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Mass of rays in Alexandrov spaces of nonnegative curvature

Takashi Shioya

§0. Introduction

The limit cône (Con^ M, o^) of a metrie space M is defined to be the Hausdorff
limit of the pointed space (\M,o) as r-&gt; +oo, where \M dénotes the space M
equipped with metric multiplied by y-times, and oeMisa fixed point. If the limit
cône of a metric space M exists, i.e., (jM, 6) converges as t -&gt; + oo, then Con^ M
has a scale-invariant metric and is isometric to the cône over some metric space

M(oo), which is called the idéal boundary of M. Note that the limit cône and the

idéal boundary are both independent of the point oeM. The concept of the limit
cône is very useful to study the global behavior of Riemannian manifolds in various
classes, such as Hadamard manifolds and complète open Riemannian manifolds
with nonnegative sectional curvature, for both which the limit cônes exit (see

[BGS]). It is also known that there exists the limit cône of every finitely connected,

complète, noncompact surface M admitting (finite or infinité) total curvature, and

that the one-dimensional Hausdorff measure Jf?l(M(co)) of its idéal boundary
M(oo) satisfies Jffl(M(ao)) 2nx(M) - $M KMd\o\M (see [Sy2-4]), where x(M) is

the Euler characteristic number, KM the sectional curvature, and dvo\M the volume
élément. A standard way to prove the existence of the limit cône of a Riemannian
manifold (and a metric space) is that we first define the idéal boundary M(oo) as

the équivalence classes of rays with respect to some équivalence relation, and then

prove (7M, o) to tend to (K(M(oo)), o) as / -? + 00, where K(X) dénotes the cône

over a metric space X and o e K(X) its vertex.
In this paper, our concern is to study the relation between mass of rays and the

limit cône. Let M be a complète noncompact Riemannian manifold. A ray in M is

defined to be a unit-speed curve y : [0, + 00) -&gt; M any subarc of which is a minimal
segment. Dénote by Ap the set of unit vectors at a point peM tangent to rays. Since

Ap is a compact subset of the unit tangent sphère SpM, so is measurable with
respect to the Lebesgue measure m on SPM. We call m(Ap) the measure of rays from
p. The study on mass of rays was originally begun by Maeda (see [Mdl-2]), and

after that there were many generalizations (see [Og, Sgl-2, Shm, SST, Syl]). One

of the final forms of the results on mass of rays is stated as follows: if M is a finitely
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connectée, complète, open surface admitting total curvature and with unique end e,

then

lim m(Ap) min {jfl(M(oo))9 2n},
AfBp-+e

(see [SST, Syl]). Note that ail the known results on mass of rays are only in the

2-dimensional case except obvious things. The purpose of this paper is to estimate
the mass of rays in nonnegatively curved Alexandrov spaces of any dimension,
where an Alexandrov space is defined to be a finite-dimensional, complète, locally
compact length space of curvature bounded from below in the sensé of the

Alexandrov convexity (see [BGP]). Assume that M is a noncompact «-dimensional
Alexandrov space of nonnegative curvature. Then the limit cône Con^ M exits.

Rays and the set Ap for p e M are defined in the same manner, where Ap is a subset

of the space of directions Zp at p. We hâve a natural distance nonincreasing map
from Ap for any p eM to M(oo) (see §1), so that in particular,

je*-l(Ap) * Jtrn-l(M(co)). (*)

However, except in the 2-dimensional case, this inequality is not optimal even in the

case where M is a cône itself (see for détail §1).

Let us now give some notations to state our main theorems. For t &gt; 0, we find
a ^(^-pointed Hausdorff approximation/, : (JAf, o) -?(Con^ M, oœ), where 0a(e)

is a function depending only on a and satisfying limc^0 0a(e) 0. Let pteM and

p 6Con^ M be any points such that lim,_ +o0 ft{pt) =p. Set ô(p) i=dHÇLp9 Sn~ l),
the Hausdorff distance between the space of directions Zp at p and the standard

(n — l)-dimensional sphère Sn~l. One of our main theorems is stated as follows.

THEOREM A. We hâve

COROLLARY TO THEOREM A. The measure of rays from pt satisfies

œ«- \ap) &lt; Jf&quot;-\AP) + 0Mp)) + M
For the proof of Theorem A, we shall define a map I,pg : £p -* Hq, q *=g(p), for

p eCon^ M and for a Hausdorff approximation g : (Con^ M, oœ) -^(jM, o). Sup-

posing ô(p) is small enough, Y*pg almost préserves distance and maps Ap to a subset

Hausdorff-close to Aq, where it should be noticed that this closeness will be
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estimated independently of the point p. In this way Theorem A will be proved. In
fact, in §2 we shall hâve more gênerai discussion about Jlpg.

In order to express the mass of rays in M, we consider averaging the measure
of rays. For a fixed point o e M and any t &gt; 0, let

p(t) i==
(o, 0)

Note that, since the function Maxn Jfn~l(Ax)eR is upper semi-continuous on
the set of nonsingular points in M (i.e., lim sup^.^^ jj?n~ l(Ax) &lt;&gt; Jf?n~\Ay) for any
yeM with ô(y)=0), and the set of singular points, {xeM \ ô(x) ^0}, is of
measure zéro (see [BGP, 10.6] or [OS, Theorem A]), the above intégration has a

meaning. We call the two quantities

p(M9 o) := lim inf p(t) and p(M, o) »= lim sup p(t)
~~ t-+ + 00 /-* +oo

the lower and upper mean measures of rays in M. When p(M, o) p(M, o), this
value is called the mean measure of rays in M and is denoted by p(M, o).

THEOREM B. The upper mean measure of rays in M satisfies

p(M9o)&lt;&gt;p(Con00M,o00).

To obtain Theorem B, it is important that the 0n() and 9M(&apos;) in Corollary to
Theorem A are both independent of {pt} and p, since Con^ M3p i-&gt; jfn~ l(Ap) is

not necessarily semi-continuous on the set of singular points. In order to estimate
the mean measure of rays, we need to investigate the relation between the

Hausdorff measures on M and Con^ M, which was independently studied in [BGP,
10.8], but our claim, Theorem 3.1, is stronger than [BGP, 10.8]. This investigation
produces a corollary as stated that the w-dimensional Hausdorff measure Jfn is a

continuous function on the set sf(n, k, D) of /î-dimensional Alexandrov spaces of
curvature ^k and of diameter &lt;&gt;D with respect to dH.

Remarks.

(1) If dim Con^ M ^ n — 1, we hâve p(M, o) 0 (see the proof of Theorem B).

(2) It follows from Bishop-Gromov&apos;s volume comparison theorem that p(M, o)
and p(M9 o) are both independent of the point o (cf. the proof of Lemma

3.3(1)).
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(3) Of course p(Conoo M, oœ) is explicitly déterminée by M(oo) (see for détail
§1). In the case where n 2, we hâve piCon^ M, o^) =Jfl(M(oo)), which
together with (*) and Theorem B implies p(M, o) =p(Cono0 M, o^)

Problem. If dim Con^M «, does p(M, o) piCon^ M, o^) always hold?

Notations and convention

For the basic notion used in this paper, we refer to [GLP, Fk, BGP]. Dénote by
\pq\ (or \p, q\) the distance between two points p and q in a metric space X. The

open metric bail centered at peX and of radius r &gt;0 is denoted by B(p,r) or
B(p, r; X). We sometimes write B{r) or B(r; X) instead, when A&quot; is a complète
simply connected space forai. Let d% dénote the Hausdorff distance between subsets

of a metric space Z, and dH (resp. dpH) dénote the Hausdorff distance on the set

of metric spaces (resp. pointed metric spaces). Dénote by 3tfn (resp. Vnr) for n ^ 0

the «-dimensional Hausdorff measure (resp. rough volume), where the rough
volume is described in the following. An e-discrète net, e &gt; 0, of a metric space X is

defined to be a discrète subset N cX such that \pq\ :&gt; e for any pair of différent
points P.beN. The n-dimensional rough volume of X is, by définition

where Px(e) is the number of a maximal 6-discrète net of X. Note that, when X is

not precompact, px(e) V&quot;(X) +oo, and that the rough volume is not com-
pletely additive and does not measure X in gênerai since the rough volume of a

countable set is not necessarily zéro. For a metric space X of diameter ^ te, we
dénote by K(X) (resp. 2&gt;(X)) the cône (resp. spherical suspension) over X and by

nx : K(X) - \o}-+X (resp. I.(X) - {#, S}-&gt;X) the projection, where o 6 K(X) is

the vertex and N, S e £(X) the north and south pôle.
Assume now that X is an w-dimensional Alexandrov space of curvature ^k

(i.e., a complète FDSCBB in the sensé of [BGP]). The space of directions (resp. the

tangent cône) at p € X is denoted by £p or I,pX (resp. Kp or KpX). For p,qeX, the

symbol pq indicates a minimal segment from p to q, and vM the direction in Y*p

corresponding to pq. Let p,q9re X. The angle between two minimal segments pq
and pr at p is denoted by Lpqr, i.e., Lpqr «= It^tV |. Let Mn(k) dénote the complète
simply connected w-dimensional space form of constant curvature k and set

Lpqr s= Lpqr, where /?, ^, and r are points in M2(k) such that \pq\ |p^|, |#r| \qr\9

and |r/?| |r/&gt;|. It follows that Lpqr ^ Lpqr, which we call the Toponogov convex-
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ity. An (m, 8)-strainer at peX (resp. an (m, ô)~strainer of&apos; X)&gt; where m ^ 1, ô ^ 0,
is defined to be a séquence {pl}*Z\ &lt;=^X satisfying that 7-PiPPm+\ &gt;n — ô (resp.
|p«Pm + i| &gt; 7T — ^) for any i 1,..., m and that LptpPj &gt; n/2 — ô (resp. \pj&gt;j\ &gt;

n/2 — S) for any i,y 1,... ,2/w with i #/. For Alexandrov spaces we hâve
Bishop&apos;s (resp. Bishop-Gromov&apos;s) volume comparison theorem to be true (see [Ymg,
Appendix]), Le., for any peX and R &gt; r &gt; 0,

&gt;, r; JT)) £ vol B(r; M&quot;(k))9

(resp.)

R; X)) vol ^(/?; Mw

JT&quot;(B(p9r;X)) vol B(r; M»

We dénote by &quot;constaiai&gt;
&quot;

a constant depending only on aI? a2,..., and by
&quot;const&quot; a universal constant. Dénote by 0ai,a2, (el9..., £*) a function depending
only on a,, a2,... such that

lim ••• lim 0aiA2t (£,... ,ek) 0,

and by 0^(£i,... 9ek) a function depending possibly on ail objects set up there

(except ex,..., ek) and satisfying the similar formula as above.

§1. Limit cône and idéal boundary

Existence of the limit cônes of nonnegatively curved Alexandrov spaces

Let M be a noncompact «-dimensional Alexandrov space of nonnegative
curvature, and o e M a fixed point. We assign to any pair of rays a and y from o

in M the number

where the limit always exists since Lcr(s)oy(t) is monotone increasing in s and /.

Obviously we hâve Laofa ï) ^ |^(0)y(0)|. It can be easily checked that L^ is a

pseudo-distance between rays from o. The ûfea/ boundary M(oo) o/M is defined to
be the quotient metric space of the set of rays from o modulo the équivalence
relation £.«&gt;(*, •) =0. We dénote by y(oo)eM(oo) the équivalence class repre-
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sented by a ray y from o. Since a limit of a séquence of rays is a ray, the idéal

boundary M(oo) is a compact metric space, so that the cône K(M(co)) over Af(oo)
is a complète metric space.

PROPOSITION 1.1 (Gromov [BGS, §4]). The pointed space (\M,o) tends to

(K(M(oo)), o) as t -» -h oo with respect to dp H.

Since the proof of this proposition is nowhere published, we shall give that in §4.

Although lim,_+ + 00 (\M, o) is isometric to the cône (K(M(oo)), o), letting

\m,o

we notionally distinguish the limit Con^ M from the cône K(M(co)) over M(oo).
The limit cône Con^ M of M is an Alexandrov space of dimension &lt;&gt; n and of
curvature ^0, and hence, by [BGP, 4.2], the idéal boundary Af(oo) is a compact
Alexandrov space of dimension &lt;&gt; n — 1 and of curvature ^ 1. Note that the limit
cône Con^ M is independent of the base point oeM and so is the idéal boundary
M(oo). Attaching M(oo) to M we hâve a compactification M•&gt;= MuM(oo)
(disjoint union), which has a natural topology satisfying that a séquence {pt} of points
in M converges to a point p eM(oo) if and only if

lim \opt\=+ce and nM(O0)( lim /[ j(Pl))=p,

where/, : (yM, o) -?(Con^ M, o^) is a 6M(l/t)-pointed Hausdorff approximation.

o/ rays in a cône

Assume in this section that M is the cône K{X) over an Alexandrov space X of
curvature ^ 1, and «:=dim M. Then, we find the correspondence between rays in
M and minimal segments in X as follows. For x e M, a &gt; 0, p *= (jc, a) e M
we hâve

(1) for any ray y : [0, H-oo) -?M from /?, the closure Tt^oy of 71^° y is a

minimal segment from x to lim,_ +oo rc^ o y(f),
(2) conversely, for any minimal segment a : [0, é\ -^ X with a(0) x,

a \[0,/)3/h d(0, -r-T— )eM
\ cos t - cotan ^ sin //

is a (not constant speed) ray from p.
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For any xeM{oo) let £(*)*= £(£^(00)) (=ZPM for any p€n^l(oo}{x) -o),
let N{x) eE(x) be the north pôle, and let Ix : KxM(co)-*KNix)I,(x) be the natural
isometry. Then, by (1) and (2), for any veAp,pen^l^ipc) — 0, we hâve

^(00) expx o /-1

and hence

Ap expmx) o IX{ÛX),

where Ux cr KXX is the interior of the tangential eut locus at x. Therefore,

o) f Jf— &apos;

p(M

§2. Asymptotic behavior of the directions of rays

We first consider a gênerai situation to clarify discussion. Let X and Y be

compact Alexandrov spaces such that n *= dim X ^ dim F, and assume there exists

an 6-Hausdorff approximation/ : X -? Y, e &gt; 0. Let peX, q •=/(/?), and r &gt; 0. We

can find an (n, /i)-strainer {a}?!! at /&gt; such that |flp,| r, where

fAi=9(ô(p)) + 9x(r). Setting q,î:=f(pt), we hâve the (n, v)-strainer {^f}?=i at q,
where v*=/i + 0(e/r) 9(ô(p)) + ^(r, e). Since {t;m} (resp. {vqqt}) is an («, /*)-
(resp. («, v)-) strainer of I,p (resp. Z9), there exists a 0(v)-Hausdorff approximation

1^/: E, -+Z c E, such that V(i^,) i;Wl for any i 1,..., 2w (cf. [BGP, §9]).

Note that, when dim X dim F, the map E^/is a 0n(v)-almost isometry from EP to
E^. The following theorem plays an important rôle in the proof of Theorem A.

THEOREM 2.1 (Naturality for Ep/). Any minimal segment a {resp. x) from p
{resp. q) of length r satisfi.es

|f(0), I^/WO»! &lt; 0n{ô{p)) + 0x{r, e + \x{r)J{a{r))\).

Recall hère that Ep/dépends on r. In order to prove this theorem we need some
lemmas.

LEMMA 2.2. For any p,xeX there exists a {0n{ô{p)) + 0ntP{\px\))-almost

isometry Tx iE^-^E^ having the following property: if {&lt;Tx}xeX &amp; a family of
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minimal segments oxfrom x for which ax tends to op as x -&gt;p, then

lim sup |à,(0), 7»(

Proof. Take a 0(&lt;5(/?))-strainer {pt}%\ at p such that ppt is a unique minimal
segment joining p and p, for each /. Since {pt}% x is a (0(ô(p)) + fl^xl/min, [/?/?, |))-
strainer at x, there exists a (0M(&lt;5(/?)) -h fl^xl/min, !/?/&gt;, |))-almost isometry
Tpx : I, -+I,p such that Tpx(vxp) i?pP| for any i. It follows that 0w(|/?jc|/min, |/?p,|) is

reduced to #„,,,( |/jx|). For any i 1,. «,

(i) |^(0), vpPi | + 1^(0), r^ + J &gt; n - 0(ô{p)\

and, since lim inf^^^ Lptxpl + n
&gt; Lplppl + n &gt;n

(ii) lim sup (1(7,(0), vxPi | + 1*7,(0), vxPt + J) &lt; 7i
x-&gt;p

Lemma on the Limit Angle (see [BGP, 2.8.3]) implies

(iii) lim inf \àx(0), vxPi | ^ \àp(0), vpPi \

for any / 1,..., 2n. Combining (i), (ii), and (iii) yields

lim sup | lâ/0), vppi | - |(7x(0), vxPi | | &lt; d(ô(p)l
x^p

which complètes the proof (cf. [BGP, §9]).

For p eX, 0 &lt; p &lt; 1, and r &gt; 0, we set

hP(P,r)*=sup{Lxpy- Lxpy \pr £\px\,\py\£r, x,yeX).

It is known that hp(p, r) &lt; 0PtP(r) (see [BGP, 11.2]). We now prove

LEMMA 2.3. hp(p, r) &lt; 9n(ô(P)) + 0x,p(r).

Proof. Fix any 0 &lt; p &lt; 1, and take any pt9 xt, yteX for each / 1,2,... and

^-?0 such that prt ^ \ptxt\, \ptyt\ ^ ri- % the compactness of X, replacing a

subsequence we assume that pt,xn yt ail tend to a point p e X as i -&gt; + oo. By taking
more subsequence if necessarily, the directions TpPi{vPiX) and ^(r^^) in Zp are
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assumed to respectively tend to some u and v in 7lp. For any e &gt;0 there exist

x, y e X such that
(i) both px and py are unique minimal segments joining their terminal points,
(ii) \uvpx\,\vvpy\&lt;c,

(iii) \Lxpy- Lxpy\&lt;e.
Then, by Lemma 2.2,

lim sup \vpx, TpPt(vPiX% lim sup \vpy, TpPt(vPiy)\ &lt; 9n(ô(p)\
i-&gt; +00 i-+ +oo

and hence,

lim sup Lxptxn lim sup Lyptyt &lt; On(ô(p)) + e.

From (ii) and (iii),

LxlPlyt \uv\ + 9MP)) + »»(l/0

Since Z.*/^ ^ Lx&apos;lply&apos;l ^ Lxpty, where &lt; (resp. .y^) dénotes the point on /?,

(resp. /&gt;j&gt;) with |p,x;| (p,^) (resp. \p,y&apos;t\ ^|), we hâve

which together with (*) implies

lim sup Lxj&gt;tyt - Lx^y,) &lt; On(S(p)).
I-+ +00

This complètes the proof.

Proof of Theorem 2.1. Lemma 2.3 implies that

La(r)ppt - La(r)ppt &lt; 9n(ô(p)) + Ox(r)

for any j 1,... 9 2«, and hence, by setting 9 t=9n(ô(p)) + 9x(r, e + |T(r),/(cr(r))|),

&gt; La(r)pPl -
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Therefore, for any i 1,...,«,

n + 0(v) &gt; Lx(f)qqt + Lx{r)qql + n
&gt; La{r)ppv + L&lt;r(r)ppl + n -9&gt;n-9,

where 9(0) is reduced to 9. Thus we obtain

\L(T(r)ppt~ Lx(r)qql\&lt;9. D

For the M as in Theorem A, we embed \M for alW &gt; 0 and Con^ M into some
metric space Z isometrically such that, in Z, (\M,o) tends to (Con^ Af, o^) as

/ -» + oo. This naturally induces an embedding of (\M)(oo) and (Con^ M)(oo) into
a metric space Z(oo) such that

(1) lim^ +oo rff°°&gt;((JM)(oo), (Con,, M)(oo)) 0,

(2) if a séquence {/?M€7M}(&gt;O)I U tends to a point /?,j00e(7Af)(oo) as

/ -&gt; + oo for each t &gt; 0, and to a point p^, € Con^ M as / ~&gt; -f oo for each

/, then

lim /7f00= lim p^./-? +OO /-? -f OO

Recall hère that (^M)(oo) and (Con^ M)(oo) are both identified with M(oo).

Applying Theorem 2.1 yields the following proposition, which is a part of
Theorem A.

PROPOSITION 2.4. If a séquence {/?,} /&gt;0 ofpoints in Z withpt€ltM converges
to a point p e Con^ M as t -* + oo,

inf
XczAp

Thus, the proof of Theorem A is completed by

LEMMA 2.5. For any ray y in Con,» M there exist rays yt in -tM for t &gt;0

tending to y as t -&gt; -H oo.

Proof Take a séquence {pt}t&gt;0 of points pte-tM tending to p*=y(O). If
y( oo) g Af(oo) is not a eut point to nM(ao)(p)9 then any ray &lt;r in Con^ M from /&gt; with
o-(oo) -y(oo) is just the y, so that we take the desired yt as a ray from p, such that,
in Z(oo), y,(oo) €(^M)(oo) tends to y(oo) eCCon^ M)(oo) as t -? +oo.
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In the case where 7(00) is a eut point to nM(oo)(p), for each r &gt; 0 a ray yr from
p with yr(oo) nM(o0) o y(r) has the property that yr(oo) is not a eut point to
nM(O0)(p). Hence, for each r &gt; 0 there exist rays y\ from pt for t &gt; 0 tending to yr
as / -* -f 00. Since yr tends to y as r -&gt; + 00, we can find r(t) / + 00 such that y&apos;(0

tends to y as / -? 4- 00. D

Proof of Corollary to Theorem A. When dim ConooM n (:=dimM), the

corollary is obvious because Ep/is an almost isometry.
When dim Con^ M ^ n — 1, it follows from the proof of Theorem 2.1 that

APt c j v e HPt £ cos2 \v9 vPiPi | &gt; 1 - 0n(^(/?)) - ^a/( 1/0 &gt;,

which complètes the proof. D

§3. Estimate of the mean measure of rays

Let X be an n-dimensional Alexandrov space of curvature ^&amp;, and set

5^ := SèX*= {p gZ | vol S&quot;~l - 3ten - l(Lp) è 3} for ô &gt; 0.

Note that p e Sâ if and only if (5(/?) ^ 0n(ô). It follows from lim inf*..^ l,x ^ Z^ (see

[BGP, 7.14]) that Sô is a closed subset of X By [BGP, 10.6] or [OS, Theorem A],
the Hausdorff dimension of Sô for any ô &gt; 0 is not greater than n — 1. We hâve

THEOREM 3.1. Let X and Y be n-dimensional compact Alexandrov spaces of
curvature ^k, and ô,r&gt;0. Assume that an e-Hausdorff approximation g : X-*Y
exists. Ife &gt; 0 is small enough against X, S, r, there exists a (9n(S) + 6x,sAe))-almost
isometric map /: X- B(SÔ, r) -&gt; Y with |/,g|&apos;=sup {\f(x),g(x)\ \xeX -
B(Sô9r)}&lt;dn(ô)+0XAr(e).

Remarks.

(1) The above 0n(ô) cannot be equal to zéro. In other words, denoting by dL the

Lipschitz distance, we hâve dL(X9 Y) &lt; 0x(dH(X, Y)) only when X has no
singular points (i.e., SÔX 0 for any ô &gt; 0).

(2) In [Ymg], Yamaguchi treated the case where dim X ^ dim Y and SÔX 0,
and proved that there exists an almost Riemannian submersion from X to
Y, which becomes an almost isometry in the case where dim X dim Y. The

approaches of the proofs of that and Theorem 3.1 are différent.
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Proof of Theorem 3.1. We can find a 0(&lt;5)-strainer {pXJ}%\ at every
x eX- B(SÔ9 r) such that &lt;f \pXJx\ for any j 1,..., 2n, xel- B(SÔ9 r),
and some constant &lt;f &gt;0, where we note that *f =constx&lt;5r. According to [BGP,
9.4], the map &lt;px*=(\pXJ, |)7=,, ,„ : £(*, 0 -*R&quot; for any ; &gt; 0 is (0n(ô) + 0(f//))-al-
most isometric. For a 0 &lt; t &lt;^ £ take a maximal r-discrète net {x, }^L of I-
£(5,5, r) and, for simplicity, set (pl^(pXl,plJ&apos;-=pXi,j, qlJ&apos;^g{plJ\ and j&gt;,*=£(*,)• Then,
{^7}f=1 is a (0(5) +0(£/O)-strainer at ^,. Letting ^.= (|fv, -|)7==1, ,w, fl«=9w(«) +
fl((e + 0/O, ^«=*(x,,2r), U;.= B(xnt), and K,:= £(&gt;&gt;„ 50, we have that {^}-i
covers X-B(Sô,r), and that both ipt:Ut-*Rn and ^r^-^R&quot; are 0-almost
isometric and hence ^/-Hausdorff approximations. Since \\ptJx\ — |^lyg(jc)|| &lt;6 for
any xel,

for any i. Suppose that 6=^/100 and 0 &lt;\. Find a C°°-function

p : [0, +oo)-?[(), 1] such that p 1 on [0, 1] and p =0 on [2, +oo). We set

X,«=p(|xl, •[) : ^-^[0, 1], so that &amp;
1 on U\ and ^ =0 on X- Ur Let us define

functions ft: |Jj= t/y&apos; -? Y for i 1,..., m inductively. Set

and for / ^ 2,

on \J

on

Note that, although/_, is not defined on U\ — \JjZ \ U&apos;J9 we have xt 1 there and

hence/, \j/~l o &lt;pf on t/J. We now prove

(i) /j is 0-almost isometric and satisfies \fi9g\ &lt; (1 + 8)s/ne.

(ii) If/(_i is a-almost isometric and satisfies |/_i,g|&lt;j8 for two positive
numbers a and fi, then/ is (0 H- 0(a + )S + y/ne))-almost isometric and
satisfies \f» g\ &lt; 0(P + y/ne).

(i) is trivial. Let us show (ii). Taking any x, y e UJ= i Uj we have the following
(a), (b), and (c).
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(a) When x,y$U,, thcn/(jc) =/_,(*) and/,(&gt;&gt;) =/,_,O0-
(b) When x e C/, and y i U,,

(A similar équation holds when x £ £/, and 7 e U,.)
(c) When x, y eU,,

°f. (x) -f,»/W (X, to - X, y))(&lt;P. to - *, °ft -

It follows that XiW ^ const |jy| in (b) and \x,(x) — x,(y)\ ^ const \xy\ in (c).
Besides,

\&lt;Pn «A, »/- 11 * |9,, lA, o ^| + I*. o g, ^ o/,_ | &lt; ^e + 1 + 0)0.

Therefore, in either case of (b) or (c),

The proof of \f,, g\ &lt; 0(/? + *Jne) is easier and left to the reader.
Let us define two séquences {a,} and {/S,} by

«,==0, £,==( 1+0)7&quot;*:,

^ for 1

By remarking that/Cx) =f,-i(x) for jc# C/,, Claims (i) and (ii) show that there
exists a neighborhood Ux of each point xe Ujœl U&apos;} such thatf,\Ux is av(jt)-almost
isometric and satisfies \f, \Ux, g\Ux \ &lt; 0vW, where v(x) •¦= # {j | Uy ajc}. Since a standard

discussion using Bishop&apos;s volume comparison theorem proves v(jc) &lt;. constn,

avW and p^x) are both reduced to 0a(ô)+6XyS,r(e), so that /•=/„: L5&quot;-i

f/,&apos; 3 X — 5(Sâ, r) -* F satisfies the conclusion of the theorem.
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LEMMA 3.2. Setting v(p):=Jfn(B(o, 1; Kp)) we hâve

for any peX.

Proof. Bishop-Gromov&apos;s volume comparison theorem implies

Since ^B(p, p) tends to B(o, 1; Kp) as p -»0, applying Theorem 3.1 yields that there

exists a 0-almost isometric map /: B(o, 1; KP) — B(SSKP, r) -*^B(p, p), where

e-=0n(ô)+Ox,sAP)- Hence,

- jf&quot;(*(o, 1; Kp)nB(SsKp, r))

1 + 0)»jf&quot;(Im/) ^ 1 + 0)&quot;

Since limr^0 Jf &quot;(fi(o, 1; Kp)nB(SsKp, r)) 0, this complètes the proof. D

LEMMA 3.3. Let C c X be a compact subset and vo&apos;=infpeCv(p). Then,

(1) ^êkiM&gt; Vq_ qx(j)) foranypeCandp&gt;0,

(2) /&quot;(O

Remark. It follows in gênerai that Jf &quot;(•) £ constn K?(-).

Proo/. (1): Suppose the contrary, so that there exist c &gt; 0, {/»,}, _ 12, C, and

p, -&gt; 0 such that

l, p,))7:^°c
We may assume that p, tends to a point p e C as i -» + oo. By Lemma 3.2,

p)j) c
&gt;V°~2
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for ail sufficiently large p &gt; 0. Bishop-Gromov&apos;s volume comparison theorem

implies that

v0 - C

for p ^ pr On the other hand, setting A(x, r,, r2) *=B(x, r2) — B(x, rx) we hâve

t9 p)) - JTn(B(p, p))\ £ JT\A(pt, p,p + \ppt D) + jen(A(p, p,p + \pPt

^ 2 vol A(p, p + \pp, |; MW(A:)) 9nX

where ^4(rl9 r2; M&quot;(fc)) dénotes a concentric annulus of radii r, &lt; r2 in Mn{k). Thus

which is a contradiction.
(2): Finding a maximal p-discrete net {/&gt;,} of C, we hâve, by (1),

Jfn(B(Q p/2)) * X JTn(B(pl9 p/2)) &gt; Pc(p)pn(vQ ~ 0x(p)).

By taking p -* 0, this complètes the proof. D

LEMMA 3.4. In Theorem 3.1 we hâve

(1) Y-ImfczB(g(Sô),r
(2)

Proof. 1): Take any y e Y - B(g(Sô), r + 2\fg\ + 4e). Since g^) is e-dense, we can
find x € X such that \g(x), y\&lt;e. It follows that

\g(x)9g(Sô)\&gt;r

and hence
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Thus, supposing 0 ^ 1/2 we hâve

f(X - B(SÔ, v)) =&gt;f(B{x, 2\fg\ + le)) zd B(f(x), 2( 1 - 6)(\fg\ + e))

(2): Let {p,} be a maximal p-discrete net of 5,5. It follows from Sô c \J, B(ph p)
that g(Sa) £ [),B(g(p,),p +e), and therefore, by (1),

Y-lmfŒ{jB(g(p,),R+p),
l

where R=r + 2\fg\ -f 5e. Hence, by Bishop&apos;s volume comparison theorem,

Jfn(Y - Im/) ^ pSâ(p) vol B(R + p; M\k)).

Since Lemma 3.3 (2) and Jfn(Sô)=0 together imply Vnr(Sô)=0, setting for
instance p-=R we hâve

where we note that 6nJcXÔ(R) is reduced to 6XÔ(R). Since /? r + Ox,ôAe)&gt; ^$
complètes the proof.

Denoting by se (ri, k, D) the set of «-dimensional Alexandrov spaces of curvature
&gt; k and of diameter &lt; Z&gt;, we hâve the following corollary as a direct conséquence
of Theorem 3.1 and Lemma 3.4 (2).

COROLLARY 3.5. The n-dimensional Hausforff measure 3tfn : sé(n, k, D) -*R
is a continuous function with respect to dH.

Proof of Theorem B. By Theorem 3.1, for any &lt;5, r, /&gt;0 there exists a

(0n(ô) -h ^,r(l/0)-almost isometric map ft: B(oœ9 1; Con^M) - B(Sô, r) -&gt;

B(o, l;jM). Corollary to Theorem A states

jf &quot;- \aMp)) &lt; œ»~ \ap) + en(ô) + ^(î/o

for any /? € i?^, 1; ConœM) - B(SS, r). If dim Con^M ^ w-1, since «^&quot;l~1

(Ap) =0 for any p g Con^M, the above inequality implies the conclusion.
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Assume that dim ConœM n. By the above inequality,

¦#&quot;-\Aq)
Jlm/,3&lt;jr

- (PH(8) + 0M(\lt))X%B{om9 1; Con^M))

Hère it follows that

Jfn(B(Sâ, r)) &lt; 9Mfô(r) and jT&quot;(B(o9 1, \M) - Im/,) &lt; 0M&gt;, 1//).

Moreover, J^(B(o, 1; yM)) tends to Jfn(B(oœ, 1; Con^M)) as / -? -f oo and, by the

assumption, jfn(B(pa09 1; Con^M)) &gt; 0. Thus we obtain

P(ConœM, O &gt; (1 - 0n(

which complètes the proof. D

§4. Appendix

PROOF OF PROPOSITION 1.1. Let Ro {y(t) \ y is a ray from o and / &gt; 0}.
It suffices to show

(i) lim dpHtiR0,o)9(K(M(oo)),o))=0,

(ii) lim dpH((\Ro,o),tiM,o))=0.

To prove (i), we define the surjective map/r : -tRo -? K(M(co))9 y(at)\-^(y(co), a)

for t &gt; 0, where y is any ray in M from o and a ^ 0. Let us prove that ft is a

^(1/0-pointed Hausdorff approximation. If not, there exist a const &gt; 0, rays an yt

from o, and sn ttf + oo for / 1, 2,... such that

L 0t (s, )oyt (f, ^ Z- « (*« &gt; + const.

Taking a subsequence we may assume that ct and yt tend to some rays a and y from
o respectively. Then, Laoi^n yt) tends to L^ic^ y). Moreover, for any fixed s, t &gt; 0,

the Alexandrov convexity implies that

L(Jl{sl)oyl{tl) ^ L&lt;r,(s)oyt(t)
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for any / with s, ^ s and /, ^ t. Hère the right-hand side of the above inequality
tends to l_o{s)oy(t) as /-&gt;oo. Thus,

Lo{s)oy(i) &gt; Z.oo(&lt;t, y) -hconst,

which is a contradiction.
To prove (ii), it suffices to show that any séquence {/?,} of points in M with

\°Pi | =: f, -? + oo satisfies

limO.
Suppose the contrary, i.e., there exists a séquence {/?,} in M such that

lo/j,! =:/,-»+00 and ^—^&gt;const&gt;0.
h

Taking a subsequence we may assume that yt -= opt tends to a ray y from o. The

Toponogov convexity implies

the right-hand side of which tends to zéro as / -&gt; + oo. This is a contradiction.

Soûls and the limit cônes of complète open Riemannian manifolds of nonnegative
sectional curvature. Assume now that M is a complète open Riemannian manifold
of nonnegative sectional curvature and SoulM a soûl of M produced by the basic

construction introduced in [CG]. Recall that Soul^ is a closed totally convex
submanifold of M over which the normal bundle is diffeomorphic to M (see

[CG, Shr]), and that any soûl of M is unique up to isometry (see [Yml]). In this
short section, we shall investigate the relation between the soûls and the limit cône.
Dénote by ^soui^ the normal holonomy group along Soul^, (which is a compact
Lie group fibre-wise acting the unit normal bundle over SoulM). We hâve

PROPOSITION 4.1. If M is a complète open Riemannian manifold of nonnegative

sectional curvature, then

dim Con^M ^ codim SoulM — dim #SouiM-
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Proof. Let n: SN( SoulM) -?SoulA/ be the unit normal bundle over SoulM, and

SNp(Sou\M) its fibre at p e SoulM. Set

:= {v g SN(Soxx\M) | yv(t) :=exp tv for t &gt; 0 is a ray}.

We first claim that for any v e ^(Soul^) and any curve c: [0, 1] -?Soul^ with
c(0) n(v), the parallel translation Pc(v) e STV^^Soul^) of v along c is contained
in ^4(SoulM) and satisfies yv(oo) =yPc(v)(oo). In fact, in the case where c is a

géodésie, applying Rauch&apos;s comparison theorem yields that

{exp tPcl[0,s](v) \t ^0,0 £ s &lt;. 1}

is a totally géodésie flat half strip in M and that yPc s](v) for each 0 ^ s £ 1 is a

ray (cf. (a) in the proof of [CG, Theorem 1.10]). Therefore the claim in this case

follows. Since any curve is approximated by a broken géodésie, the proof of the
claim is completed.

For peSon\M let Ap(Sou\M)-&gt;={v e A(So\x\M) \n(v) =p}. By the claim, the

map

Ap(Sou\M)/&lt;PSoulM 3 [v] H-&gt;yr(oo) e M(oc)

is well-defined. Since this is a surjective and distance nonincreasing map,

dim SA^(SoulM) - dim #SouiM ^ dim Af(oo),

which complètes the proof of the proposition.

COROLLARY 4.2. If in the above proposition dim Con^M codim
holds, then afinite cover M of M is isometric to the Riemannian product N x Soul^,
where N is a complète manifold dijfeomorphic to R*, fe:= codim Soul^.

Proof Proposition 4.1 and the assumption together imply that dim ^soui^ =0&gt;

Le., ^SouiM is a discrète group and thus isomorphic to a finite subgroup G of the
fundamental group tc^SouI^) (&amp;nx(M)) of Soul^. The normal holonomy group
^souitf of the finite cover M of M with M/G M is trivial. Therefore Yim&apos;s

theorem (see [Ym2, Corollary 3.10]) complètes the proof.
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