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Mass of rays in Alexandrov spaces of nonnegative curvature

TAKASHI SHIOYA

§0. Introduction

The limit cone (Con M, o.,) of a metric space M is defined to be the Hausdorff
limit of the pointed space (M, 0) as t — + oo, where 1M denotes the space M
equipped with metric multiplied by !-times, and o € M is a fixed point. If the limit
cone of a metric space M exists, i.e., (1M, 0) converges as ¢ — + oo, then Con,, M
has a scale-invariant metric and is isometric to the cone over some metric space
M(o0), which is called the ideal boundary of M. Note that the limit cone and the
ideal boundary are both independent of the point o e M. The concept of the limit
cone is very useful to study the global behavior of Riemannian manifolds in various
classes, such as Hadamard manifolds and complete open Riemannian manifolds
with nonnegative sectional curvature, for both which the limit cones exit (see
[BGS])). It is also known that there exists the limit cone of every finitely connected,
complete, noncompact surface M admitting (finite or infinite) total curvature, and
that the one-dimensional Hausdorff measure #!(M(o0)) of its ideal boundary
M(o0) satisfies 3#°(M(o0)) = 2ny(M) ——jM K,,dvol,, (see [Sy2—4]), where y(M) is
the Euler characteristic number, K,, the sectional curvature, and dvol,, the volume
element. A standard way to prove the existence of the limit cone of a Riemannian
manifold (and a metric space) is that we first define the ideal boundary M( o) as
the equivalence classes of rays with respect to some equivalence relation, and then
prove (1M, o) to tend to (K(M(00)), 0) as t — + 00, where K(X) denotes the cone
over a metric space X and o € K(X) its vertex.

In this paper, our concern is to study the relation between mass of rays and the
limit cone. Let M be a complete noncompact Riemannian manifold. A ray in M is
defined to be a unit-speed curve y : [0, 4+ c0) = M any subarc of which is a minimal
segment. Denote by 4, the set of unit vectors at a point p € M tangent to rays. Since
A, is a compact subset of the unit tangent sphere S,M, so is measurable with
respect to the Lebesgue measure m on S, M. We call m(A4,) the measure of rays from
p. The study on mass of rays was originally begun by Maeda (see [Md1-2]), and
after that there were many generalizations (see [Og, Sgl-2, Shm, SST, Syl]). One
of the final forms of the results on mass of rays is stated as follows: if M is a finitely
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connected, complete, open surface admitting total curvature and with unique end e,
then

lim m(A,) = min {3# (M(c0)), 21},

Map—e

(see [SST, Syl]). Note that all the known results on mass of rays are only in the
2-dimensional case except obvious things. The purpose of this paper is to estimate
the mass of rays in nonnegatively curved Alexandrov spaces of any dimension,
where an Alexandrov space is defined to be a finite-dimensional, complete, locally
compact length space of curvature bounded from below in the sense of the
Alexandrov convexity (see [BGP]). Assume that M is a noncompact n-dimensional
Alexandrov space of nonnegative curvature. Then the limit cone Con. M exits.
Rays and the set 4, for p € M are defined in the same manner, where 4, is a subset
of the space of directions X, at p. We have a natural distance nonincreasing map
from A4, for any pe M to M(o0) (see §1), so that in particular,

H=NA,) = "~ (M(0)). (%)

However, except in the 2-dimensional case, this inequality is not optimal even in the
case where M is a cone itself (see for detail §1).

Let us now give some notations to state our main theorems. For ¢ > 0, we find
a 0,,(%)-pointed Hausdorff approximation f, : A M, 0) - (Con, M, 0,), where 8,(¢)
is a function depending only on a« and satisfying lim, _,,0,(¢) =0. Let p,e M and
p eCon,, M be any points such that lim,_, , ., f;(p,) =p. Set &(p):==dy(Z,, S" "),
the Hausdorff distance between the space of directions X, at p and the standard
(n — 1)-dimensional sphere S”~'. One of our main theorems is stated as follows.

THEOREM A. We have

du(A,,, Ay) < 0,(8(p)) + 0 (1/1).

COROLLARY TO THEOREM A. The measure of rays from p, satisfies

H"(A,) <H" " (4,) +0,00(p) + 0x(1/2).

For the proof of Theorem A, we shall define a map £,g : £, - X, q:=g(p), for
peCon, M and for a Hausdorff approximation g : (Con,, M, 0,,) = (;M, 0). Sup-

posing &( p) is small enough, X ,g almost preserves distance and maps 4, to a subset
Hausdorff-close to A4,, where it should be noticed that this closeness will be
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estimated independently of the point p. In this way Theorem A will be proved. In
fact, in §2 we shall have more general discussion about Z,g.

In order to express the mass of rays in M, we consider averaging the measure
of rays. For a fixed point 0 e M and any ¢ > 0, let

J. HrVA,)dH"
B(o,)3x
H"(B(o, 1))

p(1) =

Note that, since the function M 3x — #"~'(4,) €R is upper semi-continuous on
the set of nonsingular points in M (i.e., limsup, , , #"~'(4,) < #"~'(4,) for any
yeM with §(y) =0), and the set of singular points, {xeM |d(x) #0}, is of
measure zero (see [BGP, 10.6] or [OS, Theorem A]), the above integration has a
meaning. We call the two quantities

p(M, 0):=liminf p(r) and p(M, o):=1lim sup p(r)
- t— 400 t— + oo

the lower and upper mean measures of rays in M. When p(M, 0) = p(M, o), this
value is called the mean measure of rays in M and is denoted by p(M, o).

THEOREM B. The upper mean measure of rays in M satisfies
p(M, 0) < p(Con,, M, 0,,).

To obtain Theorem B, it is important that the 6,(-) and 6,,(-) in Corollary to
Theorem A are both independent of {p,} and p, since Con,, M 3p — #"~'(4,) is
not necessarily semi-continuous on the set of singular points. In order to estimate
the mean measure of rays, we need to investigate the relation between the
Hausdorff measures on M and Con, M, which was independently studied in [BGP,
10.8], but our claim, Theorem 3.1, is stronger than [BGP, 10.8]. This investigation
produces a corollary as stated that the n-dimensional Hausdorff measure #” is a
continuous function on the set &/(n, k, D) of n-dimensional Alexandrov spaces of
curvature 2k and of diameter <D with respect to d,,.

Remarks.

(1) Ifdim Con, M <n — 1, we have p(M, o) = 0 (see the proof of Theorem B).

(2) It follows from Bishop-Gromov’s volume comparison theorem that p(M, o)
and p(M, o) are both independent of the point o (cf. the proof of Lemma

3.3 (1)).
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(3) Of course p(Con,, M, o) is explicitly determined by M (o) (see for detail
§1). In the case where n =2, we have p(Con,, M, o, ) = # '(M(0)), which
together with (x) and Theorem B implies p(M, 0) = p(Con, M, 0,) =
H (M(c0)).

Problem. 1If dim Con M = n, does p(M, 0) = p(Con, M, 0_,) always hold?

Notations and convention

For the basic notion used in this paper, we refer to [GLP, Fk, BGP]. Denote by
Ipg| (or |p, q|) the distance between two points p and g in a metric space X. The
open metric ball centered at pe X and of radius » >0 is denoted by B(p,r) or
B(p,r; X). We sometimes write B(r) or B(r; X) instead, when X is a complete
simply connected space form. Let d% denote the Hausdorff distance between subsets
of a metric space Z, and dj (resp. d, ) denote the Hausdorff distance on the set
of metric spaces (resp. pointed metric spaces). Denote by " (resp. V7) for n =20
the n-dimensional Hausdorff measure (resp. rough volume), where the rough
volume is described in the following. An e-discrete net, € > 0, of a metric space X is
defined to be a discrete subset N < X such that |pg| 2 ¢ for any pair of different
points P, b e N. The n-dimensional rough volume of X is, by definition

Vi(X):=lim sup €"B(¢),
e—0

where By (¢) is the number of a maximal ¢-discrete net of X. Note that, when X is
not precompact, f,(¢) = V7(X) = + o0, and that the rough volume is not com-
pletely additive and does not measure X in general since the rough volume of a
countable set is not necessarily zero. For a metric space X of diameter <z, we
denote by K(X) (resp. £(X)) the cone (resp. spherical suspension) over X and by
ny : K(X) — {0} = X (resp. Z(X) — {N, S} - X) the projection, where o € K(X) is
the vertex and N, S e £(X) the north and south pole.

Assume now that X is an n-dimensional Alexandrov space of curvature =k
(i.e., a complete FDSCBB in the sense of [BGP]). The space of directions (resp. the
tangent cone) at p € X is denoted by X, or £, X (resp. K, or K, X). For p, g€ X, the
symbol pg indicates a minimal segment from p to ¢, and v,, the direction in X,
corresponding to pgq. Let p, g, r € X. The angle between two minimal segments pg
and pr at p is denoted by £ pgr,-i.e., L pgr:=|v,,0, | Let M"(k) denote the complete
simply connected n-dimensional space form of constant curvature k and set
L pqr= [ p§F, where p, §, and 7 are points in M?(k) such that |pq| = |5§], |gr| = |47,
and |rp| = |7p|. It follows that £ pgr = / pqr, which we call the Toponogov convex-
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ity. An (m, d)-strainer at p € X (resp. an (m, 8)-strainer of X), where m 21,6 20,
is defined to be a sequence {p;}?”, c X satisfying that / p,pp,,,,>n — & (resp.
|PiPm+i|>n —0) for any i=1,...,m and that Zppp, >n/2—35 (resp. |pp;| >
n/2—6) for any i,j=1,...,2m with i#j. For Alexandrov spaces we have
Bishop’s (resp. Bishop-Gromov’s) volume comparison theorem to be true (see [Ymg,

Appendix]), i.e., for any pe X and R >r > 0,
H"(B(p, r; X)) < vol B(r; M"(k)),

(resp.)

H"(B(p, R; X)) _ vol B(R; M"(k))
H"(B(p,r; X))  vol B(r; M"(k))

We denote by ‘““const, ,, .~ a constant depending only on a;, «,, ..., and by
“const” a universal constant. Denote by 6, ., (€,...,¢) a function depending
only on a,, a,, ... such that

lim ---lim 6, ., (6...,¢)=0,

€1—0 € —0

and by 0,(¢,, ...,¢) a function depending possibly on all objects set up there
(except ¢, . . ., €) and satisfying the similar formula as above.

§1. Limit cone and ideal boundary
Existence of the limit cones of nonnegatively curved Alexandrov spaces

Let M be a noncompact n-dimensional Alexandrov space of nonnegative
curvature, and o € M a fixed point. We assign to any pair of rays ¢ and y from o
in M the number

L o(0,7)= lim Za(s)or(t),
§— + 00

t— 4+ oo

where the limit always exists since Z a(s)oy(¢?) is monotone increasing in s and .
Obviously we have £ (o, 7) <|6(0)(0)|. It can be easily checked that ~ , is a
pseudo-distance between rays from o. The ideal boundary M( ) of M is defined to
be the quotient metric space of the set of rays from o modulo the equivalence
relation £ ,(-,:) =0. We denote by y(o0) e M(o0) the equivalence class repre-
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sented by a ray y from o. Since a limit of a sequence of rays is a ray, the ideal
boundary M(0) is a compact metric space, so that the cone K(M(0)) over M(0)
is a complete metric space.

PROPOSITION 1.1 (Gromov [BGS, §4]). The pointed space (3M, o) tends to
(K(M(00)), 0) as t > + co with respect to d, 4.

Since the proof of this proposition is nowhere published, we shall give that in §4.
Although lim,_, | , (M, 0) is isometric to the cone (K(M(o0)), 0), letting

t— + o0

1
(Con, M, 0,):= lim (;M, 0)

we notionally distinguish the limit Con M from the cone K(M(o0)) over M(0).
The limit cone Con,, M of M is an Alexandrov space of dimension <n and of
curvature =0, and hence, by [BGP, 4.2], the ideal boundary M(0) is a compact
Alexandrov space of dimension <»# — 1 and of curvature = 1. Note that the limit
cone Con,, M is independent of the base point 0 € M and so is the ideal boundary
M(0). Attaching M() to M we have a compactification A :=M U M(o0) (dis-
joint union), which has a natural topology satisfying that a sequence {p,} of points
in M converges to a point p € M(0) if and only if

lim |op;|=+o and nM(oo)(iliinwﬁopi‘(Pi)) =P,

i— 4+ o0

where f, : A M, 0) - (Con, M, 0,,) is a 0,,(1/f)-pointed Hausdorff approximation.

Mass of rays in a cone

Assume in this section that M is the cone K(X) over an Alexandrov space X of
curvature 21, and n:=dim M. Then, we find the correspondence between rays in
M and minimal segments in X as follows. For xe M, a >0, p:=(x, a) e M = K(X),
we have

(1) for any ray y: [0, +o0) = M from p, the closure n, oy of nyoy is a
minimal segment from x to lim,_, _ , 7y o y(2),
(2) conversely, for any minimal segment ¢ : [0, /] -» X with ¢(0) = x,

cos t —cotan £ sin ¢

[0,£)51 (a(t), ? )e M

is a (not constant speed) ray from p.
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For any x € M(00) let Z(x):=XZ(Z,M(00)) (=Z,M for any p €7 y;()(X) — 0),
let N(x) € Z(x) be the north pole, and let I, : K, M(00) = Ky, Z(x) be the natural
isometry. Then, by (1) and (2), for any v € 4, p € 3;{,(x) — 0, we have

7,(0) = exp, o I;! o eXpyfy v
and hence
A, = €Xpy(y © 1(0,),

where U, < K, X is the interior of the tangential cut locus at x. Therefore,

p(M, o) =f K" (expyy © I (Uy)) "~ 1.
Xax

§2. Asymptotic behavior of the directions of rays

We first consider a general situation to clarify discussion. Let X and Y be
compact Alexandrov spaces such that n:=dim X < dim Y, and assume there exists
an ¢-Hausdorff approximation f: X > Y,e>0. Let pe X, g:=f(p), and r > 0. We
can find an (n, p)-strainer {p;}2, at p such that |pp,|=r, where
u:=0(5(p)) + O0x(r). Setting g;:=f(p;), we have the (n, v)-strainer {g;}?", at g,
where v:=u + 0(¢/r) = 0(8(p)) + 0x(r, €). Since {v,, } (resp. {v,,}) is an (n, u)-
(resp. (n, v)-) strainer of X, (resp. X,), there exists a 6(v)-Hausdorff approximation
Lf:Z,-ZcX, such that £, f(v,,) =v,, for any i=1,...,2n (cf. [BGP, §9)).
Note that, when dim X = dim Y, the map X,/ is a 6,(v)-almost isometry from X, to
Z,. The following theorem plays an important role in the proof of Theorem A.

THEOREM 2.1 (Naturality for £,f). Any minimal segment o (resp. t) from p
(resp. q) of length = r satisfies

[1(0), Z,/(6(0))| < 6,(3(p)) + Ox(r, € + [t(r), f(o(r))].

Recall here that X, f depends on r. In order to prove this theorem we need some
lemmas.

LEMMA 22. For any p,x€X there exists a (0,(5(p)) +0,,(|px|)-almost
isometry T% :ZX,—Z, having the following property: if {0.},.cx is a family of
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minimal segments o, from x for which o, tends to o, as x - p, then
lim sup |6,(0), T%(6.(0))| < 6,(3(p))-
Proof. Take a 0(d(p))-strainer {p;}?", at p such that pp, is a unique minimal
segment joining p and p; for each i. Since {p; }?" | is a (6(8(p)) + O(|px|/min, |pp,]))-
strainer at x, there exists a (0,(8(p)) + 0,(|px|/min, |pp,|))-almost isometry

T% : X, - X, such that T%(v,, ) = v,,, for any i. It follows that 6,(|px|/min, |pp;|) is
reduced to 0, ,(|px|). Forany i=1,..., n,

@D 16,00, 0| +16,0), s, | > 7 — BG(p)),

and, since lim inf,_, £ p;xp;,, 2 Lp;ppi.. > — 0(3(p)),

(ii) lir)rcl j;xp (|6:(0), vy, | + |6:(0), vy, , ) <7 + B(5(p)).

Lemma on the Limit Angle (see [BGP, 2.8.3]) implies

(ifi)  lim inf [0.(0), v, | 2 [6,(0), 0y

for any i =1, ..., 2n. Combining (i), (ii), and (iii) yields
lim sup |[,(0), 55| —[6:(0), 05, | | < 6(P):

which completes the proof (cf. [BGP, §9)). O
ForpeX, 0<p <1, and r >0, we set
h,(p,r):==sup { L xpy — Lxpy | pr <|px|, |py| <1, x,y e X}.

It is known that h,(p,r) <0, ,(r) (see [BGP, 11.2]). We now prove

LEMMA 2.3. h,(p, r) < 6,(5(p)) + 0x,(r).

Proof. Fix any 0 <p <1, and take any p,, x;, y;€ X for each i=1,2,... and
r;—0 such that pr, <|p,x|, |p;y:| <r,. By the compactness of X, replacing a
subsequence we assume that p;, x;, y; all tend to a point p € X as i - + co. By taking
more subsequence if necessarily, the directions 7% (v,,) and 7% (v,,) in X, are
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assumed to respectively tend to some « and v in Z,. For any € >0 there exist
x, y € X such that
(i) both px and py are unique minimal segments joining their terminal points,
(ii) |uv,., o, | <€,
(iii) |Lxpy — Lxpy|<e.
Then, by Lemma 2.2,

lim sup |v,,, 7% (v,,)]» lim sup 05y, T5,(v,,,)]| < 6,(8(p)),

i— 400
and hence,
lim sup £ xp;x;, lim sup £ yp,y; < 6,(6(p)) + ¢. (%)
i— 400 i— 4o

From (ii) and (iii),

Lxp;y: =|uv| + 0,(8(p)) + 0,(1/i)
=/ xpy +0,(6(p)) + 0+(1/i + ¢
= L xp;y +0,(6(p)) +0,(1/i +¢).

Since £ xp,y = L x|p;y} = L xp,y, where x; (resp. y;) denotes the point on p,x
(resp. p;y) with Ipix” = lPixi| (resp. 'piy:' == lPiJ’i '), we have

Lxpy — Lxipy; <8,(a(p)) +0,(1/i +¢),

which together with () implies
lim sup (Lxpiy; — Lxip:y;) < 0,(8(p)).

This completes the proof. a
Proof of Theorem 2.1. Lemma 2.3 implies that

Lo(Npp; — Lo(r)pp; < 0,(8(p)) + Ox(r)

for any i =1,...,2n, and hence, by setting 0 :=0,(5(p)) + 0x(r, € + |2(r), f(o(r)),

> L o(r)pp; — 0.

L(qq; = £1(qq; > L o(r)pp; — 9(6 + It(r);f(a(r))l)
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Therefore, for any i=1,...,n,
n+0(v) > L1(r)qq: + L(1)qqi+n > Lo(pp; + Lo()ppi v, — 0 > — 0,
where 0(0) is reduced to 6. Thus we obtain
| La(r)pp; — £.1(r)qq;| < 0. O

For the M as in Theorem A, we embed M for all ¢ >0 and Con_, M into some
metric space Z isometrically such that, in Z, (M, o) tends to (Con,, M, 0.,) as
t — + oo. This naturally induces an embedding of (1 M)(o0) and (Con,, M)(c0) into
a metric space Z(oo) such that

(1) lim,, , , dZGM)(), (Con, M)()) =0,

(2) if a sequence {p,,€tM},.0,_,,. . tends to a point Pioo €M) (00) as
i > + oo for each ¢ > 0, and to a point p_, ;€ Con,, M as t - + oo for each
i, then

lim p,,= lim p,,.

t— + o0 i— 4+ o0

Recall here that (3 M)(o0) and (Con,, M)(o0) are both identified with M (o).

Applying Theorem 2.1 yields the following proposition, which is a part of
Theorem A.

PROPOSITION 2.4. If a sequence {p,} .- o of points in Z with p, €M converges
to a point peCon, M as t - + o0, then

Jnf dy(4,, X) <6,0(p) + 0, (1/1).

<A4p

Thus, the proof of Theorem A is completed by

LEMMA 2.5. For any ray y in Con, M there exist rays y, in 1M for t >0

tending to y as t - + .

Proof. Take a sequence {p,},., of points p,elM tending to p:=y(0). If
7(00) € M(00) is not a cut point to 7.(p), then any ray o in Con,, M from p with
a(00) = y(00) is just the y, so that we take the desired y, as a ray from p, such that,
in Z(00), y,(o0) € A M)(o0) tends to y(o0) €(Con,, M)(c0) as ¢ — + 0.
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In the case where y(o0) is a cut point to 7, (p), for each r >0 a ray y” from
p with y"(0) = 7,y © 7(r) has the property that y"(c0) is not a cut point to
Ty (P). Hence, for each r > 0 there exist rays y; from p, for ¢+ > 0 tending to y”
as t —» +oo. Since y” tends to y as r - + 00, we can find r(f) / + oo such that y7®
tends to y as ¢t — + 0. O

Proof of Corollary to Theorem A. When dim Con, M =n (:=dim M), the
corollary is obvious because X,/ is an almost isometry.
When dim Con,, M < n — 1, it follows from the proof of Theorem 2.1 that

A, < {v €eZ, | ¥ cos?|v,v,,|>1—0,06(p) — GM(I/t)},

i=1

which completes the proof. C

§3. Estimate of the mean measure of rays
Let X be an n-dimensional Alexandrov space of curvature >k, and set
Ss=8;X={peX|vol S"~! —#""(X,) 26} ford>0.

Note that p € S; if and only if é(p) < 6,(9). It follows from liminf, ,, X, > X, (see
[BGP, 7.14]) that S; is a closed subset of X. By [BGP, 10.6] or [OS, Theorem A],
the Hausdorff dimension of S; for any 6 > 0 is not greater than n — 1. We have

THEOREM 3.1. Let X and Y be n-dimensional compact Alexandrov spaces of
curvature 2k, and o,r > 0. Assume that an e¢-Hausdorff approximation g : X - Y
exists. If € > 0 is small enough against X, 6, r, there exists a (0,(6) + 0 5 ,(¢))-almost
isometric map f:X—B(S;,r)>Y with |f,g|=sup{f(x),g(x)||xeX —
B(S5, )} < 0,(6) +Ox.5,(0).

Remarks.

(1) The above 6,(6) cannot be equal to zero. In other words, denoting by d, the
Lipschitz distance, we have d, (X, Y) < 04(dy(X, Y)) only when X has no
singular points (i.e., S;X = & for any 6 > 0).

(2) In [Ymg], Yamaguchi treated the case where dim X < dim Y and S;X = &,
and proved that there exists an almost Riemannian submersion from X to
Y, which becomes an almost isometry in the case where dim X = dim Y. The
approaches of the proofs of that and Theorem 3.1 are different.
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Proof of Theorem 3.1. We can find a 6(d)-strainer {p,;}?2, at every
x€X — B(S5,r) such that ¢ =|p, x| for any j=1,..,2n, xeX — B(S;,7),
and some constant £ > 0, where we note that £/ =const,;,. According to [BGP,
most isometric. For a 0 <t </ take a maximal ¢-discrete net {x;}7., of X —
B(S;, r) and, for simplicity, set ¢;:= 0@, , p;+=p. ;, 4;;=8(p;), and y,:=g(x;). Then,
{q, 1721 is a (8() + 0(¢/¢))-strainer at y,. Letting ¥,==(|g; *)j=1...no 0:=06,(5) +
0((e + 1) /¢), U;:==B(x;, 2t), U;j:=B(x;, t), and V;:= B(y,, 5t), we have that {U;}" ,
covers X — B(S;,r), and that both ¢,: U,—»R"” and y,: V;—>R" are 0-almost
isometric and hence 6r-Hausdorff approximations. Since ||p,x| — |g,8(x)|| <e€ for
any x € X,

|0, i 0 g| < /e

for any i Suppose that e¢=1¢/100 and 6<1. Find a C>®-function
p : [0, +0)—[0,1] such that p=1 on [0,1] and p =0 on [2, +0). We set
xi+=p(|x;, ) : X =[0, 1], so that y,=1 on U; and g, =0 on X — U,. Let us define
functions f; : (Jj—, Uj =Y for i =1, ..., m inductively. Set

fi=yilep :U-Y,

and for i 22,

f;’==f;'—-—l on U Uj,'_Ui,

Jj=1

frm i o (1= Wi ofi 1 +%0) on \J UjnU,

j=1

Note that, although f;_, is not defined on U; — |JiZ] U;, we have y, =1 there and
hence f; =y ;' o ¢, on U,. We now prove

Claims.

(i) f, is B-almost isometric and satisfies |f;, g| < (1 + B)ﬁe.

(i) If f;_, is a-almost isometric and satisfies |f;_,,g|<pB for two positive
numbers a« and B, then f; is (6 +0(x + B + ﬁe)) -almost isometric and
satisfies |f;, g| < 6(B + \/;e).

(i) is trivial. Let us show (ii). Taking any x, y € {J;—,; U; we have the following
(a), (b), and (c).
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(a) When x, y ¢ U, then f;(x) =f;_(x) and fi(y) =f;,_1(y).
(b) When xe U, and y ¢ U,,

Yiofi(x) =W o fi(¥) =0 fi 1 (X) =¥, o fi_1(p)
+ XX @i (x) —¥; o f;_ 1 (x)).

(A similar equation holds when x ¢ U; and y e U,.)
¢) When x,yeU,,
(c) yeU,

Viofi(x) =i fi(¥) = ((x) — L:(PN@:i(x) =i o fi (X))
+ (=W o fio 1 (x) =i o fi ()

+ 2:(¥)@; (x) — 9;(y)).

It follows that x,(x) < const|xy| in (b) and |y,(x) — x;(»)| < const |xy| in (c).
Besides,

|(pi"//i°f;'——llsl(pia l/’iogl‘i‘l'/’iog, ¥, Of;'—l!<\/_’;€+(l+9)ﬂ'

Therefore, in either case of (b) or (¢),

1/, £;(»)| = (1 + 0 + 0 + B + \/ne))|xy|.

The proof of |f;, g| <6(B + \/;e) is easier and left to the reader.
Let us define two sequences {«;} and {f;} by

a=0,  Br=(1+8)/ne,
;=0 +0(;_, +ﬂi-—1+\/"1€)a Bi:=0(B;_, +\/’—18) for i 2 2.

By remarking that f;(x) =f;_,(x) for x ¢ U;, Claims (i) and (ii) show that there
exists a neighborhood U, of each point x € {Jj_, U; such that f;|,_is a,, -almost
isometric and satisfies |f;|y,, &|v, | < By Where v(x):= #{j | U;ax}. Since a stan-
dard discussion using Bishop’s volume comparison theorem proves v(x) < const,,,
%, and P, are both reduced to 6,(0) +0yx;,(c), so that f:=f, : L,
U; > X — B(S;, r) = Y satisfies the conclusion of the theorem. O
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LEMMA 3.2. Setting v(p):=#"(B(o, 1; K,)) we have

li

p—0

. H(B(p,
m 2N (57 p))_:v(p)

for any pe X.

Proof. Bishop—Gromov’s volume comparison theorem implies

(1= 0,40 2L <y

(p).

Since %B( p, p) tends to B(o, 1; K,) as p —0, applying Theorem 3.1 yields that there
exists a 6-almost isometric map f: B(o, 1; K,) — B(S;K,, r) —»,l,B( D, p), where
0:=0,(6) + 0x5,(p). Hence,
U(P) - %n(B(()) la Kp) nB(SéK;n r))
H"(B(p,
(14 6y (mf) < (1 + ) L BL2)

Since lim, _, o #"(B(o, 1; K,) " B(S5K,, r)) =0, this completes the proof. O
LEMMA 3.3. Let C = X be a compact subset and vy:=inf, .- v(p). Then,

A" (Bp.p)
p
(2)  #"(C) = v, V(C).

(nH vy — 0x(p) for any peC and p >0,

Remark. 1t follows in general that s#"(-) < const, V7(*).

yeen

p; — 0 such that

H"(B(p;, pi)) <
Py

vy — C.

We may assume that p; tends to a point pe C as i - +00. By Lemma 3.2,

H "(B(p, p))>vo__ 4
p" 2
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for all sufficiently large p > 0. Bishop—Gromov’s volume comparison theorem
implies that

H"(B(p;, p)) < ¥ "(B(pis pi)) .
p” pi

(1 —8,x(0))

o—¢C

for p = p,. On the other hand, setting A(x, ry, r,) = B(x, r,) — B(x, r;) we have

H "(B(p;, p)) — H"(B(p, p))| < H"(A(p, p, p + |pp:])) + #"(A(p, p, p + |pP; )

<2 vol A(p, p + |pp;|; M"(k)) = 0, ,(|pp.])s

where A(r,, r,; M"(k)) denotes a concentric annulus of radii r; <r, in M"(k). Thus

__.c,

(8= on,k(p»(vo e 9——"—5-"—’59) < v,
2 p

which is a contradiction.
(2): Finding a maximal p-discrete net {p;} of C, we have, by (1),

H(B(C, p[2)) 2 ), H"(B(pis p[2) > Bc(p)p"(vo — Ox(p))-

By taking p — 0, this completes the proof. O
LEMMA 3.4. In Theorem 3.1 we have

(1) Y —Imf < B(g(Ss), r +2|fg| + 4e),
(2) #"(Y —Imf) <8,,(r, ).

Proof. (1): Take any y € Y — B(g(S;), r + 2|fg| + 4e¢). Since g(X) is e-dense, we can
find x € X such that [g(x), y| <e. It follows that

lg(x), &(S5)| > r + 2| f2| + 3

and hence

B(x, 2|fg| + 2¢) = X — B(S;, ).
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Thus, supposing 6 < 1/2 we have
S(X — B(S;,v)) 2 f(B(x, 2| fg| + 26)) = B(f(x), 2(1 — 6)(|f2| + €))
> B(g(x), €) 3.

(2): Let {p;} be a maximal p-discrete net of S;. It follows from S; = |J; B(p;, p)
that g(S;) < U; B(g(p;), p + ¢€), and therefore, by (1),

Y —Imf <) Bg(p). R+ p).

where R:=r + 2|fg| + 5¢. Hence, by Bishop’s volume comparison theorem,
H'(Y —Tm f) < Bs,(p) vol B(R + p; M"(k)).

Since Lemma 3.3 (2) and #"(S;) =0 together imply V”(S;) =0, setting for
instance p:= R we have

H7(Y »>1Im f) < 0y ;5(R),

where we note that 6, , ;(R) is reduced to 0y ;(R). Since R =r + 0y;,(€), this
completes the proof. O

Denoting by «/(n, k, D) the set of n-dimensional Alexandrov spaces of curvature
>k and of diameter <D, we have the following corollary as a direct consequence
of Theorem 3.1 and Lemma 3.4 (2).

COROLLARY 3.5. The n-dimensional Hausforff measure #" . of(n, k, D) - R
is a continuous function with respect to d.

Proof of Theorem B. By Theorem 3.1, for any J,r,t >0 there exists a
(0,(0) + 0,5,(1/0))-almost  isometric map f,: B(o,, 1; Con, M) — B(S;,r) -
B(o, 1; 1 M). Corollary to Theorem A states

H" Ap ) <H""(A,) +0,(0) +0,,(1/1)

for any p € B(o,,,1; Con,M) — B(S;,r). If dimCon M <n-—1, since H#"~!
(4,) =0 for any p € Con,, M, the above inequality implies the conclusion.
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Assume that dim Con M = n. By the above inequality,

J %”“(Ap) dx">(1-6,(5) —OM,é’,(l/t))J %"“(Aq) ax"
Dom f;3p Imf,2q

—(0,(8) + 6, (1/0))# "(B(0, 1; Con, M)).
Here it follows that

H(B(Ss, 1)) <Ops(r) and H7(Bo, 1,7 M) —Imf,) <0,,(r, 1/1).

Moreover, #(B(o, 1;1M)) tends to #"(B(o.,, 1; Con,, M)) as t - + co and, by the

>t

assumption, 5 "(B(o,,, 1; Con,M)) > 0. Thus we obtain
p(Conoo M, ooo) > (1 - On(é))(p_(M’ 0) - eM,é(r)) - OM(és r)s

which completes the proof. O

§4. Appendix

PROOF OF PROPOSITION 1.1. Let R,:={y(?) |y is a ray from o and ¢ > 0}.
It suffices to show

() lim d,u(GR,, ), (K(M(w)), 0)) =0,

(i) lim d, (R, 0), GM,0) =0.

To prove (i), we define the surjective map f;: 1 R, — K(M(00)), y(af) — (y(00), a)
for t >0, where y is any ray in M from o and a = 0. Let us prove that f, is a

0,,(1/t)-pointed Hausdorff approximation. If not, there exist a const > 0, rays o;, y;
from o, and s,,¢;, /" + o0 for i =1, 2,... such that

Z-Gi(si)o'}’i(ti) 2 [ (0}, 7;) + const.
Taking a subsequence we may assume that g; and 7, tend to some rays ¢ and y from

o respectively. Then, £ (o;, y;) tends to ~ . (a, y). Moreover, for any fixed s, ¢ > 0,
the Alexandrov convexity implies that

Zo'i (s:)oy; (1) < Zai(s)o')’i ()
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for any i with s, > s and ¢, = ¢. Here the right-hand side of the above inequality
tends to 7 o(s)oy(¢) as i —» co. Thus,

La(s)oy(f) 2 L (0, y) + const,
which is a contradiction.

To prove (ii), it suffices to show that any sequence {p;} of points in M with
lop;|=1; > + o0 satisfies

lpitRo | =O

1

lim

i— o0
Suppose the contrary, i.e., there exists a sequence {p,} in M such that

[op,-|==t,-—+ +o00 and @2const>0.

Taking a subsequence we may assume that y,:=op, tends to a ray y from o. The
Toponogov convexity implies

Ly(t)op; < 17;(0), 5(0)|,
the right-hand side of which tends to zero as i — + oo. This is a contradiction. [J

Souls and the limit cones of complete open Riemannian manifolds of nonnegative
sectional curvature. Assume now that M is a complete open Riemannian manifold
of nonnegative sectional curvature and Soul,, a soul of M produced by the basic
construction introduced in [CG]. Recall that Soul,, is a closed totally convex
submanifold of M over which the normal bundle is diffeomorphic to M (see
[CG, Shr]), and that any soul of M is unique up to isometry (see [Ym1]). In this
short section, we shall investigate the relation between the souls and the limit cone.
Denote by &s,,,,, the normal holonomy group along Soul,,, (which is a compact
Lie group fibre-wise acting the unit normal bundle over Soul,,). We have

PROPOSITION 4.1. If M is a complete open Riemannian manifold of nonnega-
tive sectional curvature, then

dim Con,, M < codim Soul,, — dim &g, ,.
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Proof. Let n: SN(Soul,,) — Soul,, be the unit normal bundle over Soul,,, and
SN,(Soul,,) its fibre at p € Soul,,. Set

A(Soul,,) = {v € SN(Soul,,) | y,(¢) :=exp tv for ¢ 20 is a ray}.

We first claim that for any v € A(Soul,,) and any curve c: [0, 1] = Soul,, with
¢(0) = n(v), the parallel translation P_(v) € SN ;,(Soul,,) of v along c is contained
in A(Soul,) and satisfies 7,(00) = yp )(0). In fact, in the case where c is a
geodesic, applying Rauch’s comparison theorem yields that

{exp tP, |, y() |1 20,0<5 <1}

is a totally geodesic flat half strip in M and that y,_ o, ) foreach 0<s<lisa
ray (cf. (a) in the proof of [CG, Theorem 1.10]). Therefore the claim in this case
follows. Since any curve is approximated by a broken geodesic, the proof of the
claim is completed.

For p € Souly, let A,(Soul,):={v € A(Souly) | n(v) =p}. By the claim, the
map

A,(Souly ) /Psou,,  [v] > y,(0) € M(0)
is well-defined. Since this is a surjective and distance nonincreasing map,
dim SN,(Soul,, ) — dim &g, = dim M(0),
which completes the proof of the proposition. O

COROLLARY 4.2. If in the above proposition dim Con, M = codim Soul,,
holds, then a finite cover M of M is isometric to the Riemannian product N x Souly,,
where N is a complete manifold diffeomorphic to R*, k :=codim Soul,,.

Proof. Proposition 4.1 and the assumption together imply that dim &5, =0,
i.e., Dgou,, is a discrete group and thus isomorphic to a finite subgroup G of the
fundamental group =, (Soul,,) (~n,(M)) of Soul,,. The normal holonomy group
®s,,1,, of the finite cover M of M with M/G =M is trivial. Therefore Yim’s
theorem (see [Ym2, Corollary 3.10]) completes the proof. O
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