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Des métriques finslériennes sur le disque à partir d&apos;une fonction distance
entre les points du bord

Marc Arcostanzo

Soit M une variété compacte de bord dM. À toute métrique riemannienne g sur
M est associée une distance sur M, dont la restriction au bord est notée dg : la
distance dg(x, y) entre deux points x et y de dM est égale à la borne inférieure des

longueurs (pour g) des chemins joignant x et y, et il existe en fait entre x et .y au
moins un chemin qui réalise le minimum de la longueur. Nous noterons

l&apos;application définie précédemment, 0t(M) et 9){dM) désignant respectivement
l&apos;ensemble des métriques riemanniennes sur M et l&apos;ensemble des distances sur dM.
Nous nous intéressons ici au problème suivant: étant donné un élément d de

Q&gt;(dM), existe-t-il g e 0t(M) vérifiant dg d et si oui quelles sont toutes les

métriques riemanniennes sur M ayant cette propriété?
Remarquons que si 0 est un élément de l&apos;ensemble @iff(M9 dM) des difféomor-

phismes de M dont la restriction au bord est l&apos;identité, alors g et sa métrique image

par 0 ont même fonction distance sur le bord: dg d^^g. La bonne formulation du
problème de l&apos;injectivité de 0&amp; est donc:

Question 1 (unicité): soit g0 et g{ deux éléments de $(M) vérifiant dg0 d
Peut-on trouver 0 appartenant à @iff(M,dM) vérifiant

gl.

Si la réponse à cette question est affirmative, la variété riemannienne (M, g0) est

dite rigide. Autrement dit, (M, g) est rigide si dg détermine g de manière unique à

isométrie près. Toutes les variétés riemanniennes ne sont pas rigides; la partie I
rappelle les principales variétés riemanniennes rigides connues, et donne quelques
exemples de variétés riemanniennes non rigides.

À partir de la section II, on se restreint au cas où M D9 disque unité fermé de
(R2. La section I montre qu&apos;il est raisonnable de conjecturer que (D, g) est rigide si
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D est strictement géodésiquement convexe (voir la définition en section I). Il est

alors intéressant de caractériser l&apos;image par l&apos;application 01, c&apos;est-à-dire de répondre
à la

Question 2 (existence): soit de@(dD); existe-t-il une métrique riemannienne g
sur D qui rende D strictement géodésiquement convexe et pour laquelle d dgl

Avant d&apos;exposer nos résultats, remarquons que la définition de 31 s&apos;étend sans

modification à des structures de longueur sur D plus générales que les métriques
riemanniennes, comme les métriques finslériennes et les espaces de longueur (une
définition de ces notions est donnée au début de la partie II). Partant de d e @(dD),
nous construisons ici tous les espaces de longueur (D, S) vérifiant @(ô) d et pour
lesquels D est strictement géodésiquement convexe. Pour cela, nous montrons que
la donnée d&apos;un système convenable de courbes F sur D détermine un unique espace
de longueur (£&gt;, ô) vérifiant $(§) d et dont le système de géodésiques coïncide

avec F.
Dans le partie II est énoncé un théorème (théorème 1) qui donne une formulation

précise de ce résultat. Sa démonstration fait l&apos;objet de la partie III. Puis nous
donnons dans la partie IV une expression explicite du prolongement ô à partir des

données initiales: distance sur le bord et système de géodésiques. En renforçant les

hypothèses de régularité sur ces deux objets, nous montrons que l&apos;espace de

longueur obtenu provient en fait d&apos;une métrique finslérienne (continue) sur D, dont
nous donnons aussi une expression explicite: c&apos;est le contenu du théorème 2. La

partie V donne un critère pour déterminer dans quel cas nous avons affaire à une

métrique riemannienne. Enfin, nous traitons des problèmes d&apos;isométries dans le

partie VI en montrant comment des choix convenables de systèmes de géodésiques

permettent de construire des métriques finslériennes non isométriques ayant même

distance sur le bord (théorème 3), ce qui permet d&apos;affirmer que l&apos;application M
étendue aux métriques finslériennes ne peut pas être injective.

I Variétés riemanniennes rigides ou non rigides: des exemples

Rappelons qu&apos;une variété riemannienne compacte à bord (M, g) est dite rigide
si:

Il est facile de construire des variétés riemanniennes non rigides: supposons que
les géodésiques minimisantes de (M, g) évitent toutes un ouvert U de M; alors une
modification adéquate de la métrique g sur U ne modifie pas la distance sur le bord.
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On peut donner l&apos;exemple d&apos;une hémisphère (voir figure la): la géodésique
minimisante entre deux points x et y ne quitte jamais le bord; ou celui de la surface
dessinée sur la figure lb: l&apos;existence d&apos;une géodésique fermée y assure qu&apos;une

géodésique minimisante entre deux points du bord ne traverse jamais la région
située à droite de la géodésique fermée y.

Voici maintenant l&apos;exemple d&apos;une variété riemannienne non rigide, bien que par
tout point il passe au moins une géodésique minimisante (cet exemple est inspiré

par la section II de l&apos;article [Cr2]): M est le disque de rayon 3 de R2, muni de la

métrique de révolution ds2 dr2 +/2(r) dO2,/étant une application à laquelle nous
imposons les trois conditions suivantes (voir la figure 2a, où est dessiné le graphe
d&apos;une telle fonction):

(i) /: [0, 3] h-&gt; R+ est de classe Vl,f(x) x pour tout x de [0, 2], et/(3) 2.

(ii) II existe x0 élément de ]2, 3[ tel que/soit strictement croissante sur [2, x0]
et strictement décroissante sur [x0, 3].

(iii) Pour tout x, |/&apos;(*)| ^ 1.

La variété riemannienne ainsi obtenue est notée (M, mf La condition (iii)
assure que (M, mf est isométrique à une surface de révolution plongée dans M3.

Entre deux points suffisament proches de dM, le bord reste le chemin de plus courte
longueur. Mais cela n&apos;est plus vrai pour deux points quelconques du bord: entre un

Fig. lb

2 •

Fig. 2a Fig. 2b

2 3

Fig. 2c



232 MARC ARCOSTANZO

point E de dM et son symétrique E&apos; par rapport au centre O du disque, la longueur
du bord vaut 2n; alors que le segment euclidien qui joint ces deux points a pour
longueur 6.

On établit facilement (en intégrant la relation de Clairaut: voir [DC]) qu&apos;une

géodésique y(f&gt;0 partant d&apos;un point E du bord en faisant un angle cp0 avec ôM passe
à une distance rmin 2 cos(&lt;p0) de O et recoupe le bord en un point dont la
différence d&apos;angle polaire avec E (voir figure 2b) est

J*3
dx

Notons £f{q&gt;o) la longueur de y&lt;Po. La formule de la variation première assure que
nous avons /}(&lt;p0) 2cos(&lt;po)(J0/)&apos;(&lt;Po)- Comme tf(n/2) =6, la connaissance de

Adf détermine £f&gt;

Choisissons maintenant une fonction g soumise aux mêmes conditions que /,
mais distincte de/, et qui vérifie de plus f*(dx) g*(dx) (voir un exemple sur la
figure 2c). Alors AOf((p0) et A0g(q&gt;o) coïncident pout tout &lt;p0, et il en est donc de

même pour tf et tg. Une géodésique de mf et une géodésique de mg partant du
même point E en faisant le même angle avec le bord ressortent donc au même point
en ayant même longueur. Comme d&apos;autre part le bord a même longueur pour les

deux métriques, nous pouvons conclure que dm/ — dmg. Mais (M, mf et (M, mg) ne

peuvent pas être isométriques puisque les deux fonctions/et g sont distinctes. Donc
(M, mf n&apos;est pas rigide.

Il faut donc imposer des restrictions sur le comportement des géodésiques. Nous
dirons que M est strictement gèodèsiquement convexe pour g si pour tout couple
(/?, q) € M2 avec p ± q, il existe une unique géodésique y : [0,1] -»M avec y(0) =/?,
y(l) —q, et pour laquelle y(]0, l[)ndM 0. Historiquement, l&apos;un des premiers
résultats de rigidité est du à R. G. Mukhometov:

THÉORÈME (voir [Mu] ou [La-Ro-Sh] pour « 2, et [Mu-Ro] pour n

quelconque). Soit M un ouvert borné connexe de Mn9 à bord différentiable. Soit g0 et

gx € 0t(M\ avec M strictement gèodèsiquement convexe pour g0 et gx. Supposons que
les deux métriques s&apos;écrivent g0 =f0 £?Œ x dx2 et gx =/ Z&quot;= t dx2 avec f0 et fx de

classe #°° sur M. Si dgQ dgl, alors go gi.

Un tel résultat est intéressant en géophysique: il assure que l&apos;on peut déterminer
de manière unique la densité de le Terre (c&apos;est-à-dire la fonction/,) en fonction du

temps mis par des ondes sismiques pour se propager entre deux points de la surface

(ce qui s&apos;appelle le problème cinématique inverse de la géophysique). Ce résultat a

été généralisé au cas où g0 et gx sont toutes les deux conformes à une métrique
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riemannienne g (voir [Be]). Le même résultat est démontré sous des hypothèses de

convexité plus faibles dans le section III de [Cr2]. Enfin, un théorème analogue

pour des métriques finslériennes est énoncé dans [Be-Ge]. Pour des calculs
numériques explicites dans un cas simplifié, on pourra consulter [Ro].

Les variétés riemanniennes à courbure constante sont rigides, comme l&apos;a d&apos;abord

prouvé R. Michel:

THÉORÈME (voir [Mi] pour le cas strictement géodésiquement convexe; [Grl,
section 5.5B] et [Cr2, section VI] pour le cas général). Sont rigides les variétés
riemanniennes suivantes:

(a) Tout ouvert connexe borné à bord régulier du plan hyperbolique H2.

(b) Tout ouvert connexe borné à bord régulier de W euclidien.

(c) Tout ouvert connexe à bord régulier d&apos;une hémisphère ouverte de (Rw+1.

Pour ce qui est des métriques à courbure négative variable, le problème a été

traité par J. P. Otal et C. B. Croke (voir [Ge-Na] pour un résultat partiel):

THÉORÈME (voir [Ot] et [Cri]). Tout domaine du plan à bord régulier, muni
d&apos;une métrique riemannienne à courbure négative ou nulle, est rigide.

II Une introduction au résultat principal

Dans toute la suite, une métrique finslérienne sur D de classe (€k est la donnée
d&apos;une application TV : TD -* M telle que N\T D soit une norme pour tout p e D, et N
une application de classe c€k en tout vecteur non nul. Étant donné une distance b

sur Z), (Z&gt;, S) est un espace de longueur si pour tout x,yeD, ô(x, y) est la borne
inférieure des longueurs des chemins entre x et y (voir [Gr2] pour plus de détails).
Clairement, une métrique riemannienne sur D est un cas particulier de métrique
finslérienne, et D muni de la distance associée à une métrique riemannienne ou
finslérienne est un espace de longueur.

Le but de cette partie est d&apos;exposer quelques propriétés de la fonction dg lorsque

g est une métrique finslérienne sur D.

DÉFINITION. Soit d e @(dD). Si x, y, z et t sont quatre points apparaissant
dans cet ordre sur dD, on définit

Ad(x, y, z, r) d(x, z) -h d(y, t) - d(y9 z) - d(x, t).
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Nous dirons que d vérifie la condition £ si Ad{x9 y9 z, t) £ 0 pour tous les

quadruplets possibles de points; si de plus il y a inégalité stricte lorsque les quatre
points sont deux à deux distincts, nous dirons que d vérifie la condition &gt;).

Exemples. La distance sur le bord dE9 associée à la métrique euclidienne sur D,
vérifie la condition (&gt;). La &apos;distance sphérique&apos; ds, obtenue en considérant dD
comme un sous-ensemble de la sphère unité de U3 euclidien, vérifie la condition ^
mais pas la condition &gt;). Dans la section IV, nous nous servirons du fait suivant:

pour tout s &gt; 0, la distance dE + eds vérifie la condition &gt;).

LEMME. Si g est une métrique finslérienne sur D, alors

(a) dg est une fonction continue pour la topologie euclidienne sur dD
(b) dg vérifie (£)
(c) si g est une métrique finslérienne pour laquelle D est strictement géodésique-

ment convexe, alors dg vérifie {&gt;).

Preuve. La propriété (a) est évidente. Pour le (b), notons i un point d&apos;intersection

d&apos;une géodésique minimisante joignant x à z et d&apos;une géodésique minimisante
joignant y à t, comme sur la figure 3 ci dessous. Alors

Ad(x9 y, z, /) (d(x, i) + rf(i, z)) + (d(y, i) + d(i, t)) - d(y, z) - d(x, t)

est une quantité positive on nulle, à cause des deux inégalités triangulaires

d(y,z)£d(y9i)+d(i9z) et d(x, t) £ d(x, i) + d(i91).

Si Ad(x9 y, z, /) 0, les deux inégalités triangulaires doivent être des égalités; on
obtient ainsi des géodésiques distinctes dont l&apos;intersection contient plusieurs points,

Fig. 3
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ce qui est impossible si D est strictement géodésiquement convexe pour g. Ceci

prouve le (c).

Application, x et y étant deux points de dD, nous appelions 9 l&apos;écart d&apos;angle

entre x et y, et nous définissons d0 e @(dD) par do(x, y) =f(9) (voir les figures 4a et

4b). La distance d0 ne vérifie pas ^ puisque

pour le choix (x, }&gt;, z, 0 indiqué la figure 4c. Il n&apos;existe donc pas de métrique
finslérienne g sur D avec do=*dg.

Remarque. Si g est une métrique finslérienne de classe W2 sur D, il est connu
qu&apos;il existe sur le fibre unitaire tangent de D une mesure positive \i invariante

par le flot géodésique, dite mesure de Liouville; on montre (cf. [O]) que si g est

une métrique riemannienne à courbure négative, Adg(x, y, z, t) n&apos;est autre que la

fi -mesure des vecteurs unitaires tangents aux géodésiques dont l&apos;une des extrémités
est située entre x et y et l&apos;autre entre z et /, et donc Adg(x, y, z, /) est bien positif.
Dans le partie III, nous tiendrons un raisonnement analogue pour un espace de

longueur.

Donnons-nous de@(dD). Nous cherchons à prolonger cette distance à D de

telle sorte que le résultat soit un espace de longueur. L&apos;idée consiste à imposer a

priori les géodésiques du prolongement. Plus précisément:

DÉFINITION. Notons A la diagonale de dD x dD et définissons l&apos;ensemble

&amp; =(dD x dD\A)l~, où ~ est la relation d&apos;antipodie: (x9y) ~(y, x). Un système
de courbes admissibles F est la donnée, pour tout (x, y) e ^, d&apos;un chemin yx^ qui

Fig. 4a Fig. 4c
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vérifie les conditions suivantes&apos;.

(i) Pour tout (x, y) e &amp;, yXty est un arc de classe ^l dans D qui rejoint x à y et
ri*intersecte ÔD qu&apos;en ces deux points.

(ii) Tout vecteur non nul de l&apos;intérieur de D est tangent à une unique courbe yXty

élément de F; par deux points distincts quelconques de D, il passe une unique
courbe yXty élément de F.

Exemple. Si g e 0t(D) est à courbure négative ou nulle et si D est convexe pour
g, nous pouvons prendre pour yxy la g-géodésique de x à y. En particulier, le

segment euclidien de x à y convient.
Fixons un système de courbes admissibles F. Nous voulons exhiber une distance

ô sur D dont la restriction à dD est d, et qui est une F -distance, c&apos;est-à-dire

(a) ô est continue par rapport à la topologie euclidienne sur D.
(b) Si p, q9 et r sont trois points pris dans cet ordre sur l&apos;une des courbes yXty de

F, alors ô(p, r) ô(p9 q) + ô(q, r).
Lorsqu&apos;une telle distance existe, (D, S) est clairement un espace de longueur dont les

éléments de F sont des géodésiques minimisantes. Nous pouvons maintenant
énoncer le théorème principal

THÉORÈME 1. Soit F un système de courbes admissibles et de@(dD)*
(a) Si d ne vérifie pas la condition ^ alors il n&apos;existe pas de F-distance Ô avec

@(ô) d.

(b) Si d vérifie la condition ^), alors il existe au plus une F-distance ô avec

@(ô) d.

(c) Si d vérifie la condition &gt;), si d est continue sur dD x dD et de classe (€x sur
ÔD x dD\A9 alors il existe exactement une F-distance ô avec 0&amp;(§) d.

III La preuve du théorème

Les F-distances possèdent une propriété fondamentale: une représentation en

termes de mesures, que nous allons expliciter. Nous munissons F de la topologie
naturelle obtenue par identification de F avec &lt;ê. Si p et q sont deux points distincts
de D, on note [p, q] (respectivement [p]) l&apos;ensemble des éléments de ^ qui coupent
entre p et q l&apos;unique courbe de F contenant p et q (respectivement qui contiennent

DÉFINITION. J( est l&apos;ensemble des mesures fi sur F vérifiant les conditions
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suivantes:

(i) fi est une mesure borélienne positive finie sur les compacts.
(n) Pour tout peD, fi([p]) 0.

(iii) Pour tout p, q e D avec p # #, fi([p, q]) &gt; 0.

Le résultat qui suit donne un procédé simple pour obtenir une F -distance à

partir d&apos;un élément de Jt\

LEMME. Soit fi£jf\ Fapplication ô définie par

V/&gt; E D, Vq G D9 S(p, q) \ fi([p, q]) (1)

est une F-distance.

Preuve. Les propriétés de /* g M assurent que ô est bien une distance additive le

long des yXty. Pour la continuité de ô9 on raisonne ainsi: soit p e D, et (pn) une suite
de D qui converge vers p pour la topologie euclidienne. Nous définissons une suite
décroissante d&apos;ensembles mesurables (s/n) vérifiant f]n ^ 0 $4n [p] en posant
sfn \Jk*n[p,Pk]&gt; Or jti([p])=O et donc limô(p,pn) 0 puisque ô(p,pn)

Toutes les F -distances sont en fait obtenues par ce procédé, en vertu du

THÉORÈME (cf. [Al] ou [Am]). Pour toute F-distance ô, il existe une unique

mesure ixeJt telle que (1) soit vrai.

On établit facilement par un calcul combinatoire utilisant (1) qui si x, y, z9 et t
sont quatre points apparaissant dans cet ordre sur dD, alors

Aô(x,y,z,t)=ii([x,y]n[z9t]).

Donc les quantités de la forme fi([x, y] n [z, t]) ne dépendent que de la restriction de

ô à ôD. Comme les parties de F de la forme [x,y]n[z, t] engendrent la tribu
borélienne de F, une mesure [i sur F est déterminée de manière unique par les

valeurs qu&apos;elle prend sur les ensembles de la forme [je, y] n [z, t]. En particulier, fi ne

dépend que de la restriction de ô à dD, ce qui prouve l&apos;assertion (b) du théorème
1 sur l&apos;unicité du prolongement.

D&apos;autre part, la relation fi([x, y] n [z, t]) Ad(x, y, z, /) définit une application fi
sur les pavés de la forme [x, y] n [z, t], dont il est facile de vérifier l&apos;additivité, et
donc le fait qu&apos;elle se prolonge, par un théorème classique (voir par exemple [Me],
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théorème 8, page 51), en une mesure borélienne sur F9 que l&apos;on notera encore /*.
Pour achever la preuve du théorème 1, il suffit alors de démontrer le résultat qui
suit:

PROPOSITION. La mesure fi est élément de M9 et la T-distance qu&apos;elle induit
via la formule (1) vérifie 0&amp;(§) — d.

Preuve. Si p est un point de l&apos;intérieur de D et x un point de dD, convenons de

noter a{p9 x) l&apos;unique point de dD pour lequel p e yxMp,X). Il est facile de voir que
a(p9 • est une application continue.

Soit p et q deux points distincts de D et yx%y la courbe admissible qui les contient.
Choisissons z e dD\{x9 y}9 la continuité de &lt;r(q9 • implique qu&apos;il existe un point z&apos;

de dD tel que z, z&apos;, a(p, z&apos;) et o(q9 z) soient quatre points deux à deux distincts
apparaissant dans cet ordre sur dD (voir figure 5a). Comme [z, z&apos;]c\

[&lt;r(p9 z&apos;), &lt;r(q, z)] est inclus dans [p,q], KiP&gt; ?]) ^ Ad(z9 z&apos;, &lt;r(p9 z&apos;), &lt;r(q, z)) &gt; 0

puisque d vérifie la condition (&gt;). Cela prouve la propriété (iii) de J(.
Preuve du point (ii): Soit p un point de l&apos;intérieur de D et / (a, b) un intervalle

de dD, choisi de telle sorte que les quatre points a, b9 a&apos; o(p9 a) et br &lt;j(p9 b)
soient deux à deux distincts et apparaissent dans cet ordre sur dD. Il suffit de

montrer que fi(s/) 0 avec s/ {yeF/pey et y e[a9b]}. On définit pour cela

une suite d&apos;ensembles {^n)n^0 de la manière suivante: pour n=0, s/0 désigne
[a9 b] n[a\ b&apos;]. Pour tout n ^ 1, on partage (a, b) en 2n sous-intervalles de même

longueur euclidienne (xux2), (x2, x3),..., (x2n9 x2»+i) avec a xx et b =x2n+ï
(voir la figure 5b où est représenté le cas n 2); notons jcf&apos; cr(/?, xt) pour tout i et
définissons sén Ui $^2»fe **+i]n[*i&gt;*/+i]- M es* aisé de vérifier que (s/n) est

une suite décroissante et que f)n ^ 0 *s/n «s/. Pour assurer que \i(sé) 0, il suffit

Flg. 5a Fig. 5b Fig. 5c
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donc de montrer que lim,,,^ n(s/n) 0. Or par définition même

Z xl+,] n[x[, x&apos;t

+ J)

1 £ i &lt;; 2&quot;

et nous pouvons appliquer le théorème des accroissements finis aux deux fonctions

d{\ x[) et &lt;/(•, x&apos;l+ x)\ si é est la longueur euclidienne de (a, h) c ôD, il existe pour
tout i des points ut et vt de l&apos;intervalle (xnxl + l) côD avec

v^ Sêd, ^ tdd,

et donc

Max
1 &lt;&gt; i £ 2»

—

puisque la fonction drf/foc est uniformément continue sur le compact (a, 6) x
(a\ bf).

Pour terminer, vérifions que la F -distance S déterminée par \i en utilisant (1)
satisfait bien à $(8) d. Soit x, j deux points distincts de 3Z&gt;. Choisissons quatre
suites (*„), (x^), (yn% et (.y^) de points de dD, situés par rapport à x et à y comme
l&apos;indique la figure 5c, les deux premières convergeant vers x et les deux autres vers

y. Les propriétés de F impliquent K[x,y]) =1^.,^ i4lxn,yH]n[x&apos;H,y&apos;H]) «
2d(x,y), puisque fx{[xn, yn]n[x&apos;n, y&apos;n])=d{xn, y&apos;n) + d(x&apos;n9 y&apos;n) - d(xn, xrn) - d(yn, yfn)

et que d est continue sur dD x ôD. Donc ô(x, y) {fi([x, y]) » rf(^, j), ce qui
termine la démonstration du théorème 1.

Complément. Supposons que d e @(dD) ne vérifie que la condition £ mais

que toutes les autres hypothèses du point (c) du théorème 1 sont vraies. Alors le

raisonnement de la preuve montre qu&apos;on a existence d&apos;une T-distance prolongeant
d si l&apos;application ô construite précédemment est une distance. Notons qu&apos;en général,
ô n&apos;est qu&apos;une pseudodistance, c&apos;est-à-dire que l&apos;on peut avoir ô(x9 y) *= 0 même

lorsque x et y sont deux points distincts. Considérons par exemple la distance d
définie comme dans la partie II par d(x,y) =/(0), avec / comme sur la figure
suivante. Prenons pour F le système de courbes admissibles pour lequel yXty est le

segment euclidien de x à y. Si p est un point suffisament proche de O, alors
ô(0, p) 0 car si x, y, z et t sont quatre points de dD avec [x, y] n [z, t] c [O, p]9
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Ad(x, y, z, t) 1 + 1 - 1 - 1 0 et donc fi([09p]) 0.

l

Fig. 6a Fig. 6b

Remarque. Dans tout ce paragraphe, F est le système de courbes admissibles

pour lequel yx$y est le segment euclidien de x à y. La théorème 1 s&apos;applique pour le

choix d dE (la distance euclidienne), et conduit à la distance euclidienne ôE sur /).
Nous allons donner l&apos;exemple de de&lt;3{dD) qui vérifie la condition (&gt;), qui est

continue, mais pour laquelle la conclusion du théorème est fausse. La distance
&apos;sphérique&apos; ds vérifie la condition &gt; mais la mesure fis qu&apos;elle engendre sur F via
la formule (1) n&apos;est pas élément de J(\ si O est le centre du disque et se F\[O],
on constate que fis(^) =0, et donc que fis([O]) &gt;0. Par suite, SS(O, O) =\iis
([O]) &gt; 0, et ôs n&apos;est pas une distance. Posons maintenant de=dE + sds e 3&gt;(dD),

avec e &gt; 0 quelconque. Alors ôe ôE + sôs n&apos;est pas une distance. Cet exemple
montre que la condition &apos;rf de classe ^l &apos;

ne peut pas être supprimée dans la liste des

hypothèses.

IV Des métriques finslériennes

Nous allons maintenant établir une expression plus explicite de S en fonction de d
et de F. Soit p et q deux points de l&apos;intérieur de D. Il leur correspond un unique
couple (x, y)edD x dD avec p e yXty9 q e yXty et p situé entre q et x sur y^. Notons
dD(x9 y) l&apos;ensemble des points de dD situés entre x et y.

Fig. 7b Fig. 7a
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PROPOSITION. Pour la distance à définie par le théorème 1,

&gt; q) ~ j-(t, °(p, 0) - t- (*, °(q, 0) du
JdD(x,y) ax C*

Preuve. Estimons tout d&apos;abord ô(x9p). Soit y : [0, L] -&gt;ôZ&gt; une paramétrisation
de dD(x9y) avec y(0)=x, y{L)=y et y\i) de norme euclidienne 1 pour
tout t e [0, L]. Notons /(/) la mesure des géodésiques qui coupent yXyy entre x
et /? et qui ont une extrémité sur dD(x, y) entre x et y(t); autrement dit f(t)
MIX/7] nlx&gt; 7(0])- Soit h &gt; 0 avec 0 ^ f &lt; r -f h ^ L. Les propriétés des courbes
admissibles assurent que

n [x, tr(p9 y(t + A))] c [y(/), y(r + A)] n [x, /?]

d&apos;où, en calculant les mesures de ces trois ensembles, les deux inégalités

d(x, y(t + h)) - d(x, y(r)) + rf(y(0, a(^ y(r + h)))

et

A) -fit) * d(y(t), a(p9 7(0)) - d(y(t + A), u(^ y(0))

Il en résulte que f\t) dd/ôx (y(t), x) - dd/dx (y(t), &lt;j(p9 y(t))). Comme d&apos;une part
/(0) =0 et d&apos;autre part ô(x, p) ±/i([x, p]) if(L), il vient

9 p)=\ d(x, y)-1- T^ (y(0, &lt;J( AS(x

Le résultat de la proposition provient d&apos;une formule analogue pour ô(x, q) et du fait
que ô(p, q) ô(x9 q) - ô(x9 p).

En renforçant les hypothèses sur le système de courbes admissibles et la fonction
distance sur le bord, le théorème 1 fournit en fait une distance associée à une

métrique finslérienne sur D: c&apos;est le contenu du théorème 2. Avant de l&apos;énoncer,

nous allons l&apos;introduire par quelques remarques.
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Tout d&apos;abord, soit de@(dD)9 supposée de classe #2 sur dD x dD\A. Si x, y, z
et / sont quatre points pris dans cet ordre sur dD, il vient

Çy f&apos; d2d
Ad(x9 y, z, 0 T—- (u, v) du dv,

et donc &lt;/ vérifie la condition i^) si et seulement si d2d/dx dy est une application
positive on nulle. Si de plus d2d/ôx dy &gt; 0 en tout point, alors d vérifie la condition

Soit maintenant F un système de courbes admissibles. Pour tout vecteur u non
nul de D, nous noterons a(u) et b(u) les points de dD qui sont les extrémités de la
courbe élément de F tangente à u, comme sur la figure 8a. Nous dirons que F vérifie
la condition (#) si

(a) l&apos;application a : int(D) xdD-&gt;dD est de classe V1.

(b) pour tout m 6 int(Z&gt;), pour tout ueTmD non nul, Dxc(m, t) • u ne s&apos;annule

que si t a(w) ou /

Si g est une métrique riemannienne de classe ^^ définie dans un voisinage de D,
sans points conjugués, et pour laquelle D est strictement convexe, alors le système
de géodésiques F associé à g vérifie la condition (#). En effet, si D^im^t) u
s&apos;annulait pour t $ {a(u), b(u)}, alors les géodésiques passant par t et m&apos;, lorsque m&apos;

décrit une courbe passant par m et tangente à w, définiraient une variation de la

géodésique y passant par m et /, comme sur la figure 8b; variation dont le champ
de Jacobi associé s&apos;annulerait au point / (puisque toutes les courbes passent par t)
et au point &lt;r(m91) (en vertu de Dx a(m91) • w 0), ce qui contredirait l&apos;hypothèse

que g est sans points conjugués.
Donnons par contre un exemple pour laquelle la condition (#) n&apos;est pas vérifiée.

Pour cela, soit F l&apos;application ainsi définie: si z — r exp(i0) e D, alors F(z)
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Fig. 9b

/(r) exp(/&lt;9), le graphe de / étant tracé sur la figure 9a. Définissons un système
de courbes admissibles F ainsi: pour tout (x, y) e &amp;, yxy est l&apos;image par l&apos;application

F du segment euclidien qui joint x à y. Quelques courbes admissibles yXyy sont
tracées sur la figure 9b. Il est clair que Dx o{0, t) • u s&apos;annule pour tout vecteur u
basé au point O et tout point t de dD.

La condition (b) exprime le fait que pour tout point x e dD, l&apos;application qui au

couple y, d) e dD x R+ avec x¥*yetO&lt;d&lt; d{x, y) associe le point situé sur la
courbe admissible yx^y à une distance d de x est une application différentiable. Et
cette condition de différentiabilité n&apos;est pas satisfaite dans l&apos;exemple ci-dessus.

THÉORÈME 2. Soit de@(dD) de classe &lt;£2 sur ÔD x dD\A9 avec d2dj
dx dy &gt; 0; et F un système de courbes admissibles pour lequel a est différentiable.
Alors Vapplication N : TD -? R définie par

Ô2d

,dxôy
(s, (j(p, s))\Dx(T(p, s) • u\ ds

pour u e TPD est une application continue, sa restriction à chaque espace tangent est

une semi-norme, et elle vérifie 0ê(N) d.

Si de plus F vérifie la condition (&lt;£) et si d2d/dx dy &gt; 0 en tout point, alors N définit
une métrique finslérienne continue pour laquelle $(N) d.

De plus, il suffit que d soit de classe c€k + 2 et a de classe (€k + 1

pour que la métrique
finslérienne obtenue soit de classe cék.

Si nous choisissons pour d la distance euclidienne, nous obtenons immédiatement

(à comparer avec [Bu], theorem 11.2) le

COROLLAIRE. Tout système de courbes admissibles F vérifiant la condition (&lt;$)

est le système de géodésiques d&apos;une certaine métrique finslérienne continue sur Z).
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Preuve. Soit p un point de l&apos;intérieur de D et u e TpD un vecteur unitaire. À u
est associé un unique couple (x9y)e&amp; avec u tangent à yXyy. Donnons nous

y:] — £,£[-&gt;£&gt; une paramétrisation de yXty au voisinage de p, avec y(0) /?,
y&apos;(0) m, et y&apos;(0 unitaire pour tout /. La proposition précédente donne, pour / &gt; 0

\ Ç dd dd
KP, 7(0) ~ j- (s, cr(p, s)) - — (s,

Les hypothèses faites sur F assurent que l&apos;application / h-&gt; 5(/?, y(r)) est dérivable à

droite en / 0, de dérivée

(s, &amp;\p, s)) D\ (t(/?, s) &apos; u ds
(X,y) Sx dy

¦(^,(j(/?,5))|/)i(t(/?,5) -u\ds9

car Dx cr(p, s) • u &lt; 0. D&apos;autre part, on établit comme dans la proposition précédente

que, pour t ^ 0

1 f dd dd
à(p, ?(0) x r(s9 c(y{t\ s)) - — (s, a(p, s)) ds,

2 JôD(y,x) ^ ÔX

d&apos;où

WD{y,x)

-—- (s, a(p, s))\Dï&lt;r(p9 s)-u\ ds.
)dD{y,x) OX °y

En prenant la demi-somme des expressions de N(u), nous trouvons

u)
l-

j ^y (s, a(p9 s))\Dx(T(p, s)-u\ ds.

Les hypothèses faites sur d et sur F assurent qu&apos;il s&apos;agit bien d&apos;une norme sur
chaque espace tangent, et que l&apos;application u e TD h+ N(u) est continue. D&apos;autre

part, il est clair par définition même de N que la distance associée à cette métrique
finslérienne est ô.
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V Des métriques riemanniennes

Dans toute cette partie, nous fixons un système de courbes admissibles F sur D
et de &lt;3(dD). Nous supposons que les hypothèses du théorème 2 sont vérifiées, et
donc qu&apos;il existe sur D une métrique finslérienne N pour laquelle $(N) d. Nous
établissons dans cette partie un critère qui permet de déterminer quand N est en fait
une métrique riemannienne sur D.

Soit x0 un point de dD. Introduisons un système de coordonnées polaires
basé en x0: un point m de l&apos;intérieur de D est repéré par les coordonnées

xl=ô(x0,m) eU+ et x2 &lt;x(m, x0) e dD. Un tel choix induit alors sur TmD un
système de coordonnées. Notons G le carré de la norme du vecteur e2 de TmD de

coordonnées (0, 1).

PROPOSITION. N est une métrique riemannienne sur D à la condition nécessaire

et suffisante que, pour tout vecteur u (pl9p2) de TmD:

fJa(i

d2d px\
—— (r, c(m, /)) Dx a(m, t) •Ip29-p)dt 0.

Preuve. Si N est dans $(D), alors ce système de coordonnées polaires est

orthogonal et nour pouvons écrire:

Vu {PuPi) e Tm(D\ N2m(u) =p] + Gp22, (1)

et réciproquement la condition (1) est clairement suffisante pour que la norme
Nm N\TmD dérive d&apos;un produit scalaire. Désignons par u0 le vecteur de TmD de
coordonnées (cos(0), sin(0)/&gt;/G). Par linéarité, la condition (I) se réduit à:

Cette relation étant clairement vérifiée pour d 0, il suffit donc d&apos;exprimer que la
dérivée du membre de gauche est identiquement nulle, soit:

Nous connaissons une expression explicite de la norme (cf. section précédente):

(t, a(m, 0) D\ &lt;*(™&gt; t) - u dt.
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La condition précédente s&apos;écrit donc:

2J «ay
o(m, i) • (sin(0), - 2??-^ dt 0.

Comme tout vecteur ueTmD est un multiple d&apos;un certain u0, la proposition est

démontrée.

Remarque. Si nous avons effectivement une métrique riemannienne sur Z&gt;, les

calculs précédents montrent immédiatement que le produit scalaire associé sur TmD
est donné par:

Vu, v g TmD, &lt;n, t?&gt; - - Nm(u) —— (*, &lt;r(m, /)) A &lt;r(m, 0 • t; &lt;//.

1 Mu) cxcy

VI Problèmes d&apos;isométries

Soit d une distance sur ôD vérifiant les hypothèses du théorème 1. Le résultat

qui suit assure qu&apos;à deux systèmes de courbes distincts rx et F2 correspondent via
le théorème 1 deux distances &lt;5, et ô2 sur D qui sont distinctes.

LEMME. Soit d une distance sur dD qui vérifie la condition &gt; et F un système
de courbes admissibles. Supposons qu&apos;il existe une F-distance sur D qui prolonge d;
alors entre deux points distincts x et y de D il existe un unique chemin minimisant et
c&apos;est la courbe admissible de F qui passe par ces deux points.

Preuve. Il suffit d&apos;examiner le cas particulier où x et y sont éléments de dD, le

cas général s&apos;en déduisant immédiatement; yxy est alors un chemin minimisant entre

x et y. Soit p un point de D qui n&apos;est pas sur yXty. Comme &lt;r(p, x) ^y, la continuité
de &lt;r(p9 •) assure qu&apos;il existe un point z de dD tel que les quatre points jc, z, a(p, z)
et y (ou y, a(p9 z), z et x) soient deux à deux distincts et apparaissent dans cet
ordre sur dD. Comme d vérifie la condition (&gt;), ii($\) &gt;0, avec éx =[jc, z]n
[y, a(p, z)]. Si S2 désigne [x, p] n [p, y], on a clairement Sx&lt;z.ê2, donc fi(&amp;2) &gt;0;

d&apos;autre part, ô(x, p) + Ô(p, y) ô(x, y) H- \n(£2\ donc tout chemin passant par x, y
et p a une longueur strictement supérieure à ô(x, y); d&apos;où la conclusion.

Il reste à déterminer quand ces deux distances sont isométriques, c&apos;est-à-dire

déterminer quand il existe un homéomorphisme # de D dont la restriction à dD est
l&apos;identité et qui vérifie V/&gt;, q € D, &lt;5,(/&gt;, q) ô2($(p),
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DÉFINITION. Deux systèmes de courbes admissibles Fx et F2 sont équivalents
s&apos;il existe un homéomorphisme W de D dont la restriction à ÔD est l&apos;identité et pour
lequel on a Vx, y edD avec x ^y, Y(ylxy) y2x,y.

LEMME. ôx et ô2 sont isométriques si et seulement si F{ et F2 sont équivalents.

La démonstration est immédiate si l&apos;on remarque que, d&apos;après le lemme précédent,

ylx,y {ze D/Ôt(x, y) ôt(x9 z) + &lt;5,(z, y)} pour i 1 et 2.

Pour obtenir des distances non isométriques, il faut donc construire des systèmes
de courbes non équivalents, ce qui est possible grâce au résultat suivant:

THÉORÈME (de Beltrami, voir [Sp]). Soit U un ouvert du plan muni d&apos;une

métrique riemannienne g; s&apos;il existe # : U -* &lt;P(U) c U2 qui envoie toute g-géodésique
de U sur un segment de droite euclidienne dans &lt;P(U), alors g est à courbure constante.

Munissons D d&apos;une métrique riemannienne g à courbure négative ou nulle mais

non constante, et pour laquelle D est convexe. Définissons un système de courbes
admissibles T, en prenant pour yxo, la g-géodésique de x à y. Construisons un
système de courbes admissibles F2 par le même procédé, mais en prenant pour g la

métrique euclidienne. D&apos;après le théorème précédent, T, et F2 ne sont pas équivalents.

Cela prouve le

THÉORÈME 3. Soit d une distance sur dD.

(a) 5/ d vérifie la condition &gt;) et si d est de classe cél sur dD x ÔD\A, alors il
existe deux espaces de longueur non isométriques (D,ÔX) et (D,ô2) pour lesquels

l)(2)
(b) 5/ d est de classe W2 sur dD x ôD\A avec B2d/ôx ôy &gt; 0, alors il existe sur

D deux métriques finslériennes Nx et N2 avec ^{Nx) @(N2) =d pour lesquelles

(Z), Nx) et (D, N2) ne sont pas isométriques.

Exemple. Prenons pour d la distance euclidienne. Alors il existe sur D une

métrique finslérienne N non isométrique à la métrique euclidienne sur D et vérifiant
&amp;{N) d. De plus, on peut affirmer que N n&apos;est pas une métrique riemannienne en

vertu du résultat d&apos;Otal rappelé dans la section I.
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