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Des métriques finslériennes sur le disque a partir d’une fonction distance
entre les points du bord

MARC ARCOSTANZO

Soit M une variété compacte de bord dM. A toute métrique riemannienne g sur
M est associée une distance sur M, dont la restriction au bord est notée d,: la
distance d,(x, y) entre deux points x et y de OM est égale a la borne inférieure des
longueurs (pour g) des chemins joignant x et y, et il existe en fait entre x et y au
moins un chemin qui réalise le minimum de la longueur. Nous noterons

B RM)->2P(0M),

g d,,

lapplication définie précédemment, Z(M) et 2(0M) désignant respectivement
I’ensemble des métriques riemanniennes sur M et I’ensemble des distances sur oM.
Nous nous intéressons ici au probléme suivant: étant donné un élément d de
D(0M), existe-t-il ge (M) vérifiant d, =d et si oui quelles sont toutes les
métriques riemanniennes sur M ayant cette propriété?

Remarquons que si @ est un élément de I'’ensemble 2ifi M, OM) des difféeomor-
phismes de M dont la restriction au bord est I'identité, alors g et sa métrique image
par ® ont méme fonction distance sur le bord: d, = dp .. La bonne formulation du
probléme de I'injectivité de # est donc:

Question 1 (unicité): soit g, et g, deux ¢léments de R(M) vérifiant d, =d, .
Peut-on trouver @ appartenant a Qiff{iM, M) vérifiant & g, =g,?

Si la réponse a cette question est affirmative, la variété riemannienne (M, g,) est
dite rigide. Autrement dit, (M, g) est rigide si d, détermine g de manicre unique a
isométrie prés. Toutes les variétés riemanniennes ne sont pas rigides; la partie I
rappelle les principales variétés riemanniennes rigides connues, et donne quelques
exemples de variétés riemanniennes non rigides.

A partir de la section II, on se restreint au cas oi M = D, disque unité fermé de
R2. La section I montre qu’il est raisonnable de conjecturer que (D, g) est rigide si
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D est strictement géodésiquement convexe (voir la définition en section I). Il est
alors intéressant de caractériser I'image par ’application 4, c’est-a-dire de répondre
ala

Question 2 (existence): soit d € 2(0D); existe-t-il une métrique riemannienne g
sur D qui rende D strictement géodésiquement convexe et pour laquelle d = d,?

Avant d’exposer nos résultats, remarquons que la définition de # s’étend sans
modification a des structures de longueur sur D plus générales que les métriques
riemanniennes, comme les métriques finslériennes et les espaces de longueur (une
définition de ces notions est donnée au début de la partie II). Partant de d € 2(0D),
nous construisons ici tous les espaces de longueur (D, §) vérifiant #(5) = d et pour
lesquels D est strictement géodésiquement convexe. Pour cela, nous montrons que
la donnée d’un systéme convenable de courbes I" sur D détermine un unique espace
de longueur (D, 8) vérifiant #(6) =d et dont le systéme de géodésiques coincide
avec I'.

Dans le partie II est énoncé un théoréme (théoréme 1) qui donne une formula-
tion précise de ce résultat. Sa démonstration fait I'objet de la partie III. Puis nous
donnons dans la partie IV une expression explicite du prolongement é a partir des
données initiales: distance sur le bord et systéme de géodésiques. En renforgant les
hypothéses de régularit¢é sur ces deux objets, nous montrons que l’espace de
longueur obtenu provient en fait d’'une métrique finslérienne (continue) sur D, dont
nous donnons aussi une expression explicite: c’est le contenu du théoréme 2. La
partie V donne un critére pour déterminer dans quel cas nous avons affaire a une
métrique riemannienne. Enfin, nous traitons des problémes d’isométries dans le
partie VI en montrant comment des choix convenables de systémes de géodésiques
permettent de construire des métriques finslériennes non isométriques ayant méme
distance sur le bord (théoréme 3), ce qui permet d’affirmer que I’application %
é¢tendue aux métriques finslériennes ne peut pas étre injective.

I Variétés riemanniennes rigides ou non rigides: des exemples

Rappelons qu’une variété riemannienne compacte a bord (M, g) est dite rigide
si:

Vg'e (M), d =d, = 3IbeifiM,M)/g’ =0,,.

11 est facile de construire des variétés riemanniennes non rigides: supposons que
les géodésiques minimisantes de (M, g) évitent toutes un ouvert U de M; alors une
modification adéquate de la métrique g sur U ne modifie pas la distance sur le bord.
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On peut donner ’exemple d’une hémisphére (voir figure 1a): la geodésique min-
imisante entre deux points x et y ne quitte jamais le bord; ou celui de la surface
dessinée sur la figure 1b: I’existence d’une géodésique fermée y assure qu’une
géodésique minimisante entre deux points du bord ne traverse jamais la région
située a droite de la géodésique fermée y.

Voici maintenant I’exemple d’une variété riemannienne non rigide, bien que par
tout point il passe au moins une géodésique minimisante (cet exemple est inspiré
par la section II de I'article [Cr2]): M est le disque de rayon 3 de R?, muni de la
métrique de révolution ds® = dr? + f*(r) df?, f étant une application a laquelle nous
imposons les trois conditions suivantes (voir la figure 2a, ou est dessiné le graphe
d’une telle fonction):

(i) f:[0, 3] — R, est de classe €', f(x) = x pour tout x de [0, 2], et £(3) = 2.
(1) Il existe x, €élément de ]2, 3[ tel que f soit strictement croissante sur [2, x;]
et strictement décroissante sur [x,, 3].
(iii) Pour tout x, |f"(x)| < 1.

La variété riemannienne ainsi obtenue est notée (M, m,). La condition (iii)
assure que (M, m,) est isométrique 4 une surface de révolution plongée dans R>.
Entre deux points suffisament proches de dM, le bord reste le chemin de plus courte
longueur. Mais cela n’est plus vrai pour deux points quelconques du bord: entre un

* ¥
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point E de M et son symétrique £’ par rapport au centre O du disque, la longueur
du bord vaut 2z; alors que le segment euclidien qui joint ces deux points a pour
longueur 6.

On établit facilement (en intégrant la relation de Clairaut: voir [DC]) qu’une
géodésique y,  partant d’'un point E du bord en faisant un angle ¢, avec M passe
a une distance r.;, =2 cos(¢,) de O et recoupe le bord en un point dont la
différence d’angle polaire avec E (voir figure 2b) est

3 dx
ramin S 6/ F (%) — COSH()

Notons Z,(¢,) la longueur de y, . La formule de la variation premi€re assure que
nous avons £;(¢p,) = 2 cos(p,)(40,)'(¢,). Comme £,(n/2) =6, la connaissance de
40, détermine £;.

Choisissons maintenant une fonction g soumise aux mémes conditions que f,
mais distincte de f, et qui vérifie de plus f, (dx) = g, (dx) (voir un exemple sur la
figure 2c). Alors 46,(¢,) et 40,(¢p,) coincident pout tout @,, et il en est donc de
méme pour /, et £/,. Une géodésique de m, et une géodésique de m, partant du
méme point E en faisant le méme angle avec le bord ressortent donc au méme point
en ayant méme longueur. Comme d’autre part le bord a méme longueur pour les
deux métriques, nous pouvons conclure que d,, = d,,,g. Mais (M, m;) et (M, m,) ne
peuvent pas étre isométriques puisque les deux fonctions f et g sont distinctes. Donc
(M, m) n’est pas rigide.

Il faut donc imposer des restrictions sur le comportement des géodésiques. Nous
dirons que M est strictement géodésiquement convexe pour g si pour tout couple
(p, 9) € M? avec p # q, il existe une unique géodésique y : [0, 1] = M avec y(0) =p,
(1) = g, et pour laquelle y(]0, 1[) ndM = J. Historiquement, I'un des premiers
résultats de rigidité est du @ R. G. Mukhometov:

40,(po) = 2 cos(@)

THEOREME (voir [Mu] ou [La-Ro-Sh] pour n =2, et [Mu-Ro] pour n
quelconque). Soit M un ouvert borné connexe de R", a bord différentiable. Soit g, et
g, € R(M), avec M strictement géodésiquement convexe pour g, et g,. Supposons que
les deux métriques s’écrivent g, = fo Xr_,dx? et g, =f, Z'_, dx? avec f, et f, de
classe € sur M. Si d, =d, , alors g,=g,.

Un tel résultat est intéressant en géophysique: il assure que I’'on peut déterminer
de maniére unique la densité de le Terre (c’est-a-dire la fonction f;) en fonction du
temps mis par des ondes sismiques pour se propager entre deux points de la surface
(ce qui s’appelle le probléme cinématique inverse de la géophysique). Ce résultat a
été généralisé au cas ou g, et g, sont toutes les deux conformes a une métrique
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riemannienne g (voir [Be]). Le méme résultat est démontré sous des hypothéses de
convexité plus faibles dans le section III de [Cr2]. Enfin, un théoréme analogue
pour des métriques finslériennes est énoncé dans [Be-Ge]. Pour des calculs nu-
meériques explicites dans un cas simplifié, on pourra consulter [Ro].

Les variétés riemanniennes a courbure constante sont rigides, comme I’a d’abord
prouvé R. Michel:

THEOREME (voir [Mi] pour le cas strictement géodésiquement convexe; [Grl,
section 5.5B] et [Cr2, section VI] pour le cas général). Sont rigides les variétés
riemanniennes suivantes:

(a) Tout ouvert connexe borné a bord régulier du plan hyperbolique H?,

(b) Tout ouvert connexe borné a bord régulier de R" euclidien.

(c) Tout ouvert connexe & bord régulier d’une hémisphére ouverte de R"+!.

Pour ce qui est des métriques a courbure négative variable, le probléme a été
traité par J. P. Otal et C. B. Croke (voir [Ge-Na] pour un résultat partiel):

THEOREME (voir [Ot] et [Crl]). Tout domaine du plan a bord régulier, muni
d’une métrique riemannienne a courbure négative ou nulle, est rigide.

I Une introduction au résultat principal

Dans toute la suite, une métrique finslérienne sur D de classe €* est la donnée
d’une application N : TD — R telle que N, soit une norme pour tout p € D, et N
une application de classe €* en tout vecteur non nul. Etant donné une distance &
sur D, (D, &) est un espace de longueur si pour tout x, y € D, d(x, y) est la borne
inférieure des longueurs des chemins entre x et y (voir [Gr2] pour plus de détails).
Clairement, une métrique riemannienne sur D est un cas particulier de métrique
finslérienne, et D muni de la distance associée 4 une métrique riemannienne ou
finslérienne est un espace de longueur.

Le but de cette partie est d’exposer quelques propriétés de la fonction d, lorsque
g est une métrique finslérienne sur D.

DEFINITION. Soit d e 9(6D). Si x, y, z et t sont quatre points apparaissant
dans cet ordre sur 0D, on définit

Ad(x,y,z, ) =d(x,z) +d(y, t) —d(y, z) — d(x, 1).



234 MARC ARCOSTANZO

Nous dirons que d vérifie la condition (=) si 4d(x,y,z,t) 20 pour tous les
quadruplets possibles de points; si de plus il y a inégalité stricte lorsque les quatre
points sont deux a deux distincts, nous dirons que d vérifie la condition (>).

Exemples. La distance sur le bord d;, associée a la métrique euclidienne sur D,
vérifie la condition (>). La ‘distance sphérique’ dg, obtenue en considérant 0D
comme un sous-ensemble de la sphére unité de R? euclidien, vérifie la condition ( =)
mais pas la condition ( >). Dans la section IV, nous nous servirons du fait suivant:
pour tout ¢ >0, la distance dj + edg vérifie la condition (>).

LEMME. Si g est une métrique finslérienne sur D, alors

(a) d, est une fonction continue pour la topologie euclidienne sur 0D

(b) d, vérifie (2)

(c) si g est une métrique finslérienne pour laquelle D est strictement géodésique-
ment convexe, alors d, vérifie (>).

Preuve. La propriété (a) est évidente. Pour le (b), notons i un point d’intersec-
tion d’une géodésique minimisante joignant x a z et d’une géodésique minimisante
joignant y a ¢, comme sur la figure 3 ci dessous. Alors

Ad(xa Vs 2, t) = (d(x’ l) + d(la Z)) + (d(y’ l) + d(la t)) - d(y, Z) - d(x’ t)
est une quantité positive on nulle, a cause des deux inégalités triangulaires

d(y,2) <d(y,i) +dG,z) et d(x, &) <d(x,i)+dG, ).

Si Ad(x, y, z, f) =0, les deux inégalités triangulaires doivent étre des égalités; on
obtient ainsi des géodésiques distinctes dont 'intersection contient plusieurs points,

Fig. 3
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ce qui est impossible si D est strictement géodésiquement convexe pour g. Ceci
prouve le (c).

Application. x et y étant deux points de dD, nous appellons @ I’écart d’angle
entre x et y, et nous définissons d, € 2(0D) par d,(x, y) = f(0) (voir les figures 4a et
4b). La distance d, ne vérifie pas ( =), puisque

Ady(x, p, 2, ) =1+1—-2—-2<0

pour le choix (x,y, z, f) indiqué la figure 4c. Il n’existe donc pas de métrique
finslérienne g sur D avec d, =d,.

Remarque. Si g est une métrique finslérienne de classe €2 sur D, il est connu
qu’il existe sur le fibré unitaire tangent de D une mesure positive u invariante
par le flot géodésique, dite mesure de Liouville; on montre (cf. [O]) que si g est
une métrique riemannienne a courbure négative, 44,(x, y, z, f) n’est autre que la
u-mesure des vecteurs unitaires tangents aux géodésiques dont I'une des extrémités
est située entre x et y et 'autre entre z et ¢, et donc 44d,(x, y, z, t) est bien positif.
Dans le partie III, nous tiendrons un raisonnement analogue pour un espace de
longueur.

Donnons-nous d € 2(0D). Nous cherchons a prolonger cette distance a D de
telle sorte que le résultat soit un espace de longueur. L’idée consiste 4 imposer a
priori les géodésiques du prolongement. Plus précisément:

DEFINITION. Notons A la diagonale de 0D x 0D et définissons I’ensemble
4 = (0D x 0D\A)/~, ou ~ est la relation d’antipodie: (x, y) ~ (y, x). Un systéme
de courbes admissibles I' est la donnée, pour tout (x,y) €9, d’un chemin v, , qui

(@)
% Y
.
% R
21‘[3
, s 8
awyy W E T

Fig. 4a Fig. 4b Fig. 4c
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vérifie les conditions suivantes:
(i) Pour tout (x,y) €%, v, est un arc de classe €' dans D qui rejoint x a y et
n’intersecte 0D qu’en ces deux points.
(i1) Tout vecteur non nul de I’intérieur de D est tangent a une unique courbe y,
élément de I'; par deux points distincts quelconques de D, il passe une unique
courbe y, , élément de T

Exemple. Si g € #(D) est a courbure négative ou nulle et si D est convexe pour
g, nous pouvons prendre pour y,, la g-géodésique de x a4 y. En particulier, le
segment euclidien de x & y convient.

Fixons un systéme de courbes admissibles I'. Nous voulons exhiber une distance
0 sur D dont la restriction a D est d, et qui est une I'-distance, c’est-a-dire

(a) ¢ est continue par rapport a la topologie euclidienne sur D.

(b) Si p, g, et r sont trois points pris dans cet ordre sur 'une des courbes 7, , de

I, alors é(p, r) =d(p, q) + (q, r).

Lorsqu’une telle distance existe, (D, d) est clairement un espace de longueur dont les
¢léments de I' sont des géodésiques minimisantes. Nous pouvons maintenant
énoncer le théoréme principal

THEOREME 1. Soit I un systéme de courbes admissibles et d € D(0D).
(a) Si d ne vérifie pas la condition ( 2), alors il n’existe pas de I' -distance 6 avec

B(0) =d.
(b) Si d vérifie la condition ( =), alors il existe au plus une I'-distance 6 avec
#B() =d.

(c) Si d vérifie la condition ( >), si d est continue sur D x 0D et de classe €' sur
0D x 0D\A, alors il existe exactement une I -distance 6 avec #(0) =d.

III La preuve du théoréme

Les I'-distances possédent une propriété fondamentale: une représentation en
termes de mesures, que nous allons expliciter. Nous munissons I de la topologie
naturelle obtenue par identification de I" avec 4. Si p et g sont deux points distincts
de D, on note [p, g] (respectivement [p]) I’ensemble des éléments de ¥ qui coupent
entre p et g 'unique courbe de I' contenant p et g (respectivement qui contiennent

D)

DEFINITION. .# est I’ensemble des mesures u sur I vérifiant les conditions
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suivantes:
(1) u est une mesure borélienne positive finie sur les compacts.
(ii) Pour tout p € D, u([p]) =0.
(iii) Pour tout p, q € D avec p # q, u((p, q]) > 0.

Le résultat qui suit donne un procédé simple pour obtenir une I'-distance a
partir d’un élément de .4 :

LEMME. Soit u € #; Iapplication 6 définie par

1
VpeD,VqeD, 4(p,q)= 2 u(p, q]) (1

est une I -distance.

Preuve. Les propriétés de u € # assurent que J est bien une distance additive le
long des y, ,. Pour la continuité de é, on raisonne ainsi: soit p € D, et (p,) une suite
de D qui converge vers p pour la topologie euclidienne. Nous définissons une suite
décroissante d’ensembles mesurables (&7,) vérifiant (,., </, =[p] en posant
A= Ukznlpspe]- Or p([p]) =0 et donc lim &(p, p,) =0 puisque d(p, p,) =
su(p, pa)) < 3(,).

Toutes les I'-distances sont en fait obtenues par ce procédé, en vertu du

THEOREME (cf. [Al] ou [Am]). Pour toute I'-distance 6, il existe une unique
mesure u € M telle que (1) soit vrai.

On établit facilement par un calcul combinatoire utilisant (1) qui si x, y, z, et ¢
sont quatre points apparaissant dans cet ordre sur 0D, alors

48(x, y, z, 1) = p([x, y] N[z, 1]).

Donc les quantités de la forme u([x, y] N[z, f]) ne dépendent que de la restriction de
0 a 0D. Comme les parties de I' de la forme [x, y]n[z, f] engendrent la tribu
borélienne de I', une mesure u sur I' est déterminée de maniére unique par les
valeurs qu’elle prend sur les ensembles de la forme [x, y] N[z, #]. En particulier, u ne
dépend que de la restriction de é 4 0D, ce qui prouve ’assertion (b) du théoréme
1 sur l'unicité du prolongement.

D’autre part, la relation u([x, y] N[z, f]) = 4d(x, y, z, t) définit une application u
sur les pavés de la forme [x, y] N[z, f], dont il est facile de vérifier ’additivite, et
donc le fait qu’elle se prolonge, par un théoréme classique (voir par exemple [Me],
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théoréme 8, page 51), en une mesure borélienne sur I', que I'on notera encore pu.
Pour achever la preuve du théoréme 1, il suffit alors de démontrer le résultat qui
suit:

PROPOSITION. La mesure u est élément de M, et la I'-distance qu’elle induit
via la formule (1) vérifie #(5) =d.

Preuve. Si p est un point de I'intérieur de D et x un point de 0D, convenons de
noter ¢(p, x) 'unique point de D pour lequel p €7, 4. Il est facile de voir que
a(p, ) est une application continue.

Soit p et g deux points distincts de D et y, , la courbe admissible qui les contient.
Choisissons z € D \{x, y}, la continuité de o(q, - ) implique qu’il existe un point z’
de 0D tel que z, z’, o(p, z’) et 6(q, z) soient quatre points deux a deux distincts
apparaissant dans cet ordre sur 0D (voir figure 5a). Comme |[z,z']n
[6(p,2"), 0(q, 2)] est inclus dans [p,q), u(p,q)) = 4d(z,z’,a(p,z"), 0(q,2)) >0
puisque d vérifie la condition (>). Cela prouve la propriété (iii) de .#.

Preuve du point (ii): Soit p un point de I'intérieur de D et I = (a, b) un intervalle
de 0D, choisi de telle sorte que les quatre points a, b, a’ = a(p, a) et b’ = a(p, b)
soient deux a deux distincts et apparaissent dans cet ordre sur 0D. Il suffit de
montrer que u(/) =0 avec & ={yel /[pey et y€[a, b]}. On définit pour cela
une suite d’ensembles («7,), >, de la maniére suivante: pour n =0, o/, désigne
[a, b] n[a’, b’]. Pour tout n = 1, on partage (a, b) en 2" sous-intervalles de méme
longueur euclidienne (x,, x,), (X5, X3), ..., (X1, Xon 1) avec a=Xx; € b =X,
(voir la figure 5b ou est représenté le cas n = 2); notons x; = a(p, X;) pour tout i et
définissons &7, = |, <;<an [Xi, Xi 1] 0 [x7, x7 4 1] 1 est aisé de vérifier que (o) est
une suite décroissante et que (),»o ¥, = . Pour assurer que u(/) =0, il suffit
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donc de montrer que lim,, _, , u(&,) =0. Or par définition méme

“(dn) = Z u([xi’ xi+l]n[x;,xt,'+l])

1<ig2n

= Z (d(xisx;)_d(x1+lax;))+(d(xi+l’x;+l)__.d(xiax;+l))

I<i<2n

et nous pouvons appliquer le théoréme des accroissements finis aux deux fonctions
d(-,x;) et d(-, x;,): si £ est la longueur euclidienne de (a, b) = dD, il existe pour
tout i des points u; et v; de l'intervalle (x;, x;, ,) = dD avec

tod . tod
#(dn)‘lsézn_‘z’;g;(unxt)+§;5)—C(Uisxi+1),
et donc
od od
< —_— Y — —(p.. x°
tu(dn) flgasxy' ax(uiaxt) ax(vnxt+l) ;:)0

puisque la fonction dd/dx est uniformément continue sur le compact (a, b) x
(a’, b").

Pour terminer, vérifions que la I'-distance 6 déterminée par u en utilisant (1)
satisfait bien & #(d) = d. Soit x, y deux points distincts de dD. Choisissons quatre
suites (x,), (x,), (¥,), et (»,) de points de D, situés par rapport a x et 4 y comme
I'indique la figure Sc, les deux premiéres convergeant vers x et les deux autres vers
y. Les propriétés de I impliquent wu([x,y]) =lim,_, o u((x,, y.] O[Xn, ya]) =
2d(x, y), puisque p([x,, y,]nlxy, yo]) =d(x,, y3) +d(x;, 7)) — d(x,, x3) — d(yn, y1)
et que d est continue sur 0D x éD. Donc &(x, y) =iu([x, y]) = d(x, y), ce qui
termine la démonstration du théoréme 1.

Complément. Supposons que d € 2(0D) ne vérifie que la condition ( =), mais
que toutes les autres hypothéses du point (c) du théoréme 1 sont vraies. Alors le
raisonnement de la preuve montre qu’on a existence d’une I'-distance prolongeant
d si I'application § construite précédemment est une distance. Notons qu’en général,
0 n’est qu'une pseudodistance, c’est-a-dire que I'on peut avoir d(x, y) = 0 méme
lorsque x et y sont deux points distincts. Considérons par exemple la distance d
définie comme dans la partie II par d(x, y) =f(0), avec f comme sur la figure
suivante. Prenons pour I le systéme de courbes admissibles pour lequel y, , est le
segment euclidien de x a4 y. Si p est un point suffisament proche de O, alors
(0, p) =0 car si x, y,z et ¢t sont quatre points de dD avec [x, y] N[z, 1] =[O, p],
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Ad(x,y,z,f)=14+1—-1—-1=0 et donc u([0, p]) =0.

G s

0 w5, ™ x %

Fig. 6a Fig. 6b

Remarque. Dans tout ce paragraphe, I" est le systtme de courbes admissibles
pour lequel y, , est le segment euclidien de x a y. La théoréme 1 s’applique pour le
choix d = d (la distance euclidienne), et conduit a la distance euclidienne . sur D.
Nous allons donner ’exemple de d € 2(0D) qui vérifie la condition (>), qui est
continue, mais pour laquelle la conclusion du théoréme est fausse. La distance
‘sphérique’ dy vérifie la condition ( ), mais la mesure ug qu’elle engendre sur I' via
la formule (1) n’est pas élément de .#: si O est le centre du disque et o/ = I'\[O],
on constate que ug(o/) =0, et donc que ug([0]) > 0. Par suite, d5(0, O) =Fus
([0)) >0, et 65 n’est pas une distance. Posons maintenant d, = dg + edg € 2(0D),
avec ¢ >0 quelconque. Alors d, =g + &g n’est pas une distance. Cet exemple
montre que la condition ‘d de classe €'’ ne peut pas étre supprimée dans la liste des
hypotheéses.

IV Des métriques finslériennes

Nous allons maintenant établir une expression plus explicite de é en fonction de d
et de I'. Soit p et ¢ deux points de l'intérieur de D. Il leur correspond un unique
couple (x, y) e dD x 0D avec p €7,,,, g €7, €t p situ¢ entre g et x sur y, ,. Notons
0D(x, y) I’ensemble des points de 0D situés entre x et y.

D=y
ST
¥ $
oy )
ks <
x

G‘“\“(ha\“
Fig. 7b Fig. 7a
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PROPOSITION. Pour la distance 6 définie par le théoréme 1,

1 od ad
5(pa q) - 5 Lp(x,y) 5; (ta U(p’ t)) - 5; (ta O-(qs t)) dt.

Preuve. Estimons tout d’abord d(x, p). Soit y : [0, L] - D une paramétrisation
de 0D(x,y) avec p(0)=x, p(L)=y et y'(f) de norme euclidienne 1 pour
tout ¢ e[0, L]. Notons f(#) la mesure des géodésiques qui coupent y,, entre x
et p et qui ont une extrémité sur 0D(x, y) entre x et y(f); autrement dit f(¢) =
u([x, p] n[x, y(9)]). Soit h >0 avec 0 <t <t+ h < L. Les propriétés des courbes
admissibles assurent que

(D), y(t + W] N [x, a(p, y(t + )] < [¥(D), y(t + B)] N [x, p]

< (@, vt + W] n[x, o(p, y(D)),

d’ou, en calculant les mesures de ces trois ensembles, les deux inégalités

d(x, y(t + b)) — d(x, (1)) + d()(1), a(p, y(t + ) <f(t + ) —f(2)

et

J@+h) — () <d(y(®), o(p, (1)) —d((t + h), a(p, ¥(1))
+d((t + h), x) —d(y(2), x).

Il en résulte que f7(¢) = dd/ox (y(¢), x) — od/ox (y(¢), o(p, y(¢))). Comme d’une part
£(0) =0 et d’autre part 8(x, p) = 3u([x, p]) =3f(L), il vient

L

1 1 [*0
8x,p) =5 d(x, ) — 5 j 22 600, o(p, 1O .

0

Le résultat de la proposition provient d’une formule analogue pour d(x, q) et du fait
que d(p, ) = (x, ) — (x, p).

En renforgant les hypothéses sur le systéme de courbes admissibles et la fonction
distance sur le bord, le théoréme 1 fournit en fait une distance associée a une
métrique finslérienne sur D: c’est le contenu du théoréme 2. Avant de I’énoncer,
nous allons 'introduire par quelques remarques.
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Tout d’abord, soit d € 2(8D), supposée de classe €2 sur dD x dD\A4. Si x, y, z
et ¢ sont quatre points pris dans cet ordre sur dD, il vient

y [t a2d
4d(x,y,z, 1) = J J‘ 5;6_)—) (u, v) du dv,

et donc d vérifie la condition ( 2) si et seulement si d°d/0x 0y est une application
positive on nulle. Si de plus 82d/dx dy > 0 en tout point, alors d vérifie la condition
(>).

Soit maintenant I" un systéme de courbes admissibles. Pour tout vecteur # non
nul de D, nous noterons a(u) et b(u) les points de dD qui sont les extrémités de la
courbe élément de I' tangente & u, comme sur la figure 8a. Nous dirons que I vérifie
la condition (%) si

(a) l'application ¢ : int(D) x dD — oD est de classe €.
(b) pour tout m € int(D), pour tout u € T,,D non nul, D,o(m, t) - u ne s’annule
que si ¢ = a(u) ou t = b(u).

Si g est une métrique riemannienne de classe € définie dans un voisinage de D,
sans points conjugués, et pour laquelle D est strictement convexe, alors le systéme
de géodésiques I’ associé a g vérifie la condition (¥). En effet, si D,o(m,?) - u
s’annulait pour ¢ ¢ {a(u), b(u)}, alors les géodésiques passant par ¢ et m’, lorsque m’
décrit une courbe passant par m et tangente & u, définiraient une variation de la
géodésique y passant par m et t, comme sur la figure 8b; variation dont le champ
de Jacobi associé s’annulerait au point ¢ (puisque toutes les courbes passent par f)
et au point a(m, 1) (en vertu de D,a(m, t) - u =0), ce qui contredirait ’hypothese
que g est sans points conjugués.

Donnons par contre un exemple pour laquelle la condition (%) n’est pas vérifiée.
Pour cela, soit F l'application ainsi définie: si z =r exp(i®) € D, alors F(z) =

Bla)

olu)

Fig. 8a
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(10)

in §

0 32 A
Fig. 9a Fig. 9b

f(r) exp(i®), le graphe de f étant tracé sur la figure 9a. Définissons un systéme
de courbes admissibles I" ainsi: pour tout (x, y) € 9, y,, est 'image par I'application
F du segment euclidien qui joint x a y. Quelques courbes admissibles y, , sont
tragées sur la figure 9b. 1l est clair que D,0(0, ) - u s’annule pour tout vecteur u
basé au point O et tout point ¢ de dD.

La condition (b) exprime le fait que pour tout point x € 0D, I’application qui au
couple (y,d)edD x R, avec x #y et 0 <d < d(x, y) associe le point situé sur la
courbe admissible y, , 4 une distance d de x est une application différentiable. Et
cette condition de différentiabilité n’est pas satisfaite dans ’exemple ci-dessus.

THEOREME 2. Soit de @P(0D) de classe €* sur 0D x 0D\A4, avec 03d|
Ox 0y >0; et I' un systéme de courbes admissibles pour lequel o est différentiable.
Alors I'application N : TD — R définie par

1 0%d
N@uw) = 3 J:ao 5% 0y (s, o(p, 5))|D,o(p, s) - u| ds

pour u € T,D est une application continue, sa restriction a chaque espace tangent est
une semi-norme, et elle vérifie B(N) = d.

Si de plus I' vérifie la condition (%) et si 8°d|0x 0y > 0 en tout point, alors N définit
une métrique finslérienne continue pour laquelle #(N) = d.

De plus, il suffit que d soit de classe €**? et o de classe €** ' pour que la métrique
finslérienne obtenue soit de classe €*.

Si nous choisissons pour d la distance euclidienne, nous obtenons immédiate-
ment (& comparer avec [Bu], theorem 11.2) le

COROLLAIRE. Tout systéme de courbes admissibles I vérifiant la condition (%)
est le systéme de géodésiques d’une certaine métrique finslérienne continue sur D.
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Preuve. Soit p un point de I'intérieur de D et u € T,D un vecteur unitaire. Au
est associ€ un unique couple (x,y) €% avec u tangent a y,,. Donnons nous
7 :]1—¢,¢[ > D une paramétrisation de y,, au voisinage de p, avec y(0) =p,
7’(0) = u, et y’(¢) unitaire pour tout z. La proposition précédente donne, pour ¢ =0

1 od od
5(1’9 ’Y(t)) = :2' J;D( )5; (S, O'(p, S)) - 5} (S9 0'(‘))(!), S)) ds.

Les hypotheses faites sur I" assurent que ’application ¢ — J( p, y(r)) est dérivable a
droite en ¢ =0, de dérivée

1 0%d
Nu = —-= s, a(p,s) D,o(p,s) - uds

—1J i'd (s, o(p, ) |Dya(p, s) - u| ds
2 N ax ay ’ P ° 1 s s

car D,a(p, s) - u <0. D’autre part, on établit comme dans la proposition précé-
dente que, pour ¢t =0

0 od
5(pa Y(t)) = l L ____‘! (S, G()’(t), S)) - 5; (S, J(P9 S)) dS,

d’ou
1{ d%d
N(u) =5 (s G(pa 5)) Dla(p’ S) “uds
2 JoD(y,x) Ox 3))
1 d%d
== s, a(p, 5))|D,o(p, s) - u| ds.
2 | — 6x ay( (p )I 10(P l

En prenant la demi-somme des expressions de N(u), nous trouvons

1 0’d
N@w) = L 3xay & P DID10(p, ) - u| .
Les hypothéses faites sur d et sur I' assurent qu’il s’agit bien d’'une norme sur
chaque espace tangent, et que ’application u € TD > N(u) est continue. D’autre
part, il est clair par définition méme de N que la distance associée a cette métrique
finslérienne est 4.
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V Des métriques riemanniennes

Dans toute cette partie, nous fixons un systéme de courbes admissibles I" sur D
et d € 2(0D). Nous supposons que les hypothéses du théoréme 2 sont vérifiées, et
donc qu’il existe sur D une métrique finslérienne N pour laquelle #(N) = d. Nous
établissons dans cette partie un critére qui permet de déterminer quand N est en fait
une métrique riemannienne sur D.

Soit x, un point de 0D. Introduisons un systéme de coordonnées polaires
bas¢ en x,: un point m de lintérieur de D est repéré par les coordonnées
x, = 0(xy,m) e R, et x,=0a(m, x,) € dD. Un tel choix induit alors sur 7,,D un
systetme de coordonnées. Notons G le carré de la norme du vecteur e, de T,,D de
coordonnées (0, 1).

PROPOSITION. N est une métrique riemannienne sur D a la condition nécessaire
et suffisante que, pour tout vecteur u = (p,,p,) de T,,D:

r(m 9% 1. om, 1) D, o(m, 1 ( "")d 0
t,olm,t om,t) - y — t = 0.
a(u) axay : p2 \/6

Preuve. Si N est dans (D), alors ce systétme de coordonnées polaires est
orthogonal et nour pouvons écrire:

Vu:(plspz)ETm(D)’ ern(u) =p%+Gp%9 (1)

et réciproquement la condition (1) est clairement suffisante pour que la norme
N,, = N1, p dérive d’un produit scalaire. Désignons par u, le vecteur de 7,,D de
coordonnées (cos(8), sin(6) /\/5). Par linéarité, la condition (1) se réduit a:

VOeR, N, (up) = 1.

Cette relation étant clairement vérifiée pour 6 = 0, il suffit donc d’exprimer que la
dérivée du membre de gauche est identiquement nulle, soit:

cos(0) é_][m_
JG U

Nous connaissons une expression explicite de la norme (cf. section précédente):

VO e R, sin(0) % (ug) — (uy) =0.

1 b(u) 62
N, () =— - —— (¢, 6(m, t)) D,o(m, ¢) - u dt.
2 a(u) ax 5y
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La condition précédente s’écrit donc:

1 (b)) 92d . cos (6))
Vo e R, - = t,a(m, t)) Dyo(m, t) - | sin(0), — dt =0.

Comme tout vecteur u € T,,D est un multiple d’un certain u,, la proposition est
démontrée.

Remarque. Si nous avons effectivement une métrique riemannienne sur D, les
calculs précédents montrent immédiatement que le produit scalaire associé sur T,,D
est donné par:

b(u) 2

Yu,veT,D, {u, vy =— %Nm(u) (t, a(m, )) D,a(m, 1) - v dt.

aw) 0% 0y

VI Problémes d’isométries

Soit d une distance sur 0D vérifiant les hypothéses du théoréme 1. Le résultat
qui suit assure qu’a deux systémes de courbes distincts I', et I', correspondent via
le théoréme 1 deux distances d, et §, sur D qui sont distinctes.

LEMME. Soit d une distance sur 0D qui vérifie la condition (>) et I' un systéme
de courbes admissibles. Supposons qu’il existe une I -distance sur D qui prolonge d,
alors entre deux points distincts x et y de D il existe un unique chemin minimisant et
c’est la courbe admissible de I' qui passe par ces deux points.

Preuve. 11 suffit d’examiner le cas particulier ou x et y sont éléments de 0D, le
cas général s’en déduisant immédiatement; y, , est alors un chemin minimisant entre
x et y. Soit p un point de D qui n’est pas sur y, ,. Comme o(p, x) # y, la continuité
de a(p, -) assure qu’il existe un point z de dD tel que les quatre points x, z, a(p, z)
et y (ou y, a(p, z), z et x) soient deux a deux distincts et apparaissent dans cet
ordre sur dD. Comme d vérifie la condition (>), w(&,) >0, avec &, =[x, z] N
[y, o(p, 2)]. Si &, désigne [x, p] n[p, y], on a clairement &, < &,, donc u(&,) > 0;
d’autre part, d(x, p) + 6(p, y) = 8(x, ¥) + 2 u(&,), donc tout chemin passant par x, y
et p a une longueur strictement supérieure a d(x, y); d’ou la conclusion.

Il reste a déterminer quand ces deux distances sont isométriques, c’est-a-dire
déterminer quand il existe un homéomorphisme @ de D dont la restriction a dD est
I'identité et qui vérifie Vp, g € D, 6,(p, q) = 6,(P(p), P(q)).
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DEFINITION. Deux systémes de courbes admissibles T, et T', sont équivalents
s’il existe un homéomorphisme ¥ de D dont la restriction a 0D est I’identité et pour
lequel on a Vx,y € 3D avec x #y, ¥(y},) =v2,.

LEMME. §, et 6, sont isométriques si et seulement si I’y et I', sont équivalents.

La démonstration est immédiate si I’on remarque que, d’aprés le lemme précé-
dent, yi , ={z e D/d,(x,y) = d;(x,2) + 8,;(z, y)} pour i =1 et 2.

Pour obtenir des distances non isométriques, il faut donc construire des systémes
de courbes non équivalents, ce qui est possible grace au résultat suivant:

THEOREME (de Beltrami, voir [Sp]). Soit U un owvert du plan muni d’une
métrique riemannienne g; s’il existe & : U — &(U) = R? qui envoie toute g-géodésique
de U sur un segment de droite euclidienne dans ®(U), alors g est a courbure constante.

Munissons D d’une métrique riemannienne g a courbure négative ou nulle mais
non constante, et pour laquelle D est convexe. Définissons un systéme de courbes
admissibles I'; en prenant pour y,, la g-géodesique de x a y. Construisons un
systéme de courbes admissibles I', par le méme procédé, mais en prenant pour g la
métrique euclidienne. D’aprés le théoréme précédent, I', et I', ne sont pas équiva-
lents. Cela prouve le

THEOREME 3. Soit d une distance sur 0D.

(a) Si d vérifie la condition (>) et si d est de classe €' sur 0D x 0D\A4, alors il
existe deux espaces de longueur non isométriques (D, é,) et (D, d,) pour lesquels
#(6,) =%(0,) =d.

(b) Si d est de classe €2 sur 0D x 0D\A avec 3*d/dx dy > 0, alors il existe sur
D deux métriques finslériennes N, et N, avec #(N,) = #B(N,) =d pour lesquelles
(D, N,) et (D, N,) ne sont pas isométriques.

Exemple. Prenons pour d la distance euclidienne. Alors il existe sur D une
métrique finslérienne N non isométrique a la métrique euclidienne sur D et vérifiant
#(N) = d. De plus, on peut affirmer que N n’est pas une métrique riemannienne en
vertu du résultat d’Otal rappelé dans la section I.
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