. LEMMA. Denoting by A the rough Laplacian V*V acting on sections of
W, we hâve the equality:

(ÂVS - V3S)(X) -TTY[Vr(R^x)S) + RWy,x)VYS] - FnciX)S

where TrY[A(Y, Y,. ..)] dénotes the tensor obtained by tracing at the place indicated
by Y with respect to the Riemannian metric g.

Proof This follows from

(ÂVS - VÂS)(X) -TrY(VYVYFxS - VXVYVYS)

-TrY[VY(VYVx - VXVY)S + (VYVX - VXVY)VYS]

— TrY[VYR(YXyS -h R(y,X)VyS — F

and ricW -Trr R$tX) Y. D
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Using this formula we get

[ irx{vxÂs\vxsy
f f

\VS\2k~2iVS | AVS} |FSp*

-f \vs
JM

-f |rs

&quot;~~&quot; I IIJA/

(3.3.2)

&quot; 2 Tr*Y (R?Y,X) VYS | VXS)

We estimate the four terms (^f), (B), (C) and (D) of the right-hand side of (3.3.2)
in reverse order:

3.4. Controlof{D)

f |P^-2Tr^&lt;
JM

Using an orthonormal basis (el9..., en) in which rie is diagonal, we hâve

-&lt;rnceS\reS)= -ric(e,,et)\reS\2 £ -nc\reS\2

and then

- f IpsI2*-2Trx&lt;rnc(X)s | rxsy ^ - f mlrs]2* &lt;. f rig-|F5|2* (3.4.1)
JM JM JM

3.5. Controlof{C)

S | FXS&gt;- [
Jm
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It is straightforward that

If \VS\lk-2TrXiY(R^X)VYS\VxSy ^n [ {R^VS^ (3.5.1)
\Jm jm

as soon as we see

S | VXS}\ KR^VyS | VS)\ z \RW\ \VS\2

The estimation of the two other terms, though not much more difficult, is

slightly longer.

3.6. Controlof(B)

f
JM

We hâve to get rid of VYR$rX)S, for this we use the compatibility of V with
&lt;. | .&gt; to obtain

-&lt;yYRWr,X)S | \VS\2k~2VxS) - Y.&lt;

(3.61)

As the intégral of a divergence vanishes, only the second term remains:

- f rTtx.y&lt;yrR?yjn
JM

f Trx,y(RwY,x)
JM

- 2)\VS\2k-3dY(\?S\)VxS&gt;

As R&amp;x)^ is skew-symmetric, we obtain:
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which gives the estimate:

2VxS&gt;
I Tr /U Hw Ç I Il7?l— lTX,Y\VYK(Y,X)^ I \yà\

JM

JM

JM

^ \ \rsr2 JM

(3.6.3)

3.7. Control of (A)

f
JM

As in (3.6.1), in order to get rid of VXÂS, we use the compatibility of V with
&lt;. | .&gt; to obtain

&lt;yxss | \rs\2k~2vxs) x.(âs | \vs\2k~2vxsy

\\\ (3.7.1)

Using again the fact that the intégral of a divergence vanishes, we hâve:

f Trx(VxÂS\\VS\2k-2VxSy
JM

[
M

f \FS\2k-2\ÂS\2-{2k-2)\VS\2k-\IS
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We thus obtain the estimate:

f Trx(VxÂS\\VS\2k-2VxS&gt;
JM

£ f \VS\2k~2(\ÂS\2 + (2k-2)\ÂS\\d(\VS\)\)
JM

-\) f
J

f \VS\2k-2\d(\VS\)\
JM

(3.7.2)
r

&lt;(2k
JM

k-\

3.8. End of the proof of lemma 3.15

We sum up the four estimâtes of (^4), (B)9 (C) and (D) respectively given in
(3.7.2), (3.6.2), (3.5.1) and (3.4.1). Replacing them in (3.3.2) we obtain:

f \VS\2k~\ÂVS\VSy^ f (rifi-+n
JM JM

+ (2*-l) f
Jm

Jm

The inequality (3.2.1)

-l) f \VS\2k-2\d(\VS\)\2£ f
JA/ JM

gives

|P5||rf(|P5|)|^ f (nç+n\R\)\VS\2k
M

f (nç-+n\R&quot;\)\VS\2
JM

(2*-l) f |PS|2*-2fl*&apos;&quot;|2|S|2+ IJSI2)
Jm
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Now, if we use the two Holder mequalities

f
JM

where we set s&apos; such that (2k — 2)s&apos; 2ks, (hence 7^7 1+^_ 1}), we obtain

f

+ (2* - ÎXIHI^^ISI2. + 1^11^-^)11^11^ 2 D
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